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ABSTRACT

We investigate a non quadratic regularizer that is baseth@hes-
sian operator for dealing with the restoration of 3-D imaigesvari-

ational framework. We show that the regularizer under stisdy

valid extension of the total-variation (TV) functional, the sense
that it retains its favorable properties while followingiengar un-

derlying principle. We argue that the new functional is wallted

for the restoration of 3-D biological images since it does sudfer

from the well-known staircase effect of TV. Furthermore,present
an efficient 3-D algorithm for the minimization of the compesiding

objective function. Finally, we validate the overall prepd regular-
ization framework through image deblurring experimentssionu-

lated and real biological data.

Index Terms— 3-D image restoration, Hessian matrix, Frobe-
nius norm, mixed-norm regularization.

1. INTRODUCTION

In widefield microscopy, the imaging of biological speciraen
is often carried out by recording focal series of 2-D imagEisese
images are then stacked together to generate a 3-D volunedniFh
age series acquired using this method contain in-focusifestof
the specimen from the focal-plane and out-of-focus featfram all
adjacent planes [1]. This blurring effect is worsened bypttesence
of random noise, which is intrinsic to the acquisition pres;eand
results in degraded 3-D images. This severely reduces {liky &
clearly distinguish fine specimen structures. To increhseésolu-
tion and enhance the quality of images, 3-D restoration earesas
a pre-processing technique that aims to cancel-out theadations
due to the optics of the acquisition system.

Image deblurring amounts to estimating an imgdeom the in-
tensity measuremenis Since a widefield microscope can be mod-
eled in intensity as a linear space-invariant system [H, ithage-
observation model can be formulated as

y=Af +uw, (1)

where A is a linear blurring operator, specific to the optics of the

microscope, andv is the unknown noise. The recovery fffrom
y is anill-posed problem2], due to the presence of noise and the
operator.A which is usually ill-conditioned or non-invertible. To
obtain a reasonable estimatefgone must thus take into account the
image-formation and acquisition processes as well as aaijable
prior information about the properties of the image to béoresl.

A common estimation strategy is to form an objective functio
which quantifies the quality of a given estimate and has tha fo

I (f) = Jaaa(f) + TR(f) - @)
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The first term is known adata fidelityand measures the consistency
between the estimate and the measurements, while the secensl
theregularizationterm whose role is to impose a desirable bias on
the derived solution. Theegularization parameter > 0 balances
the contribution of the two terms. Image deblurring can thercast
as the minimization of (2).

As has been shown in prior studies, the choice of the regalari
tion term can play a substantial role in the quality of theaesdion.
Several regularization approaches have been proposedfeo iia-
age deblurring, with a state-of-the art method being baseahioi-
mizing the total-variation (TV) semi-norm [3]. Its success wide
use for the past two decades can be mainly attributed to ilisyab
to produce results with well-preserved and sharp edgeseder,
its compatibility with efficient optimization methods maki very
attractive. This is a crucial factor because the restanaif3-D im-
ages involves processing huge amounts of data. Howevereg@V r
ularization cannot be considered as a universal choicspiectively
of the class of images under consideration. In particuldwas been
recently shown that Hessian-based regularizers are betdpted for
the restoration of biomedical images in the 2-D case [4].

In this paper, we extend our prior work [4] to deal with thelpro
lem of 3-D image restoration. Specifically, we propose inisa@ a
higher-order non quadratic functional that is a valid egten of the
TV semi-norm. The proposed regularizer is based on the Biessi
Frobenius-norm and retains most of the favorable promedidlV,
while it can better model the properties of biological imagéth-
out introducing the undesired staircasing effect of TV. &titon 3,
we devise a fast algorithm whose structure is optimizedHer3-D
problem. Finally, we perform in Section 4 experiments whaue
approach is compared with TV on both synthetic and real nreasu
ments. We then discuss our results and the relevance of proagh
for biomedical 3-D data.

2. HIGHER-ORDER REGULARIZATION

Let f be a continuously differentiable 3-D image. The TV semi-
norm of f is then defined as

V() = / IV (), .,

whereV f is the gradient of the imaggV f||, is its Euclidean norm,
andQ C R®. It is well-known that the first-order derivative gfin
the direction specified by the unit-norm vectors given by D, f =
(V £, u). With the aid of directional derivatives and by represemtin
u in spherical coordinates as

u = (sinfcos ¢,sinfsin¢g,cosb) ,0 € [0,7],¢ € [0,2m),
we can equivalently express TV as
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whereq = |[sinf cos ¢[|, (s, S = [0, 7] x [0, 27), and Dy 4) is
the first directional derivative expressed in terms of thiaipangle
6 and the azimuthal anglg.

According to (4), TV can be interpreted as a mixed L. norm
where theL;-norm acts on the image domain while the-norm
acts on the domain specified by the andleéss) of the directional
derivative. As shown below, this new interpretation of théflinc-
tional permits us to extend its definition to higher-orddfedential
operators. Indeed, a straightforward way to extend TV smas-t
clude higher-order differential operators is by replading ;) f (x)
in (4) by a higher-order directional derivative.

Following this approach, our work focuses on a second- orde(,/

extension of TV. Accordingly, we define our new functional as

1
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where ﬁw is the second-order directional derivative on the domain

specified by the unit-norm vectors andv. The second-order di-
rectional derivative is defined asZR f (x) Du (Dv f) (x)
u' M (x) v, where? is the Hessian matrix of expressed as

fz:v fzy fcvz
Hy= vz Jyy  fuz s (6)
fzw fzy fzz
with fi; (x ):M [ (x).

Interestingly, as proven in Proposition 1, the functioma(s) is

equivalent to
R(f) = /Q 197 ()] dx, 7)

where the integrand corresponds to the Frobenius-normedfits-
sian of f at coordinatex.

Proposition 1. TheL2-norm of the second-order directional deriva-
tive of f at coordinatesx is proportional to the Frobenius-norm of
the Hessian matrif# ;s (x)|| .

Proof. The second-order directional derivativefofan be written as
a function of the Hessian eigenvalues. Specifically, siheg¢Hessian
matrix is symmetric, we use the spectral-decompositioartra and
we express the second-order directional derivative as

Divf(x) = u'QA;(x)Q'v
(@w) s (V). ®

where Ay is a3 x 3 diagonal matrix with the eigenvalues of the
Hessian matrix; at coordinatesc andQ is a3 x 3 orthonormal
matrix with the corresponding eigenvectors in its coluniext we
show that we can always obtain such a decomposition @itieing
a rotation matrix.

In orderQ to be a rotation matrix, it should satisfy the following
two conditions:

@Q'Q=1I and (b)detQ)=1.

It is clear that condition (a) is satisfied sin€eis by definition or-
thonormal. In addition, it is easy to show from (a) that @)
+1. In the case where dé®) = —1, we can always choos®’
—Q with det(Q’) = 1 and decompos®{ s as

QA;(x)QT =(-Q)As(x)(—Q)T
QA; (x)Q'.

Hy

9)

We therefore write (8) as

Divf(x) = uTAf(x

v = E A vy

whereu’ andv’ correspond to rotated versionswfandv, respec-
tively, and \;;, to the diagonal elements of the matik; (x). To
compute thel.x-norm of the second-order directional derivative we
express the unit-vectors' andv’ in spherical coordinates as

(10)

u = (sinfcos¢,sinfsing,cosd) 0 €[0,n],6<€[0,2n),
(sinacos B,sinasinf,cosa) ,a € (0,7, €[0,27).

Based on (10), we then obtain

H : X)HL2(S2) = (/2’Dﬁ,‘,f(x)|2sin&sinode)l/2
= 167” A+ A3+ 23)
= T Ol (12)
where & = df d¢ da dg. O

From Definition (7), we can see that the proposed functional
corresponds to a convex regularizer since it arises fronintiegra-
tion of a linear operator [5]. Moreover, it is easy to verihat our
regularizer also retains the important properties of TVhaly, ho-
mogeneity, rotation, and translation invariance.

Since the Frobenius norm of a matrix is equal to the Euclidian
norm of its vectorized version, we can also write (7) as

5= /Q IF (%)), dx,

wherel/ is a differential operator defined &= {di:, v20i;},, .-

This reformulation of the Hessian Frobenius-norm regaéaris ad-
vantageous for the description of the minimization aldomitwe
present in Section 3.

12)

3. MINIMIZATION OF THE OBJECTIVE FUNCTION

3.1. Majorization-Minimization Approach

In this section, we depart from the continuous domain and we
consider the discrete formulation of the image-restonagimblem.
Assuming that additive Gaussian noise is degrading the umeas
ments, the appropriate data term is quadratic. Thus, thelbwob-
jective function reads as

J () (13)

1

5 Iy — AfIl; + 7R (£)
whereA € RY*¥ is the convolution matrix describing the blurring
operation ang, f € RY are theN-dimensional rasterized observed

and unknown images, respectively, with= n; X na X ns.
Defining the/; norm of a vector field = (uy, us,... ,un) €

N xk 2 1/2
R asull, = 30, sl whereu] = (o)
we re-write the proposed regularizer in its discrete form as

S

R(f) = |Uf], = (14)



where(-), denotes théth element of the argument.

We minimize (13) following anajorization-minimizatioffMM)
approach [4, 6, 7]. To develop a MM-based algorithm, we fiesive:
an appropriate quadratic majoriz@g (f; f’) of our penalty function
R (f). To do so we employ the inequality

g(z)
2 2/9 ()’

that holds true for any general functign-) : R — R, V(z,y) :
g(x) >0, g(y) > 0, with equality in (15) if and only ifg (x) =

g (y). Using the property that the majorization relation is ctbse
under the formation of sums and non-negative products [&]c&n
then show that the function

Or (f; f(t))

(15)
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is a valid majorizer ofR (f) at the fixed poinf™®.

Since the data-fidelity terifigaa(f) in (13) is quadratic, the fun-
tion O (f;f') = Juaa(f) + Or (f; ) is itself a quadratic majorizer
of the complete objective functiaff (f). This implies that the mini-
mization of the resulting majorizer amounts to solving th&tem of
linear equations

(ATA + TUTW“)U) £+ = ATy 17)

s(t)
whereW® is anN x N block-diagonal matrix with diagonal com-
ponents

i€ [1,N]. (18)

(t) _ 1
(W )u 2 ’(Uf“))i!
To solve (17), we then employ an efficient preconditioned ugete-
gradient (PCG) method [8] with a diagonal preconditiongreSf-
ically, we use a left-and-right preconditioning scheme thloits
the diagonal part 08, which is most efficient in our 3-D setting
since no FFT is involved.

We describe now how these diagonal-matrix components cal

be determined. Let us consider the generic matrix strudidre=
B"DB, whereB andD are N x N circulant and diagonal ma-
trices, respectively. Given a rasterized image veetothe prod-

uctc’ = Mc in vector notation corresponds to the discrete spatial-

domain operation
¢ = b [mo]bni]d[ — nzle[: — (m1+n2)],  (19)

wherec, ¢’ are the corresponding image sequencestaddre the
filter and the pointwise-multiplication map associatedhe matri-

cesB, D, respectively. Based on (19), we can show that the expres-

sion of the diagonal part dM corresponds to the spatial-domain
pointwise-multiplication map

Dk = [d* (be b)T] K], (20)

wherex ande denote discrete convolution and pointwise multipli-

cation, respectively. From its definitioB*) decomposes as a sum
of matrices of the same structurelk From (20), and by linearity,
the diagonal part of the whole system matrix can thus be ihirted.

Table 1. PSNR comparisons of TV and Hessian Frobenius-norm
regularization on two test stacks of images.

Data Stack A Stack B
Methods Blurred | TV | Frob. Blurred | TV | Frob.
£1]15dB 23.93 26.19 | 26.35 27.92 30.51 | 30.58
% | 20dB 24.34 | 26.65 | 26.86 28.27 30.89 | 30.97

3.2. Relation between MM and Lagged-Diffusivity

One of the standard approaches for minimizing (13) under TV
regularization is the method t¢dgged diffusivitythat was first pro-
posed in [9]. This method is based on the Euler-Lagrangetiequa
and leads to an elliptical partial differential equatio). To solve
this PDE a fixed-point iterative approach was presented]inTBe
global convergence of its discrete approximations wasbéskeed
in [10].

Following a similar approach for our continuous regular-
izer (12), the corresponding Euler-Lagrange equationsdacdhe
fourth-order PDE

9(f) (1)

. ur
= A" (Af —y +TU'<—) .
(47 =) T,

The global minimizer of the objective function is then fouasl a
sequence of solutions to the system of equations

ATAFED L (fO) fO = Aty 22)
where A* is the adjoint of the blurring operatot and £ (f) is an
operator whose action onis given by

£(f)z:u-<szj—sz2).

This minimization strategy earns the namdagfged diffusivitybe-
cause, in order to obtain the next itergté™ " that closer approxi
mates the solution to the minimization problem, one has keesa
PDE whose diffusivities are fixed and depend on the previmuate
f® . Upon discretization of the solution, this iterative apb co-
Wcides with the finite MM method we have proposed in Sectidn 3

(23)

4. EXPERIMENTS

To validate the effectiveness of the proposed Hessiandbage
ularization framework, we provide experimental resultstfe task

of 3-D image deblurring. We compare our results with TV on two
stacks of images. In our experiments, we use a Gaupsiafrspead
function (psf) of suppor20 x 20 x 10. The standard deviation for
the Gaussian PSF changes linearly in the z-axis feom= 2 to

op = 10. In Table 1, we provide numerical results in terms of PSNR
for two BSNRs(BSNR = var[Af] /o?) corresponding to differ-
ent levels of Gaussian noise. For the sake of fairness, thétse
reported for each regularizer are obtained using the iddalized
regularization parameter that gives the best PSNR performance.
For the discretization of the differential operators, we f@ward fi-
nite differences. Finally, regarding the minimization loé tobjective
functions, we run 10 successive quadratic-bound miningratand
for each one we use the PCG algorithm with a stopping critesét

to either reaching a relative normed difference @f ° between two
successive estimates, or a maximum of 20 iterations.

Apart from the quantitative results of Table 1, the efficady o

Note that theA T A term appearing in (17) can be handled in (20) asour approach can be also appreciated visually from the septe-

a degenerate case wheteeduces to the identity.

tive deblurring examples shown in Figs. 1 and 2. In these pkesn



@ (b) (c)
Fig. 1. Restoration results on the stack A of siZ& x 256 x 52.
Maximum-intensity projection (along the z-axis) of the tdrred
stack (PSNR=24.34 dB), (b) TV reconstruction (PSNR=26.B} d
(c) Hessian Frobenius-norm reconstruction (PSNR=26.96 dB

@ (b) (c)
Fig. 2. Restoration results on the stack B of si8® x 330 x 197.
Maximum-intensity projection (along the z-axis) of the tdrred
stack (PSNR=27.92 dB), (b) TV reconstruction (PSNR=30.8}, d
(c) Hessian Frobenius-norm reconstruction (PSNR=30.58 dB

despite the seemingly small differences in PSNR improvéerben
tween the two regularizers, we ascertain that, while TV laiga-
tion introduces heavy staircase artifacts mixing struadtdetails of
the images, our regularizer matches better the intensitatiens
and results in a better reconstruction. To evaluate thetipsheel-
evance of our approach, we also present in Fig. 3 deblurgsglts
on a real 3-D fluorescence two-channel widefield-microscipgk
using a standard diffraction-limited PSF model [1]. As wbtef-
erence, we use the confocal counterpart of the acquired data
this last example, we once more verify that—in contrast te—TV
the Frobenious-norm regularizer leads to solutions thatalsuffer
from mixing or blocking artifacts. It can thus be consideasd bet-
ter choice, especially when one has to deal with images treist
mostly of ridges and filament-like structures.

5. CONCLUSIONS

We have proposed a second-order extension of TV for the re-

construction of 3-D images. We have demonstrated that thétre
ing Hessian Frobenius-norm regularizer can perform bttt TV
for images that consist mostly of ridges and smooth tramsitiof
intensities, both from a qualitative and quantitative poifview. In
particular, our regularizer can match continuous intgnstiations
better. Therefore, it can circumvent the staircase effestsell fine-
scale-structure deformations that occur with TV.
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Fig. 3. Restoration results on a real two-channel fluorescenht-cel
stack of size352 x 512 x 96. Maximume-intensity projection (along
the z-axis) of the (a) widefield stack, (b) reference confetack,
(c) TV reconstruction, (d) Hessian Frobenius-norm regoicsion.
The details of this figure are better seen in the electronisioe of
this paper by zooming on the screen.
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