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Abstract—We develop a variational algorithm for reconstruct-
ing phase objects from a series of bright field micrographs.
Our mathematical model is based on the transport-of-intensity
equation (TIE), which links the phase of a complex field to the
axial derivative of its intensity. To reduce reconstruction artifacts,
we formulate TIE in a regularized fashion by introducing a
family of penalty functionals based on the eigenvalues of the
structure tensor. To solve the arising optimization problem, we
propose an algorithm based on the alternating direction method
of multipliers (ADMM). We apply our method on simulated
data and illustrate improved performance compared to the
conventional methods such as Tikhonov and total variation (TV)
regularizations. We further demonstrate the applicability of the
proposed approach by applying it to experimentally-acquired
bright field data.
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I. INTRODUCTION

Many biological specimens, such as cells and organisms,
are transparent or weakly absorbant. In the absence of any
staining, they remain almost invisible under a conventional
bright field microscope. However, their variable thickness and
refractive index induce differences of optical path length in
the light wave that illuminates them. Important biological
information are thus encoded in the phase, which makes phase
retrieval a fundamental problem in biology, for which many
techniques have been developed [1].

In this work we consider a digital phase imaging approach
relying on the transport-of-intensity equation (TIE) [2]. Under
the paraxial approximation, TIE states that the phase informa-
tion is contained in the variations of the intensity along the
propagation. Mathematically, this relation is stated in the form
of a linear second-order partial differential equation. Thus, by
acquiring several through-focus intensity images, one is able to
reconstruct the phase map, which makes of TIE a conveniently
purely computational method.

A classical approach to reconstruct phase maps with TIE
is to solve the equation directly via a Fourier transform [3].
However, this procedure integrates the noise present in the
measurements, which results in “cloudy”, low-frequency arti-
facts. To reduce this phenomenon, regularized solutions have
been proposed, including Tikhonov [4], total variation (TV)
and nonlinear diffusion regularization schemes [5]. We pro-
pose here a regularization strategy that further improves the
reconstruction quality.
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The main contributions of this work are as follows:
• The use of a recently introduced family of penalty func-

tionals based on the eigenvalues of the structure tensor
for solving TIE. These regularizers are able to measure
the variations at every pixel by taking into account the
information from its neighborhood. This family general-
izes several existing variational penalties, including TV.
In this regard, the proposed framework provides a rich
class of regularized solutions of the TIE- based phase
reconstruction.

• An iterative reconstruction algorithm based on the alter-
nating direction method of multipliers (ADMM), to solve
the corresponding optimization problem. This approach
decomposes the minimization at hand into smaller prob-
lems that are solved efficiently.

• The application of our method on simulated data, where
we make comparisons of different solutions of TIE. In
particular, we show numerical improvements compared
to Tikhonov and TV regularization. We also apply our
method to real bright field images of HeLa cells.

The remainder of this work is organised as follows: in Sec-
tion II, we introduce our forward model, give the mathematical
detail of our regularisation method, and present our algorithm.
In Section III, we perform experiments on simulated data and
show a real data reconstruction.

II. MODEL

A. Physical model

Consider a monochromatic scalar field propagating domi-
nantly in the +z-direction. In a tranverse plane z 2 R and over
a bounded domain indexed by the coordinate r = (x, y) 2 R2,
the complex amplitude of the wave can be written

U(r, z) =
p

I(r, z)ej�(r,z),

where I and � denote the intensity and phase, respectively.
During a classical acquisition, one measures the instensity I =
|U |2, and the phase information is lost. To circumvent this
issue, Teague derived the transport-of-intensity equation (TIE)
in [2]. Under the assumption of a phase-only object, it reads
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I(r, z)
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I(r, z) = r2
?�(r, z), (1)

where k is the wavenumber and r2
? denotes the Laplacian

operator in the transverse plane.



We compute the left hand side of (1) by acquiring three
through-focus intensity images, and applying a centered finite
difference formula.

B. Inverse problem formulation

Let us now consider the following discretized forward
model:

y = H�+ n, (2)

where y 2 RN is the measurement computed as described
above, H 2 RN⇥N is a matrix representation of the discrete
Laplacian, � 2 RN is the unknown phase and n 2 RN is an
additive noise contribution. We assume that the images contain
N pixels and have been reordered into single-column vectors.

In order to cure the ill-posedness introduced by the noise
contribution, we formulate (2) as an energy minimization
problem

�̂ = min
�

1

2
kH�� yk22 + ⌧R(�), (3)

where ⌧ > 0 is a tuning parameter and R(·) is a regularization
functional (also called the penalty functional). For its ability
to produce a flat background and preserve sharp edges in
the reconstruction, we choose to use a regularizer based on
the eigenvalues of the structure tensor [6]. In the sequel, we
provide further information on our regularizers.

Let K 2 RL be a discrete, non-negative, rotationally
symmetric convolution kernel defined on the finite lattice
S = {�LK, . . . , LK}2, with LK 2 N and L = (2LK+1)2 (K
may be for example a truncated Gaussian). The patch-based
Jacobian of � is defined at each pixel i 2 {1, . . . , N} by

[JK�]i =

2
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[Ps1Dh�]i [Ps1Dv�]i

...
...

[PsLDh�]i [PsLDv�]i

3

75 ,

where Dh and Dv are the horizontal and vertical components
of the discrete gradient, the shift vectors sl belong to the lattice
S with l 2 {1, . . . , L}, and the weighted shift operators Psl

are defined as

[PslDh�]i = K[sl]Dh{�}[ri � sl].

Having introduced the patch-based Jacobian, the structure
tensor is defined at each pixel by

[SK�]i = [JK�]Ti [JK�]i .

If we denote by �1,i and �2,i the eigenvalues of [SK�]i, the
associated penalty functionals for the regularization are

R(�) =
NX

i=1

k(
p
�1,i,

p
�2,i)kp, (4)

where p � 1. As shown in [6], (4) can be rewritten

R(�) =
NX

i=1

k [JK�]i kSp ,

where the Schatten-norm k · kSp of a matrix is defined as the
`p-norm of the vector of its singular values. This last equation

allows for a more practical computation of R(�) since the
patch-based Jacobian, unlike the structure tensor, is a linear
operator of �.

The choices of K and p generate a whole family of
functionals. In our experiments we shall consider K to be
a Gaussian kernel, and p 2 {1, 2,1}. Following the notations
of [6], we denote the three corresponding models by STV-
N (Structure tensor Total Variation-Nuclear norm), STV-F
(Frobenius norm), and STV-S (Spectral norm), respectively.
For comparison purposes, we shall also consider the case
when K is the Dirac’s delta function, which reduces the
regularisation to the classical TV scheme.

C. Algorithm

We choose to solve (3) by the alternating direction method
of multipliers (ADMM) [7], for its ability to decompose
the optimization problem at hand into smaller sub-problems
each of which can be solved efficiently. The first step is to
rewrite (3) in a constrained form, introducing the auxiliary
variable z:

�̂ = min
�

1

2
kH�� yk22 + ⌧

NX

i=1

kzikSp , : z = JK�. (5)

Then we introduce the augmented Lagrangian of (5) with
the dual variable ↵ and the penalty parameter µ > 0

L(�, z;↵) =
1

2
kH�� yk22 + ⌧

NX

i=1

kzikSp

+ hz� JK�,↵iX +
µ

2
kz� JK�k2X ,

(6)

where we denote the space of matrix fields by X for which
the inner product and norm are defined by hX,YiX =PN

i=1 tr(Y
T
i Xi) and kXkX =

p
hX,XiX , respectively. To

find the saddle point of (6), ADMM updates iteratively the
variables according to the following algorithm:

zt+1  argmin
z

L(�t
, z;↵t), (7)

�t+1  argmin
�

L(�, zt+1;↵t), (8)

↵t+1  ↵t + µ(zt+1 � JK�t+1). (9)

We refer the reader to [6] for the details regarding the im-
plementation of (7). Equation (8) is a quadratic minimization
whose solution is given by

�t+1 =
�
HTH+ µJT

KJK
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and can be implemented in one step by FFT. Finally (9) is a
trivial gradient ascent.

III. EXPERIMENTAL RESULTS

A. Simulated data

We simulate the measurement of three through-focus inten-
sity images by propagating a complex field with a Fresnel
diffraction kernel [2], [8]. Assuming phase-only objects, we
set the infocus intensity to one and use 3 different phase maps



Fig. 1. Phase maps used for the simulations: Boat, Bridge and Lena.

TABLE I
COMPARISON OF RECONSTRUCTION SNR FOR THREE NOISE LEVELS

Input SNR Direct Tikh. TV STV-N STV-F STV-S

B
o
a
t

0 10.78 10.91 12.09 12.21 12.06 12.03
10 10.47 13.09 15.61 15.80 15.51 15.38
20 13.99 14.24 18.41 18.63 18.33 18.23

B
r
i
d
g
e 0 8.47 8.66 9.39 9.46 9.38 9.38

10 7.85 9.98 11.76 11.91 11.74 11.68
20 10.97 11.85 14.32 14.38 14.30 14.27

L
e
n

a

0 9.29 10.89 12.73 12.85 12.76 12.77
10 9.53 13.18 16.47 16.62 16.54 16.53
20 16.81 19.26 20.28 20.31 20.35 20.34

shown in Figure 1. We degrade each set of images by adding
a white Gaussian noise, in order to reach three different input
signal-to-noise ratios (SNR).

For each algorithm, the parameter ⌧ is optimized for
highest-possible output SNR, and we set µ = 10⌧ . We
perform 500 iterations of ADMM, which is observed to be
enough for convergence. The reconstruction SNRs are given
in Table I for direct reconstruction, Tikhonov regularization,
TV, and the three STV methods mentioned previously. We
observe that the structure tensor-based regularization achieve
better reconstruction quality, in particular with a significant
improvement over the direct and Tikhonov reconstructions.

B. Real data

We illustrate the applicability of our method on real data
by reconstructing the phase map of a HeLa cell culture. The
images were acquired on a Zeiss Axio Observer Z1 (Carl Zeiss
AG, Jena, Germany) equipped with an APlan 10⇥ / 0.25 NA.
The defocus distance was 2 µm from the best focus position.

Figure 2 shows that in comparison with direct and Tikhonov
reconstructions, TVS-N produces the phase map with the
flattest background, while preserving the details of the cells
shapes and structures.

IV. CONCLUSION

We solved the TIE in a variational framework, using a
family of regularizers based on the eigenvalues of the structure
tensor. Proposing an iterative algorithm, we showed numerical
improvement over Tikhonov and TV regularizations. Finally,
we demonstrated that our method can be used for real data
reconstructions.
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Fig. 2. HeLa cells (cropped). Comparison of TIE reconstructions. (a) Bright
field in-focus image, (b) Direct reconstruction, (c) Tikhonov, (d) STV-N.
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