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Abstract

The thesis proposes an approach to the image re-synthesis problem where the target

transformation is described by a dataset of pairs of input images and corresponding

outputs. The approach is based on a warping field concept: pixels of the output image

are sampled from the input. The warping field predictor is learned from a dataset of

examples. The new approach is applicable to image re-synthesis problems, where the

transformations can be well approximated by warping, in particular where dis-occlusion

and global color changes are minimal. The suggested methods are illustrated and evalu-

ated on a gaze redirection task. Such learning-based re-synthesis can achieve convincing

gaze redirection based on monocular input and that the learned systems generalize well

to people and imaging conditions unseen during training.

Four methods of learning a warping field predictor are described and compared. The

first system is based on efficient decision forest predictors and redirects the gaze by

a fixed angle in real time (on a single CPU), which is particularly suitable for the

videoconferencing gaze correction. The second system is based on a deep architecture,

allowing gaze redirection by a range of angles. The second system achieves higher

photorealism, while being several times slower. The third system is based on real-time

decision forests at test time, while using the supervision from a teacher deep network

during training. The third system approaches the quality of the teacher network in our

experiments and thus provides a highly realistic real-time monocular solution to the

gaze correction problem. The fourth system is based on a pair of deep networks where

the first network maps eye images to a latent space, whereas the second maps pairs of

latent representations to warping fields implementing the transformation between the

pair of original images. Both networks are trained in an unsupervised manner, while the

gaze-annotated images are only used to estimate displacements in the latent space that

are characteristic of certain gaze redirections. In-depth assessment and comparisons of

the proposed systems based on quantitative measurements and a user study is presented.
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Chapter 1

Introduction

1.1 Image re-synthesis

Image re-synthesis is about transforming the input image in a certain way. The examples

of applying of image re-synthesis in computer vision include, but are not limited to

changing facial features (Figure 1.1), video interpolation (Figure 1.2), image super-

resolution (Figure 1.3) and gaze redirection (Section 1.2).

The image re-synthesis task is related to both computer graphics and computer vision.

In computer graphics, image synthesis, or rendering, is a process of generating a photo-

realistic image from a physical model [Glassner, 2014]. All attributes of the scene are

given in this model. In computer vision, on the contrary, the image is given and the

physical model is unknown. Understanding the scene is thus one of the main problems of

computer vision, with the different tasks of recognition, segmentation, 3D reconstruction

and others, remaining unsolved in their general form.

Recovering the physical model using computer vision and then obtaining its photore-

alistic rendering using computer graphics is one way to handle the image re-synthesis

problem. For example, [Shu et al., 2016] uses physically-based face rendering and [Wood

et al., 2017] uses a physical model of the eye to solve the gaze redirection problem (Fig-

ure 1.13). However, a model that meets the requirements of rendering is not always

possible to recover. Moreover, such a complex approach would not work if either the

computer vision model is not accurate enough or the rendering step fails. Finally, build-

ing complex multi-parametric physical models is often slow.

An alternative way to define the target transformation is through a database of trans-

formation examples. They may vary from one database to another, featuring different

images with and without a certain attribute to be changed, for instance, smiling and

1
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Figure 1.1: Adding different attributes to the same person. Top: older, mouth open,
eyes open. Bottom: smiling, facial hair, glasses. Figure taken from [Upchurch et al.,

2017].

Figure 1.2: Video interpolation on the KITTI dataset. The middle frame is predicted
from left and right frames. Figure taken from [Liu et al., 2017].

Figure 1.3: Image super-resolution. The resolution of the left image is enhanced
on the fight one. The method utilizes the Generative Adversarial Networks approach

(Section 1.1.1). Figure taken from [Ledig et al., 2017].

Figure 1.4: Examples of re-synthesis problem.
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non-smiling faces from the CelebA dataset [Liu et al., 2015]. In some situations, aligned

sets of examples of a different type can be obtained if ground-truth images are provided.

In [Liu et al., 2017], for example, two input frames and the middle ground-truth image

are picked from the UCF101 dataset [Soomro et al., 2012]. This alternative way is an

instance of the machine learning approach where a model does not consist of a fixed

set of attributes, as opposed to a physical model, but is relatively free to learn any

dependencies in the training data. While even a complex physical model is always a

simplification of the real world, the machine learning model, if perfectly trained on a

large training dataset, has the potential to model all the necessary data variations in

more precise manner and ensure higher photorealism.

Several approaches to learning-based image re-synthesis are getting increasingly popular,

with neural-network-based image synthesis receiving growing attention [Mahendran and

Vedaldi, 2015, Dosovitskiy et al., 2015, Goodfellow et al., 2014, Denton et al., 2015, Gatys

et al., 2015, Gregor et al., 2015, Xue et al., 2016, Dosovitskiy and Brox, 2016]. More

closely related to this work are the methods that learn to transform in. These methods

proceed by learning internal compact representations of images using encoder-decoder

(autoencoder) architectures, and then transforming the images by changing their internal

representation in a certain way that can be trained from examples (for a more detailed

review of [Kulkarni et al., 2015, Reed et al., 2015] see Section 6.1). This approach can be

combined with several ideas that have been reported to improve the result (convolutional

and up-convolutional layers [Zeiler and Fergus, 2014, Dosovitskiy et al., 2015], adversarial

loss [Goodfellow et al., 2014], variational autoencoders [Kingma and Welling, 2013],

perceptual loss [Dosovitskiy and Brox, 2016]). The recent paper [Xue et al., 2016]

addresses the problem using a new cross-convolutional layer that models both correlation

between motion and image content and uncertainty of the motion field. The network

then encodes the input image pyramid into multiple feature maps and convolves these

maps with different kernels. As discussed in more detail below, the existing approaches

to re-synthesis, such as those based on auto-encoders and adversarial networks, often

fail to produce fully realistic images at high resolution.

In my work, I concentrate on the scenario, when the target transformation is defined by

providing the pairs of inputs and corresponding outputs. To overcome the problems of

existing approaches with generating photorealistic images, I suggest the warping field

based method. The idea of the method is that pixels of the output image are sampled

from the input image in places, defined by the warping field. The learning task is

therefore reduces to learning the warping field predictor from the training pairs of images.

As there is no ground truth warping fields in the dataset, this is an instance of a weakly-

supervised problem. I illustrate and evaluate suggested methods for predicting the
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Figure 1.5: Illustration of upsampling (left) and upsampling+convolution (right) as
used in the generative network. Figure taken from [Dosovitskiy et al., 2015].

warping field on the gaze redirection task. Before introducing further details on the

proposed approach, I discuss the related works in recent literature.

1.1.1 Related work on image re-synthesis via regression of target image

Generally, the class of image synthesis problems under review is related to manifold

learning algorithms. It is hard to learn functions with interesting variations in high-

dimensional image space. Manifold learning algorithms suggest that most of the space

consists of invalid inputs and that interesting inputs appear along a collection of mani-

folds only.

The class of manifold learning models at hand is generative models that transform

samples of latent variables z to target samples x or to the parametric distribution over

x using a differentiable function g(z) which is usually represented by a neural network.

Typically, generative models are learned in an unsupervised scenario, with only a dataset

of real samples x given. [Dosovitskiy et al., 2015], however, considers a case where the

correspondence between z and x is given. Computer-rendered images of chairs are used

as training data, and z denotes the parameters given to the rendering engine (type

of chair, viewpoint and distance to the chair). The network architecture is a deep

convolutional network with unpooling layers (Figure 1.5). Each pixel in the feature map

is replaced by a patch with one non-zero value. Followed by convolution, this operation

could be regarded as the opposite of convolution+pooling in the standard CNN. A

combination of the segmented-out chair image loss reconstruction and the segmentation

mask as an objective is used for training a generative network.

1.1.1.1 Variational Autoencoders

An interesting example of manifold learning and generative models is Variational Au-

toencoders [Kingma and Welling, 2013, Rezende et al., 2014] (VAEs) that use a latent

representation space Z too. The sample x is also generated by a generator network g(z),

where z ∈ Z is a sample from a distribution pmodel(z) in the latent space. Thus, x is

sampled for a distribution pmodel(x; g(z)) = pmodel(x|z). During training on an unlabeled
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Figure 1.6: Examples of generated images using VAEs with 2D codes. Figure taken
from [Kingma and Welling, 2013].

dataset with examples x ∈ RN , the encoder network q(z|x) is used to map the inputs to

the latent space Z, and the generator is viewed as a decoder.

VAEs are trained by maximizing the variational lower bound

L(q) = Ez∼q(z|x) log pmodel(x|z)−DKL(q(z|x)||pmodel(z)). (1.1)

The first summand is a reconstruction log-likelihood loss, and the second is Kullback-

Leibler divergence [Kullback and Leibler, 1951]. KL divergence pushes the model prior

on latent variables pmodel(z) and posterior distribution of latent variables q(z|x) close to

each other. The idea of VAEs is to train the encoder, which outputs the parameters of

distribution q(z|x).

Although VAEs are capable of producing fairly photorealistic results based on learning

natural images manifolds (Figure 1.6), their drawback is that samples tends to be blurry

[Goodfellow et al., 2016]. The possible reason behind that is training a VAE with max-

imum likelihood loss DKL(pdata||pmodel) is similar to training a traditional autoencoder

with mean squared error, in the sense that it tends to ignore high frequency features

(that occupy few pixels).

1.1.1.2 Generative Adversarial Networks

Another type of models used for manifold learning and image generation are Generative

Adversarial Networks. Discriminative models learn the conditional distribution P (y|x)

in direct manner, i.e. they learn a function which maps the input data x to some desired
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output label y. Generative models, by contrast, learn the joint probability of input data

and class label P (x, y). Generative models can learn the input data structure even in

an unsupervised scenario. The idea of GANs was first presented in [Goodfellow et al.,

2014] as a minimax game between two neural networks:

min
G

max
D∈D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))], (1.2)

where pdata(x) is true data distribution and pz(z) is some simple distribution (e.g.

N (0, 1)). The first network called “generator” generates samples from the noise. The

second called “discriminator” learns to distinguish between samples from the generator

and from the training set. The two summands in (1.2) are a standard cross-entropy

loss, corresponding to training a binary classifier with a sigmoid output. The classifier

is trained to distinguish examples coming from the generator and from the real dataset.

Two mini-batches of data are used: the label is 1 for all the examples from the dataset

and the label is 0 for all the examples from the generator. The discriminator is trained

using both terms and the generator using only one.

The error from the discriminator is backpropagated through the generator. Thus during

such simultaneous optimization, both networks learn to perform their task better and

better until the generator finally learns to produce samples indistinguishable from real

data. In other words, the generator learns to model a manifold of natural images.

Several applications for art creation [Zhu et al., 2016] and photo modifications [Brock

et al., 2017, Isola et al., 2017] are based on GAN idea.

Interactive generative adversarial networks (iGAN) were developed in [Zhu et al., 2016].

The network outputs a realistic image similar to a rough sketch drawn by the user. The

user sketch and the manifold of natural images are typically very dissimilar. The genera-

tor learned by GAN is used as a constraint on the output of the users manipulations with

an image, ensuring that the results lie on the learned manifold. A random vector z ∈ Z is

drawn from a multivariate uniform distribution Unif [−1, 1]d and the learned generator

is used as an approximation of an ideal image manifold M ≈ M̃ = {G(z)|z ∈ Z}. An

Euclidean distance between the images in this latent space is defined:

L(G(z1), G(z2)) ≈ ||z1 − z2||2.

Thus linear interpolation in this latent space serves as a way of traversing the manifold.

For a given real photo x0, [Zhu et al., 2016] suggest to first project it on the approxi-

mation of the image manifold using the perception loss [Johnson et al., 2016] between

intermediate deep neural network activations as a measure of closeness between the
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Figure 1.7: Image editing on the natural image manifold. The original photo is
projected onto a low-dimensional latent vector representation, the color and shape of
the generated image are modified, and the same modifications are applied to the original

image. Figure taken from [Zhu et al., 2016].

generated image and the real photo. Either direct optimization is used or a special pro-

jection feedforward neural network is trained. The projection yields the latent vector z0

of the closest image G(z0). After that, the image is modified while meeting the constraint

of staying within the manifold (Figure 1.7) and the image G(z1) with latent vector z1

is obtained. Having two latent vectors enables generating the complete manifold curve

[G(zt)]
N
t=0 between G(z0) and G(z1) with linearly interpolated latent vectors

zt =

(
1− t

N

)
z0 +

t

N
z1.

The optical flow from G(z0) to G(z1) is estimated using that curve and is applied to the

initial image x0, to obtain the final result x1.

An image-to-image translation concept was suggested in [Isola et al., 2017]. It covers

a lot of different transformations of an image: sketch to photorealistic image, satellite

photo to map, and others. In general it is suitable for any pixel-to-pixel transformation.

It makes use of conditional GANs [Mirza and Osindero, 2014], with the objective having

the form

min
G

max
D

Ex,y∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x),y∼pz(z)[log(1−D(x,G(x, z)))].

The difference from traditional GANs is that conditional GANs observe both the random

noise vector and the image x and learn the mapping G : {x, z} → y.

The problem with using simpler L2 or L1 loss instead of complicated GAN structure is

that it produces blurry results in image generation tasks. However, it can model low

frequencies fairly well. Thus [Li and Wand, 2016, Isola et al., 2017] also suggest using
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Figure 1.8: Photo editing in Neural Photo Editor. Top, left to right: Reconstruc-
tion, reconstruction error, original image. Bottom: Modified reconstruction, difference
between modified reconstruction and X̂, output. Figure taken from [Brock et al., 2017].

Markovian discriminator (PatchGAN), which is a combination of GAN discriminator

and a standard L1 loss. The discriminator is restricted to capture only high frequencies,

by penalizing only structure at the scale of patches. This discriminator tries to classify

each NN patch in an image as a real or a fake one.

An interface called Neural Photo Editor, where the user is able to manipulate the models

latent variables in an interpretable way, was created in [Brock et al., 2017]. The user

paints rough modifications to a photo and the network turns these rough paints into

a photorealistic image matching the users desires (Figure 1.8). The user paints on the

output image, and instead of changing individual pixels, the interface back-propagates

the difference between the local image patch and the requested color and takes a gradient

descent step in the latent space to minimize that difference. Thus both the image X̂

reconstructed from the latent code and the code itself are changing simultaneously.

The target input image X is changed and the output Y is produced using a special

mask M provides a smoothed and truncated version of the difference between input

and reconstruction. The output image is a masked average of the reconstruction, the

requested pixel-wise change ∆ and the reconstruction error:

Y = X̂ +M∆ + (1−M)(X − X̂).

In its Neural Photo Editor [Brock et al., 2017] uses a model applying both VAE and

GAN approaches: Introspective Adversarial Networks. In this approach, the encoder and

discriminator are combined into a single network. Four losses are used: `1 reconstruction
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loss, VAEs KL divergence in the latent space (1.1), ternary adversarial loss and feature-

wise perceptual loss. Ternary adversarial loss, in contrast to standard GAN approach,

classifies between the real, generated or reconstructed image, instead of binary real vs.

generated classification. Feature-wise perceptual loss is the `2 difference between the

original image and reconstruction in the space of the discriminators hidden layer.

The same perceptual loss was suggested earlier in [Dosovitskiy and Brox, 2016]. In

particular, the distance between two images x, y ∈ RW×H×C in their model is

L(x, y) = ||C(x)− C(y)||22,

where C : RW×H×C → RF is a differentiable comparator, typically a neural network.

The best variety of comparator in their experiments was an AlexNet [Krizhevsky et al.,

2012] network trained on the image classification task.

[Shu et al., 2017] concentrate on editing face images, and, apart from adversarial loss,

uses additional guidance for a network: priors on a number of intrinsic face properties,

such as a morphable model-driven prior on the geometry, a Retinex-based (see [Land

and McCann, 1971]) prior on the albedo and an assumption of low-frequency spherical

harmonics-based lighting model [Ramamoorthi and Hanrahan, 2001, Basri and Jacobs,

2003]. The face is separated from the background to traverse the face manifold in the

latent space and not to influence the background.

However, the attempts to apply conventional manifold learning with generative architec-

tures to gaze redirection show noticeable sharpness degradation (Figure 1.9). Autoen-

coders with a combination of `2 and GAN [Goodfellow et al., 2014] losses are trained on

the Skoltech gaze correction dataset (Section 2.3). The best model has a 200-dimensional

latent space and consists of several convolutional and fully-connected layers in the en-

coder and the decoder. The results do not provide enough perceptual quality and do not

meet the needs of gaze manipulation applications. More examples comparing warping

to direct re-synthesis are illustrated in Figure 2.2 and Figure 2.3.

1.1.2 Related work on image re-synthesis via warping

To overcome blurriness occurring in traditional generative models, this work focuses

on the model utilizing the warping approach (Section 2.1). The idea to do image re-

synthesis via warping goes back at least as far as [Seitz and Dyer, 1997]. However, it

is only recently that some literary publications suggested obtaining a warping through

machine learning. As the work on this thesis was underway, similar ideas started to be

discussed in literature. Thus the models suggested here fall within the scope of these
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Figure 1.9: Examples of reconstructions produced by an encoder-decoder architecture
that combines reconstruction `2 and GAN losses (following the approach in [Kulkarni
et al., 2015, Ghodrati et al., 2016, Reed et al., 2015, Goodfellow et al., 2014]) trained
on the Skoltech dataset (Section 2.3). In each pair, the left image is the input and
the right is the output. Due to a noticeable loss of fine-scale details and regression-
to-mean effect, the result is not good enough for most gaze manipulation applications.
Similar issues are observed in [Kulkarni et al., 2015, Ghodrati et al., 2016, Reed et al.,

2015, Goodfellow et al., 2014].

discussions. Several papers present a related approach with a deep network predicting

warping fields (flow) for image editing.

[Zhou et al., 2016] exploit the same idea based on the warping field (Section 2.1). They

applied idea, similar to the one presented in this work (Chapter 4, Chapter 6), to the

task of learning novel view synthesis. The inputs to the network are image and viewpoint

transformation coordinates and the output is a warping field applied to the input via

a bilinear sampler. This makes the method similar to the one presented in Chapter 4.

However, their encoder-decoder architecture is more similar to the one presented in

Chapter 6, where the task is different: having two images, generate warping field from

one to another. [Zhou et al., 2016] is yet another work that suggests an approach to

learning a manifold of different viewpoints of the same object. The authors generalize

the idea of novel view synthesis from a single input to several input images (Figure 1.10).

The network called a single view CNN with shared weights is applied to all the input

images, and a novel view image is generated from each of them. Aside from the novel

view image, the network also generates a confidence mask of the same size as the image,

which evaluates the pixel-wise prediction accuracy using this particular input view. The
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Figure 1.10: Multi-view network architecture (⊗: per-pixel product, ⊕: per-pixel
normalized sum). Shared-weights CNN generates a novel view and confidence mask for
each input image. The output is the average of the novel views weighted with masks’

values. Figure taken from [Zhou et al., 2016].

final image is generated as a weighted average of the single novel view, with weights

coming from normalizing all masks to sum to one at each pixel location.

[Yeh et al., 2016] suggests synthesizing the flow fields that manipulate the facial expres-

sion. The authors use VAE-based architecture with regularization on the latent space

representation. Apart from the flow field, they predict a confidence mask for its flow

predictions in order to combine multiple source images to generate one output image.

Their loss consists of three parts: reconstruction loss, smoothness in the latent space

and coherence in the flow space. The flow coherence loss penalizes large flow deviations

for close pixels, unless there are large deviations in pixel intensities:

Lflow =
∑
i

∑
j

||Fi − Fj||22 exp(−(α||Ti −Tj||22 + ||i− j||22)),

where Fi,Ti are flow and intensity at pixel i. They perform expression manipulation

using analogies and interpolation in the latent space. In particular, they calculate the

mean change in the latent space on the training database and apply the same change

on the latent representation of the query image. They also make the same observation

that was found in this work, that upsampling in the flow domain gives sharper results

than upsampling in the pixel domain.

The warping flow idea is used for predicting the missed frame in a video sequence in

[Liu et al., 2017]. The training data are triplets of consecutive video frames, two being

inputs and the third being a ground-truth which can be in between the frame or the

next frame. The warping field and the mask are predicted by selecting between two

input frames. The training objective is the combination of the reconstruction loss and

total variation regularizers on the flow field and the mask.
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[Liu et al., 2017] also put forward a multi-scale approach to flow prediction. The series of

autoencoders works on different scales and produces a series of warping fields, capturing

flow on different scales from coarse to fine. The final warping field is obtained by

uspampling, concatenation and further convolution of the multi-scale flow fields.

The warping flow is used to fill in disoccluded pixels based on the prediction of the

visibility map in [Park et al., 2017]. The authors consider the problem of a novel view

synthesis. Firstly, their Disocclusion-aware Appearance Flow Network predicts a warp-

ing field as well as a visibility map, which encodes the parts that need to be removed due

to occlusion. After that, the completion network hallucinates disoccluded regions. They

use a combination of reconstruction, adversarial and perceptual loss as an objective.

1.2 Gaze redirection

In this work I concentrated the evaluation of suggested techniques to image synthesis

on the problem of gaze redirection. Gaze correction in videoconferencing appears as an

essential gaze redirection issue that has been the particular concern of researchers and

engineers for a long time. The problem manifests itself as the inability of the people

engaged in videoconferencing (the proverbial Alice and Bob) to maintain eye contact,

the lack of which is due to the disparity between Bobs camera and the image of Alices

face on Bobs screen (and vice versa) (Figure 1.11). Talking to Alices image on the screen,

Bob is looking her in the eye, whereas to Alice, he seems to be looking down, because

the camera is located above the screen). Gaze correction then refers to the process of

altering Bobs video stream in a realistic and real-time way, so that Bobs gaze direction

as seen by Alice is changed (e.g. redirected upwards) and the eye contact is established

(Figure 1.12).

Apart from videoconferencing, there are other important scenarios, where the appear-

ance of the eyes needs to be digitally altered in a way to change the apparent gaze

direction. These include talking head-type videos where a speaker reads the text ap-

pearing alongside the camera but should redirect their gaze into the camera. Another

example is editing photos (e.g. group photos) and movies (e.g. during post-production),

making gaze direction consistent with the ideas of the photographer or the movie director

(Figure 1.13).

The solution to the gaze correction problem in videoconferencing would be useful for a

broad user audience, including but not limited to designers, filmmakers, HR specialists

and job applicants, psychotherapists, language tutors, and TV presenters. Patents on

gaze correction and related solutions are held by such companies as Microsoft, Cisco,
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Figure 1.11: Eye-to-eye contact cannot be maintained during a videoconference due
to a vertical gap between the camera and conference window on the screen. As a result,
the person on the screen seems to be looking down while in fact they are looking at

your face on their screen.

Input Desired output

Figure 1.12: Gaze correction in videoconferencing: transformation examples. Top
row – gaze redirection by 10◦, bottom row – by 15◦. A typical angular mismatch is 15◦

during a videoconference through a consumer laptop with the camera above the screen
and with the user sitting at a comfortable distance from the screen.
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Figure 1.13: Gaze redirection for image and video post-processing. Top row: gaze
correcting camera for the group of people. Bottom row: post-production of a movie
after adding visual effects. CGI character is changed and the actor’s gaze is adjusted
accordingly. The method is based on constructing a complicated physical model of the

eye. Figure taken from [Wood et al., 2017].

Samsung, Siemens, NEC, AT&T, Alcatel and others. There has been a substantial

commercial demand for gaze correction solutions for decades.

Psychological research has yielded multiple reports underscoring the importance of eye

contact. C. Kleinke wrote in his report [Kleinke, 1986] on eye contact: ”Authors of

[Wheeler et al., 1979] reported a positive correlation between an interviewee’s eye contact

with an interviewer and estimates made by observers of the interviewee’s intelligence.

Women rated male dating partners as silent, passive, and inattentive when they gave

low levels of gaze during a role-playing interaction [Lochman and Allen, 1981]. British

college students rated a same-sex peer they met in an experiment as more pleasant and

less nervous when the person gazed at them continuously rather than not at all [Cook

and SMITH, 1975].” Few image parts have such a dramatic effect on the perception

of an image like regions depicting eyes of a person in this image. Humans (and even

non-humans [Wallis et al., 2015]) can infer a lot of information about the owner of

the eyes, their intent, mood and the world around from the appearance of the eyes

and, in particular, from the direction of the gaze. Overall, the role of gaze in human
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communication has long been known to be very high [Kleinke, 1986]. Thus meeting

the requirement of realism is particularly difficult due to the well-known uncanny valley

effect [Wikipedia, ndb], i.e. the sense of irritation evoked by realistic renderings of

humans with noticeable visual artifacts, which stems from the particular acuteness of

the human visual system towards the appearance of other humans and human faces in

particular.

The image re-synthesis methods proposed in the past usually tackle the re-synthesis

problem in a general form, striving for universality. In this work I take an opposite

approach, focusing on gaze manipulation as a very specific image re-synthesis problem

and considering some important real-life applications.

So far, the most successful gaze correction solutions have been relying on additional

hardware such as semi-transparent mirrors/screens [Okada et al., 1994, Jones et al.,

2009], stereo cameras [Yang and Zhang, 2002, Criminisi et al., 2003], or RGB-D cameras

[Zhu et al., 2011, Kuster et al., 2012]. Because of the extra hardware dependence,

such solutions mostly remain within the realm of high-end conferencing systems and/or

research prototypes. Despite decades of research, finding a monocular solution that

would rely on the laptop/portable device camera as the only image acquisition hardware

remains an open question. The challenge is multi-faceted and involves meeting a host

of requirements:

• realism: in order to be applicable in practice, the results should not be perceived

by humans as synthetic images;

• having gaze direction/viewpoint position altered sufficiently for re-establishing the

gaze contact: Figure 1.12 gives an idea of how much the gaze should be altered,

however 2− 3◦ of error out of 15◦ are generally indiscernible by human users;

• real-time performance: several systems suggested in the literature require addi-

tional hardware such as a GPU to run in real time; to cater to a broad audience,

the system should be capable of operating in real time on a CPU-based consumer

laptop and ideally, on portable devices too, and should not require a lot of memory

and computational resources.

1.2.1 Previous work on gaze redirection

Fixing the gaze problem in videoconferencing (gaze correction) is the most popular

use case of gaze redirection. A number of systems solve the gaze problem using a

hardware-driven approach that relies on semi-transparent mirrors/screens [Okada et al.,
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1994, Jones et al., 2009]. The most popular software-driven approach to gaze correction

in videoconferencing amounts to synthesizing 3D rotated views of either the entire scene

[Criminisi et al., 2003, Yang and Zhang, 2002] or the face (which is subsequently blended

into the unrotated head) [Kuster et al., 2012, Giger et al., 2014]. A two-step mixed

software/hardware solution is the most common technique in this category. First, a dense

depth map is estimated either through stereo matching [Yang and Zhang, 2002, Criminisi

et al., 2003] or using RGB-D cameras [Zhu et al., 2011, Kuster et al., 2012]. Then a new

synthetic view corresponding to a virtual camera located behind the screen is created in

real time. Filling disoccluded regions is a common difficulty encountered in novel view

synthesis. As discussed above, reliance on additional hardware represents an obvious

obstacle to the adaptation of these techniques.

Although a certain number of purely software-based monocular gaze correction ap-

proaches have been suggested [Cham et al., 2002, Yip and Jin, 2003], most of them

have been generally unable to synthesize realistic images and to alter the perceived gaze

direction to the extent required. The exceptions are the systems [Wolf et al., 2010, Qin

et al., 2015] that first pre-record a sequence of frames with a person looking into the

camera, and then, at the conference time, replace the eye region with that taken from

one of the pre-recorded frames.

Among recent papers, while this study was under way, [Shu et al., 2016] suggest a similar

approach to replace closed eyes with open eyes for photo editing. [Wood et al., 2017]

use a 3D eye model to generate realistic eye images with adjusted gaze.

The Table 1.1 summarizes some technical aspects of the related software-driven ap-

proaches, such as whether a solution is monocular, require GPU, works in real time or

require pre-calibration before each session. I do not include in the table the comparison

of the performance of the methods because in many cases it is a contentious issue. How-

ever, below I describe methods in more detail and give comments on their advantages

and drawbacks, including the comments about their performance.

Let us consider some of the systems for gaze correction in more details. Hardware-based

approaches are often too complicated and expensive to be used by a wide audience. The

system in [Jones et al., 2009] is designed for. A 3D scanning system scans the remote

participant, whose image is shown using a 3D display, and a 2D video system is used

for the remote participant to see the audience (Figure 1.14).

1.2.1.1 Gaze correction via 3D view synthesizing

A pair of calibrated stereo cameras located at the top and bottom of the monitor are used

in [Yang and Zhang, 2002]. The method involves pose tracking, view matching and view



17

Paper Monocular
Does not

require GPU
Real-time

Does not require
pre-calibration

[Kuster et al., 2012] - - + +
[Giger et al., 2014] + - + -
[Wolf et al., 2010] + + + -
[Criminisi et al., 2003] - + ∼+ +
[Yang and Zhang, 2002] - + - -
[Cham et al., 2002] + + - +
[Yip and Jin, 2003] + + - -
[Zhu et al., 2011] - + - +
[Qin et al., 2015] + - + -
[Wood et al., 2017] + - - +

Table 1.1: Comparison of related gaze redirection works’ characteristics.

Figure 1.14: (Left) a setup for remote participant: the structured light scanning
system (120Hz video projector and camera) and large 2D video feed screen. (Right) a
setup for audience: the two-sided display surface, high-speed video projector, frontal
beam splitter, and 2D video and face tracking camera. Crossed polarizers prevent the
video feed camera from seeing past the beam splitter. Figure taken from [Jones et al.,

2009]

.

synthesis. The system initialization requires about 15 minutes of human interaction,

which includes horizontally aligning the symmetric facial features such as lips and eyes

and using a face modelling tool [Liu et al., 2001] to acquire a personalized user face

model. Pose tracking means tracking a triplet S = {p,q,m} for each frame, where p

and q are points in the camera images and m is their respective points in the face model.

Tracked in its neighborhood are points with salient textures, except for feature points

in the non-rigid parts of the face, such as the mouth region. Points p,q must satisfy the

epipolar constraint [Hartley and Zisserman, 2003]:

pFq = 0,

where F is the fundamental matrix, corresponding to the epipolar geometry between the

two images. The points are tracked using the KLT tracker [Shi and Tomasi, 1994].
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To represent the head pose, a 3 × 3 rotational matrix R and a 3D translation vector t

are used. The objective is the sum of re-projection errors of m to p and q:

e =
∑
i

||pi − φ(A0(Rmi + t))||2 + ||qi − φ(A1[R10(Rmi + t) + t10])||2. (1.3)

Here φ() is the pinhole projection, (R10, t10) are the rotation and translation from

the second cameras coordinate system to that of the first camera, and A0 and A1

are the cameras intrinsic parameters. Reprojection error (1.3) is minimized using the

Levenberg-Marquardt algorithm.

A set of good matches in the rigid part of the face is obtained as a result of the 3D

head pose tracking. More points and line matching over the entire foreground images

are found using several stereo view matching approaches. After that, the novel view is

generated based either on view morphing [Seitz and Dyer, 1997] or on hardware-assisted

multitexture blending.

[Criminisi et al., 2003] suggest generating a cyclopean view from two cameras located to

the left and right of the screen. The authors develop a stereo matching approach and pro-

pose a way to deal with occlusions and hole filling without explicitly constructing a scene

3D model. They generate disparities using a dynamic programming approach, finding

the path through a three-plane graph. New labels and cost function are introduced to

correctly identify and group occlusions, format the occlusions at the boundaries of fore-

ground objects and ensure inter scanline consistency. Due to different possible camera

locations on the screen, they also introduce the way of min-cost surface projection to

generate virtual views from arbitrary located cameras directly from the minimum-cost

surface obtained during the DP process. Temporal background model construction is ap-

plied to decrease temporal artifacts. The gaps on the current frame due to disocclusions

can be filled in with values which might be available in previous frames.

[Zhu et al., 2011] suggest a system composed of a time-of-flight depth sensor and a

traditional stereo. The depth map from the stereo matching of two images and the

depth image from a time-of-flight sensor are joined and refined using the methods from

[Zhu et al., 2008, Zhu et al., 2009]. View morphing [Seitz and Dyer, 1997] in case of a

dense correspondence is performed through linear interpolation of projection matrices.

A texture splatting technique [Guinnip et al., 2004] is used to fill the holes emerging

from matching, projection and rounding errors.

[Kuster et al., 2012] suggest generating a novel view of the face using an RGB-D image

from Kinect (Figure 1.15). Still, some parameters, such as the persons height, need to

be manually set before the conference. The user is also advised to refine the result of the

2D placement of the corrected face in the original image (as opposed to initial automatic
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Figure 1.15: a) Input color and depth images. b) Top: synthesized image. Bottom:
transfer with the use of an ellipse stencil; visible artifacts. c) Seam is optimized; much

fewer artifacts. d) Final blending. Figure taken from [Kuster et al., 2012]

.

placement based on coinciding facial features of the two face images, such as eye and

mouth positions).

One drawback of this approach is the artifacts resulting from the large size of the face

region to repaint and large size of occlusions in this region. The authors suggest applying

seam optimization to deal with the issue. A polygonal seam is optimized and made

similar in the source and corrected images, so that it appears smoother after blending.

The paper mentions another technique named temporal stabilization of discontinuities

in the Kinect geometry. The pitfall of the approach suggested in [Kuster et al., 2012]

is the necessity to use Kinect sensor and GPU to compute fast enough for real-time

performance.

This approach is further developed in [Giger et al., 2014] where the novel view is gen-

erated using a single web camera with no depth image taken. Instead the method

uses monocular real-time approximate fitting of the head model fitted using the facial

features extracted from the input image. Before the videoconference, the user should

manually relate the feature points to the 3D mesh vertices. During the videoconference,

the head mesh is rebuilt based on the facial landmark tracker output [Saragih et al.,

2011]. Conversion between the 2D landmark and 3D world coordinate systems is per-

formed using the Laplacian deformation technique [Sorkine, 2005]. The method uses a

similar but slightly enhanced seam optimization technique. Before the session begins,

the user is asked to look straight in the camera to record the static texture of the face

and correct gaze direction. The texture is then used to fill the occluded vertices of the

seam. However, the method proposed in [Giger et al., 2014] has some limitations, due
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Figure 1.16: Eye model consisting of 6 parameters. Figure taken from [Wolf et al.,
2010]

.

to multi-perspective nature of the output images, and the availability of a GPU for real-

time operation. Pre-recording heavily occluded head parts (under the chin) before each

video conference creates further limitations for practical usage of the system.

Monocular setting is also considered in [Cham et al., 2002] which uses a reference pair

of images with target transformation and epipolar geometry for rigid body motion to

project the transformation on the input image. [Yip and Jin, 2003] suggest applying

transformation to the geometry without knowing 3D coordinates, but with two different

kinds of rotation and eyelids correction post-processing. However, the results presented

in these papers fall short of the goal in terms of realism of the generated faces.

1.2.1.2 Gaze correction via eye replacement

The general idea of [Wolf et al., 2010] is to find an accurate position of the eye and

to replace it with a pre-recorded image of the eye of the same person with a proper

gaze direction (e.g. gaze in the camera). Initial eye detection is performed using an

offline database of images with eyes annotated manually according to the model shown

in Figure 1.16, which was first suggested in [Yuille et al., 1992].

Once the images with a gaze pointed at the camera have been pre-recorded, eye param-

eters are found independently for each image. This is done by first localizing the eye

corners using the method from [Everingham et al., 2006] and then extracting the SIFT

descriptor from the localized region of interest. After that, eye parameters are approx-

imated using the model trained on an offline database (Nearest Neighbor and Support

Vector Regression models were used).

Next, the 6-parameter space is searched locally to refine the model. For each new pa-

rameter value, the closest eye in the offline database is translated, rotated and stretched
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in accordance with the difference in the parameters. At test-time, the closest matches

to straight-looking eyes are found using the cross-correlation measure. Local search in

the space of 6 parameters is also used to adjust the eye model for consecutive frames

and for blending the eyes found.

The downside of [Wolf et al., 2010] is that while the obtained images achieve sufficient

realism, the gaze in the synthesized image remains “locked”, staring unnaturally into the

camera irrespective of the actual movement of the eyes. Although initially the problem

boils down to lack of eye contact, we do not want eye-to-eye contact to be permanent,

for fixed gaze would be unnatural in live communication. The only goal is to make up

for the vertical gap between the camera and the videoconference window on the screen.

A related drawback is that the system needs to pre-record a sufficient number of diverse

images of the persons eyes. The systems suggested in this work have none of these

limitations.

Another method suggested in [Qin et al., 2015] is based on replacing the eyes with those

looking directly into the camera. Similarly to other techniques, it involves pre-recording

a sequence of frames with a person looking directly into the camera and blending the

eyes with those from one of the previously taken frames. Thus the method shares the

drawbacks of [Wolf et al., 2010]: the gaze is unnaturally directed at the camera all the

time and each videoconferencing session requires a set of additional preparatory opera-

tions. Face alignment [Xiong and De la Torre, 2013] is used to localize eye regions and

warp these regions from the destination image to the target one. In order to correct the

gaze vertically, the corresponding direction is enlarged by some ratio. Afterwards, post-

processing steps are applied, such as reillumination and Laplacian pyramid blending.

1.2.2 Recent work on gaze redirection

Published more recently, [Shu et al., 2016] suggests an approach similar to that ad-

dressed in [Wolf et al., 2010] and replacing closed eyes with open eyes for photo editing

(Figure 1.17). The idea is to replace the eyes in the target image with the eyes from

the reference image. The authors start with fitting face models to both images, fitting

a 3D face model using Principle Component Analysis on a 3D face shape dataset and

tracking 2D facial landmarks [Saragih et al., 2011]. Assuming a weak perspective pro-

jection, they optimize for a projection matrix and weights in the PCA decomposition

using the fitting algorithm [Yang et al., 2011]. The reconstructed projection is also used

to warp a reference image in such a way that the eyes are roughly aligned with the eyes

in the target. Then they perform image rectification in terms of lighting, local contrast
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and overall skin tones using multi-dimensional histogram matching and finally robustly

blend the eye regions into the target image.

Another paper, [Wood et al., 2017] was published after the experimental part of this

study had already been complete. [Wood et al., 2017] model the eye region in 3D, recov-

ering the shape and pose of the eyes [Wood et al., 2016], updates the model parameters

in iterative manner, generates a corresponding synthetic eye region image and calculates

new updates for the parameters, comparing the synthetic eye region to the observed one.

The comparing objective consists of image and landmark similarity terms, as well as of

terms corresponding to the eye model (penalizing unlikely eye pose and shape).

The gaze redirection step relies on the fitted eye model. The model parameters are

modified to represent the redirected gaze and the optical flow is calculated from these

two sets of parameters. The optical flow is used to warp the eyelids. The eyeballs

are rendered directly from the new set of parameters. Application to image and video

post-processing is illustrated in Figure 1.13.

The objective optimization step in [Wood et al., 2017] is a complicated high-dimensional

non-convex problem, thus a GPU is needed to perform Gauss-Newton iterations. Still,

the complete algorithm does not have real-time capability because of the cumbersome

model-fitting step.

1.3 Contributions and scope

Chapter 2 describes a general approach to image re-synthesis. The warping field concept

with the output image pixels sampled from the input image is introduced. The warping

field predictor is learned from the dataset of image pairs describing the target transfor-

mation. As regards gaze redirection, I suggest repainting only the vicinity of the eyes,

emulating only the change of gaze direction and keeping the head pose unchanged. A

review of facial alignment methods is also given in Section 2.3.1.

Chapters 3-6 deal with four image re-synthesis systems and their application to gaze

redirection. The first system [Kononenko and Lempitsky, 2015] described in Chapter 3

is based on a special kind of randomized decision tree ensembles called warping flow

forests that are learned in a weakly-supervised manner. For a gaze redirection task, at

training time this system observes pairs of input and output images, where each pair

contains the face of the same person with a fixed angular difference in the gaze direction.

It then learns to synthesize the second image in a pair from the first one by predicting

a warping flow field. After learning, the system acquires the ability to redirect the gaze

of a previously unseen person by the same angular difference as in the training set. The
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Figure 1.17: Eye-editing approach [Shu et al., 2016]. Steps applied to transfer the
eyes: face fitting, eyes’ registration via warping, color adjustment, blending. Figure

taken from [Shu et al., 2016].

system synthesizes realistic views with a gaze systematically redirected by 10−30 degrees

in the experiments. At test time, the system accomplishes gaze correction using simple

pixel replacement operations that are localized in the vicinity of the persons eyes, thus

achieving high computational efficiency. My implementation runs in real time on a single

core of a laptop. Although the results are of high perceptual quality (see Section 5.3.4),

the system still leaves some room for improvement and artifact reduction. Although less

critical, another deficiency of the system is a relatively large memory footprint of the

learned models.

The second system (Chapter 4, [Ganin et al., 2016]) is based on a deep feed-forward ar-

chitecture that combines several principles of operation (coarse-to-fine processing, image

warping and intensity multiplication). The architecture is trained end-to-end in a su-

pervised way using a specifically collected dataset that depicts the change of appearance

that occurs as the gaze is redirected by different angles. Qualitative and quantitative

evaluation demonstrates that the suggested deep architecture can synthesize very high-

quality eye images, as required by the nature of the applications, and does so at several
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frames per second. The quality of the results is higher than that in the first system, but

the efficiency falls short of real-time CPU operation, making the method impractical for

video-conferencing with most commonly used consumer devices. Such approach is still

useful for image and video-editing application scenarios outlined above. The system also

contributes to an actively-developing field of image generation with deep models.

The third system (Chapter 5, [Kononenko et al., 2017]) combines the advantages of

the previous two. Similarly to the first system, it is based on a randomized decision

forest which in this case is trained in a traditional fully-supervised manner. To obtain

such supervision, I use an output of the second system to effectively have the deep

architecture teach the random forest. At training time, the new system observes images

and the corresponding warping flow that is estimated by the deep model and learns

to produce the flow for previously unseen images using a regression random forest. At

test time, the system outputs a result by applying the flow predicted by the random

forest to the input image. As shown by the experiments described in Section 5.3, the

trained forest attains nearly the same quality as the teacher network, outperforming a

weakly-supervised random forest (from the first system). At the same time, this system

runs in real time on a single core of a CPU. Moreover, the resulting models have a much

smaller memory footprint as compared to the weakly-supervised forest.

All the three systems are trained in a supervised case, based on a large dataset of images

labeled with a gaze direction angle. Acquiring of such a database is comparatively ex-

pensive, as it requires significant time per user, adherence of proper instructions, and still

contains some noise in labels (Section 2.3). The fourth system (Chapter 6) is dedicated

to unsupervised and semi-supervised scenarios. In this case the first model learning step

is unsupervised. A large dataset of unlabeled images is utilized, which are sampled from

sequences of eye images of different people with varying and unknown gaze directions.

Such data is much easier to get (Section 2.3). The goal of unsupervised learning is to

train a decoder network which maps input images to a shallow representation space,

and a decoder network which learns to construct a warping field from the first image in

the pair to the second based on their representations. Having the encoder and decoder

learned, the system can redirect the gaze of a previously unseen eye in a semi-supervised

way, based on a relatively small collection of eyes with gaze direction labels. The labeled

part of the dataset is used to pick up analogy images. The latent representation of a

test eye is modified additively based on the representation of analogies. After this, the

decoder network will be able to estimate a warping field from the test eye to an unknown

target eye with a redirected gaze.

Table 1.2 compares the four methods in terms of inputs, training data, speed and quality.

Each Chapter gives a review of the related work: Random Forests and their application
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Method Inputs Training data
Computational

demands
Quality of results

Weakly-supervised
Random Forest
(Chapter 3,
[Kononenko and
Lempitsky, 2015])

Image and
landmarks,
image is
processed at
native
resolution, gaze
is changed in
fixed direction

Pairs (input + ground
truth) of images with fixed
gaze direction difference,
landmarks for input image

Real-time
performance on
a consumer
laptop
(≈ 40 FPS),
≈ 100 Mb RAM
on storing a
model

Beats the baseline by a
large margin, worse
than other methods,
but performance is still
good in User study

Deep Warp
(Chapter 4,
[Ganin et al.,
2016])

Image,
landmarks and
redirection
angle, image is
processed on
fixed training
spatial scale

Pairs (input +
ground-truth) of images
and gaze direction
difference between them
(angles along x and y
directions), landmarks for
input image

Performance up
to 20 FPS on a
GPU

The best results in
quantitative
comparison and User
Study

Random Forest
supervised by
Neural Network
(Chapter 5),
[Kononenko et al.,
2017]

Image and
landmarks,
image is
processed at
native
resolution, gaze
is changed in
fixed direction

Input images with
landmarks, flow fields
corresponding to
redirection of input images
by some fixed angle

Real-time
performance on
a consumer
laptop
(≈ 40 FPS),
2− 3 Mb RAM
on storing a
model

Very close to the results
of a teacher Deep Warp
model in both User
study and quantitative
comparison

Semi-supervised
Neural Network
(Chapter 6)

Image,
landmarks and
redirection
angle, image is
processed on
fixed training
spatial scale

Pairs of images without
known difference in gaze
direction at training time;
input image and analogy
pairs from labeled part of
dataset with target
difference in gaze direction
at runtime

Performance up
to 20 FPS on a
GPU

Outperforms Deep
Warp approach given
large unlabeled dataset
with small labeled part

Table 1.2: Comparative analysis of gaze redirection systems suggested in this work.

in Computer Vision in Section 3.1, Neural Networks in Section 4.1, teacher-student

architectures in Section 5.1 and analogy models in Section 6.1. Chapter 7 offers some

final comments about the key aspects of the work presented.

1.4 Work overview

1.4.1 Contributions and scientific novelty

The key contributions of the work are the approach to image re-synthesis based on

the warping field and four methods for solving this problem in different scenarios. In

particular, the authors personal contributions are detailed below:

• The approach to image re-synthesis is formulated as the task of learning the warp-

ing field predictor from the dataset of examples. The warping model is applicable

to problems without large dis-occlusions or changing colors from input to the out-

put so that warping model is capable to model the target transformation.
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• Several methods of learning a warping field predictor are suggested:

– weakly-supervised random forest;

– fully supervised random forest;

– semi-supervised neural network for embedding learning.

• Quantitative and qualitative comparisons of the methods are performed on the

gaze redirection task, including the user study.

• A method for collecting and preprocessing the dataset for gaze redirection is sug-

gested. The dataset consists of pairs of images describing the gaze redirection and

used for the learning of suggested methods.

The novelty of the general approach to image re-synthesis lies in the learning of the

warping field of displacement vectors for gaze redirection from the dataset of images.

The idea to do image re-synthesis via warping goes back as far as [Seitz and Dyer, 1997].

However, the warping field in [Seitz and Dyer, 1997] and similar works is constructed

from two basis views of a static scene using geometrical projection properties. No refer-

ences to the use of machine learning for obtaining the warping field have been found in

the literature published prior to this work.

Warping field prediction as such pertains to learning tasks with a structured output.

Section 3.1.3 describes a series of works that apply random forests to predict the struc-

tured output in a computer vision application. [Fanello et al., 2014] predict the optimal

filters in the tree leaves. The novelty of the weakly-supervised forest suggested in Chap-

ter 3 is that error distribution over all warping vectors and not only a single optimal

warping vector can be stored in the leaves. Another novelty is that ensembling of several

trees in the forest is based on summing up these distributions.

The novelty of the DeepWarp approach is that deep architecture is learned from a

dataset of input-output image pairs to produce a warping field. By the time the work

was published, only direct regression of the target image pixels had been reported in the

literature (see Section 1.1.1).

The teacher-student approach was used to train a faster neural network from large and

slow models: a larger neural network [Romero et al., 2015], or an ensemble of networks

[Bucilu et al., 2006, Hinton et al., 2015]. The architecture suggested in Chapter 5 offers

a novel teacher-student combination, with the weakly-supervised neural network acting

as the teacher and the random forest as the student. The neural networks representation

power helps to achieve high accuracy, while the random forest is an architecture capable

of fast operation at test time, which makes it suitable for real-time implementation on

a CPU.
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[Reed et al., 2015] suggest a deep-analogy-making model. However, the gaze redirection

model suggested in Chapter 6 uses deep embedding learning and does not require the

knowledge of transformations in the form of analogy-forming quadruplets. The novel

nature of the method is that it uses a combination of unsupervised training on pairs of

images without gaze labels and image analogy making in the latent space as applied to

realistic image re-synthesis.

1.4.2 Academic and non-academic impact

Practical value. The suggested methods are useful for the image synthesis tasks

where the target transformation is described by a training set of input-output pairs

of images, for example, changing facial features or video interpolation. As applied to

gaze redirection, the forest-based methods are suitable for real-time monocular gaze

correction in videoconferencing, where eye-to-eye communication is impossible because

of the vertical gap between the camera and the eyes of the person on the screen. Other

applications include post-processing of images and video for photo-editing and movie

post-production, teleprompting and TV presenting, where gaze redirection can be used

to ease the process of using text notes.

Approbation, publications and personal contribution. The results of this work

were presented at multiple conferences and scientific seminars:

1. Computer Vision and Pattern Recognition Conference, 2015, Boston, poster and

demo;

2. European Conference on Computer Vision, 2016, Amsterdam, poster and demo;

3. Seminar of the Laboratory 11, Institute for Information Transmission Problems

RAS, 2016, Moscow;

4. Seminar named after M.R. Shura-Bura, Keldysh Institute of Applied Mathematics

RAS, 2017, Moscow;

5. Computer Vision seminars, Yandex School of Data Analysis, 2014, 2015, 2016,

Moscow;

6. SkoltechOn conference, Skolkovo Institute of Science and Technology, 2015, Moscow;

7. Machines Can See, Computer Vision conference, 2017, Moscow, demo;

8. Open Innovations Forum 2015, Moscow, demo;

9. Skolkovo.ai conference, 2016, Moscow, demo.
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The results were published in the following papers:

1. Kononenko, D., Lempitsky, V. (2015). Learning to look up: Realtime monocular

gaze correction using machine learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (pp. 4667-4675).

The idea of gaze redirection by re-synthesis of eye vicinity using the warping field

and the setting for the dataset collection, described in Chapter 2, are suggested by

the author. Also, the author suggested the ideas of learning method, implemented

the method and conducted the computational experiments on weakly-supervised

forest, described in Chapter 3.

2. Ganin, Y., Kononenko, D., Sungatullina, D., Lempitsky, V. (2016). DeepWarp:

Photorealistic image re-synthesis for gaze manipulation. In European Conference

on Computer Vision (pp. 311-326). Springer International Publishing.

The authors personal contributions include an experimental setup and data prepa-

ration for the DeepWarp approaches, comparison of the DeepWarp and forest-

based approaches, and setup and implementation of the user study described in

Chapter 4.

3. Kononenko, D., Ganin, Y., Sungatullina, D., Lempitsky, V. (2017). Photorealis-

tic Monocular Gaze Redirection Using Machine Learning. IEEE Transactions on

Pattern Analysis and Machine Intelligence (Epub ahead of print).

The authors personal contributions are the teacher-student architecture, its im-

plementation, computational experiments and user study, described in Chapter 5.

Along with the papers listed above, the authors further contributions include the

semi-supervised flow learning concept, implementation and computational experi-

ments described in Chapter 6.

The following patent was obtained:

• Daniil Kononenko, Victor Lempitsky, Method for correction of eye images using

machine learning. RU Patent 2596062 , August 8, 2016.

The license for the developed technology was purchased by the RealD company

[RealD, nd].



Chapter 2

Machine-learning-based image

re-synthesis

All the suggested systems use some form of supervised learning, as the training proceeds

by observing multiple pairs of input and output images. The main challenge of such

approach is to devise learning methods that can generalize to instances and imaging

conditions unseen during training, and all the systems discussed below achieve such

generalization by learning to predict the warping field rather than the output image

directly. The second system (Chapter 4) corrects the warped output with per-pixel

brightness modification (while still trying to achieve the redirection mostly by warping).

I will now discuss the elements common to all the systems. The terms “warping field”

and “flow field” are sometimes used interchangeably in this manuscript.

2.1 Image re-synthesis by pixel-wise replacement

The target transformation is defined by a dataset of training image pairs

{Ii(x, y, k), Oi(x, y, k)}Li=1, x ∈ 1, . . . ,M, y ∈ {1, . . . , N}, k ∈ {1, 2, 3}. (2.1)

The method needs to alter the input image pixels to emulate transformation. I rely

on machine learning to accomplish this. Direct regression of the output image pixels

has problems with synthesizing high-resolution images ([Kulkarni et al., 2015, Ghodrati

et al., 2016, Reed et al., 2015, Goodfellow et al., 2014], Figure 1.9, Figure 2.2, Fig-

ure 2.3)), so in this work I suggest using the warping-based approach instead. A 2D

offset vector (u(x, y), v(x, y)) is obtained for each pixel (x, y). The final value of the pixel

29
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O(x, y) in the output image O is then computed using the following simple formula:

O(x, y) = I (x+ u(x, y), y + v(x, y)) . (2.2)

In other words, the pixel value at (x, y) is “copy-pasted” from another location deter-

mined by the warping flow vector (u, v). In the case of a color RGB image, the operation

is performed channel-wise:

O(x, y, c) = I (x+ u(x, y), y + v(x, y), c) ∀c. (2.3)

The operation can be easily generalized to a case where offsets are non-integer numbers.

I define a warping field consisting of two maps corresponding to the set of 2D offset

vectors for the whole image:

F(x, y) = (u(x, y), v(x, y)) . (2.4)

The operation which samples an image I in (possibly non-integer) offset coordinates

resulting in the output image O is denoted as

O = S(I,F). (2.5)

The values in non-integer coordinates are interpolated, given all pixel intensities. One

of the common interpolation methods is bilinear interpolation [Wolberg, 1990]. The

intensity value is interpolated depending on the distance to the four closest points in

the pixel grid (Figure 2.1). If we specify x̃ = x + u(x, y), ỹ = y + v(x, y), x1 = bx̃c,
x2 = dx̃e, y1 = ỹc, y2 = ỹe, then the value of interpolated intensity is

O(x, y) =I (x+ u(x, y), y + v(x, y)) ≈

(x2 − x̃)(y2 − ỹ)I(x1, y1) + (x̃− x1)(y2 − ỹ)I(x2, y1)+

(x2 − x̃)(ỹ − y1)I(x1, y2) + (x̃− x1)(ỹ − y1)I(x2, y2).

(2.6)

A bilinear sampler (a sampler (2.5) using bilinear interpolation (2.6)) is a piece-wise

differentiable [Jaderberg et al., 2015] and thus it can be incorporated into a deep archi-

tecture with end-to-end training based on gradient descent. This is further discussed in

Chapter 4 and Chapter 6.

The methods presented in the following chapters are trained at a fixed spatial scale.

At test-time, some of them can be applied at the native resolution of the input image

(forest-based methods), while others require the same fixed spatial scale as during train-

ing (neural network-based methods) – see Table 1.2 for comparison. Thus for neural

network-based methods, the input is rescaled to match the resolution at training time.
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Figure 2.1: Visualization of bilinear interpolation. The value at the black spot is the
sum of the value at each colored spot multiplied by the area of the rectangle of the same
color, divided by the total area of all the four rectangles. Image taken from [Wikipedia,

nda].

The standard approach after the pass through the neural network would be to upsample

the result. However, having the warping field, instead of upsampling the result itself,

I upsample the resulting warping flow using bilinear interpolation (2.6) and apply the

upsampled flow to the input image at the native resolution (2.5). Such approach results

in sharper images.

A warping “copy-pasting” procedure (2.2) is a restriction on the transformation family.

It introduces natural regularization in the suggested method. This approach ensures

that the output image pixels are copied from the input rather than invented. I give an

example comparing the warping approach to direct regression on a gaze redirection task

in Figure 2.2 and Figure 2.3. While the unregularized model suffers from noticeable

fine-scale detail omissions and regression-to-mean effect, the warping approach produces

photorealistic results. Moreover, the warping model shows comparable results for the

training and testing sets, while the non-warping model suffers from overfitting. This

chapter offers a summary of the model. For the full description of the model and

training process used in the comparison, see Chapter 6.

Both warping and non-warping models are trained on pairs of eyes of the same person

with a differing unknown gaze direction. Both eyes are encoded into low-dimensional
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Figure 2.2: Warping and non-warping approaches compared; training set. Columns
from left to right: input image, ground-truth image, warping model result, non-warping
model result. Significant effects, such as omission of fine details, noise and regression-

to-mean are decreased using the warping-based approach (2.2)

.

space and the encodings are stacked together. The warping model is then learned to

produce the warping field from the first eye to the second from these stacks of encodings,

while the non-warping model directly outputs the second eye from its encoding, being

thus a conventional autoencoder

In some cases, however, the warping field is not enough to reproduce the ground-truth

image because of the lack of necessary pixels in the input image Figure 4.3. These cases

and the solution are further discussed in Section 4.4.

The warping field approach makes the learning problem weakly-supervised, because we

do not have the warping field (2.4) for the training pairs. Thus an appropriate learning

method should be developed to handle such weak supervision. Examples of warping

fields for gaze redirection are visualized the Figure 5.1.
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Figure 2.3: Warping and non-warping approaches compared; validation set. Columns
from left to right: input image, ground-truth image, warping model result, non-warping
model result. The non-warping model exhibits significant overfitting as compared to

train results Figure 2.2.

.

2.1.1 General pipeline for image re-synthesis

Based on the warping field approach, the following pipeline for image re-synthesis prob-

lem is suggested:
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1. The target transformation is described by a set of training pairs {Ii, Oi}Li=1 (2.1).

2. Learn a warping field predictor:

p : M ×N × 3→M ×N × 2.

The respective predictor learning methods proposed in Chapter 3, Chapter 4,

Chapter 5, Chapter 6, are the key point of discussion within this study.

3. At test time, for a new image predict the warping field F = p(I).

4. Generate a new image via bilinear sampling of an input image O = S(I,F) (2.2).

In the rest of my thesis, I concentrate on the gaze redirection task, however, all the

suggested predictor learning methods are applicable to this general image re-synthesis

pipeline. The restriction on the image re-synthesis problem where the warping is appli-

cable, is that pixels of the output image should be contained in the input so that the

family of warping transformations is rich enough to model the target transformation.

2.2 Gaze redirection by re-synthesis of eyes vicinity

For an input image frame, most of the previous gaze correction systems synthesize a novel

view of a scene from a virtual viewpoint co-located with the screen [Yang and Zhang,

2002, Criminisi et al., 2003, Cham et al., 2002, Yip and Jin, 2003]. Alternatively, a

virtual view restricted to the face region is synthesized and stitched into the original

video stream [Kuster et al., 2012, Giger et al., 2014]. Novel view synthesis is however a

challenging task, even in constrained conditions, due to such effects as (dis-)occlusion and

geometry estimation uncertainties (Figure 1.15). Stitching real and synthetic views can

alleviate some of these problems, but often results in distortions due to multi-perspective

nature of the stitched images.

I suggest not to attempt to synthesize a view for a virtual camera. Instead, methods

which are described in this work emulate the change in the appearance resulting from

a person changing her/his gaze direction by a certain angle (e.g. ten degrees upwards),

while keeping the head pose unchanged (Figure 2.4). Emulating such gaze redirection is

also challenging, as it is associated with:

• complex non-rigid motion of eye muscles, eyelids and eyeballs,
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Input Desired output My output

Figure 2.4: The setting for monocular gaze redirection. Left – an input frame with
the gaze directed below the camera. Middle – a “ground-truth” frame with the gaze
directed 15 degrees higher than in the input. Given an input image and the desired
change in angle and direction (“15 degrees higher”), my method aims to produce an
image that for human perception is as close to ground truth as possible. The result of
one of the proposed systems is shown on the right. The top row is an example of the
system proposed in Chapter 3 as applied to an image from the Columbia Gaze dataset
[Smith et al., 2013]. The bottom row is an example of the system from Chapter 5 as
applied to an image from the Skoltech dataset Section 2.3. In this particular example,
the methods computation time is 8 ms for the top row and 5 ms for the bottom row
on a single laptop core (excluding feature point localization). Such speed makes both

systems suitable for real-time use in videoconferencing.

• complex occlusion/dis-occlusion of the eyeballs by the eyelids,

• change in illumination patterns due to complex changes in normal orientation.

The key insight is that while the local appearance change associated with gaze redi-

rection is complex, it can still be learned from a reasonable amount of training data.

Another apparent plus of gaze redirection as compared to view synthesis is that it can

be performed locally in the vicinity of each eye and thus will affect a small proportion

of pixels in the image. At runtime, all the suggested methods localize each eye and then

perform local operations with eye region pixels to accomplish gaze redirection.

2.3 Database collection and eye localization

The publicly available Columbia Gaze dataset [Smith et al., 2013] for the gaze tracking

application includes 56 persons and five different head poses (0◦, ±15◦, ±30◦ horizon-

tally). For each subject and each head pose, there are 21 different gaze directions:

combinations of seven horizontal ones (0◦, ±5◦, ±10◦, ±15◦) and three vertical ones (0◦,
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Figure 2.5: Dataset collection process. A person is asked to follow the point on the
screen with the eyes only, without moving their head. A special head stand is used
to minimize possible head shaking. (Top left): the setting, (top right): the point is
moving, (bottom left): the point is stationary on the borders for a few seconds so that
a person can blink; (bottom right): as the point passes behind the camera, its image is

enlarged.

±10◦). Taking the pairs with the same parameters except for the vertical gaze direction,

I draw training samples for learning to redirect the gaze by 10 degrees.

However, there are several limitations associated with the Columbia Gaze dataset. The

first is a poor variety of vertical redirection angles. The main testbed for gaze correction

in videoconferencing is 15◦ upward redirection (Figure 1.12) – a case for which the

Columbia dataset would hardly provide any examples. Second, images in this dataset

are only loosely registered, which introduces an additional error and prompts the need for

more registration procedures (Section 3.2.4). And finally, there are not enough training

examples to learn a fully generalizable model.

The Skoltech Dataset of videos of around 150 people was put together specifically to

overcome these restrictions. The recording was made so as to minimize head movement:

the person was asked to place their head on a special stand and follow the moving

point on the screen in front of the stand with their gaze. The sequence of frames is

synchronized with the point position, from which we can deduce the gaze direction,

was recorded using a webcam mounted in the middle of the screen (Figure 2.5). Some

examples taken from one sequence in the dataset are presented in Figure 2.6.

About 200 frames are recorded for one video sequence. The angular range is 36◦ in

vertical direction and 60◦ in horizontal direction. Bad shots, where a person is blinking,
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Figure 2.6: Examples from the dataset. The data collected consists of images of a
person changing gaze direction only with their eyes, without moving their head.

not changing gaze direction monotonically as anticipated or moving their head are dis-

carded manually. 2 to 10 sequences with different head poses and lighting conditions are

recorded for each person (a total of 500 sequences). From each sequence, one can draw

about 50 − 80 training pairs for a certain angular difference in gaze directions. Each

training pair can be regarded as a training example for supervised learning.

All the systems proposed in this work start by localizing the eye regions and then

do redirection by localized processing. The training samples are cropped using the

eye localization procedure. The eye localization step within my system is a standard

procedure, for I use an off-the-shelf real-time face alignment library (e.g. [Xiong and

De la Torre, 2013, Baltru et al., 2016, Baltrusaitis et al., 2013]) to localize facial feature

points. As the gaze-related appearance change is essentially local to the eye regions, all

further operations are performed in the two areas surrounding the eyes.

For each eye, I focus on the landmark points l1 = (lx1 , l
y
1), l2 = (lx2 , l

y
2) . . . lN = (lxN , l

y
N )

corresponding to that eye (in the case of [Baltru et al., 2016] there are N = 7 feature

points). I compute a tight axis-aligned bounding box B′ of those points. Next, the final

bounding box B is defined having the same center as B′ and having the width W and

height H that are proportional to some characteristic radius ∆ (i.e. W = α∆, H = β∆

for certain constants α, β). The bounding box B is thus covariant with the scale and the

location of the eye, and has a fixed aspect ratio α : β. This makes it sufficient to use

the same distance to the camera for all dataset images.

Two variants of defining the characteristic radius ∆ are proposed:
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Figure 2.7: Illustration of eye localization (variant (2.8)). Blue: eye landmarks; red:
tight bounding box around landmarks; green: bounding box enlarged proportionally to
the distance between the corner landmarks that all modifications are restricted to in

the suggested approach.

• square root of the square of the tight bounding box B′:

∆ =
√

Area(B′); (2.7)

• the tight bounding box width equal to the distance between the corners of an eye:

∆ = ||lx1 − lx4 ||. (2.8)

An example of the localization process (for the second variant) is shown in Figure 2.7.

In general, the second variant (2.8) results in more uniform eye scaling. Chapter 3

features the results for the first variant (2.7) and the following chapters provide the

results for the second variant.

The left and right eyes are incorporated into one dataset, mirroring right eyes. At test

time, the same predictor can be used for the left and right eyes, mirroring the results.

Examples of training image pairs are shown in Figure 2.8.

Using the eye tracker could benefit the data collection. It can validate that user actually

followed the point on the screen, and, otherwise, the bad shots could be removed from the

training data. Eye tracker was not used in this work, therefore the process of removing

outliers was more complicated, including manually looking through images with high

training error.



39

Figure 2.8: Examples of training data.

2.3.1 Related work on Facial Alignment

To crop eye images from training examples, I use facial alignment software [Xiong and

De la Torre, 2013, Baltru et al., 2016, Baltrusaitis et al., 2013]. I also use tracked

landmarks as additional features for a training model. This section gives an overview of

related work on facial alignment methods.

[Xiong and De la Torre, 2013] consider facial alignment as a Nonlinear Least Squares

problem and adapts Newton’s method to solve it. Using the training data, the authors
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learn a series of parameter updates, minimizing the objective. The updates are de-

composed into person-specific components and generic descent directions. The method

learns average descent directions during training. In testing, given an image of an un-

seen person, an update is generated by projecting person-specific components onto the

learned generic directions.

[Kazemi and Sullivan, 2014] also treat the task as a regression problem and suggests

tracking facial features with an ensemble of regression trees. Let S = (lT1 , . . . , l
T
p ) ∈ R2p

be coordinates of p facial landmarks. The regressors’ cascade successively refines the

estimated coordinates (Figure 2.9):

Ŝ(t+1) = Ŝ(t) + rt(I, Ŝ
(t)),

where I is an image, t and (t + 1) are indexes in the cascade and rt(I,S is an update

given by the regressor in the cascade. The initial shape is the mean landmark position

along the training data, which is centered and scaled based on the bounding box output

of a face detector. During training, the initial shape is picked up randomly from the

training data for data augmentation purposes. In order to have shape-invariant split

tests, during training the image is warped to the mean shape based on the current shape

estimate at each iteration. A generalization to the case of missing labels is suggested. A

generalization to the case of missing labels is suggested. The approach works superior

to real-time: the speed is up to 1000 FPS.

[Ren et al., 2014] also adapt the cascaded pose regression, with the local binary features

learned with a random forest individually for each facial landmark. The local binary

features thus obtained are used to jointly learn linear regression for the final output.

[Baltrusaitis et al., 2013] present the Constrained Local Neural Field model for facial

landmark detection, proposing a probabilistic patch expert (landmark detector) that can

learn non-linear and spatial relationships between the input pixels and the probability

of a landmark being aligned. To fit the model, a Non-uniform Regularized Landmark

Mean-Shift optimization technique is applied, which takes into account the reliabilities

of each patch expert.

2.4 General system for gaze redirection

Although the suggested systems differ in many aspects, such as the training data, actual

type of predictor used, etc., there are a number of standard steps which all the systems

follow when processing a new face image. For the system-specific details (such as predic-

tors), please refer to the comparison presented at 1.2 and the next chapters. This section
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Figure 2.9: Landmark estimates at different levels of the cascade. Figure taken from
[Kazemi and Sullivan, 2014].

deals with the general image re-synthesis pipeline (Section 2.1.1) specifically adapted to

the gaze redirection task.

1. A facial alignment software is applied using a face image as input (currently [Bal-

trusaitis et al., 2013, Baltru et al., 2016] are used) and producing facial landmarks

as output (see the example in Figure 2.9). Landmarks ll and lr are selected, corre-

sponding to the left and right eyes, respectively. If there are more than one person

in the image (and all the systems rely on the facial landmark software to detect

all the faces), the next steps are applied successively to all the faces.

2. Eyes are cropped using the eye localization procedure described in Section 2.3.

The right eye is mirrored and all the next steps up to blending the eyes back to

the output image are applied to both eyes independently.

3. Depending on the type of predictor, the eye image I and its landmarks l can be

downsampled to the fixed scale the predictor was trained on. This operation is

needed for the predictors based on a Neural Networks, while the Random Forest

can process the image at the native resolution.
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4. The warping field is predicted

F = p(I, l).

The procedure at hand is specific to each system, because different systems have

different inputs (redirection angle or analogy pairs of images are possible additional

inputs).

5. Depending on the type of predictor, the warping field can be upsampled using

bilinear interpolation (2.6) (again, for predictors based on Neural Networks).

6. The warping field F is linearly decreased to zeros near the border. The border

layer of thickness 5 is typically changed for image sizes of about 80× 100.

7. The output image of the eye is obtained, applying the warping field at the native

resolution:

O = S(I,F).

8. The right eye is mirrored back and both eyes are pasted back in to get the output

image. Since the eye images are cropped from the input face images, in order to

blend the result back without stitching the artifacts, the flow maps are linearly

decreased to zero near the cropped eye border.

The procedure outlined above reflects the general approach without specifying how the

warping field F = p(I, l) is predicted. The next chapters will describe several systems

that detail and expand on the general approach presented in this section. These systems

utilize different methods to learn the predictor from the dataset.

2.4.1 Assessment methods

One of the main components of developing methods for predicting the warping field is

the assessment of the results. The assessment of the results of image re-synthesis should

address two questions:

1. Was the image transformed in an intended way? In the context of gaze redirection,

it means whether the gaze was redirected by a desired angle.

2. Is re-synthesized image photorealistic?

This work suggests three quantitative assessment methods. All of them evaluate the

output image, i.e. the result of warping using the predicted warping field.
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The first method is Mean Squared Error between the output and the ground truth image.

The MSE measure is the most natural and easily estimated assessment method. The

closeness to the ground truth intends the positive answer to both questions. However,

the MSE is an integral characteristic of the image, therefore, it could be not sensitive

enough to some local changes. These local changes could both spoil the effect of the

intended transformation and introduce artifacts, which decrease the photorealism of the

result.

In order to measure whether the gaze was redirected by a desired angle, the additional

model, which estimates the gaze difference between two images, is trained. As this

model could itself be not perfect, the following assessment protocol is used: model

error distribution of re-synthesized images is compared with model error distribution of

ground-truth images for some fixed redirection angle. This assessment method answers

only the first question because the trained model could be invariant to some non-realism

in the images. The details on the method could be find in Section 5.3.2.

As the photorealism of the result is finally a subjective opinion of a user, the user study

is suggested to answer the second question. Users could be asked in a different manner,

possibly the simplest is to show them an image and to ask, whether it is photo-realistic.

In this work, it was chosen to show user four images, one of each is re-synthesized, and

three other are ground-truth and ask to find the one, which seems the most unrealistic.

Analyzing the guess ratio, some conclusions about photorealism of the results could be

drawn. The best guess ratio should be 25% – the performance of the random guess.

Typically, users tend to determine the synthesized image more often. This assessment

method does not address the question, whether the gaze was redirected by a desired

angle, because a trivial method that produces zero warping field would get the perfect

score. The details on the method and its two variants could be found in Section 4.6.2.1

and Section 5.3.4.

The experiments in Section 4.6 and Section 5.3 showed the strong correlation between the

MSE measure and two other assessment methods, as well as with qualitative assessment

of the results. Therefore, MSE measure is considered to be the most universal and is

used in all quantitative experiments in the first place.



Chapter 3

Weakly-supervised random forest

for image re-synthesis

Here I present a new system for learning a warping field predictor for image re-synthesis.

The synthesis is based on supervised machine learning which requires collecting and

processing a large number of image pairs describing the target transformation. A more

advanced version of the system is based on a special kind of randomized decision tree

ensembles called warping flow forests. The current implementation runs in real time on

a single core of a laptop with the clear potential for real-time performance on tablet

computers. Monocular gaze correction in videoconference is used as a test case to

illustrate and evaluate the system performance. The system synthesizes realistic views

with a gaze systematically redirected upwards (10 or 15 degrees in my experiments). At

test time, the system provides gaze correction using simple pixel replacement operations

that are localized to the vicinity of the persons eyes, thus achieving high computational

efficiency.

3.1 Overview of Random Forests

A data sample is denoted as x = (x1, x2, . . . , xd) ∈ Rd, where xi represent features, the

nature of the features depending on application. In computer vision, a typical case is

when x stands for some pixel p, and xi signifies the selected pixels in the particular

neighborhood of p. For example, xi can designate the difference in intensities between

some pixel from the neighborhood and the pixel p in a chosen channel.

The decision tree is a tree graph (graph without cycles) with the nodes divided into two

groups: split nodes and leaf nodes. The split nodes are all the internal (and not leaf)

44
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nodes of the graph. Each split node j is associated with a split (or test) function:

h(x, θj) : Rd × T → {0, 1}, (3.1)

where θj ∈ T are the parameters of node j and T is the parameter space. For each

data point, the tree is traversed from root to leaf, so that at each split node, the test

function result determines whether the data point proceeds to the left or right child. A

common choice in random forest applications is decision stumps, i.e. the data split by

thresholding one of the features:

h(x; i, τ) = [xi < τ ]. (3.2)

In a supervised scenario, a training point s is a pair (x,y) of a data sample and some

ground-truth label, y ∈ Y. For example, Y = {0, 1} for a binary classification task, or

Y = Rn for a multivariate regression problem. In an unsupervised scenario, a training

point s = x. I also write down (3.1) as h(s, θj), meaning that either s = (x,y) or s = x

and h(s, θj) = h(x, θj). A set of training points in the root of the tree is denoted as S0.

In each split node j, an incoming set Sj is recursively divided:

Sj = SLj ∪ SLj ,

SLj = {s ∈ Sj | h(s, θj) = 0}, SRj = {s ∈ Sj | h(s, θj) = 1}.

The left and right subsets are incoming sets for new nodes: SLj = S2j+1, SRj = S2j+2.

At test time, a new query sample x is traversed in the same recursive way until it reaches

a leaf node. Each leaf node contains a predictor, which associates a sample x with a

target label y ∈ Y (3.9).

3.1.1 Training a Decision Tree

Learning a split function (3.1), e.g. assigning some value to a set of parameters θj , is

a key issue in applying decision trees. This is often done by optimizing some objective

function:

θj = arg max
θ∈T

I(Sj , θ). (3.3)

The optimization and splitting of the initial training set is often performed in a recursive

greedy manner from root to leaves. Training begins at the root node, j = 0. A training

set is divided into two disjoint subsets at the two child nodes. Recursively applying this

procedure to all successively constructed nodes, we continue the training phase until a



46

stopping criterion is met. Different stopping criteria can be used, including a few most

common ones:

• the maximum depth of the tree D has been reached;

• some minimum threshold value of the information has been gained (3.4), which

means that the intended attributes of the training point are the same across all

the samples in the current node, or at least, one does not gain enough information

from dividing samples in the current node into two new sets;

• the current node contains some minimum threshold amount of samples.

The common choice of an objective function in (3.3) is an information gain from splitting

a node into two new nodes:

I = H(Sj)−
∑

i∈{L,R}

|Sij |
|Sj |

H(Sij). (3.4)

Here H(S) is some measure of compatibility of set S. For example, the Shannon entropy

is a possible choice for a classification problem:

H(S) = −
∑
c∈C

p(c)log(p(c)). (3.5)

Here C is a set of all classes and p(c) is empirical distribution over the classes in set S.

Another popular choice of H(S) in classification problems is Gini impurity:

H(S) =
∑
c∈C

p(c)2 ∗ (1− (p(c)). (3.6)

The standard choice for a regression problem is the error of fit:

H(S) =
1

|S|
∑
s∈S

(y − ȳ)2, (3.7)

where ȳ is the mean of all the points in the node.

Once the learning phase in a supervised problem is complete, each leaf node l contains a

subset of labeled training data. In a general case, the leaf statistics define a distribution

pl(y|x), (3.8)

which, for the classification and regression cases, can be conditional distribution of the

categorical label p(c|x) or the continuous label p(y|x). During testing, a query point is

traversed through the tree until the leaf is reached. The tree is constructed in such a way
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that the new query point would probably end up in a leaf containing similar training

points. Thus a reasonable assumption for labeling this new test point would be to put

a label similar to the training points in that leaf. For example, Maximium-A-Posteriori

of the leaf label statistics can be used:

ŷ = argmax
y
p(y|x). (3.9)

In the case of classification, this corresponds to picking a class with the highest frequency

and in the case of regression the mean of all the training points falling within a particular

leaf.

3.1.2 Random Forests

Introduced in [Amit and Geman, 1997, Breiman, 2001], Random Forest is an ensemble

of several Decision Trees. There are two principal ways of injecting randomness:

• random sampling of a training set for each tree in the forest (e.g. bagging);

• random optimizing of splits (3.3).

Bagging was introduced in [Breiman, 1996, Breiman, 2001] as an overfitting reduction

method. Each tree in the forest is trained on a random subset picked from the full

training set. Such a method increases generalization, while preventing specialization of

all the trees on a single dataset. This strategy will also make training faster for each

tree.

The optimization problem written in form (3.3) is rarely tractable in practice due to a

very large size of the space encompassing all possible parameters T, thus each split is

optimized over some small random subset of parameters Tj ⊂ T .

θj = arg max
θ∈Tj

I(Sj , θ).

Optimization is normally performed via brute force search over the set Tj . For a typical

case of decision stumps (3.2), one may wish to randomize either the feature number i

or threshold τ , or both. For example, [Dollár and Zitnick, 2013] consider some small

number of features for each split train. All the subsets of samples in the node are sorted

according to the chosen feature value and thus the optimal threshold value is found

linearly with the subsample size.

More detailed definitions of the abstract Decision Tree and Random Forest models can

be found in [Criminisi and Shotton, 2013].
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3.1.3 Applications of Random Forests in Computer Vision

The variant of the gaze correction system presented in this chapter continues the long

line of real-time computer vision systems based on randomized decision trees [Amit and

Geman, 1997, Breiman, 2001], including real-time object pose estimation [Lepetit et al.,

2005], head pose estimation [Fanelli et al., 2013], human body pose estimation [Shotton

et al., 2013], background segmentation [Yin et al., 2007], etc.

[Lepetit et al., 2005] consider such problems as object detection and pose estimation.

They match keypoints from the input image with the ones on the target object. Formu-

lating the point matching as a classification problem, they use random forests to solve it.

Formally, at training time they select a set K of cardinality K oof the keypoints in the

object model. At test time they select a patch, centering it around the keypoint found.

The task is to determine whether it matches one of K keypoints in K or not, i.e. to

solve a classification problem with K + 1 labels {−1, 1, 2, . . . ,K}, where −1 means the

keypoint does not belong to K. They suggest to use difference of pixels intensities from

the neighborhood of the keypoint as a binary node tests (3.1) in classification trees. The

authors compare two tree growing techniques. In one they pick several tests at random

and choose the best according to the information gain (3.4), as was shown above. The

number of tests picked is 10 at the root node and 100d for a node at depth d, d ≥ 2. The

other is referred to as extremely randomized trees and involves picking only one test at

random, with no optimization applied. This approach helps significantly decrease the

training time while keeping the quality loss at a low level.

[Shotton et al., 2013] put forward two human body pose estimation approaches: body

part classification (BPC) and offset joint regression (OJR), both employing random

forest and applying it individually to each pixel in a depth image. BPC predicts body

part labels for each pixel in the image. A density over the 3D world space can be

calculated by re-projecting per-pixel label probabilities, based on the known depth image

and the known calibration of the depth camera. OJR instead directly casts a set of 3D

offset votes from each pixel to the body joints using a regression forest (Figure 3.1).

The split tests employed at internal nodes (3.1) are differences between two pixels in the

neighborhood of a query pixel. 2D offsets are normalized by the depth value to make

the features depth invariant. The authors choose approximately half of the tests in such

a way that one of the two pixels compared is a query pixel itself.

While classical random forests are trained to do classification or regression, the trees

in my method predict some (unnormalized) distributions. My method is thus related

to other methods that use structured-output random forests (e.g. [Gall and Lempitsky,

2009, Dollár and Zitnick, 2013]).
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Figure 3.1: Body part classification (BPC) first predicts a (color-coded) body part
label at each pixel and then uses these inferred labels to localize the body joints. Offset
joint regression (OJR) instead directly regresses the joint positions. Figure taken from

[Shotton et al., 2013]

.

A Hough-transform-based object detection method is suggested in [Gall and Lempitsky,

2009]. They suggest to train a forest to map the appearance of an image patch into

its Hough vote, incorporating it in the decision forest framework. The object detection

problem is decomposed into classifying patches belonging to an object or a background

and regressing the offset vector of the patch v to the centroid of the object. Thus

the leaf statistics (3.8) in Hough forests capture both categorical class label p(c|v) and

continuous offset p(y|c,v). However, they are not independent: the continuous offset y

depends on the categorical label c. Unifying the two distributions, the statistics on the

leaf will show the probability of an object of a particular class c to appear in a patch

with appearance v at the relative location y:

p(y, c|v) = p(y|c,v)p(c|v).

Both classification (3.5) and regression (3.7) measures of compatibility are used. At

each node, a random decision is made on whether to optimize the split based on one or

another with equal probabilities.

[Dollár and Zitnick, 2013] apply structured random forests to edge detection. In their

approach, y ∈ Y is some structured image annotation, e.g. an edge mask. The idea

is to map all the examples falling within the given node to a discrete set of labels

C = {1, . . . , k} in such a way that similar labels y ∈ Y are mapped to the same label.
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After that, the standard information criterion for classification ((3.5), (3.6)) can be used

to train a split.

[Dollár and Zitnick, 2013] first use intermediate mapping Π : Y → Z to some Euclidean

space Z and then employs some clusterization technique to obtain discrete labels C =

{1, . . . , k}. As applied to edge detection, y ∈ Y are 16 × 16 segmentation masks and

z ∈ Z are binary vectors defining whether each pair of pixels lies on the same or different

vectors. In practice, only a subset of m = 256 dimensions of these binary vectors is

sampled, which is then reduced to 5 dimensions by PCA.

The idea of the ensemble model combining a set of n labels y1, . . . ,yn ∈ Y into a single

prediction is to use the mapping Π : Y → Z to the Euclidean space and then choose

a medoid sample, i.e. among zk = Π(yk) choose k such that zk minimizes the sum of

distances to all other zi. The ensemble model is needed both to set the label in the leaf

node and to merge predictions from several trees into a single one.

The trees in my method are trained under weak supervision, which makes my work

related in a way to the methods from [Fanello et al., 2014]. The suggested filter forests

learn to assign optimal filters w to inputs xi ∈ X to learn some mapping fw : X → Y,

fw(xi) = xTi w. The forest is weakly-supervised in the sense that the training data

(xi,yi) (where yi ∈ Y stands for a filtered patch, e.g. a denoised patch) does not

contain target filters. [Fanello et al., 2014] define compatibility measure as

H(S) = ||Y −Xw∗||2,

where (X,Y) consists of all samples in the node and w∗ is the optimal filter in the node,

which is learned using the same `2 loss with some data-dependent regularizing term.

A similar approach to learning optimal warping flow vectors is applied in the method

introduced in Section 3.2.3. However, in addition to this idea, not only the optimal

filter, but the error distribution depending on filters is stored in the node. Furthermore,

an unconventional way of ensembling the trees in the context of weak supervision is also

suggested (Section 3.2.2).

3.2 Warping flow forest

As stated in Section 2.1, the proposed approach purports to predict the warping field for

the input image. As we do not have the warping field (2.4) for the training pairs, in this

section the system based on weakly-supervised random forests (warping flow forests) is

described.
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Figure 3.2: Processing of a pixel (green square) at test time in an warping
flow tree. The pixel is passed through an warping flow tree by applying a sequence
of tests that compare the position of the pixels w.r.t. the feature points (red crosses)
or compare the differences in intensity with adjacent pixels (bluish squares) with some
threshold. Once a leaf is reached, this leaf defines a matching of an input pixel with
other pixels in the training data. The leaf stores the map of the compatibilities between
such pixels and warping flow vectors. The system then takes the optimal warping flow
vector (yellow square minus green square) and uses it to copy-paste an appropriately-
displaced pixel in place of the input pixel into the output image. Here, a one tree
version is shown for clarity, the actual system would sum up the compatibility scores
coming from several trees before making the decision about the warping flow vector to

use.

3.2.1 Image-independent warping field

Under my approach, I can propose a very simple baseline that suggests a fixed warping

field (2.4), i.e. independent of the test image content and based solely on the relative

position in the estimated bounding box, i.e. u = u(x/∆, y/∆) and v = v(x/∆, y/∆),

where the values of u and v for a given relative location (x/∆, y/∆) are learned on

training data as discussed below.

3.2.2 Architecture of warping flow forest

At test time, this system matches a pixel at (x, y) to a group of similar pixels in training

data and finds the most appropriate warping flow vector for this kind of pixels. To

achieve this effect, a pixel is passed through a set of specially-trained ensemble of ran-

domized decision trees (warping flow trees). When a pixel (x, y) is passed through an

warping flow tree, a sequence of simple tests of two kinds are applied to it. A test of the

first kind (an appearance test) is determined by a small displacement (dx, dy), a color

channel c ∈ {R,G,B}, and a threshold τ and compares the difference of two pixel values

in that color channel with the threshold:

I(x+ dx, y + dy)[c]− I(x, y)[c] ≷ τ (3.10)
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A test of the second kind (a location test) is determined by the number of the feature

point i ∈ {1, . . . N}, li = (lxi , l
y
i ) and a threshold τ and compares either x− lxi or y − lyi

with τ :

x− lxi ≷ τ y − lyi ≷ τ (3.11)

Through the sequence of tests, the tree is traversed till a leaf node is reached. Given an

ensemble of T warping flow trees, a pixel is thus matched to T leaves.

Each of the leaves contain an unnormalized distribution of compatibility score (3.12)

over the warping flow vectors (u, v) for the training examples that fell into that leaf at

learning stage Figure 3.2. I then sum the T distributions corresponding to T leaves,

and pick (u, v) that minimizes the aggregated distribution. This (u, v) is used for the

copy-paste operation (2.2).

Handling scale variations. To make matching and replacement operations covari-

ant with the changes of scale, a special care has to be taken. For this, I rescale all

training samples to have the same characteristic radius ∆0. During gaze redirection at

test time, for an eye with the characteristic radius ∆ I work at the native resolution

of the input image. However, when descending an warping flow tree, I multiply the

displacements (dx, dy) in (3.10) and the τ value in (3.11) by the ratio ∆/∆0. Likewise,

during copy-paste operations, I multiply the warping flow vector (u, v) taken from the

image-independent field or inferred by the forest by the same ratio. To avoid the time-

consuming interpolation operations, all values (except for τ) are rounded to the nearest

integer after the multiplication.

3.2.3 Learning

I assume that a set of training image pairs (Ij , Oj) is given. I assume that within each

pair, the images correspond to the same head pose of the same person, same imaging

conditions, etc., and differ only in the gaze direction (Figure 2.8). I further assume that

the difference in gaze direction is the same for all training pairs (separate predictor needs

to be trained for every angular difference). As discussed above, I also rescale all pairs

based on the characteristic radius of the eye in the input image.

For each pixel (x, y), our goal is to turn the color of the pixel Ij(x, y) into the color

given by Oj(x, y) by applying the operation (2.2). Therefore, each pixel (x, y) within

the bounding box B specifies a training tuple S = {(x, y), I, {li}, O(x, y)}, which includes

the position (x, y) of the pixel, the input image I it is sampled from, eye feature points

{li)} in the input image, and finally the color O(x, y) of the pixel in the output image.
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The trees or the image-independent flow field are then trained based on the sets of the

training tuples (training samples).

As discussed above, unlike most other decision trees, warping flow trees have to be

trained in a weakly-supervised manner. This is because each training sample does not

include the target flow field F(x, y) = (u(x, y), v(x, y)) that the tree is designed to

predict. Instead, only the desired output color O(x, y) is known, while same colors

can often be obtained through different offsets and adjustments making the supervision

“weak”.

The goal of the training is then to build a tree that splits the space of training examples

into regions, so that for each region replacement (2.2) with the same warping flow vector

(u, v) produces good result for all training samples that fall into that region. Given a

set of training samples S = {S1,S2, . . . ,SK}, I define the compatibility score H of this

set with the warping flow (u, v) in the following natural way:

H
(
S, (u, v)

)
=

K∑
k=1

∑
c=R,G,B

∣∣∣Ik(xk + u, yk + v)[c]−Ok(xk, yk)[c]
∣∣∣ . (3.12)

Here, the superscript k denotes the characteristics of the training sample Sk, Ik and Ok

denote the input and the output images corresponding to the kth training sample in

the group S, and c iterates over color channels. Overall, the compatibility E(S, (u, v))

measures the disparity between the target colors Ok(xk, yk) and the colors that the

replacement process (2.2) produces.

Given the compatibility score (3.12) I define the coherence score H̃ of a set of training

samples S = {S1,S2, . . . ,SK} as:

H̃(S) = min
(u,v)∈Q

H
(
S, (u, v)

)
, (3.13)

Here, Q denotes the search range for (u, v), which is taken to be a square [−R, . . . R]⊗
[−R, . . . R] sampled at integer points. Overall, the coherence score is small as long as

the set of training examples is compatible with some warping flow vector (u, v) ∈ Q, i.e.

replacement (2.2) with this flow vector produces colors that are similar to the desired

ones.

The coherence score (3.13) then allows us to proceed with the top-down growing of the

tree. As is done commonly, the construction of the tree proceeds recursively. At each

step, given a set of training samples S, a large number of tests (3.10),(3.11) are sampled.

Each test is then applied to all samples in the group, thus splitting S into two subgroups
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S1 and S2. A quality of the split (S1,S2) is then defined as:

I(S1,S2) =
|S1|
|S|

H̃(S1) +
|S2|
|S|

H̃(S2) + λ
∣∣|S1| − |S2|

∣∣ , (3.14)

where the last term penalizes the unbalanced splits proportionally to the difference in the

size of the subgroups. This term typically guides the learning through the initial stages

near the top of the tree, when the coherence scores (3.13) are all “bad” and becomes

relatively less important towards the leaves. After all generated tests are scored using

(3.14), the test that has the best (minimal) score is chosen and the corresponding node

V is inserted into the tree. The construction procedure then recurses to the sets S1 and

S2 associated with the selected test, and the resulting nodes become the children of V

in the tree.

The recursion stops when the size of the training sample set S reaching the node falls

below the threshold τS or the coherence H̃(S) of this set falls below the threshold

τC , at which point a leaf node is created. In this leaf node, the compatibility scores

E(S, (u, v)) for all (u, v) from Q are recorded. As is done conventionally, different trees

in the ensemble are trained on random subsets of the training data, which increases

randomization between the obtained trees.

Learning the image-independent warping field is much easier than training warp-

ing flow trees. For this, I consider all training examples for a given location (x, y) and

evaluate the compatibility scores (3.12) for every offset (u, v) ∈ Q. The offset minimizing

the compatibility score is then recorded into the field for the given (x, y).

Discussion of the learning. By predicting the warping flow (u(x, y), v(x, y)) I do

not aim to recover the apparent motion of a pixel (x, y). Indeed, while recovering the

apparent motion might be possible for some pixels, apparent motion vectors are not

defined for dis-occluded pixels, which inevitably appear due to the relative motion of

an eyeball and a lower eyelid. Instead, the learned predictors simply exploit statistical

dependencies between the pixels in the input and the output images. As is demonstrated

in Section 3.3, recovering such dependencies using discriminative learning and exploiting

them allows to produce sufficiently realistic emulations of gaze redirection.

3.2.4 Implementation details

Learning the forest. When learning each split in a node of a tree, I first draw randomly

several tests without specifying thresholds. Namely, for each test I first randomly sample

a type of the test, choosing between the appearance test and the location test with equal

probability. I then sample parameters of test uniformly from a certain range. Thus I
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sample dx, dy (from the 9×9 neighborhood) and a channel c for appearance tests (3.10),

or the number of the feature point for location tests (3.11). I then learn an optimal

threshold for each of the drawn test. In more detail, denote as h the left-hand-sides of

expressions (3.10), (3.11), and h1, . . . , hK – all the data sorted by this expression. I then

sort all thresholds of the form hi+hi+1

2 and probe them one-by-one (using an efficient

update of the coherence scores (3.13) and the quality score (3.14) as inspired by [Dollár

and Zitnick, 2013]). I set the probabilities of choosing a test for split in such a way that

approximately half of tests are appearance tests and half are location tests.

To randomize the trees and speed up training, I learn each tree on random part of the

data. Afterwards I “repopulate” each tree using the whole training data, i.e. I pass all

training samples through the tree and update the distributions of replacement error in

the leaves. Thus, the structure of each tree is learned on random part of the data but

the leaves contain the error distribution of all data.

After picking up and summing up the unnormalized compatibility score distributions

from T trees,one can find a minimizing flow vector with sub-pixel accuracy [Bailey,

2003]. The distribution in the neighborhood of the minimizing pixel is approximated

with a parabola using values in the pixel and its 4 neighbors. The parabola minimum is

thus the distribution minimum estimated with sub-pixel accuracy. If i is the x-coordinate

of the minimum of the discrete distribution H(x) and H(i − 1) 6= H(i + 1) (otherwise

the minimum is exactly at x = i), then the sub-pixel minimum coordinate is

x∗ = i+
H(i− 1)−H(i+ 1)

2(H(i− 1) +H(i+ 1)− 2H(i))
, (3.15)

and the same is true for the y-coordinate.

The warping flow forest system is trained for a specific angular difference. If needed,

multiple separate models for different discretized angular differences can be trained. For

example, for a video conference setup one can use 10, 15, 20, 25, 30 degrees depending on

the distance between the face and the screen. However, I found that the 15◦ vertical

redirection produces convincing results for a typical distance between the person and the

laptop and typical laptop sizes, so I focus on this angular difference in the experiments.

The images in the Columbia dataset [Smith et al., 2013] are only loosely registered.

Therefore, to perfectly match cropped eyes, I apply multistage registration procedure to

images from this database. Firstly, before cropping an eye, I fit the similarity transfor-

mation based on all facial feature points except those corresponding to eyes. In the case

of [Xiong and De la Torre, 2013] there are totally 49 points and 6 of them corresponds

to each eye, so I match similarity based on 37 points. I then crop roughly registered set

of samples S1 = (Ij1 , O
j
1), learn warping flow forest on S1, apply it to the set {Ij1} and
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get the resulting set {Ôj1}. At the second stage I register images {Oj1} with {Ôj1} by

translation (at one pixel resolution), by finding the shift that maximize the correlation

of the Laplacian-filtered versions of the images. I exclude the dilated convex hull of eye

features from the computation of the correlation, thus basing the alignment of external

structures such as eye brows. I apply the optimal shifts to the output images in each

pair, getting the second set of samples S2 = (Ij2 = Ij1 , O
j
2).

At the final stage of registration I learn an warping flow forest S2, apply it to each of the

input images {Ij2} and get the output image {Ôj2}. I then register images {Oj2} and {Ôj2}
in the same way as during the second stage, except that I do not exclude any pixels this

time. This produces the final training set S = (Ij , Oj). At the end I manually throw

away all training samples where the multistage registration failed.

Face registration slightly decreases both training and validation error on a Columbia

dataset, where images are worse registered. However, this effect was not noticed on the

Skoltech dataset, so face registration is not applied in the final variant of the method.

Numerical parameters. In the current implementation I rescale all cropped eyes to

the resolution 50× 40. I take the parameters of the bounding box α = 2.0, β = 1.6, the

parameter λ = 10, R = 4 and learn a forest of six trees. I stop learning splits and make

a new leaf if one of the stopping criteria is satisfied: either coherence score (3.13) in the

node is less than 1300 or the number of samples in the node is less than 128. Typically

trees have around 2000 leaves and the depth around 12.

The bounding box parameters were chosen in such a way, that the whole region of the

eye image, which is changing during the gaze redirection, is inside the bounding box,

with several pixels width gap in reserve. The regularization weight λ and stopping

parameters were optimized by training models for parameters values taken uniformly

from some range. The criterion was a validation error, similar to the one presented in

the experimental section (Figure 3.3). The size of the patch was chosen as a trade-off

between the representation power of the model (resulting in lower validation error) and

the memory required to store the model.

3.3 Experiments

In this section I provide computational experiments, illustrating the suggested approach

for learning warping flow forest. Both quantitative and qualitative results are given.

More results could be found in comparisons with other methods in the following chapters

(Section 4.6 and Section 5.3).
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Figure 3.3: Quantitative evaluation on the testing sets in the eight-fold experiment:
ordered normed MSE errors between the result and the “ground-truth”. I compare
the one tree version of suggested method (red), the six trees (black), one tree with
repopulation (magenta), and the image-independent flow field version of the system
(green). Increasing the tree number from six to ten or repopulating six trees does
not give an improvement. For each method the normalized errors are sorted in the

ascending order and then used to produce the curve.

Quantitative evaluation. I provide a quantitative assess of suggested method on the

Columbia gaze dataset [Smith et al., 2013]. I sample image pairs applying the same

preprocessing steps as when preparing data for learning. I make an eight-fold cross

validation experiment: I split the initial set of 56 subjects, taking 7 as the test set

and leaving 49 in the training set. I compare several methods that was applied to the

input image of each pair, and then compute the mean square error (MSE) between the

synthesized and the output images. I normalize the MSE error by the mean squared

difference between the input and the output image. At each split i I compute the mean

error ei. To compare two methods, I evaluate the differences between their means and

the standard deviation of these differences over the eight splits (Table 3.1).

For each method, I also sort the normalized errors in the ascending order and plot them
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Figure 3.4: Randomly sampled results on the Columbia Gaze dataset. In each triplet,
the left is the input, the middle example is the “ground truth” (same person looking
10 degrees higher). The right image is the output of warping flow forest. A stable

performance of the method across demographics variations can be observed.
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pair of methods mean σ

6 trees forest vs image inde-
pendent

−0.079 0.0066

6 trees forest vs single tree −0.038 0.0059

single tree repopulated vs sin-
gle tree no repopulation

−0.015 0.0022

6 trees forest vs 10 trees forest 0.0036 0.0015

6 trees no repopulation vs 6
trees repopulated

0.00073 0.0017

single tree vs image indepen-
dent

−0.055 0.0098

Table 3.1: The differences of mean errors between pairs of methods and standard
deviations of these differences in the 8-fold cross validation test. Negative mean value

means that first method in pair has a smaller mean error (works better).

on a graph (Figure 3.3). The quantitative evaluation shows the advantage of the tree-

based versions of suggested method over the image-independent field variant. Full forest

variants perform better than those based on a single tree. It is nevertheless interesting

to see that the image-independent field performs well, thus verifying the general idea

of attacking the gaze correction problem using a data-driven learning-based approach.

Also, repopulation increases results for a single tree, but not for the full forest. Ten trees

does not give significant improvement over six trees.

Qualitative evaluation. Due to the nature of the application, the best way for the

qualitative evaluation is watching the supplementary video at the project webpage

[Kononenko, 2015] that demonstrates the operation of the method (six warping flow

trees). Here, I also show the random subset of the results on the hold out part of the

Columbia gaze dataset (10 degrees redirection) in Figure 3.4 and on the hold out part

of the Skoltech gaze dataset (15 degrees redirection) in Figure 3.5. While the number of

people in the training datasets was limited, one can observe that the system is able to

learn to redirect the gaze of unseen people rather reliably obtaining a close match with

the “ground truth” in the case of ten degree redirection (Figure 3.4).

One crucial type of failure is insufficient eye “expansion”, which gives an impression

of the gaze redirected on an angle less than required. Other types of artifacts include

unstructured noise and structured mistakes on glass rims (which is partially explained

by a small number of training examples with glasses in this split). Examples of failure

cases are presented on Figure 3.6.

I further show the cutouts from the screenshots of the system (six warping flow trees)

running live on a stream from a laptop webcam Figure 3.7. I use the same forest learned

on the training part of the Columbia gaze dataset. Several sessions corresponding to

https://youtu.be/A5QlDfBpNxw
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different people of different demographics as well as different lighting conditions are

represented.

Computation speed. The main testbed is a standard 640×480 streams from a laptop

camera. On top of the feature tracking time, the forest-based version of the method

requires between 3 to 30 ms to perform the remaining operations (querying the forest,

picking optimal warping flow vectors and performing replacements). And the feature

tracking time is very fast using modern methods, typically about 1 ms (Section 2.3.1).

The large variability is due to the fact that the bulk of operation is linear in the number

of pixels we need to process, so the 30 ms figure correspond to the situation with the

face spanning the whole vertical dimension of the frame. Further trade-offs between the

speed and the quality can be made if needed (e.g. reducing the number of trees from

six to three will bring only very minor degradation in quality and almost a two-fold

speedup).

Temporal stability. The temporal stability of the method could not be better than

the temporal stability of the facial alignment method used because it affects both the

bounding box and the input features. Qualitative testing showed that with particu-

lar facial alignment method used in the work the temporal stability of the method is

satisfactory for use in practice.
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Figure 3.5: Randomly-sampled results on the Skoltech dataset (redirection by 15
degrees). In each tuple: (1) the input image, (2) the “ground truth”, (3) the output of
warping flow forest, (4) the output of image-independent field. Zoom-in recommended
in order to assess the difference between the two variants of the method. The following
types of failures are observed: insufficient eye expansion (bottom-left), noise artifacts,
artifacts on glass rims (caused by a small number of people with glasses in the training

set).
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Figure 3.6: Failure cases on the Skoltech dataset (redirection by 15 degrees). In each
quad: input image, the “ground truth”, the output of warping flow forest, the output
of image-independent field. The following types of failures are observed: insufficient

eye expansion, noise artifacts, artifacts on glass rims.

Figure 3.7: Qualitative examples of suggested system (based on six trees) showing
the cutout of the frames of a video stream coming from a webcam (left – input, right –
output). In the first two rows gaze is redirected by 10 degrees upwards, in the third –
by 15 degrees. The system induces subtle changes that result in gaze redirection. Note
that the subjects, the camera, the lighting, and the viewing angles were all different
from the training datasets. The result of the method on a painting further demonstrates

the generalization ability.



Chapter 4

Image re-synthesis using deep

warping architecture

In this chapter, I proceed to the discussion of the second system (deep warp). in the

forest-based approach, the bulk of image re-synthesis is accomplished via warping the

input image (Figure 4.1). The task of the network is therefore t predict the warping

field. This field is predicted in two stages in a coarse-to-fine manner, where the decisions

at the fine scale are informed by the coarse stage result. Beyond coarse-to-fine warping,

the photorealism of the result is improved by performing pixel-wise correction of the

brightnes, where the amount of correction is again predicted by the network (Figure 4.4).

All the operations outlined above are implemented in a single feed-forward architecture

and are trained jointly end-to-end.

Unlike the warping flow forest system, the deep warp system is trained on pairs of images

corresponding to the eye appearance before and after redirection by different angles. The

redirection angle serves as an additional input parameter that is provided both during

training and at test time. A significant share of the work presented in this chapter

was done by my collaborator Yaroslav Ganin. My personal contributions include the

experimental setup and data preparation for the Deep Warp approaches, comparison of

the Deep Warp and forest-based approaches, and setup and implementation of the user

study.

4.1 Overview of Deep Learning

Let the data be given by a set (xi, f(xi). Typically, x is high-dimensional and f(x) is

in {0, 1} or R. The goal is to learn how to make accurate predictions at new points, i.e.

63
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find f∗ – an approximation to f which is close to f at the given data points.

Following the parametric statistics approach, in deep learning the approximation is from

a family if functions f(x; θ), where θ is a high-dimensional parameter. The goal now

is to find θ∗ such that f(x; θ∗) is close to f . The neural network is a composition of

functions:

f(x, θ) = f (d)(·, θ) ◦ · · · ◦ f (1)(·, θ). (4.1)

These functions are called layers of the network. Most of them are high-dimensional

and depend only on some subset of parameters. The components of the vector-valued

function f (i) are h
(i)
1 , . . . , h

(i)
ni .

Typically, the layers are rather simple nearly linear functions. However, the composition

of linear functions is also a linear function. A common design motivated by neuroscience

is a linear function with some non-linear activation:

h(i) = g(W(i)T x + b(i)). (4.2)

Here g is the coordinate-wise application of some non-linear one-dimensional function.

Typical choices of activation are:

• RELU (rectified linear units) g(z) = max(0, z);

• sigmoid function g(z) = 1
1+e−z ;

• hyperbolic tangent g(z) = tanh(z).

The exception is the top layer, whose activation unit often has some statistical inter-

pretation. This choice is tightly coupled with the choice of the cost function, i.e. the

criteria used to optimize the parameters. The most typical approach is to train using

maximum likelihood, minimizing

J(θ) = E log pmodel(y|x), (4.3)

where the expectation is taken over the data. Thus, the linear function in the top linear

(constant activation unit) corresponds to a conditional Gaussian distribution. The choice

of a sigmoid function implies thinking of the output as a probability of a Bernoulli trial.

A more general softmax output unit

softmax(z)i =
ezi∑
jezj

implies Multinoulli Output Distribution.
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Peculiar properties of the optimization problem (4.3) are high dimensionality, a large

data set, a non-convex cost function and possible overfitting. A common approach to

optimization is gradient descent. In the particular case of the composition-like structure

of a neural network (4.1), an efficient way to do gradient descent is back-propagation

[Rumelhart et al., 1988], a method that involves clever bookkeeping of partial derivatives

by dynamic programming. To deal with the large dataset and avoid redundant compu-

tations, it is sensible to apply another standard approach, stochastic gradient descent

(in particular, mini-batch gradient descent) which performs updates only for some small

subsets of data at a time. Useful improvements over a vanilla gradient exploit ideas of

the second-order methods: Nesterov accelerated gradient [Nesterov, 1983] and Adaptive

Moment Estimation [Kingma and Ba, 2014].

The strategies designed to reduce the test error, possibly at the expense of increased

training error, are called regularization. Instead of optimizing J(θ) (4.3), we optimize

over

J̃(θ) = J(θ) + Ω(θ).

Ω often introduces a penalty for complicated or large parameters. For example, L2

penalty implies a weight decay technique in a gradient descent.

One key type of neural networks is convolutional networks which can be applied to data

with a special grid-like topology, for example images, making them extremely useful in

computer vision [LeCun, 1989, Krizhevsky et al., 2012]. Convolutional networks are

neural networks where convolution is used instead of general matrix multiplication in at

least one layer. As compared to the fully connected layer (4.2), the convolutional layer

has much fewer parameters, because the convolution parameters depend on the layer

only and not on a particular location in the feature map. This does not only reduce

overfitting but also makes the network learn useful local features. A common additional

ingredient in convolutional networks is pooling, in which after convolving we replace the

result with the average or maximum in the neighborhood, thus providing independence

of small shifts in the input.

The batch normalization layer [Ioffe and Szegedy, 2015], used in this work, is a means of

reparametrization that helps to mitigate the issue of coordinating updates across many

layers. At training time, each mini-batch of layer activations is normalized by subtracting

the mean and dividing it by the standard deviation. Importantly, back-propagation is

performed through these normalizing operations at training time. This means that the

gradient descent will not simply increase the standard deviation or mean. At test time,

the running average mean and deviation from the training time are used.
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[Jaderberg et al., 2015] introduce an attention mechanism based on Spatial Transformer

Networks. The authors propose a method with a specific part of the network producing

the grid that the input image or feature maps will be sampled from. In the case of the

pixel-wise replacement approach suggested in this work (Section 2.1), the warping field

(2.4) is a grid with the same functions. [Jaderberg et al., 2015] show how this operation

can be implemented in a differentiable layer. An operation with some interpolation

kernel k with parameters Φ is written as

V c
i =

H∑
n

W∑
m

U cnmk(xsi −m; Φx)k(ysi − n; Φy) ∀i ∈ [1 . . . H ′W ′] ∀c ∈ [1 . . . C],

where (xsi , y
s
i ) are coordinates of the pixel number i in the sampling grid, U and V are

input and output maps, and c is a channel number. Interest for this work is a special

case of a bilinear kernel (2.6), which reduces the equation above reduces to

V c
i =

H∑
n

W∑
m

U cnm max(0, 1− |xsi −m|) max(0, 1− |ysi − n|).

Although the summation over the whole grid is written, for each particular pixel i only

4 members are nonzero – those that correspond to neighbor integer points of the point

(xsi , y
s
i ). Therefore, the equation reduces to the simple form of bilinear interpolation

(see (2.6), Figure 2.1). However, the equation in the form of a complicated sum is useful

for calculating partial derivatives, which are necessary for backpropagation through the

sampling mechanism:

∂V c
i

∂U cnm
=

H∑
n

W∑
m

max(0, 1− |xsi −m|) max(0, 1− |ysi − n|),

∂V c
i

∂xsi
=

H∑
n

W∑
m

U cnm max(0, 1− |ysi − n|)


0, if |xsi −m| ≥ 1;

1, if m ≥ xsi ;

−1, if m < xsi .

and similarly for
∂V c

i
∂ysi

.

4.2 Coarse-to-fine warping

The warping modules takes as an input the image, the position of the feature points,

and the redirection angle. All inputs are expressed as maps as discussed below, and

the architecture of the warping modules is thus “fully-convolutional”, including several

convolutional layers interleaved with Batch Normalization layers [Ioffe and Szegedy,
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Figure 4.1: The deep warp system takes an input eye region, feature points (anchors)
as well as a correction angle α and sends them to the multiscale neural network (see
Section 4.2) predicting a flow field. The flow field is then applied to the input image
to produce an image of a redirected eye. Finally, the output is enhanced by processing

with the lightness correction neural network (see Section 4.4).
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Figure 4.2: The architecture of the two warping modules: (process 0.5×-scale
4.2(a) and process 1×-scale 4.2(b)) predicting and applying pixel-flow to the input
image; 4.2(c) represents a fully convolutional sequence of layers inside warping modules.

2015] and ReLU nonlinearities (the actual configuration is shown in Figure 4.2(c)). To

preserve the resolution of the input image, the ‘same’-mode convolutions (with zero

padding) are used, all strides are set to one, and max-pooling is avoided.

The resulting flow is obtained using coarse-to-fine two-stage warping. Firstly, the first

part (stage) of the network estimates the coarse flow at half resolution. Then, the second

stage of the network performs additive rectification at full scale, using the upsampled

coarse flow as well as the feature maps computed by the first-stage. The details are

provided below.

Coarse warping. The last convolutional layer of the first (half-scale) warping module

(Figure 4.2(a)) produces a pixel-flow field (a two-channel map), which is then upsampled

Fcoarse(I, α) and applied to warp the input image by means of a bilinear sampler S
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[Jaderberg et al., 2015] that finds the coarse estimate:

Ocoarse = S (I,Fcoarse(I, α)) .

Here, the sampling procedure S samples the pixels of Ocoarse at pixels determined by

the flow field (the procedure described in Section 2.1, (2.3), (2.5)).

Fine warping. In the fine warping module (Figure 4.2(b)), the rough image estimate

Ocoarse and the upsampled low-resolution flow Fcoarse(I, α) are concatenated with the

input data (the image, the angle encoding, and the feature point encoding) at the original

scale and sent to the 1×-scale network which predicts another two-channel flow Fres that

amends the half-scale pixel-flow (additively [He et al., 2016]):

F(I, α) = Fcoarse(I, α) + Fres(I, α,Ocoarse,Fcoarse(I, α)) ,

the amended flow is used to obtain the final output (again, via bilinear sampler):

O = S (I,F(I, α)) .

The purpose of coarse-to-fine processing is two-fold. The half-scale (coarse) module

effectively increases the receptive field of the model resulting in a flow that moves larger

structures in a more coherent way. Secondly, the coarse module gives a rough estimate

of how a redirected eye would look like. This is useful for locating problematic regions

which can only be fixed at a finer scale.

4.3 Input embedding

Alongside the raw input image, the warping modules also receive the information about

the desired redirection angle and feature points also encoded as image-sized feature

maps.

Embedding the angle. Similarly to [Ghodrati et al., 2016], the correction angle is

treated as an attribute and is embedded into a higher dimensional space using a multi-

layer perceptron Fangle(α) with ReLU nonlinearities. The precise architecture is FC(16)

→ ReLU → FC(16) → ReLU. Unlike [Ghodrati et al., 2016], separate features are not

outputted for each spatial location but rather opt for a single position-independent 16-

dimensional vector. The vector is then expressed as 16 constant maps that are concate-

nated into the input map stack. During learning, the embedding of the angle parameter

is also updated by backpropagation.
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Input CFW + LCM Mask GT

Figure 4.3: Visualization of three challenging redirection cases where the Lightness
Correction Module helps considerably compared to the system based solely on coarse-
to-fine warping (CFW), which is having difficulties with expanding the area to the left of
the iris. The ‘Mask’ column shows the soft mask corresponding to parts where lightness
is increased. Lightness correction fixes problems with dis-occluded eye-white, and also

emphasizes the specular highlight increasing the perceived realism of the result.

Embedding the feature points. Although in theory a convolutional neural network

of an appropriate architecture should be able to extract necessary features from the

raw input pixels, it is beneficial to further augment 3 color channels with additional 14

feature maps containing information about the eye anchor points.

In order to get the anchor maps, for each previously obtained feature point located at

li = (lxi , l
y
i ), a pair of maps is computed:

∆i
x[x, y] = x− lxi ,

∆i
y[x, y] = y − lyi ,

∀(x, y) ∈ {0, . . . ,W} × {0, . . . ,H},

where W,H are width and height of the input image respectively. The embedding give

the network “local” access to similar features as used by decision trees.

Ultimately, the input map stack consists of 33 maps (RGB + 16 angle embedding maps

+ 14 feature point embedding maps).

4.4 Lightness correction module

While the bulk of appearance changes associated with gaze redirection can be modeled

using warping, some subtle but important transformations are more photometric than
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Figure 4.4: 4.4(a) – The architecture of the Lightness Correction Module. The output
of the lightness correction module is a weighted sum of the image created by the warping
modules and the palette (which in this paper is taken to be a single white colour). The
mixing weights predicted by the network are passed through the softmax activation
and therefore sum to one at each pixel. The module takes the features computed by

the coarse and the fine warping modules (from Figure 4.4(b)) as input.

geometric and require a more general transformation. In addition, the warping approach

can struggle to fill in dis-occluded areas in some cases (Figure 4.3).

To increase the generality of the transformation that can be handled by the deep warp

architecture, the final lightness adjustment module is added (Figure 4.4(a)). The module

takes as input the features computed within the coarse warping and the fine warping

modules (specifically, the activations of the third convolutional layer), as well as the

overall image resulting from the warping. The output of the module is a single map M

of the same size as the output image that is used to modify the brightness of the output

O using a simple element-wise transform:

Ofinal(x, y, c) = O(x, y, c) · (1−M(x, y)) +M(x, y), (4.4)

assuming that the brightness in each channel is encoded between zero and one. The

resulting pixel colors can thus be regarded as blends between the colors of the warped

pixels and the white color. This constraint on the refinement operation represents the

desire to compensate the lack of white in the results of warping (see Figure 4.3). The

actual architecture for the lightness correction module in experiments is shown in Fig-

ure 4.4(b).
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4.5 Training procedure

A regular `2-distance between the synthesized output Ooutput and the ground-truth Ogt

is used as the objective function. The model was trained end-to-end on 128-sized batches

using Adam optimizer [Kingma and Ba, 2014]. Biasing the selection process for more

difficult and unusual head poses and bigger redirection angles improved the results. For

this reason, the following sampling scheme aimed at reducing the dataset imbalance is

used:

• Split all possible correction angles (that is, the range between −30◦ and 30◦) into

15 bins.

• A set of samples falling into a bin is further divided into “easy” and “hard” subsets

depending on the input’s tilt angle (an angle between the segment connecting

two most distant eye feature points and the horizontal baseline). A sample is

considered to be “hard” if its tilt is > 8◦. his subdivision helps to identify training

pairs corresponding to the rare head poses. A training batch is formed by picking

4 correction angle bins uniformly at random and sampling 24 “easy” and 8 “hard”

examples for each of the chosen bins.

4.6 Experiments

In this section computational experiments, illustrating the suggested Deep Warp ap-

proach, are provided. Both quantitative and qualitative results are given. More results

could be found in comparisons with other methods in the following chapters (Section 5.3

and Section 6.4).

4.6.1 Quantitative evaluation

Experiments are performed on a Skoltech dataset, described in Section 2.3. The initial

set of subjects is randomly splitted into a development (26 persons) and a test (7 persons)

sets. Several methods were compared using the mean square error (MSE) between the

synthesized and the ground-truth images extracted using the procedure described in

(2.8).

4.6.1.1 Models.

Six different models are considered:
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(1) A system based on weakly-supervised Random Forests (RF ) described in Chap-

ter 3.

(2) A single-scale (SS (15◦ only)) version of DeepWarp method with a single warping

module operating on the original image scale that is trained for 15◦ redirection

only. Single-scale here denotes, that a model does not exploit the coarse-to-fine

idea, but only produces one warping field on the original image scale. Lightness

correction module is also not used. This model is similar to the one presented in

Figure 4.2(a), but without downsampling and upsampling.

(3) A single-scale (SS ) version of DeepWarp method with a single warping module

operating on the original image scale.

(4) A multiscale (MS ) network without coarse warping. In this variation, the coarse

warping is not amended on a fine scale, but features from both scales, collected

independently, are used to predict the warping field. Lightness correction module

is also not used.

(5) A coarse-to-fine warping-based system described in Section 4.2 (CFW ).

(6) A coarse-to-fine warping-based system with a lightness correction module (CFW

+ LCM ).

The latter four models are trained for the task of vertical gaze redirection in the range.

Such models are called unified (as opposed to single angle correction systems).

4.6.1.2 15◦ correction.

In order to have the common ground with the forest-based system, this comparison

is restricted to the case of 15◦ gaze correction. Following the same approach as in

Section 3.3, a graph of sorted normalized errors (Figure 4.5) is presented, where all

errors are divided by the MSE obtained by an input image and then the errors on the

test set are sorted for each model.

It can be seen that the unified multiscale models are, in general, comparable or superior

to the RF-based approach in Chapter 3. Interestingly, the lightness adjustment extension

(Section 4.4) is able to show quite significant improvements for the samples with low

MSE. Those are are mostly cases similar to shown in Figure 4.3. It is also worth

noting that the single-scale model trained for this specific correction angle consistently

outperforms Chapter 3, demonstrating the power of the proposed architecture. However,

one should note that results of the methods can be improved using additional registration

procedure, one example of which is described in Section 4.6.3.
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Figure 4.5: Ordered errors for 15◦ redirection. Multiscale models (MS, CFW, CFW
+ LCM) show results that are comparable or superior the Random Forests (RF) Chap-

ter 3.

4.6.1.3 Arbitrary vertical redirection.

In Figure 4.6 different variants of unified networks are compared and the error distri-

bution over different redirection angles is plotted. The neural network models in this

comparison are trained for the task of vertical gaze redirection in the range from −30◦

to 30◦. For small angles, all the methods demonstrate roughly the same performance,

but as the amount of correction is increased, the task becomes much harder (which

is reflected by the growing error) revealing the difference between the models. Again,

the best results are achieved by the palette model, which is followed by the multiscale

networks making use of coarse warping.

4.6.2 Perceptual quality

The results of redirection on 15 degrees upwards are demonstrated in (Figure 4.7). CFW-

based systems produces the results visually closer to ground truth, than RF. The effect

of the lightness correctness is pronounced: on the input image with the lack of white

Random Forest and CFW fail to get output with sufficient eye-white and copy-paste



74

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

5

10

15

20

25

Correction angle

M
S

E

SS
MS
CFW
CFW + LCM

Figure 4.6: Distribution of errors over different correction angles.

red pixels instead, whereas CFW+LCM achieve good correspondence with the ground-

truth. However, the downside effect of LCM could be blurring/lower contrast because

of the multiplication procedure (4.4).

4.6.2.1 User study

To confirm the improvement corresponding to different aspects of the proposed models,

which may not be adequately reflected by an `2-measure, I perform an informal user

study enrolling 16 subjects unrelated to computer vision and comparing four methods

(RF, SS, CFW, CFW+LCM). Each user was shown 160 quadruplets of images, and in

each quadruplet one of the images was obtained by re-synthesis with one of the methods,

while the remaining three were unprocessed real images of eyes. 40 randomly sampled

results from each of the compared methods were thus embedded. When a quadruplet

was shown, the task of the subject was to click on the artificial (re-synthesized) image

as quickly as possible. For each method, I then recorded the number of correct guesses

out of 40 (for an ideal method the expected number would be 10, and for a very poor

one it would be 40). I also recorded the time that the subject took to decide on each

quadruplet (better method would take a longer time for spotting). Table 4.1 shows

results of the experiment. Notably, here the gap between methods is much wider then it
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Input RF CFW +LCM GT

Figure 4.7: Sample results on a hold-out. The full version of DeepWarp model
(CFW+LCM) outperforms other methods.
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Random Forest Single Scale CFW CFW+LCM

Correctly guessed (out of 40)

Mean 36.1 33.8 28.8 25.3

Median 37 35 29 25

Max 40 39 38 34

Min 26 22 20 16

Correctly guessed within 2 seconds (out of 40)

Mean 26.4 21.1 11.7 8.0

Median 28.5 20.5 10 8

Max 35 33 23 17

Min 13 11 3 0

Correctly guessed within 1 second (out of 40)

Mean 8.1 4.4 1.6 1.1

Median 6 3 1 1

Max 20 15 7 5

Min 0 0 0 0

Mean time to make a guess

Mean time, sec 1.89 2.30 3.60 3.96

Table 4.1: User assessment of the photorealism of the results for the four
methods. During the session, each of the 16 test subjects observed 40 instances of
results of each method embedded within 3 real eye images. The participants were asked
to click on the resynthesized image in as little time as they could. The first three parts
of the table specify the number of correct guesses (the smaller the better). The last
line indicates the mean time needed to make a guess (the larger the better). The full
system (coarse-to-fine warping and lightness correction) dominated the performance.

might seem from the MSE-based comparisons, with CFW+LCM method outperforming

others very considerably, especially when taking into account the timings.

4.6.2.2 Continuous gaze redirection.

The deep warp model is capable of a redirection by a 2D family of angles, as stated, as

the input angle is embedded in the architecture Figure 4.1. In Figure 4.8 and Figure 4.9,

qualitative results of CFW+LCM for vertical and horizontal redirection are provided.

Some examples showing the limitations of the method are given. The limitations are

concerned with cases with severe dis-occlusions, where large areas have to be filled by

the network.

4.6.3 Incorporating registration.

Results can be further perceptually improved if the objective is slightly modified to

take into account misalignment between inputs and ground-truth images. To that end,

enlarge the bounding-box B which was used to extract the output image of a training
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Figure 4.8: Gaze redirection with deep warp model trained for vertical gaze redirec-
tion. The model takes an input image (middle row) and the desired redirection angle
(here varying between -15 and +15 degrees) and re-synthesize the new image with the
new gaze direction. Note the preservation of fine details including specular highlights

in the resynthesized images.

pair by k = 3 pixels in all the directions. Given that now Ogt has the size of (H + 2k)×
(W + 2k), the new objective is defined as:

L(Ooutput, Ogt) = min
i,j

dist (Ooutput, Ogt[i : i+H, j : j +W ]) ,

where dist(·) can be either `2 or `1-distance (the latter giving slightly sharper results),

and Ogt[i : i + H, j : j + W ] corresponds to a H ×W crop of Ogt with top left cor-

ner at the position (i, j). This procedure is an alternative to the offline registration of

input/ground-truth pairs described in Section 3.2.4. In case of redirection on an arbi-

trary angle that procedure is computationally intractable for a large database, because

number of training pairs from each training sequence (which should be registered) de-

pends quadratically on the sequence size. This dependence is linear in case when only

training pairs with some fixed angular difference are taken, i.e. 15◦. The suggested

approach is computationally cheap and increases robustness of the training procedure

against small misalignments in a training set.
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Figure 4.9: Horizontal redirection with a model trained for both vertical and hori-
zontal gaze redirection. For the first six rows the angle varies from −15◦ to 15◦ relative
to the central (input) image. The last two rows push the redirection to extreme angles

(up to 45◦) breaking the model down.



Chapter 5

Regression random forest using

neural network supervision

The deep warping system suggested in Chapter 4 compares well with the warping flow

forest-based system presented in Chapter 3 in terms of quality of the results. Another

drawback of forest-based system is its big memory footprint proportional to the patch

size, which is required to store distributions of the compatibility score (3.12) in the

leaves. In the implementation with 10 trees and 9-by-9 patches, the resulting model has

a size of 200Mb.

Better quality of the deep warp results is attained at the expense of much higher com-

putation time (few frames per second on a GPU). In this chapter, a system based on

neural network-supervised forests is proposed and aiming to combine the speed of the

forest-based system with the quality of the deep warp system. This is achieved by train-

ing regression forests to emulate the predictions of the deep warp system at each pixel.

Assuming that during training the deep warp predictions are treated as pseudo ground

truth, the regression forests can be trained in a traditional fully-supervised manner

discussed below.

5.1 Related work on teacher-student architectures

Training a regression forest to emulate the predictions of the neural network relates this

work to several recent papers with similar teacher-student architectures. The idea to

use the output of a very precise but large and slow model as supervision for a faster

architecture goes back as far as [Bucilu et al., 2006]. They show that the model ensemble

can be compressed in a single much faster model.A different kind of training is often

79



80

needed to transfer knowledge from the teacher model to a smaller model. The idea is

to pass unlabeled data through a large, accurate model to collect the scores produced

by that model. A fast and compact model does not overfit and approximates well

the target function, provided enough pseudo data by high performing model ensemble.

[Bucilu et al., 2006] suggest several ways of generating new pseudo data, estimating

the joint distribution of attributes in the original training set for the large model and

drawing points from this generative model trained on the original training set.

An alternative way is to train a smaller model on the original training points only, while

training it to copy other features of the model, such as its posterior distribution over

the full set of classes, is suggested in [Hinton et al., 2015]. The authors suggest training

a “student”network on the softened output of an ensemble of wider networks (teacher

networks), thus allowing the student network to capture both the information provided

by the true labels and the finer structure learned by the teacher network. This way an

ensemble of deep networks is compressed into a student network of a similar depth. In

particular, [Hinton et al., 2015] use a softened version of softmax teacher output

qi =
e

zi
T∑

j
e

zj
T

(5.1)

with temperature T > 1 (the case T = 1 corresponds to the usual softmax). The student

network is trained on a weighted average of two different objective functions. The first

objective function is the cross entropy with the soft targets (5.1). This cross entropy

is also modified using the same high temperature in the softmax of the distilled model

in much the same way as in generating the soft targets from the teacher model. The

second objective function is the cross entropy with the correct labels. This cross entropy

is computed using the normal softmax at a temperature of 1.

This idea was further developed in [Romero et al., 2015] that uses activations of several

hidden layers of the teacher network as a guidance for the student network. In this

approach, the teacher network has a low enough depth and a great enough width to

be easy to train. The student network is much deeper and thinner. Activations of

several hidden layers provided for optimization simplify the optimization problem. An

additional layer is introduced in the student network to regress the middle layer of the

teacher network from the middle layer of the student network. The corresponding error

gradient in this architecture affects the student networks lower layers only. Thus the

objective is two-fold: help the higher layers of the student network to predict the label

and model the intermediate layer of the teacher network. It is shown in the experiments

that such hints on the middle layers help the student network (which learns very poorly

without hints) to improve its results both on the train and test sets.
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Figure 5.1: The output flow of the warping modules (Section 4.2) on random samples
from a training set. The coarse-to-fine model without lightness correction was trained
on a task of 15◦ redirection upwards. This data is used to train a neural network-
supervised regression random forest. The bottom figure is a color pattern, explaining
how the direction of the flow vector is encoded with the color of the pixel. The more

intense the pixel color, the longer the flow vector in this pixel.

5.2 Learning

To learn the system, I fix the desired redirection angle and use the sum of the coarse

and fine flows predicted by a deep warp system (the teacher) for the given angle as

ground-truth data, thus directly predicting the warping field (2.4). The examples of

such training data are shown in Figure 5.1.

The input data to the NN-supervised regression forests is the same as to the weakly-

supervised warping flow forests, i.e. an image of the eye and its landmark locations. The

regression forests apply the same appearance and location tests ((3.10) and (3.11)) as

the warping flow forests. A set of training samples is S = {S1,S2, . . . ,SK}, where each

sample is a tuple S = {(x, y), I, {li)}, (dx, dy)} with dx and dy being the prediction of

the deep warp system. The quality of the split of S into two subsets S1 and S2 is the

common objective for regression problems ((3.4), (3.7)):

I(S1,S2) = H(S)−
(
|S1|
|S|

H(S1) +
|S2|
|S|

H(S2)

)
, (5.2)
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where compatibility scores are

H(Si) = Hx(Si) +Hy(Si) =
∑
s∈Si

(dxs − dxi)2 +
∑
s∈Si

(dys − dyi)2,

with dxi and dyi being the means of dx and dy flow in the subset Si.

At test time, a pixel is passed down the tree and the mean 2D flow vector (across the

training examples falling within the corresponding leaf) is picked. The flows coming

from different trees in a forest are averaged to get the final result. As the range of the

flow is limited, only two bytes are sufficient to store a flow vector in each leaf, which is

much less as compared to a weakly-supervised forest. Hence the reduction in memory is

(w2− 2) bytes for each leaf, where w is the width of the patch in the weakly-supervised

warping flow forest system (Figure 3.2). Moreover, as the supervised task is easier to

learn, the depth and the number of leaves can be decreased, resulting in typical memory

demand for trained forests of only three megabytes.

Prediction of the lightness correction module (Section 4.4) can be incorporated using

the second forest, which is applied to the output images after applying the warping

predicted by the first NN-supervised forest. The train set for the second forest is the

output of the lightness correction module of the neural network and images {Îj} which

are obtained from the original set {Ij} by applying the first forest and warping procedure

(2.2). The splitting criterion is the same as (5.2), except that the output in this case is

a one-dimensional vector.

So, the computational speed of weakly-supervised tree and nn-supervised tree of the same

depth would be roughly the same. However, while a weakly-supervised forest learns to

predict the flow having only the output image as supervision, the NN-supervised forest

uses the target flow directly as an output of the neural network warping layers. If the

student forest could approach the teacher neural network models accuracy, then it would

gain advantages from both approaches: real-time computational speed from the random

forest approach and high quality of the results from the teacher network, both in terms

of quantitative `2 measure and perceptual quality. Section 5.3 presents a comparison

showing that the regression forests ability to learn from the teacher is high enough to

approach its quality and to outperform the weakly-supervised forest.

5.3 Experiments

In this section the neural network-supervised forests are compared with the weakly-

supervised forest from Chapter 3 and the deep warping approach from Chapter 4 in
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terms of performance.

5.3.1 Evaluation using Mean Squared Error

The methods are evaluated on the Skoltech dataset. The initial set of subjects is ran-

domly splitted into the training and testing sets and image pairs are sampled applying

the same pre-processing steps as during data preparation (Section 2.3).

15◦ correction. First a comparison of MSE errors for the 15◦ vertical gaze redirection

case is offered. The models considered for this comparison are:

1. A system based on Weakly-Supervised Random Forests (WSRF ), described in

Chapter 3. The score of this model is what random forest can achieve without

supervision from the neural network.

2. Deep Warp system Chapter 4 without lightness correction (Deep Warp withou

LCM ) trained for 15◦ vertical gaze redirection. The results of this model are the

gold standard for the student forest.

3. A Neural Network Supervised Random Forest (NNSRF ) described in Section 5.2,

which predicts the output flow of a coarse-to-fine warping-based system without

lightness correction. The teacher for the method is CFW (the resulting flow on

the train set).

4. A Deep Warp coarse-to-fine warping-based system with a lightness correction mod-

ule trained for 15◦ vertical gaze redirection (Deep Warp) (Section 4.4), used to test

the effect of the lightness correction model on the score.

5. Simple baseline: Image-Independent Flow field (Section 3.2.1) where the flow is

based solely on the relative position of the pixel. The score of this model is in

some sense the basic score of the warping approach, i.e. what we can get without

any grouping of similar pixels or representation learning.

Figure 5.2 contains a graph of sorted normalized errors where all the errors are divided

by the MSE obtained by an input image taken as an output. For each method, the

errors on the test set are sorted. It can be seen that the NN-supervised forest performs

nearly as well as the warping flow forest. What is more important, this improvement

is quite visible in terms of noise and artifacts (Figure 5.4). However, there is still a

gap between the NN-supervised forest and its teacher, the multiscale model without the

lightness correction module. The lightness adjustment extension (Section 4.4) is able to

show quite significant improvements. These are mostly the cases similar to those shown
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Figure 5.2: Ordered errors for 15◦ vertical gaze redirection (see the text for further
discussion of the error metric). The best performance is shown by the full Deep Warp
architecture with the lightness correction module. Marks on the curves do not denote
data points, but are plotted for distinguishing the curves in case of black and white

printing.

in Figure 4.3. Unified multiscale models trained to handle different angles (not included

in this comparison) are generally comparable to the one tailored for 15◦ redirection. It

is also worth noting that even a single-scale model trained for this specific correction

angle consistently outperforms the warping flow forest, demonstrating the superiority of

deep learning.

5.3.2 Was the gaze actually redirected?

The low error between output and ground truth does not fully answer the question

about whether the gaze difference between the input image and the output equals the

requested angle. One could imagine an example (possibly degenerate) where the `2 error

is low and the results are realistic but the gaze was not redirected or was redirected by

a smaller angle than required. Therefore, I provide an additional assessment to evaluate

the redirection angle on the test set.

Firstly, a redirection angle evaluation tool should be developed. I use the evaluation

model E trained to determine the angular difference between two input images of the

eyes. For the model to be more accurate, I consider vertical redirections only. The model

is parametrized as a deep neural network. The inputs to the network are two images
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of the eye and the output is the angular gaze difference. The network was trained

with MSE loss on pairs of images of the same eyes with different vertical gaze directions

picked up from the training part of the dataset. For each training example, the sequence

and the horizontal gaze direction in this sequence were picked up randomly. Then two

vertical gaze directions were chosen in random manner too (the maximum vertical gaze

difference in the database is 36◦, Section 2.3). The mean RMSE is 0.8◦ on the training

set and 1.1◦ on the validation set.

The architecture of the network E consists of two parts. I denote by conv(m, k) a

convolutional layer with m maps and kernel size k and by FC(m) a fully connected layer

with m maps, both preceding the RELU activation. The first part is a convolutional

network with max-pooling, which is applied to both input images with shared weights:

conv(48, 3)→ conv(48, 3)→ MaxPool→ conv(48, 3)→ conv(48, 3)→ MaxPool.

Then the maps corresponding to the two inputs are concatenated, and the second part

is applied:

conv(96, 3)→ conv(96, 3)→ MaxPool→ conv(96, 3)→ conv(96, 3)→ MaxPool

→ FC(1000)→ FC(250)→ FC(1),

where the last activation is linear.

This model was used when evaluating the results of 15◦ upward redirection on the

testing set. For each input image I, the resulting image Om with gaze redirected by

15◦ upwards was obtained by each method. Then, the actual redirection angle was

estimated as α ≈ E(I,Om). The results of this assessment are presented in Figure 5.3.

The distribution of the outputs produced by the evaluation model E are plotted for

each method. For reference, I also plot the distribution for the ground-truth images.

The mean of the distribution for the ground-truth images is exactly at 15◦, but the

variance is quite significant. This variance is explained by the inaccuracy of the dataset

labels and imperfection of the evaluation network. The mean of distributions for all the

models is quite close to 15◦, while the variance does not exceed that of the distribution

corresponding to the ground-truth pairs. Thus I conclude that all the methods performed

well in this test, which suggests that they should be compared based primarily on the

realism of their results. Interestingly, the best performance was shown by the Deep

Warp model with no lightness correction module, although LCM decreases the `2 error.

The means of the forest-based models are slightly less than 15◦, while the mean of

CFW+LCM model is slightly higher than 15◦.
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Distribution corresponding to the
pairs with 15◦ difference according
to the data collection procedure.
Mean = 15.1◦, std = 2.6◦.

Weakly-supervised random forest
(Chapter 3). Mean = 13.8◦, std
= 2.1◦.

Deep Warp without LCM (Chap-
ter 4). Mean = 15.2◦, std = 2.7◦.

Random forest supervised by a neu-
ral network (Chapter 5). Mean
= 14.2◦, std = 2.2◦.

Deep Warp with a lightness cor-
rection module (Chapter 4). Mean
= 16.0◦, std = 2.6◦.

Figure 5.3: The assessment of the redirection angles. Hold-out pairs with gaze dif-
ference of 15 degrees were submitted to the network, trained to determine the vertical
angular difference. The distribution of the redirection angle, as predicted by the net-
work, is plotted. For reference, the distribution for ground-truth images is shown in
the top row. Means of distributions for all models come quite close to 15◦, while the
variance does not exceed the variance of the reference distribution. The best results

are shown by Deep Warp architecture with no lightness correction model.
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5.3.3 Qualitative evaluation

To make a qualitative comparison of the systems, I show a random subset of results

of redirection by 15 degrees upwards in Figure 5.4. All the methods were trained for

15◦ vertical redirection. One can see that the system is able to learn to redirect the

gaze of unseen people rather reliably, attaining a close match with the ground truth.

Deep warp systems produce results with better visual similarity to the ground truth as

compared to forest-based systems. The effect of lightness correction is quite obvious:

the system with a lightness correction feature performs clearly better on the input image

with the sclera invisible in one corner. On the downside, lightness correction can result

in blurring/lower contrast because of the multiplication procedure (4.4).

Examples of predicted warping field are also shown in Figure 5.5. To determine the

inherent dimensionality of the warping fields manifold, the following experiment was

conducted. Warping fields predicted on the validation set were resized to the same size

of 80× 100 pixels, aligned to vectors, and the PCA model was learned. For the learned

model, the dependence of the percentage of explained variance on the number of PCA

components is plotted in Figure 5.6. Almost 95% of the variance is described by 100

components out of 80 × 100 × 2 = 16000, and all components after number 1000 have

less than 0.001% contribution. It can be viewed as a confirmation, that the predictor

had learned the inner structure of a transformation.

Lower resolution images. Figure 5.7 illustrates the results of the NNSF-system for

lower input resolutions on the images randomly sampled from a test set. For that,

images are downsampled from the original sizes of 80 × 100 to 10 × 12, 20 × 25, and

40 × 50 respectively. The NNSF-system is then applied to the downsampled versions.

The effect of gaze redirection is noticeable even at very low resolutions.

Comparison with the previous work on Gaze Correction. Figure 5.8 I gives a

side-by-side comparison with the system [Giger et al., 2014] which also performs monoc-

ular gaze correction for the videoconferencing scenario. The difference in the approaches

is clearly visible. The method proposed here redirects the gaze and confines the changes

to the eye region, while keeping the head pose unchanged. By contrast, the system

[Giger et al., 2014] synthesizes a novel view for the facial part and then blends the new

face area into the input image. The latter approach results in certain distortion of face

proportions. Moreover, [Giger et al., 2014] requires a simple per-person pre-calibration

step and a (low-end) GPU for real-time operation (whereas my method achieves more

than 30 fps on a single core of an Intel Core-i5 CPU).
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(a) (b) (c) (d) (e) (f)

Figure 5.4: Results on a random subset of the hold-out test set. From left to right: (a)
Input, (b) Weakly Supervised Random Forest, (c) Neural Network Supervised Random
Forests, (d) Deep Warp with the lightness correction module, (e) Deep Warp without
the lightness correction module, (f) Ground truth. The full variant of Deep Warp

system (d) generally performs the best.
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Figure 5.5: Examples of warping field taken randomly from a validation set. In each
pair, the left image is the input and the right one is the predicted warping field. The

color pattern is the same as in Figure 5.1.

Figure 5.6: Inherent dimensionality of the warping fields manifold. The dependence
of the percentage of explained variance on the number of PCA components is plotted.
The scale of the x-axis is logarithmic. One hundred components describe almost 95%

of the variance.
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Figure 5.7: The results of NNSRF system for the 15◦ upwards redirection with input
images of lower resolutions (the downsampling factors are shown at the top). Gaze

redirection is persistent even for very low resolution images.

Finally, the supplementary video [Kononenko, 2017] demonstrates a real-time screencast

of NNSRF system running on a variety of people under a variety of conditions typical

for the teleconferencing scenario.

5.3.4 User study

To confirm the perceptual improvement in the results, a user study similar to the one

presented in Section 4.6.2.1 is performed. Here the setup is changed to show the full

face image, while still telling the users that only the eye region will be re-synthesized.

Showing the full face was driven by the need to capture the users perception of the

overall realism of the resulting images in a more straightforward way.

The user study was performed on 41 subjects unrelated to computer vision in order the

compare the four methods (WSRF, NNSRF, Deep Warp without LCM, Deep Warp with

LCM). Each user was shown 80 quadruplets of images, each containing three unprocessed

real face images and one image obtained by re-synthesis using one of the methods. A

screenshot of the user study interface is shown in Figure 5.9.

Twenty randomly sampled results from each of the compared methods were embedded in

the set of quadruplets shown to each participant. The ordering of the methods and the

position of the right answer were randomized. When shown a quadruplet, the subject

was supposed to click on the artificial (re-synthesized) image as quickly as possible. For

https://youtu.be/sw31vBxQUNs
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Figure 5.8: Comparison with monocular gaze correction method from [Giger et al.,
2014]. Left – the input video frame (taken from [Giger et al., 2014]). Top right –
output of the suggested NNSRF system. Bottom right – result of [Giger et al.,
2014]. While both systems achieve a convincing redirection effect, NNSRF system
avoids distortion of facial proportions (especially in the forehead and chin regions),

while also not requiring a GPU to achieve real-time performance.

each method, the number of correct guesses out of 20 is then recorded (the expectation

would be 5 for an ideal method and 20 for a very poor one). The time it took the subject

to make a decision on each quadruplet is also recorded (a better method would take a

longer time for spotting). The results of this experiment are summarized in 5.1.

In general, all the methods performed very well, closely approaching the highest 25%

mark (random guess performance). The NN-supervised random forest and full deep warp

system displayed comparable performance, while the other two (warping flow forest

and coarse-to-fine warping without lightness correction) did slightly worse. However,

considering the fast (confident) clicks only, neural networks are somewhat inferior to the

warping flow forest and NN-supervised forest. The deep architectures behavior can be

put down to fixed basic resolution, as opposed to the forest-based methods capable of

processing eye images at the cropped images native resolution. In some instances, the
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WSRF NNSRF
Deep Warp

without LCM
Deep Warp
with LCM

Correctly guessed (out of 20)

Mean 7.12 5.68 6.16 5.58

Std 0.87 0.98 0.92 1.10

Median 6 6 6 6

Max 13 10 10 9

Min 4 2 1 2

Correctly guessed within 4 seconds (out of 20)

Mean 1.9 1.66 1.98 1.85

Std 0.54 0.67 0.59 0.62

Median 1 1 2 0

Max 6 7 6 5

Min 0 0 0 0

Correctly guessed within 2 seconds (out of 20)

Mean 0.56 0.80 1.09 0.96

Std 0.69 0.55 0.48 0.46

Median 0 0 0 0

Max 4 6 5 4

Min 0 0 0 0

Mean time to make a guess

Mean time, sec 7.7 7.3 9.1 9.7

Std, sec 1.9 2.5 2.0 2.2

Table 5.1: User assessment for the photorealism of the results for the four
methods. During the session, each user observed 20 instances of results of each
method embedded within 3 real images. The participants were asked to click on the
re-synthesized image in as little time as they could. The first three parts of the table
specify the number of correct guesses (the smaller the better). The last line indicates
the mean time needed to make a guess (the larger the better). The performance is
not far from the performance of a random guess, thus, re-synthesized images could be

hardly distinguished from the real ones.

users could apparently quickly notice the interpolation artifacts or the artifacts near the

border in the deep warp system results. As a consequence, the teacher CFW method

performed a bit worse than the student NNSF in these metrics. If assessed in terms of

the mean time it took a user to make a guess, the deep warp architectures outperformed

the forest-based systems thanks to the hardest samples where users got stuck for a long

time. However, it might be well to point out that the user results display a very high

variance, simply because some people are much more attentive than others. Increasing

the number of people would not fix the problem, for there is still a significant amount of

very good and very bad results. What could help though is running a very large number

of tests for each user but users are unlikely to agree to being tested for hours without

proper motivation. Thus, for example, it is not so easy to analyze the test results by

applying statistical tests.

I also present some comparisons for pairs of methods. In the plots in Figure 5.10, the
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Figure 5.9: Screenshot from the user study interface. The user was told that one of
the four images was not real and was asked to click on the one that looked the most
unnatural, spending as little time as possible. The right answer in this example is the

top left image.

Figure 5.10: User study results for pairs of methods. Red bar number of users
fooled more often by the first method, green bar by the second method, blue bar shows
number of draws. For example, in the middle plot, the neural network supervised forest

outperformed the weakly-supervised forest.

red bar shows how many users were fooled more often by the first method, the green

bar by the second method and the blue bar shows number of draws. The NN-supervised

random forest looks best in this comparison.
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5.3.5 Computational speed and memory demands

The main testbed for video-conferencing is a standard 640 × 480 stream from a laptop

camera. Facial alignment takes a few milliseconds per frame. On top of the feature

tracking time, the warping flow forest method requires 3 to 30 ms to perform the re-

maining operations like querying the forest, picking optimal warping flow vectors and

performing replacements. The large variability is due to the fact that the bulk of op-

eration is linear in the number of pixels we need to process, so the 30 ms corresponds

to the case with the face spanning the whole vertical dimension of the frame. Further

trade-offs between the speed and the quality can be made if needed (e.g. reducing the

number of trees by half will result in nearly two-fold speedup and only negligible quality

degradation).

The neural network supervised forest method performs nearly as well as the warping flow

forest, requiring 3− 30 ms per frame on single core of a CPU (Intel Core i5 2.6GHz). In

fact, it is typically slightly faster than the warping flow forest due to a smaller tree depth,

however this difference is not crucial in my implementations. A significant improvement

is observed in memory consumption: the warping flow forest method typically requires

100 − 200Mb RAM storage at test time, while the neural network supervised forest

requires only 1.5−3 Mb. There is indeed a whale of difference in memory requirements,

because error distributions are stored in the leaves in the first case (Section 3.2) and

only the two-dimensional flow vector is stored in the latter case (Section 5.2).

The computational performance of the deep warp method is up to 20 fps on a mid-

range laptop GPU (NVIDIA GeForce-750M) and typically 3−5 times slower on a CPU.

A model for the deep warp method is much more compact than for the forest-based

one (only 250 Kb in experiments), while also being universal, i.e. not tied to a specific

redirection angle.



Chapter 6

Semi-supervised gaze redirection

using deep embedding learning

The approaches described in Chapter 3, Chapter 4 and Chapter 5 have demonstrated

that realistic gaze redirection is possible in monocular setting, i.e. without any addi-

tional hardware other than a single camera that is used to acquire images or videos. The

suggested warping-based model however relies heavily on supervised machine learning,

and, in particular, requires a considerable amount of eye images labeled with gaze di-

rection. Acquiring such images is tedious and requires taking multiple images of people

in a constrained setting (in a literal sense – c.f. Figure 2.5 and Figure 2.6).

Here I extend the warping-based model to unsupervised and semi-supervised settings,

where most of the learning happens in an unsupervised way using sequences of eye

images of different people with varying and unknown gaze direction. Collecting such

data is much easier than in the fully-supervised case. To be more precise, the model

presented here uses unsupervised manifold learning to construct a deep embedding of

eye images into a low-dimensional latent space (encoder network) and to learn a decoder

network that constructs a warping flow field based on the latent representation of two

eyes from the same sequence.

Once the unsupervised training is complete, the system can redirect the gaze of an

arbitrary eye image by traversing the manifold in a latent space. In particular, the image

is mapped to latent space and then the latent representation is modified by adding a

certain vector in order to estimate the latent representation of the target image. The

decoder network can then be used to estimate the warping between the source and the

unknown target images. The presented model is similar to the visual analogy making

from [Reed et al., 2015], although it predicts the warping fields rather than the target

images directly. The model can use a small amount of supervised data (e.g. a single pair

95
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of eye images with a known difference in gaze direction) to estimate the displacements

in latent space that are typical for certain gaze redirections (e.g. lifting the gaze by 15

degrees which is relevant for the videoconferencing scenario).

As experiments in Section 6.4 show, the resulting semi-supervised solution achieves

convincing gaze redirection,displaying better visual quality than the fully supervised

solution of the fully supervised deep warping method (Chapter 4) in the case of training

data shortage. As compared to the model of [Reed et al., 2015], using warping rather

than direct re-synthesis ensures high realism of the resulting images and prevents the loss

of high-frequency details. Section 6.1 gives an overview of related approaches, Section 6.2

addresses the bulk of the model and explains how it can be trained on unsupervised data

and Section 6.3 shows how the model can be trained using a small amount of eye images

with known absolute or relative gaze direction.

6.1 Related work

The idea of image analogies goes back as far as [Hertzmann et al., 2001]. The analogy

is defined as a relationship A : B :: C : D spoken as ”A is to B as C is to D”.

The task is to synthesize an unknown image D, given A,B and C. The approach put

forward in [Hertzmann et al., 2001] is first to compute Gaussian Pyramids for given

images and then construct a pyramid for D such that the neighborhoods are similar

to the one generated from B, while having similar multi-resolution appearances at the

corresponding locations in A and C. This approach is applied to image filtering, texture

synthesis and transferring, super-resolution.

Related to a more general deep-analogy making model from [Reed et al., 2015]], the

proposed model leverages on the ability of making analogies by addition and subtraction

(Figure 6.1) which was applied to word embeddings in [Mikolov et al., 2013, Pennington

et al., 2014]. The model in [Reed et al., 2015] is trained on tuples (a, b, c, d) such that

a ? b :: c ? d and at test time is capable of producing an unknown d – the result

of applying the transformation a : b to c. Encoder f : RD → RK and decoder

g : RK → RD are parametrized as deep convolutional neural networks trained end-to-

end The idea is to represent the target transformation by vector (f(b) − f(a)) in the

embedding space. Applying transformation to a query c is represented by addition of

this transformation vector to f(c).

The suggested objective for addition-based analogy making is

Ladd =
∑
a,b,c,d

||d− g(f(b)− f(a) + f(c))||22. (6.1)
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Figure 6.1: Visual analogy making concept. An encoder function f maps both
a query image and an analogy pair onto an analogy-making space, where the space
analogy is some simple operation, for example, summation. The decoder retrieves the

result back to the image space. Figure taken from [Reed et al., 2015].

Since the vector-addition approach is sometimes unable to model all the required trans-

formations (e.g. rotation: repeatedly adding the same vector will not restitute the

original embedding vector), [Reed et al., 2015] also suggests a multiplicative and deep

model:

Lmul =
∑
a,b,c,d

||d− g(W ×1 [f(b)− f(a)]×2 f(c) + f(c))||22, (6.2)

Ldeep =
∑
a,b,c,d

||d− g(h([f(b)− f(a); f(c)]) + f(c))||22, (6.3)

where W ∈ RK×K×K is a 3-way tensor and h : R2K → RK is an MLP. To facilitate

accurate traversing of the image manifolds in the embedding space, [Reed et al., 2015]

introduces regularization which compares the difference between the embeddings of the

prediction and query f(d) − f(c) to the predicted increment vector in the embedding

space T (f(a), f(b), f(c)):

R =
∑
a,b,c,d

||f(d)− f(c)− T (f(a), f(b), f(c))||22,

where increment T (f(a), f(b), f(c)) is one of the three chosen models: additive (6.1),

multiplicative (6.2) or deep (6.3).

[Reed et al., 2015] also propose a method for incorporating features disentangling into

the analogy model. The model is learned on three-image tuples (a, b, c): the first and

the second are used to extract hidden units in latent representation and the third is a

ground-truth image. Disentangling is implemented by introducing a binary vector of

switches s ∈ {0, 1}K which indicates whether it is the first or the second image that the

corresponding feature from the embedding should be taken from.
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The model [Reed et al., 2015] needs to know the transformations that should be provided

in the form of analogy-forming quadruplets, whereas proposed model does not. More

closely resembling proposed model at training time is the inverse graphics model from

[Kulkarni et al., 2015] that can be trained at a level of supervision similar to that of the

system suggested here, i.e. using subsets of images where some factors of variation are

invariable while others vary arbitrarily. The authors also make use of an autoencoder-like

architecture with image embedding latent space and present an approach for learning

interpretable latent space representations for out-of-plane rotations and lighting varia-

tions. Their training procedure is designed so as to encourage each group of variables

in the hidden representation to distinctly represent some specific transformation.

The latent space is divided into extrinsic variables (elevation, azimuth and light source

angles) and intrinsic properties describing identity, shape, expression, etc. The data is

organized into mini-batches in such a way that only one of the extrinsic variables changes

across the mini-batch, while all the other extrinsic and intrinsic variables, e.g. rotation

of the same object, are fixed. The training procedure is as follows:

1. Randomly select an extrinsic variable ztrain and a mini-batch in which only this

variable changes.

2. Get the latent representation of each example in the mini-batch using the encoder

network.

3. Calculate the mean of those representation vectors over the mini-batch.

4. For all examples in the mini-batch, replace all the latent variables except the

selected ztrain with the average across the mini-batch.

5. Project the mini-batch back to the image space using the decoder, calculate the

reconstruction error and back-propagate it through the decoder.

6. Replace the gradients for all the latent variables except the selected ztrain with

the difference between the values of the variables and their mean value across the

mini-batch.

7. Backpropagate through the encoder.

In this procedure, step 3 ensures that the variation in the selected factor is limited to

the selected ztrain and step 6 equalizes all the other variables across the mini-batch.

however tend to produce blurry non-photorealistic images that are not suitable for gaze

redirection application scenarios (Figure 6.2). The model suggested in this chapter deals

with the issue by applying warping instead of direct re-synthesis.
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Figure 6.2: Manipulation rotation results from [Kulkarni et al., 2015]. Each
row was generated by encoding the input image (leftmost) with the encoder, then
traversing the manifold by changing the value of a single latent variable and putting
the modified encoding through the decoder. Although the rotation is quite convincing,
the suggested approach, as opposed to the warping model, has obvious drawbacks, such

as blurring and a loss of fine details (see also Figure 2.2 and Figure 2.3).

6.2 Unsupervised training of gaze redirection

The process of supervised data collection and eye localization is described in Section 2.3.

For an eye localization, I use definition (2.8). As discussed below, located eye landmarks

are also embedded in the architecture as additional features in the same way, as in Deep

Warp architecture. Thus, all input images I mentioned here are actually not 3 RGB

maps, but 17 maps, 14 of which come from landmarks (details are given in Section 4.3).

The one exception is final warping, which is applied to an RGB image.

For the unlabeled part of dataset the process is significantly simplified. The person is

instructed to keep the head approximately still and to quickly move the gaze along the

screen for about 10 seconds. This recording time is comfortable for not blinking and not

shaking head, while sufficiently long for a person to gaze at different parts of the screen.

This scenario also eliminates the problems with the person not following the dot on the

screen as prescribed, which I found out to be a recurrent problem.

Model architecture. I now discuss the architecture of the suggested approach (Fig-

ure 6.3) as well as the training of the encoder and the decoder networks, which, as
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Bilinear
sampler

encoder

decoderencoder

Figure 6.3: Architecture of unsupervised gaze redirection training. Two images of the
same eye with different gaze direction are passed to the encoder network that outputs
their latent representations. These representations are then concatenated and passed
to the decoder network that outputs the predicted flow from the first image to the
second one. The flow can be used by the bilinear sampler. The architecture is trained

by minimizing the disparity between the output image and the second image.

discussed above, happens in unsupervised mode and utilizes only image sequences with

varying but unknown gaze direction.

In general, similarly to approaches in previous chapters, the gaze redirection is performed

by warping the input eye images. At the core of suggested system is the ability to model

the change of appearance within the pair of the eye images (I1, I2) from the same video

sequence using warping. Such warping is determined by the latent representations of

the images h1 = E(I1;ψ), h2 = E(I2;ψ), where E denotes a feed-forward encoder

network with learnable parameters ψ. The latent representations live in low-to-medium

dimensional space (up to 500 dimensions in experiments, which is much smaller than

the dimensionality of the original images).

Given the latent representations of the images, a decoder network D with learnable

parameters ω is applied to the stacked latent representations of the image pair and

outputs the warping field, corresponding to the transformation of image I1 into I2:

F = D(h1, h2;ω).

Finally, the standard bilinear sampling layer S as defined in [Jaderberg et al., 2015]

outputs the result, which is the prediction Î2 of image I2. Overall, the warping process

can be written as:

Î2(I1;ψ, ω) = S(I1,D(E(I1;ψ),E(I2;ψ);ω))). (6.4)

The training objective then naturally corresponds to minimizing the disparity between

the true image I2 and its predicted version (6.4). The training process then corresponds
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to sampling pairs (I1; I2) and optimizing the parameters for the encoder and the decoder

networks by minimizing the following `2-loss:

L(ψ, ω) =
∑

(I1,I2)

‖Î2(I1;ψ, ω)− I2‖2 ,

where the summation is taken over all training pairs of eye images that correspond to

the same sequences.

Notably, the training process does not require gaze annotation, and, as will be verified

below, learns meaningful latent representations that are consistent across eye sequences

in the following sense. Let a visual analogy be quadruplet (I1, I2, I3, I4), in which I1

and I2 correspond to one eye sequence, and I3 and I4 correspond to other eye sequence

(corresponding to a potentially different person and/or different lighting etc.), and where

the change of gaze direction from I1 to I2 and from I3 to I4 are similar Figure 6.5. The

learned embeddings possess the property of having similar displacement vectors across

the two pairs:

E(I1;ψ)−E(I2;ψ) ≈ E(I3;ψ)−E(I4;ψ) (6.5)

The property (6.5) facilitates easy semi-supervised training of the overall system with

limited amount of gaze-annotated data.

Details of the architectures.

To describe the specific architectures, I denote conv(m, k, s) a convolutional layer with

m maps, kernel size k and size of the stride s, and FC(m) a fully connected layer with

m maps, both precede the RELU activation. The architecture of the encoder I used in

experiments is the following:

conv(48, 5, 1)→ conv(48, 5, 2)→ conv(96, 5, 2)→ conv(96, 3, 2)→ FC(800)→ FC(50).

The decoder mirrors the architecture of the encoder, except for the input (which is the

vector of length 100, being a concatenation of two representations of length 50) and the

output, which are two maps of the warping field used in (6.4). The model is trained using

Adam optimizer [Kingma and Ba, 2014]. Each batch contains 128 randomly sampled

pairs of images, each pair consisting of the input and output eye from the same sequence.

6.3 Semi-supervised learning and analogies

The architecture discussed above trains on pairs of eye images, and treat each of the

images in the pair similarly. At test time, however, the goal is to compute the warping
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field without knowing the second image (which itself is the unknown that one wish to

estimate). Fortunately, the analogy property (6.5) possessed by the embeddings allows

us to estimate characteristic displacements in the latent space given some amount of

gaze direction-annotated data obtained with the time-consuming process.

I consider the following test-time gaze redirection problem: given the query image Iq,

obtain the image Oq corresponding to the same eye under the same imaging condition,

with the gaze redirected by a given angle αq = (αxq , α
y
q). As the angle αq is given,

we can query the direction-annotated part of the dataset for the set of pairs P (αq) =

{(I1
1 , I

1
2 ), . . . , (In1 , I

n
2 )} that would form an analogy with Iq and Oq, i.e. the pairs with

the difference in the gaze direction within each pair approximately equal αq (in practice

I use a hard threshold ε to determine whether some angular difference is close enough

to αq).

I then consider two methods of computing Oq given the set of pairs P (αq). The first

(baseline) method is to use the mean warping field of the set of analogy pairs. Here, for

each pair I calculate the predicted warping field from the first image in the pair to the

second, and then apply the averaged warping field F̄ to the query image:

Ôq = S(Iq, F̄), where

F̄ =
1

n

n∑
i=1

D(E(Ii1;ψ),E(Ii2;ψ);ω).
(6.6)

However, the clear drawback of this method is that the same warping field F̄ will be ap-

plied to all query images with the same desired angular redirection αq, being independent

from the content of the query Iq.

The second method that directly relies on the analogy property (6.5) computes the mean

latent vector displacement corresponding to angle αq (Figure 6.4):

∆h(αq) =
1

n

n∑
i=1

(E(Ii2;ψ)−E(Ii1;ψ)).

Such precomputed vector can be used to estimate the desired output image as:

Ôq = S(Iq, D (E(Iq;ψ), E(Iq;ψ) + ∆h(αq);ω) ). (6.7)

All latent representations for labeled part of the dataset could be precomputed in ad-

vance and stored. Thus, performing the redirection following (6.7) requires only a single

pass through the encoder and the decoder network at test time, which opens up a pos-

sibility for real-time gaze manipulation (on a device with a GPU).
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Figure 6.4: Image analogy-making in test-time. In test time we do not know second
image, we want to produce it. Thus, we do not have its representation for the encoder.
The solution is to approximate the unknown representation in the latent space. The
estimate of the unknown embedding is the known representation plus mean increment,

which we get from the labeled part of the dataset.

6.4 Experiments

I perform experiments using the dataset that consists of 640 sequences, each containing

images of the same eye from one video (under the same lightning conditions, head pose,

etc.) with different known gaze directions. Each sequence contains 100 − 220 images.

I use 500 sequences for training and validation, leaving 140 for testing (the train and

the test sets do not contain sequences of the same people). The angular tolerance ε for

picking up analogies from the labeled part of dataset was set to 0.5◦.

Qualitative evaluation of unsupervised learning via analogies. I first qualita-

tively demonstrate the analogy property (6.5) in Figure 6.5. For each input query image

and a query redirection angle, one analogy quadruplet with the similar angular differ-

ence was picked up at random. The fourth image of the quadruplet was then obtained

using the method that modifies the representation in latent space (6.7) by warping the

third image and using the first two images as the only reference pair. The obtained

results mostly look plausible and similar to the ground truth, confirming the analogy

consistency of the learned embedding. Note, that except for angular difference in gaze

direction, all other properties could be different between the two pairs. This includes the

absolute gaze direction, the identity of the person, the lightning conditions, the presence

of glasses, etc.

Quantitative evaluation of semi-supervised learning. I then perform quantitative

evaluation for the task of fixed redirection angle 15◦ upwards. I consider the following

methods:
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Figure 6.5: Demonstration of analogy property of the learned embedding.
The three left-most columns alongside the right-most one form analogy quadruplets (the
difference in gaze direction between the first two columns is approximately the same
as the difference in gaze direction between the third and the last columns). ’Results
50’ and ’Results 500’ demonstrate the warped images obtained using modification in
latent space (as discussed in the text), after the encoder and the decoder are trained
in an unsupervised setting on 50 or 500 eye sequences respectively. Failure cases with
dramatical eyeball deformations are presented at bottom rows. Overall, training on

more unsupervised data (500 sequences) leads to better and more robust result.
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• The unsupervised system trained on different amount of unlabeled sequences, as

discussed in Section 6.2, with two approaches for test-time prediction:

1. Based on mean displacement vector in representation space (6.7), denoted as

“code”.

2. Based on mean warping field (6.6), denoted as “flow”.

• The single-scale DeepWarp system (2), denoted as “SS”. I use the single scale ver-

sion as a baseline since the architecture of the flow-predicting network in single-

scale DeepWarp is similar to encoder-decoder network suggested here in complex-

ity. Note that the encoder-decoder network architectures presented here also allow

multiscale extensions.

During training time, all methods were trained for the task of redirection by an arbitrary

angle (the redirection angle was fixed for the testing only). I vary the amount of labeled

sequences shown to the methods. The unsupervised models were trained for 150 epochs

on the unlabeled datasets containing either 100 or 500 sequences. For images from test

set, I pick all possible analogies from given labeled sequences, and vary the number

of sequences in this labeled part. The DeepWarp system requires full supervision and

therefore was trained only on the labeled part of the dataset for 150 epochs. The

quantitative comparison is represented in Figure 6.6. I evaluate the mean (over pixels)

sum of squared errors across channels (referring to it as MSE). The semi-supervised

models outperform the DeepWarp model, which does not exploit the unlabeled data,

and, as expected, the advantage is bigger when the amount of labeled data is smaller and

when the size of the unlabeled dataset used within the semi-supervised model is bigger.

Increasing the number of unlabeled sequences improves the performance of the model.

The method based on latent representation (6.7) better exploits the trained unsupervised

model, than the baseline which averages the warping flows. The performance of semi-

supervised methods saturate after seeing approximately 15 labeled sequences.

For the reference, I also measured the MSE of two more baselines. The Unsupervised

oracle baseline corresponds to the unsupervised model that knows the latent represen-

tation of the ground truth and uses it to estimate the warping field. This oracle baseline

bounds the performance of semi-supervised methods from below and achieves the MSE

0.0033 for 100 sequences of unlabeled data and 0.0025 for 500 sequences. On the other

hand, the MSE of leaving the input image unmodified was 0.0073.

Qualitative evaluation of semi-supervised learning. Finally, I demonstrate the

qualitative results of redirection on arbitrary angles in Figure 6.7. All systems use

15 labeled data sequences. The semi-supervised model is trained on 500 sequences of

unlabeled data. Performing analogies in the latent representation space allows to get a



106

5 10 15 20 25 301

number of labeled sequences

0.0038

0.0040

0.0042

0.0044

0.0046

0.0048

0.0050
M

S
E

code 500

flow 100

flow 500

code 100

SS

Figure 6.6: Quantitative comparison of methods: errors for redirection on
15 degrees upwards. Horizontal axis shows the number of sequences labeled with
gaze direction provided to the methods. All methods are trained for arbitrary redirec-
tion angle, but applied to a testing setting with 15 degrees vertical redirection. “Code”
corresponds to estimating the warped image latent representation (6.7), “flow” corre-
sponds to warping the input image using mean flow (6.6). 100/500 corresponds to the
number of unlabeled sequences used to train the encoder-decoder model. “SS” stands
for the single scale DeepWarp system that does not use unlabeled data. Semi-supervised
system performing analogies in latent representation space outperforms other methods,
and training this method on more unlabeled data helps a lot irrespective the amount

of labeled data.

substantial perceptual improvement over the results of supervised model in the lack of

training data.

I also present the results of a vertical redirection for the range of angles in Figure 6.8

for the semi-supervised method based on analogies in the latent representation space

(6.7) trained on 500 unlabeled sequences and using 15 labeled sequences for performing

analogy-making.
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Input GT SS Flow Code Input GT SS Flow Code 

Figure 6.7: Sample results on the hold-out set. Columns from left to right:
the input image, the ground truth, the results of single scale deep warp system, the
result of the semi-supervised model that uses mean warping field, the result of the
semi-supervised model that uses mean difference in latent representation space. With
limited labeled data the perceptual quality of the results is significantly improved using
large dataset of unlabeled data. Failure cases with very extreme redirection angles and

glasses damage are presented in six bottom examples.
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Figure 6.8: Vertical redirection. The redirection angle ranges from −15◦ to 15◦

relative to the central input image. In all columns the image in the center row is the
input. Convincing continuous gaze redirection is achieved.



Chapter 7

Conclusions and summary

The thesis presents the warping-based approach to image re-synthesis with the target

transformation defined by a dataset of input-output examples and examines its applica-

tion to the gaze redirection task. The warping-based approach enhances the photoreal-

ism of the results as compared to direct regression of output pixels which has difficulty

synthesizing high-resolution images. [Seitz and Dyer, 1997] and similar works suggest

constructing the warping field based on geometrical projection properties, but to the

best of my knowledge, this thesis is the first to suggest learning the warping field from

the dataset of examples [Kononenko and Lempitsky, 2015].

Four methods are proposed for learning a warping field predictor. Below I will once

again summarize the four methods and demonstrate their novelty with reference to the

majority of relevant prior publications on the topic. Three of the four methods learn

to predict the warping field in a weakly-supervised setting. The first system (Chap-

ter 3, [Kononenko and Lempitsky, 2015]) is based on a special kind of weakly-supervised

random forest with a structured output. Its novelty with respect to an earlier study

[Fanello et al., 2014] is that both the optimal warping vector and the distribution of the

replacement error depending on the warping vector are stored in the leaves of the tree.

Storing these distributions also facilitates more robust tree ensembling by summing up

distributions coming from different trees. Furthermore, the split evaluation criterion is

new and specific to the proposed type of random forest. The second system (Chap-

ter 4, [Ganin et al., 2016])predicts the warping field using a deep convolutional network

with a coarse-to-fine architecture of warping modules and embeds the desired redirection

angle and feature points as image-sized maps. Along with warping, the lightness cor-

rection module is a strong contributor to photorealism enhancement. The third system

(Chapter 5, [Kononenko et al., 2017]) ccan be regarded as a hybrid of the first two, as

109
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it essentially condenses the neural network into a random forest, while boasting high-

quality results, fast operation, and very compact models. The novelty of the proposed

architecture as compared to earlier studies on the teacher-student architectures [Romero

et al., 2015, Bucilu et al., 2006, Hinton et al., 2015] lies in its specific teacher-student

combination where the teacher is a weakly-supervised neural network and the student

is a random forest. Such an arrangement allows integrating the representation power

of the deep neural network in the fast forest model. The fourth system (Chapter 6)

driven by the labeled database collection challenge operates in a semi-supervised sce-

nario that requires a small labeled part of the dataset only. It focuses on learning to

embed images into a low-dimensional latent space and making analogies in that space.

The novelty of the method as compared to [Reed et al., 2015] is that it uses a combina-

tion of unsupervised training on pairs of images with no gaze labels and no requirement

for analogy-forming quadruplets, on the one hand, and image analogy making at test

time, on the other hand. Another distinctive feature of the method is that the analogy

making result comes in the form of a warping field rather than a re-synthesized image

itself. This, once again, boosts the photorealism of the result.

As applied to gaze redirection, the approach is common to all the methods and consists

in re-synthesizing the eye region in order to emulate the change in gaze direction without

changing the head pose. The two forest-based systems redirect the gaze by a fixed angle

and run in real time on a single CPU core. The Deep Warp system takes the redirection

angle as an input and thus allows changing the gaze direction continuously within a

certain range, while also producing a higher quality result. The semi-supervised system

also redirects the gaze by an arbitrary input angle.

The learned model, applied to some image re-synthesis task, is capable to choose the

appropriate transformation from some family, provided there is one, which is capable

to transform input image to output. In application to warping, this means, that pixels

of the output image should be contained in the input image. The gaze redirection task

almost satisfies this requirement. The only issue is the lack of white, and the lightness

correcting module (Section 4.4) addresses this issue. For image re-synthesis tasks with

more serious color changes from input to output image, a probable approach could be to

develop more sophisticated refinement network, than brightness correction. The general

case is to add refinement without any restrictions. However, depending on the special

task, some restricted refinement could be useful, such as the lightness correction module

only could increase the brightness of pixels. In the case of gaze redirection, this limited

capacity was mostly sufficient for modeling what was not possible to model with warping.
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7.1 Discussion

The proposed approaches have several limitations in common. The initial idea of re-

synthesizing the eye vicinity could fail for very large angles, such as 90◦, simply because

any attempt to change the gaze direction by this angle without turning the head would

look unnatural. However, for small angles, at least in the range ±30◦, the results look

photorealistic provided the eye regions have been synthesized naturally.

With a large database collected, machine learning can be used to learn target transfor-

mation a concept that was not contemplated in any papers on gaze correction published

prior to this work. Direct re-synthesis versus warping based approach was one of the

crucial choices in all the models. The first approach involves direct regression of the tar-

get image pixels. Applied in the experiments with gaze correction data, this approach

resulted in noticeable blurriness and loss of fine details. These conclusions correlate well

with the results reported in [Kulkarni et al., 2015, Ghodrati et al., 2016, Reed et al.,

2015, Goodfellow et al., 2014]. Generally, warping-based re-synthesis produces sharp

images but has certain limitations in synthesizing realistic disoccluded areas. The key

insight of this thesis is that the warping field can be predicted using a predictor trained

in a weakly-supervised or semi-supervised fashion. While being possibly too restrictive

for some applications, the warping-based approach happens to work better than direct

re-synthesis in the gaze redirection application. The disoccluded regions could be also

refined by some post-processing models, such as those proposed in this thesis and the

one that appeared in the paper published simultaneously with this work [Park et al.,

2017].

The two types of predictors used in this work are random forests and convolutional

neural networks. In general, neural networks yield better results, both quantitatively and

qualitatively, due to their representation power. This is in line with recent advances of

convolutional neural networks in the whole computer vision domain. However, random

forests are faster predictors due to their divide and conquer approach. The methods

based on random forests are therefore easy to implement in real time on a single CPU

core. Teaching of a random forest architecture by a neural network allows attaining the

same speed and nearly the same quality as in the network-based model. As regards gaze

correction in videoconferencing, I consider this solution to be the best choice among the

different solutions proposed in this work.

The key advantage of the proposed methods is their ability to use a monocular input and

operate in real time on consumer-grade devices. The proposed systems are reasonably

robust to head pose variation and deal correctly with the situations where a person

wears glasses.
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The weak point of the forest-based methods as they are implemented now is the fixed

redirection angle. The neural network models, by contrast, take the redirection angle

as an additional input and are thus capable of producing images with different gaze

directions. The limitation of forest-based models is not critical for the videoconference

application where a single correction angle making up for the vertical gap between the

camera and the screen is typically enough. Several models with a range of vertical

redirection angles working for different distances from the person to the screen can be

a solution too, if flexibility in the redirection angle is needed. This would be much

easier to implement in real time on a consumer device without a GPU than to design a

fast neural network architecture that can run at multiple frames per second on a CPU.

However, for other applications, like image and video post-processing, one should be

able to redirect the gaze by an arbitrary angle. On the other hand, such applications

have less stringent requirements in terms of running speed, so the Deep Warp system

based on deep neural networks is a preferred solution in their case.

The models mentioned above require a dataset with fully labeled gaze redirection. Since

such a dataset is difficult to collect, the semi-supervised approach for training a neural

network model was suggested. With a large amount of unlabeled data available, the

semi-supervised system shows significant improvement over purely supervised models

that ignore eye images with unknown gaze direction. Data labelling is often the most

expensive operation in computer vision applications. In the particular case of data

collection for this study, the requirement for labeled data was a major hindrance. Thus

switching to the semi-supervised approach appears as a useful opportunity in handling

large datasets.

Finally, a well-grounded conclusion about the perceptual quality of the results cannot

be made based on the reconstruction error alone and should be backed by a user study

in problems like gaze redirection. Some methods that show slightly worse results in

terms of the `2 reconstruction error are still perceptually good enough for users. The

user study reveals high photorealism of the suggested methods, with the guess ratio

approaching a random guess. In general, the user studies confirm that the proposed

methods can deliver fairly realistic results despite the very high standards imposed by

the human visual perception system as regards the realism of face and eye images. The

proposed methods have been recognized both by the academic community, as evidenced

by several publications, and by the industry, with the commercialization process under

way and the license purchased by a major company.
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