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ABSTRACT

We present a novel multiscale image representation baigrtgithe
class of multiscale multiplicative decompositions, whigk term
Poisson-Haar transform. The proposed representationlisuited
for analyzing images degraded by signal-dependent Poissise,
allowing efficient estimation of their underlying intenshy means
of multiscale Bayesian schemes. The Poisson-Haar decdtnpos
has a direct link to the standard 2-D Haar wavelet transfahms
retaining many of the properties that have made waveletesstul
in signal processing and analysis. The practical relevamckef-
fectiveness of the proposed approach is verified througlisieny
experiments on simulated and real-world photon-limitedges.
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with a close relative of the wavelet transform, the multigtive de-
composition. The multiscale multiplicative decompositior 1-D
data was first proposed in [2, 3] and is a strong candidaterfar a
lyzing Poisson processes, since it provides more natugahkrep-
resentations than the wavelet transform and makes full fiskeeo
Poisson noise properties. In addition, it is closely reldtethe Haar
discrete wavelet transform (DWT) thus retaining many ofdtiean-
tageous properties of wavelets in signal processing, naspalrsity,
approximate decorrelation, and efficient coarse-to-fimegssing.
Despite the benefits of using the multiplicative decomposi-

tion for analyzing Poisson processes, the existing 2-Despnta-
tions [2, 4, 5] have poor directional selectivity propestand are not
directly related to the Haar wavelet transform like theid oun-

Index Terms— Photon-limited imaging, Poisson noise, hidden terpart. Our main contribution is a novel multiscale imaggresen-

Markov tree, Haar wavelet transform, Bayesian estimation.

1. INTRODUCTION

Photon detection is the basis of the image formation for atgre
number of imaging systems used in a variety of applicatimmd,d-
ing medical and astronomical imaging [1]. In such systemsge
acquisition is accomplished by counting photon detectairdiffer-
ent spatial locations of a sensor, over a specified observpgriod.
For low intensity levels, one of the dominant noise sourespon-
sible for the degradation of the quality of the captured iesag the
so-called quantum or shot noise. Quantum noise is due taéluct
tions on the number of detected photons, an inherent liioitatf the
discrete nature of the detection process, and degradesraages
both qualitatively and quantitatively. The resulting dedation can
be proved a major obstacle preventing image analysis andnaf
tion extraction. Thus, the development of methods and iqaks to
alleviate the arising difficulties is of fundamental im@orte.

tation which we term Poisson-Haar decomposition and hassecl
link to the 2-D Haar DWT. Thus the proposed transformatiotiene
models the image edge structure and yields improved pegiocs
in image processing. In Section 2 we briefly review the 1-Dtmul
plicative decomposition and indicate its relation to theHaavelet
transform. Then in Section 3 we present the proposed Poldaan
transform and in Section 4 we provide an image intensitynesti
tion method that exploits the properties of our represantand the
Poisson noise statistics. Finally, in Section 5 we preseage de-
noising results on simulated and real-world photon-lichilmages
to demonstrate the effectiveness of the proposed methods.

2. MULTIPLICATIVE MULTISCALE DECOMPOSITION

Similarly to the wavelet transform, the multiplicative dec-
position scheme of [2, 3] leads to a multiscale signal repres
tion of 1-D signals. In fact, the multiplicative scheme igsgly
related to the Haar wavelet transform. More specificallyNe=
[A(0),A(1),...,A(N —1)] be a1-D signal of lengtilv = 2”. De-

The basic photon-imaging model assumes a Poisson distribyroting with Ao = A the finest scale representationgfa multiscale

tion for the number of detected photons at each pixel lonatious
the captured image can be considered as a realization ofhan in
mogeneous Poisson process. This process is characteyized-b
spatially varying rate function which equals the procesamand
corresponds to the noise-free intensity image. The vditiabi the
counts about the mean can be interpreted as noise. Sinceifz®R
process variance equals the rate function/noise-freednhbg noise
in the acquired image is spatially varying and signal-dejpen
Multiscale processing has emerged as an efficient tool fagen
processing and analysis, showing significant advantagéeinep-
resentation of signals and is extensively used in apptinatsuch as
image denoising, detection, and segmentation. In thisrpapeleal
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analysis with the Haar DWT is obtained through the recussion
uj(k) = (uj—1(2k) +uj—1(2k + 1)) /V2
w; (k) = (uj—1(2k) — uj—1(2k +1)) /V2,
forj =1,...,Jandk = 0,...,N/2 — 1, whereup = Xo. In
the above equationsdenotes the scale of analysisié the coarsest
scale) andk the position in the corresponding vectas. For the

multiplicative decomposition the recursions that yield thultiscale
analysis of\ are

A (E) = Ajo1(2k) + A1 (2k + 1)
0;(k) = Xj—1(2k)/ (Aj—1(2k) + Aj-1(2k + 1)) .

Note that while in the case of the Haar transform the coarse-
to-fine signal refinement is encoded linearly in the additiesail
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Fig. 2: Poisson-H(aar image multiscale decor(nposition through fil-

Fig. 1. Multiscale image decomposition at two scales of the cameraterbank processing. (a) Analysis filterbank, (b) Synthékesbank.

man image using the Poisson-Haar transformation.

coefficientsw;, in the case of the multiplicative decomposition
it is encoded nonlinearly in theate-ratio coefficients@;, which
can be interpreted as splitting factors [4] of coarse saatensi-
ties. Although the Haar and the multiplicative multiscatans-
forms describe the detail information differently, theseai direct
link between the signal representatidnin the multiplicative do-
main [A;(0),605(0),...,60:1(0),...,61(N/2—1)] and the one in

The ratio coefficient®”, 87, 8¢ are sensitive to image edges at dif-
ferent orientations (horizontal, vertical, or diagonal).

Similarly to the 1-D case, the Poisson-Haar rate-ratiofanents are

directly related to the 2-D Haar wavelet detail coefficientsf the

same subband: (5.0
w?(k, ¢ 1

i R (5)
uj(k,€) 2

In addition, \; (k, ¢) is a re-scaled version of the 2-D Haar scaling

07 (k, £) = +

the Haar wavelet domain. More specifically, one can show thagoefficient )\, (k, ¢) = 27u;(k, ¢). Based on (5), the ratio coeffi-

A;j(k) is a re-scaled version of the Haar scaling coefficientk),
Xi(k) = 29/2u;(k), while 0;(k) is a divisibly normalized and
shifted by 0.5 version of the Haar wavelet detail coefficientk),
(k) = 5245
as sparsity, approximate decorrelation, and efficientsspto-fine
processing are also inherited by the multiplicative decositjpn.

3. POISSON-HAAR MULTISCALE DECOMPOSITION

For handling photon-limited images we need multiplicatiee
compositions tailored for 2-D signals. However, existin® 2nul-
tiplicative decomposition schemes [2, 4, 5] have poor dioeal
selectivity properties. In particular, the separable sthef [2]
can only represent horizontal and vertical image edgeslevthe
nonseparable quadtree model described in [4, 5] has nocéxpli
mechanism for capturing directional edge information. Tine-
posed Poisson-Haar transform is a novel 2-D multiplicatival-
tiscale decomposition which partly alleviates these sloonings.
Contrary to the existing schemes, the Poisson-Haar rapeese
tion is closely related to the 2-D Haar DWT, inheriting itsilab
ity to also capture edges in the diagonal direction, rasgito im-
proved orientation selectivity properties. Specificalgt, A be an
intensity image of sizeV: x N> and Ao A its finest scale
representation. Denoting for eaglh-scale pixel location(k, ¢)

cients@ can be viewed as divisible normalized and shifted by 0.5
Haar wavelet detail coefficients. Thus, the Poisson-Haeomeo-
sition explicitly represents horizontal, vertical, andgnal edges in

+0.5. This suggests that key wavelet properties sucha symmetric fashion, yielding increased orientation s@liéz com-

pared to the previous multiplicative decomposition schera ex-
ample of the Poisson-Haar decomposition is shown in Fig. 1.
Similarly to 2-D Haar wavelets, the Poisson-Haar decomposi
tion can also be viewed in terms of filterbank processing. dr p
ticular, to compute one stage of the Poisson-Haar transtdrem
imageXo = A, we first convolve it with the filtersl; = (1 1),
Hy=(99), H, = (§1), andHq = (}§9) and then decimate by
two in each direction. Then the last three subband image&ef s
N1 /2 x N2 /2 are pointwise divisibly normalized by the first one
as is schematically illustrated in Fig. 2. The filtering armvdsam-
pling process can be continued up.faimes resulting in a multi-
scale representation &f Since the transformation is one-to-one we
can return back to the original domain by following a reveysece-
dure as depicted in Fig. 2. In this case the filters@re= (71 1),
Gh=(_1_1),Go=(12}),andGa=(_t 1)
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4. BAYESIAN IMAGE INTENSITY ESTIMATION

In this section using the proposed Poisson-Haar deconnuosit
and adopting the basic photon-limited imaging model, wedes a

the 2 x 2 set of children pixel locations at the next finer scale method to estimate the intensity imaygiven a photon-limited ver-

asCr, = {(2k,20), (2k, 20 + 1), (2k +1,2¢), (2k + 1,20 + 1)},
the Poisson-Haar multiscale analysis'oémploys the recursions:

. — ) rog
)‘J(kae) - Z(k/l/)Eck,z )‘Jfl(k A )
07 (k, £) = Xj(k, 0)/A; (K, €), o0 € {h,v,d}

(©)

forj=1,...J,k=0,...,N1/29 =1,£=0,...,N2/27 — 1 and
J = min {log,(N1),log,(N2)}. InEq. (3),0is one of{h, v, d} de-
noting the horizontal, vertical, or diagonal decompositsmbband;
the corresponding intermediate suafgk, £) are defined as

Nk, 0) = Xj—1(2K, 20) + Xj—1(2k, 20 4+ 1)
N (K, 0) = Nj—1(2k, 20) + X\j_1(2k + 1,2¢)
Ak, ) = Nj_1(2k,20) + Nj_1(2k + 1,204+ 1) .

4)

sionx. Under this image formation modet,is considered as a 2-D
array consisting of the observation samples (count data),of N»
random variables( (k, £) which are conditionally independent upon
A, and each one follows a Poisson distribution with rate patam
A(k, 0), denoted byX (k, £)|A(k, £) ~ Pois(A(k, £)).

In the wavelet literature, image denoising can be achieyestb
timating the wavelet coefficients of the desired image frbenrtoisy
observations and then returning to the original domainugiothe
inverse wavelet transform. Our method for estimating thdeunn
lying intensity image\ consists of the same two steps. First, we
estimate the detail coefficieng&of Eq. (3) and then we obtain our
final result using the inverse Poisson-Haar transform. Timese6
we exploit some fundamental properties of Poisson prosef§je
(1) Given the underlying intensities, the counts over nemniayp-
ping intervals are independent. (2) The sum of independeig- P



son random variables remains Poisson.

Thus, the random vari

Having at hand the posterior distribution (9) we can readily

able X (k, ¢), obtained as the sum of the Poisson random variabletain a Bayesian estimator for the ratio coefficients. If wesktthe

X,_1(K',£") lying in the2 x 2 neighborhood’', ;, will remain Pois-
son distributed with intensity; (k, £). (3) For two independent Pois-
son random variables |\, ~ Pois(\;) andY |\, ~ Pois(\y),
the conditional distribution of X given X+Y is binomial, naty

p(zlx +y) = Bin (:c|x + v, A:‘—f/\y)

Let us denote withko the finer representation of the photon-

limited imagex. Next we decomposgy in J scales using the re-
cursions in Egs. (3) and (4), retaining, respectively, tharse scale
valuesz;(k,£) and intermediate sums;(k,£). Since each coef-

minimum mean squared error (MMSE) as the criterion to mineni
we end up with the posterior mean estimator
). a0

which can be viewed as a thresholding technique of the naisy r
tio coefficients, since the ratio?(k, £)/x;(k,£) corresponds ex-
actly to the detail coefficient that we would have obtainedéfhad

é;(kjv 0) = Z 777L(Z;(k7 f))

m=1

( 23 (k, £) + afm
IE] (k7£) + a?,m + /B‘;’),m

ficient of x; andx7 is derived as the sum of independent Pois-applied the Poisson-Haar decomposition (3) at the noisygénxa

son random variables, it will remain Poisson distributedh atl-
dition, based on property (3) above, the conditional distibn
p (x5 (k, 0)|x;(k, £)), will be binomial

p (22(k, 0)|z; (K, £)) = Bin (25 (k, £)|x;(k, £),05(k, £)) , (6)

Note that the estimation requires that we know the valuebept-
rametersu = {=;, o;,3;}. These values can be inferred directly
by the noisy observations using the EM-based technique we ha
proposed in [5]. Moreover, since the assumption of indeprod
across scales is a weak one, we can also employ a hidden Markov

whered? (k, £) corresponds to the detail coefficients of the image oftre® (HMT) model [7] to capture the inter-scale coefficieapen-

interest\ defined in Eq. (3).

dencies in the vicinity of image edges for each subband infalge

Based on Eq. (6), we can work under a Bayesian frameworicinally, for the scaling coefficients at the coarsest schlenalysis

and derive an optimal estimator for the detail coefficieritkder

a good choice is to estimate them Ay = x; The signal-to-noise

this framework, the detail coefficients are considered as realiza- ratio (SNR) of a Poisson process increases linearly withititerly-

tions of random variables and in order to obtain a solutioa gri-
ori knowledge about their distribution is required. In our poes

ing intensity of the image, thus at the coarsest scale whergrtage
intensity is accumulated into few scaling coefficieats(k, ¢), the

work [5] and in [2] it has been shown that a suitable prior mode Poisson noise will be significantly reduced.

for the rate-ratio coefficients of natural images is the Babature
distribution. Due to the approximate decorrelation of thevelet
coefficients [7] and since o ratio/detail coefficients are just nor-
malized and shifted by 0.5 wavelet coefficients, it is alsssomable

to assume them independent across subbands. Based on shese@a

sumptions, we adopt the following prior distribution

M
p (67 (k. 0)) = > mjm Beta(6; (k, 0)[a m, Bm) . (1)
m=1
where; » is the mixture weight for thenth mixture component
in jth scale of analysisy5 ., andj3;,, are the parameters of this
beta mixture component for the specific subband &hé the total
number of mixtures utilized at each scale. Using in Eq. (7)xiume
of beta densities instead of a single component better ftsnbdel
to natural image statistics.
Using the identity (can be easily verified by direct subtitit)

Bin (z|n, 0) Beta(f|a, B) =
Polya(z|n, a, B) Beta(f|x + a,mn —xz+ 8) , (8)
where the bivariate Polya distribution [6] (also called@&btnomial)

is defined as Polyar|n, a, §) = (%) 2o -et9) and B (-) is

the Beta function, we can write the posterior density tif, £) as:

p (97([43,4”1’](]{),4),1‘7(k7£)) = Z ’Ym(Zj(k,é))

x Beta(69(k, 0)]al (k, £) + a2, 22 (k, ) + B2m) » (9)

wherex“(k,£) = x;(k,£) — x7(k, £) andz (k, £) indicates which
mixture component is active and the corresponding posterixture
assignment weights equal

Tjm Poly‘él(:c’j(k7 )|z (k, L), 0 m, Bjm)

M ’
nzzzl Tin Poly‘él(:c’j(k7 O)lzj(k, L), a3, Bjn)

v (25 (K, €)) =

5. EXPERIMENTS AND APPLICATIONS

In order to validate the effectiveness of the proposed Bniss
ar image decomposition coupled with the intensity egtona
method, we provide experimental results for the task of iende-
noising. We compare our proposed method with our previous wo
presented in [5], which employs the previously existingasaple
(SEP) and quadtree (QUAD) multiplicative decompositiomesnes.

In addition, for the comparisons we also use methods thatpcess
the Poisson data by variance stabilizing transforms (V8 yder to
transform the noise statistics so that standard denoisetgads de-
signed for handling homogeneous Gaussian additive naessgaro-
priate. For this class of methods we use as VSTs the Ansco8jbe [
and Haar-Fisz [9] transforms and as denoising method thalaop
wavelet-domain SureShrink [10] employing Daubechies \eagef
5 vanishing moments. For more extensive comparisons onalsan
refer to [11] where an extension of this work is presented.e Th
quality of the resulting images is measured in terms of pddR S
(PSNR). In all cases we used 5 decomposition scales. To avoid
blocking artifacts, we used shift-invariant versions offeanethod,
obtained by averaging the image estimates of 32 randomlaircu

shifts of the noisy image. ) o )
Table 1: Photon-limited intensity estimation results in terms of

PSNR. The prior density models employ 3-mixture distriosi.

PSNR (dB) / Methods

Image/ noisy | Ansc. HF SEP | QUAD PH

Peak Int. SURE | SURE | HMT | HMT | HMT
Lena/5 9.95 | 2444 | 24.69 | 2559 | 25.68 | 25.78
Lena/10 || 12.96 | 26.15 | 26.29 | 27.03 | 27.09 | 27.21
Lena/15 || 14.72 | 27.02 | 27.12 | 27.87 | 27.85 | 28.03
Lena/20 || 15.97 | 27.65 | 27.73 | 28.45| 28.41 | 28.66
Boat/5 9.93 | 23.19 | 23.51 | 24.08| 24.04 | 24.31
Boat/10 || 12.94 | 24.66 | 24.73 | 25.32 | 25.21 | 25.57
Boat/15 14.70 | 25.45 | 25.45 | 26.04 | 25.92 | 26.37
Boat/20 15.95| 26.04 | 26.05 | 26.59 | 26.48 | 26.96




The results produced by all methods, based on 10 independent
trials in each case, for two test images (Lena/Boat) arespted in
Table 1. Four peak intensities are reported (5,10,15,20)espond-
ing to different Poisson noise levels. Using the proposeids@o-
Haar (PH) multiscale image representation, coupled wighHMT
model of [5], yields quantitatively better results than tiker stud-
ied techniques. Specifically, our PH-HMT model gives a roumgh
provement of 1-1.25 dB in PSNR, compared to the method oftéist s
bilizing the data with the Anscombe or Haar-Fisz (HF) transfs,
and then applying the SureShrink thresholding. Regardimgpar-
ison between our HMT variants, namely the ones using theraepa
ble and quadtree decomposition schemes and our newly @dpos
Poisson-Haar image representation, we note that the ftes an
improvement of about 0.25 dB, which is exclusively attrdalito the
image decomposition model; Similar results we have alsainétl,
but not report here due to space limitation, for our variamten
independence across scales is assumed. The efficacy of thwdne
relative to the alternative techniques can be visually agipted from
the representative Lena denoising example shown in Fign Big 4
we present a close up of the denoised boat image by the SEP and
PH models and observe that the latter better preserves thgeim
edges. Finally, in Fig. 5 we show the results obtained byyapglhe
proposed PH-HMT model in an astronomical image with sinadat
Poisson noise and a nuclear medical image with real shog¢ noie
result in the latter case confirms that the proposed methatses
efficient in “real-world” noisy conditions.

(1]
(2]

(@)

Fig. 3: Results on Lena image with peak intensity 10 and simulated
Poisson noise. Close-up of: (a) Noisy imgg@sNR=12.96). (b) HF-
SureShrink result (PSNR=26.29). (c) Our PH-HMT result (IRSR7.21).

(3]
[4]

(3]
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[7]

@) (b)
Fig. 4 Results on boat image with peak intensity 5 and simulated [g]
Poisson noise. Close-up of: (a) Noisy imgg@SNR=9.93). (b) SEP-

HMT result (PSNR=24.08). (c) PH-HMT result (PSNR=24.31).
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6. CONCLUSIONS
[10]
The main contribution of our work is a multiscale image rep-
resentation which is closely related to the 2-D Haar DWTsthni
heriting most of the benefits of the wavelet transform. Outtimu  [11]

scale Poisson-Haar image representation is shown to besuidd
for analyzing photon-limited images degraded by Poissisenbet-
ter modeling the edge structure of images compared to egi&HD
multiscale multiplicative image decompositions.

Noisy images

Our results (PH-HMT)

Fig. 5. Image intensity estimation on astronomical image with-sim
ulated noise and nuclear image with real shot noise.
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