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ABSTRACT

We present a novel multiscale image representation belonging to the
class of multiscale multiplicative decompositions, whichwe term
Poisson-Haar transform. The proposed representation is well-suited
for analyzing images degraded by signal-dependent Poissonnoise,
allowing efficient estimation of their underlying intensity by means
of multiscale Bayesian schemes. The Poisson-Haar decomposition
has a direct link to the standard 2-D Haar wavelet transform,thus
retaining many of the properties that have made wavelets successful
in signal processing and analysis. The practical relevanceand ef-
fectiveness of the proposed approach is verified through denoising
experiments on simulated and real-world photon-limited images.

Index Terms— Photon-limited imaging, Poisson noise, hidden
Markov tree, Haar wavelet transform, Bayesian estimation.

1. INTRODUCTION

Photon detection is the basis of the image formation for a great
number of imaging systems used in a variety of applications,includ-
ing medical and astronomical imaging [1]. In such systems, image
acquisition is accomplished by counting photon detectionsat differ-
ent spatial locations of a sensor, over a specified observation period.
For low intensity levels, one of the dominant noise sources respon-
sible for the degradation of the quality of the captured images is the
so-called quantum or shot noise. Quantum noise is due to fluctua-
tions on the number of detected photons, an inherent limitation of the
discrete nature of the detection process, and degrades suchimages
both qualitatively and quantitatively. The resulting degradation can
be proved a major obstacle preventing image analysis and informa-
tion extraction. Thus, the development of methods and techniques to
alleviate the arising difficulties is of fundamental importance.

The basic photon-imaging model assumes a Poisson distribu-
tion for the number of detected photons at each pixel location, thus
the captured image can be considered as a realization of an inho-
mogeneous Poisson process. This process is characterized by a 2-D
spatially varying rate function which equals the process mean and
corresponds to the noise-free intensity image. The variability of the
counts about the mean can be interpreted as noise. Since the Poisson
process variance equals the rate function/noise-free image, the noise
in the acquired image is spatially varying and signal-dependent.

Multiscale processing has emerged as an efficient tool for image
processing and analysis, showing significant advantages inthe rep-
resentation of signals and is extensively used in applications such as
image denoising, detection, and segmentation. In this paper we deal
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with a close relative of the wavelet transform, the multiplicative de-
composition. The multiscale multiplicative decomposition for 1-D
data was first proposed in [2, 3] and is a strong candidate for ana-
lyzing Poisson processes, since it provides more natural signal rep-
resentations than the wavelet transform and makes full use of the
Poisson noise properties. In addition, it is closely related to the Haar
discrete wavelet transform (DWT) thus retaining many of theadvan-
tageous properties of wavelets in signal processing, namely sparsity,
approximate decorrelation, and efficient coarse-to-fine processing.

Despite the benefits of using the multiplicative decomposi-
tion for analyzing Poisson processes, the existing 2-D representa-
tions [2, 4, 5] have poor directional selectivity properties and are not
directly related to the Haar wavelet transform like their 1-D coun-
terpart. Our main contribution is a novel multiscale image represen-
tation which we term Poisson-Haar decomposition and has a close
link to the 2-D Haar DWT. Thus the proposed transformation better
models the image edge structure and yields improved performance
in image processing. In Section 2 we briefly review the 1-D multi-
plicative decomposition and indicate its relation to the Haar wavelet
transform. Then in Section 3 we present the proposed Poisson-Haar
transform and in Section 4 we provide an image intensity estima-
tion method that exploits the properties of our representation and the
Poisson noise statistics. Finally, in Section 5 we present image de-
noising results on simulated and real-world photon-limited images
to demonstrate the effectiveness of the proposed methods.

2. MULTIPLICATIVE MULTISCALE DECOMPOSITION

Similarly to the wavelet transform, the multiplicative decom-
position scheme of [2, 3] leads to a multiscale signal representa-
tion of 1-D signals. In fact, the multiplicative scheme is closely
related to the Haar wavelet transform. More specifically, let λ =
[

λ(0), λ(1), . . . , λ(N − 1)
]

be a 1-D signal of lengthN = 2J . De-
noting withλ0 = λ the finest scale representation ofλ, a multiscale
analysis with the Haar DWT is obtained through the recursions

uj(k) = (uj−1(2k) + uj−1(2k + 1)) /
√
2

wj(k) = (uj−1(2k) − uj−1(2k + 1)) /
√
2 ,

(1)

for j = 1, . . . , J andk = 0, . . . , N/2j − 1, whereu0 = λ0. In
the above equationsj denotes the scale of analysis (J is the coarsest
scale) andk the position in the corresponding vectoruj . For the
multiplicative decomposition the recursions that yield the multiscale
analysis ofλ are

λj(k) = λj−1(2k) + λj−1(2k + 1)

θj(k) = λj−1(2k)/ (λj−1(2k) + λj−1(2k + 1)) .
(2)

Note that while in the case of the Haar transform the coarse-
to-fine signal refinement is encoded linearly in the additivedetail



Fig. 1: Multiscale image decomposition at two scales of the camera-
man image using the Poisson-Haar transformation.

coefficientswj , in the case of the multiplicative decomposition
it is encoded nonlinearly in therate-ratio coefficientsθj , which
can be interpreted as splitting factors [4] of coarse scale intensi-
ties. Although the Haar and the multiplicative multiscale trans-
forms describe the detail information differently, there is a direct
link between the signal representationλ in the multiplicative do-
main [λJ (0), θJ (0), . . . , θ1(0), . . . , θ1(N/2− 1)] and the one in
the Haar wavelet domain. More specifically, one can show that
λj(k) is a re-scaled version of the Haar scaling coefficientuj(k),
λj(k) = 2j/2uj(k), while θj(k) is a divisibly normalized and
shifted by 0.5 version of the Haar wavelet detail coefficientwj(k),

θj(k) =
wj(k)

2uj(k)
+0.5. This suggests that key wavelet properties such

as sparsity, approximate decorrelation, and efficient coarse-to-fine
processing are also inherited by the multiplicative decomposition.

3. POISSON-HAAR MULTISCALE DECOMPOSITION

For handling photon-limited images we need multiplicativede-
compositions tailored for 2-D signals. However, existing 2-D mul-
tiplicative decomposition schemes [2, 4, 5] have poor directional
selectivity properties. In particular, the separable scheme of [2]
can only represent horizontal and vertical image edges, while the
nonseparable quadtree model described in [4, 5] has no explicit
mechanism for capturing directional edge information. Thepro-
posed Poisson-Haar transform is a novel 2-D multiplicativemul-
tiscale decomposition which partly alleviates these shortcomings.
Contrary to the existing schemes, the Poisson-Haar representa-
tion is closely related to the 2-D Haar DWT, inheriting its abil-
ity to also capture edges in the diagonal direction, resulting to im-
proved orientation selectivity properties. Specifically,let λ be an
intensity image of sizeN1 × N2 and λ0 = λ its finest scale
representation. Denoting for eachjth-scale pixel location(k, ℓ)
the 2 × 2 set of children pixel locations at the next finer scale
asCk,l = {(2k, 2ℓ), (2k, 2ℓ+ 1), (2k + 1, 2ℓ), (2k + 1, 2ℓ+ 1)},
the Poisson-Haar multiscale analysis ofλ employs the recursions:

λj(k, ℓ) =
∑

(k′,ℓ′)∈Ck,ℓ

λj−1(k
′, ℓ′)

θoj (k, ℓ) = λo
j (k, ℓ)/λj(k, ℓ), o ∈ {h, v, d}

(3)

for j = 1, . . . J , k = 0, . . . , N1/2
j − 1, ℓ = 0, . . . , N2/2

j − 1 and
J = min {log2(N1), log2(N2)}. In Eq. (3),o is one of{h, v, d} de-
noting the horizontal, vertical, or diagonal decomposition subband;
the corresponding intermediate sumsλo

j (k, ℓ) are defined as

λh
j (k, ℓ) = λj−1(2k, 2ℓ) + λj−1(2k, 2ℓ+ 1)

λv
j (k, ℓ) = λj−1(2k, 2ℓ) + λj−1(2k + 1, 2ℓ)

λd
j (k, ℓ) = λj−1(2k, 2ℓ) + λj−1(2k + 1, 2ℓ+ 1) .

(4)

(a) (b)
Fig. 2: Poisson-Haar image multiscale decomposition through fil-
terbank processing. (a) Analysis filterbank, (b) Synthesisfilterbank.
The ratio coefficientsθh,θv ,θd are sensitive to image edges at dif-
ferent orientations (horizontal, vertical, or diagonal).

Similarly to the 1-D case, the Poisson-Haar rate-ratio coefficients are
directly related to the 2-D Haar wavelet detail coefficientsw of the
same subband:

θoj (k, ℓ) =
wo

j (k, ℓ)

2uj(k, ℓ)
+

1

2
. (5)

In addition,λj(k, ℓ) is a re-scaled version of the 2-D Haar scaling
coefficientλj(k, ℓ) = 2juj(k, ℓ). Based on (5), the ratio coeffi-
cientsθ can be viewed as divisible normalized and shifted by 0.5
Haar wavelet detail coefficients. Thus, the Poisson-Haar decompo-
sition explicitly represents horizontal, vertical, and diagonal edges in
a symmetric fashion, yielding increased orientation selectivity com-
pared to the previous multiplicative decomposition schemes. An ex-
ample of the Poisson-Haar decomposition is shown in Fig. 1.

Similarly to 2-D Haar wavelets, the Poisson-Haar decomposi-
tion can also be viewed in terms of filterbank processing. In par-
ticular, to compute one stage of the Poisson-Haar transformof an
imageλ0 = λ, we first convolve it with the filtersHl = ( 1 1

1 1 ),
Hh = ( 0 0

1 1 ), Hv = ( 0 1
0 1 ), andHd = ( 1 0

0 1 ) and then decimate by
two in each direction. Then the last three subband images of size
N1/2 × N2/2 are pointwise divisibly normalized by the first one
as is schematically illustrated in Fig. 2. The filtering and downsam-
pling process can be continued up toJ times resulting in a multi-
scale representation ofλ. Since the transformation is one-to-one we
can return back to the original domain by following a reverseproce-
dure as depicted in Fig. 2. In this case the filters areGl = ( −1 1

1 1 ),
Gh =

(

1 1
−1 −1

)

, Gv =
(

1 −1
1 −1

)

, andGd =
(

1 −1
−1 1

)

.

4. BAYESIAN IMAGE INTENSITY ESTIMATION

In this section using the proposed Poisson-Haar decomposition
and adopting the basic photon-limited imaging model, we describe a
method to estimate the intensity imageλ given a photon-limited ver-
sionx. Under this image formation model,x is considered as a 2-D
array consisting of the observation samples (count data) ofN1 ×N2

random variablesX(k, ℓ) which are conditionally independent upon
λ, and each one follows a Poisson distribution with rate parameter
λ(k, ℓ), denoted byX(k, ℓ)|λ(k, ℓ) ∼ Pois(λ(k, ℓ)).

In the wavelet literature, image denoising can be achieved by es-
timating the wavelet coefficients of the desired image from the noisy
observations and then returning to the original domain through the
inverse wavelet transform. Our method for estimating the under-
lying intensity imageλ consists of the same two steps. First, we
estimate the detail coefficientsθ of Eq. (3) and then we obtain our
final result using the inverse Poisson-Haar transform. To estimateθ
we exploit some fundamental properties of Poisson processes [6]:
(1) Given the underlying intensities, the counts over nonoverlap-
ping intervals are independent. (2) The sum of independent Pois-



son random variables remains Poisson. Thus, the random vari-
ableXj(k, ℓ), obtained as the sum of the Poisson random variables
Xj−1(k

′, ℓ′) lying in the2×2 neighborhoodCk,l, will remain Pois-
son distributed with intensityλj(k, ℓ). (3) For two independent Pois-
son random variables,X|λx ∼ Pois(λx) andY |λy ∼ Pois(λy),
the conditional distribution of X given X+Y is binomial, namely

p (x|x+ y) = Bin
(

x|x+ y, λx

λx+λy

)

.

Let us denote withx0 the finer representation of the photon-
limited imagex. Next we decomposex0 in J scales using the re-
cursions in Eqs. (3) and (4), retaining, respectively, the coarse scale
valuesxj(k, ℓ) and intermediate sumsxo

j(k, ℓ). Since each coef-
ficient of xj and x

o
j is derived as the sum of independent Pois-

son random variables, it will remain Poisson distributed. In ad-
dition, based on property (3) above, the conditional distribution
p
(

xo
j(k, ℓ)|xj(k, ℓ)

)

, will be binomial

p
(

xo
j(k, ℓ)|xj(k, ℓ)

)

= Bin
(

xo
j (k, ℓ)|xj(k, ℓ), θ

o
j (k, ℓ)

)

, (6)

whereθoj (k, ℓ) corresponds to the detail coefficients of the image of
interestλ defined in Eq. (3).

Based on Eq. (6), we can work under a Bayesian framework
and derive an optimal estimator for the detail coefficients.Under
this framework, the detail coefficientsθ are considered as realiza-
tions of random variables and in order to obtain a solution ana pri-
ori knowledge about their distribution is required. In our previous
work [5] and in [2] it has been shown that a suitable prior model
for the rate-ratio coefficients of natural images is the Beta-mixture
distribution. Due to the approximate decorrelation of the wavelet
coefficients [7] and since ourθ ratio/detail coefficients are just nor-
malized and shifted by 0.5 wavelet coefficients, it is also reasonable
to assume them independent across subbands. Based on these as-
sumptions, we adopt the following prior distribution

p
(

θoj (k, ℓ)
)

=
M
∑

m=1

πj,m Beta
(

θoj (k, ℓ)|αo
j,m, βo

j,m

)

, (7)

whereπj,m is the mixture weight for themth mixture component
in jth scale of analysis,αo

j,m andβo
j,m are the parameters of this

beta mixture component for the specific subband andM is the total
number of mixtures utilized at each scale. Using in Eq. (7) a mixture
of beta densities instead of a single component better fits the model
to natural image statistics.

Using the identity (can be easily verified by direct substitution)

Bin (x|n, θ)Beta(θ|α, β) =
Polya(x|n, α, β)Beta(θ|x+ α, n− x+ β) , (8)

where the bivariate Polya distribution [6] (also called Beta-binomial)
is defined as Polya(x|n, α, β) =

(

n
x

) B(x+α,n−x+β)
B(α,β)

andB (·) is
the Beta function, we can write the posterior density ofθoj (k, ℓ) as:

p
(

θoj (k, ℓ)|xj(k, ℓ), x
o
j(k, ℓ)

)

=

M
∑

m=1

γm(zoj (k, ℓ))

× Beta
(

θoj (k, ℓ)|xo
j(k, ℓ) + αo

j,m, xo,c
j (k, ℓ) + βo

j,m

)

, (9)

wherexo,c
j (k, ℓ) = xj(k, ℓ)−xo

j(k, ℓ) andzoj (k, ℓ) indicates which
mixture component is active and the corresponding posterior mixture
assignment weights equal

γm(zoj (k, ℓ)) =
πj,m Polya

(

xo
j(k, ℓ)|xj(k, ℓ), α

o
j,m, βo

j,m

)

M
∑

n=1

πj,n Polya
(

xo
j(k, ℓ)|xj(k, ℓ), αo

j,n, β
o
j,n

)

.

Having at hand the posterior distribution (9) we can readilyob-
tain a Bayesian estimator for the ratio coefficients. If we select the
minimum mean squared error (MMSE) as the criterion to minimize,
we end up with the posterior mean estimator

θ̂oj (k, ℓ) =
M
∑

m=1

γm(zoj (k, ℓ))

(

xo
j(k, ℓ) + αo

j,m

xj(k, ℓ) + αo
j,m + βo

j,m

)

, (10)

which can be viewed as a thresholding technique of the noisy ra-
tio coefficients, since the ratioxo

j(k, ℓ)/xj(k, ℓ) corresponds ex-
actly to the detail coefficient that we would have obtained ifwe had
applied the Poisson-Haar decomposition (3) at the noisy image x.
Note that the estimation requires that we know the values of the pa-
rametersµ = {πj ,αj ,βj}. These values can be inferred directly
by the noisy observations using the EM-based technique we have
proposed in [5]. Moreover, since the assumption of independence
across scales is a weak one, we can also employ a hidden Markov
tree (HMT) model [7] to capture the inter-scale coefficient depen-
dencies in the vicinity of image edges for each subband image[5].
Finally, for the scaling coefficients at the coarsest scale of analysis
a good choice is to estimate them byλ̂J = xJ ; The signal-to-noise
ratio (SNR) of a Poisson process increases linearly with theunderly-
ing intensity of the image, thus at the coarsest scale where the image
intensity is accumulated into few scaling coefficientsλJ (k, ℓ), the
Poisson noise will be significantly reduced.

5. EXPERIMENTS AND APPLICATIONS

In order to validate the effectiveness of the proposed Poisson-
Haar image decomposition coupled with the intensity estimation
method, we provide experimental results for the task of image de-
noising. We compare our proposed method with our previous work
presented in [5], which employs the previously existing separable
(SEP) and quadtree (QUAD) multiplicative decomposition schemes.
In addition, for the comparisons we also use methods that preprocess
the Poisson data by variance stabilizing transforms (VST),in order to
transform the noise statistics so that standard denoising methods de-
signed for handling homogeneous Gaussian additive noise are appro-
priate. For this class of methods we use as VSTs the Anscombe [8]
and Haar-Fisz [9] transforms and as denoising method the popular
wavelet-domain SureShrink [10] employing Daubechies wavelets of
5 vanishing moments. For more extensive comparisons one canalso
refer to [11] where an extension of this work is presented. The
quality of the resulting images is measured in terms of peak SNR
(PSNR). In all cases we used 5 decomposition scales. To avoid
blocking artifacts, we used shift-invariant versions of each method,
obtained by averaging the image estimates of 32 random circular
shifts of the noisy image.
Table 1: Photon-limited intensity estimation results in terms of
PSNR. The prior density models employ 3-mixture distributions.

PSNR (dB) / Methods
Image/ noisy Ansc. HF SEP QUAD PH
Peak Int. SURE SURE HMT HMT HMT

Lena/5 9.95 24.44 24.69 25.59 25.68 25.78
Lena/10 12.96 26.15 26.29 27.03 27.09 27.21
Lena/15 14.72 27.02 27.12 27.87 27.85 28.03
Lena/20 15.97 27.65 27.73 28.45 28.41 28.66
Boat/5 9.93 23.19 23.51 24.08 24.04 24.31
Boat/10 12.94 24.66 24.73 25.32 25.21 25.57
Boat/15 14.70 25.45 25.45 26.04 25.92 26.37
Boat/20 15.95 26.04 26.05 26.59 26.48 26.96



The results produced by all methods, based on 10 independent
trials in each case, for two test images (Lena/Boat) are presented in
Table 1. Four peak intensities are reported (5,10,15,20), correspond-
ing to different Poisson noise levels. Using the proposed Poisson-
Haar (PH) multiscale image representation, coupled with the HMT
model of [5], yields quantitatively better results than theother stud-
ied techniques. Specifically, our PH-HMT model gives a roughim-
provement of 1-1.25 dB in PSNR, compared to the method of fist sta-
bilizing the data with the Anscombe or Haar-Fisz (HF) transforms,
and then applying the SureShrink thresholding. Regarding compar-
ison between our HMT variants, namely the ones using the separa-
ble and quadtree decomposition schemes and our newly proposed
Poisson-Haar image representation, we note that the lattergives an
improvement of about 0.25 dB, which is exclusively attributed to the
image decomposition model; Similar results we have also obtained,
but not report here due to space limitation, for our variantswhen
independence across scales is assumed. The efficacy of our method
relative to the alternative techniques can be visually appreciated from
the representative Lena denoising example shown in Fig. 3. In Fig 4
we present a close up of the denoised boat image by the SEP and
PH models and observe that the latter better preserves the image
edges. Finally, in Fig. 5 we show the results obtained by applying the
proposed PH-HMT model in an astronomical image with simulated
Poisson noise and a nuclear medical image with real shot noise. The
result in the latter case confirms that the proposed method isalso
efficient in “real-world” noisy conditions.

(a) (b) (c)

Fig. 3: Results on Lena image with peak intensity 10 and simulated
Poisson noise. Close-up of: (a) Noisy image(PSNR=12.96). (b) HF-
SureShrink result (PSNR=26.29). (c) Our PH-HMT result (PSNR=27.21).

(a) (b) (c)

Fig. 4: Results on boat image with peak intensity 5 and simulated
Poisson noise. Close-up of: (a) Noisy image(PSNR=9.93). (b) SEP-
HMT result (PSNR=24.08). (c) PH-HMT result (PSNR=24.31).

6. CONCLUSIONS

The main contribution of our work is a multiscale image rep-
resentation which is closely related to the 2-D Haar DWT, thus in-
heriting most of the benefits of the wavelet transform. Our multi-
scale Poisson-Haar image representation is shown to be well-suited
for analyzing photon-limited images degraded by Poisson noise, bet-
ter modeling the edge structure of images compared to existing 2-D
multiscale multiplicative image decompositions.

Noisy images Our results (PH-HMT)

Fig. 5: Image intensity estimation on astronomical image with sim-
ulated noise and nuclear image with real shot noise.
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