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ABSTRACT

We investigate a non quadratic regularizer that is based on the Hes-
sian operator for dealing with the restoration of 3-D imagesin a vari-
ational framework. We show that the regularizer under studyis a
valid extension of the total-variation (TV) functional, inthe sense
that it retains its favorable properties while following a similar un-
derlying principle. We argue that the new functional is wellsuited
for the restoration of 3-D biological images since it does not suffer
from the well-known staircase effect of TV. Furthermore, wepresent
an efficient 3-D algorithm for the minimization of the corresponding
objective function. Finally, we validate the overall proposed regular-
ization framework through image deblurring experiments onsimu-
lated and real biological data.

Index Terms— 3-D image restoration, Hessian matrix, Frobe-
nius norm, mixed-norm regularization.

1. INTRODUCTION

In widefield microscopy, the imaging of biological specimens
is often carried out by recording focal series of 2-D images.These
images are then stacked together to generate a 3-D volume. The im-
age series acquired using this method contain in-focus features of
the specimen from the focal-plane and out-of-focus features from all
adjacent planes [1]. This blurring effect is worsened by thepresence
of random noise, which is intrinsic to the acquisition process, and
results in degraded 3-D images. This severely reduces the ability to
clearly distinguish fine specimen structures. To increase the resolu-
tion and enhance the quality of images, 3-D restoration can serve as
a pre-processing technique that aims to cancel-out the degradations
due to the optics of the acquisition system.

Image deblurring amounts to estimating an imagef from the in-
tensity measurementsy. Since a widefield microscope can be mod-
eled in intensity as a linear space-invariant system [1], the image-
observation model can be formulated as

y = Af +w , (1)

whereA is a linear blurring operator, specific to the optics of the
microscope, andw is the unknown noise. The recovery off from
y is an ill-posed problem[2], due to the presence of noise and the
operatorA which is usually ill-conditioned or non-invertible. To
obtain a reasonable estimate off , one must thus take into account the
image-formation and acquisition processes as well as any available
prior information about the properties of the image to be restored.

A common estimation strategy is to form an objective function
which quantifies the quality of a given estimate and has the form

J (f) = Jdata(f) + τR (f) . (2)
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The first term is known asdata fidelityand measures the consistency
between the estimate and the measurements, while the secondone is
the regularizationterm whose role is to impose a desirable bias on
the derived solution. Theregularization parameterτ ≥ 0 balances
the contribution of the two terms. Image deblurring can thenbe cast
as the minimization of (2).

As has been shown in prior studies, the choice of the regulariza-
tion term can play a substantial role in the quality of the restoration.
Several regularization approaches have been proposed so far for im-
age deblurring, with a state-of-the art method being based on mini-
mizing the total-variation (TV) semi-norm [3]. Its successand wide
use for the past two decades can be mainly attributed to its ability
to produce results with well-preserved and sharp edges. Moreover,
its compatibility with efficient optimization methods makes it very
attractive. This is a crucial factor because the restoration of 3-D im-
ages involves processing huge amounts of data. However, TV reg-
ularization cannot be considered as a universal choice irrespectively
of the class of images under consideration. In particular, it has been
recently shown that Hessian-based regularizers are betteradapted for
the restoration of biomedical images in the 2-D case [4].

In this paper, we extend our prior work [4] to deal with the prob-
lem of 3-D image restoration. Specifically, we propose in Section 2 a
higher-order non quadratic functional that is a valid extension of the
TV semi-norm. The proposed regularizer is based on the Hessian
Frobenius-norm and retains most of the favorable properties of TV,
while it can better model the properties of biological images with-
out introducing the undesired staircasing effect of TV. In Section 3,
we devise a fast algorithm whose structure is optimized for the 3-D
problem. Finally, we perform in Section 4 experiments whereour
approach is compared with TV on both synthetic and real measure-
ments. We then discuss our results and the relevance of our approach
for biomedical 3-D data.

2. HIGHER-ORDER REGULARIZATION

Let f be a continuously differentiable 3-D image. The TV semi-
norm off is then defined as

TV(f) =

∫

Ω

‖∇f (x)‖2 dx , (3)

where∇f is the gradient of the image,‖∇f‖2 is its Euclidean norm,
andΩ ⊂ R

3. It is well-known that the first-order derivative off in
the direction specified by the unit-norm vectoru is given by Duf =
〈∇f, u〉. With the aid of directional derivatives and by representing
u in spherical coordinates as

u = (sin θ cosφ , sin θ sinφ , cos θ) , θ ∈ [0 , π] , φ ∈ [0 , 2π),

we can equivalently express TV as

TV(f) =
1

q

∫

Ω

∥
∥D(θ,φ)f (x)

∥
∥
L2(S)

dx, (4)



whereq = ‖sin θ cos φ‖L2(S), S = [0, π]× [0, 2π), and D(θ,φ) is
the first directional derivative expressed in terms of the polar angle
θ and the azimuthal angleφ.

According to (4), TV can be interpreted as a mixedL1-L2 norm
where theL1-norm acts on the image domain while theL2-norm
acts on the domain specified by the angles(θ, φ) of the directional
derivative. As shown below, this new interpretation of the TV func-
tional permits us to extend its definition to higher-order differential
operators. Indeed, a straightforward way to extend TV so as to in-
clude higher-order differential operators is by replacingD(θ,φ)f (x)
in (4) by a higher-order directional derivative.

Following this approach, our work focuses on a second-order
extension of TV. Accordingly, we define our new functional as

R(f) =
1

q2

∫

Ω

∥
∥D2

u,vf (x)
∥
∥
L2(S2) dx, (5)

where D2u,v is the second-order directional derivative on the domain
specified by the unit-norm vectorsu andv. The second-order di-
rectional derivative is defined as D2u,vf (x) = Du (Dvf) (x) =

uTHf (x)v, whereHf is the Hessian matrix off expressed as

Hf =






fxx fxy fxz

fyx fyy fyz

fzx fzy fzz




 , (6)

with fij (x) =
∂2

∂i ∂j
f (x).

Interestingly, as proven in Proposition 1, the functional in (5) is
equivalent to

R(f) =

∫

Ω

‖Hf (x)‖F dx, (7)

where the integrand corresponds to the Frobenius-norm of the Hes-
sian off at coordinatesx.

Proposition 1. TheL2-norm of the second-order directional deriva-
tive off at coordinatesx is proportional to the Frobenius-norm of
the Hessian matrix‖Hf (x)‖F .

Proof. The second-order directional derivative off can be written as
a function of the Hessian eigenvalues. Specifically, since the Hessian
matrix is symmetric, we use the spectral-decomposition theorem and
we express the second-order directional derivative as

D2
u,vf (x) = u

T
QΛf (x)QT

v

=
(

Q
T
u
)
T

Λf (x)
(

Q
T
v
)

, (8)

whereΛf is a 3 × 3 diagonal matrix with the eigenvalues of the
Hessian matrixHf at coordinatesx andQ is a3 × 3 orthonormal
matrix with the corresponding eigenvectors in its columns.Next we
show that we can always obtain such a decomposition withQ being
a rotation matrix.

In orderQ to be a rotation matrix, it should satisfy the following
two conditions:

(a)QT
Q = I and (b) det(Q) = 1 .

It is clear that condition (a) is satisfied sinceQ is by definition or-
thonormal. In addition, it is easy to show from (a) that det(Q) =
±1. In the case where det(Q) = −1, we can always chooseQ′ =
−Q with det(Q′) = 1 and decomposeHf as

Hf = Q
′
Λf (x)Q

′T = (−Q)Λf (x) (−Q)T

= QΛf (x)QT . (9)

We therefore write (8) as

D2
u,vf (x) = u

′T
Λf (x)v′ =

3∑

k=1

λku
′
kv

′
k , (10)

whereu′ andv′ correspond to rotated versions ofu andv, respec-
tively, andλk to the diagonal elements of the matrixΛf (x). To
compute theL2-norm of the second-order directional derivative we
express the unit-vectorsu′ andv′ in spherical coordinates as

u
′ = (sin θ cosφ , sin θ sinφ , cos θ) , θ ∈ [0 , π] , φ ∈ [0 , 2π) ,

v
′ = (sinα cos β , sinα sin β , cosα) , α ∈ [0 , π] , β ∈ [0 , 2π) .

Based on (10), we then obtain

∥
∥D2

u,vf (x)
∥
∥
L2(S2) =

(∫

S2

∣
∣D2

u,vf (x)
∣
∣
2
sin θ sinα dV

)1/2

=

√

16π2

9
(λ2

1 + λ2
2 + λ2

3)

=
4π

3
‖Hf (x)‖F , (11)

where dV = dθ dφ dα dβ.

From Definition (7), we can see that the proposed functional
corresponds to a convex regularizer since it arises from theintegra-
tion of a linear operator [5]. Moreover, it is easy to verify that our
regularizer also retains the important properties of TV, namely, ho-
mogeneity, rotation, and translation invariance.

Since the Frobenius norm of a matrix is equal to the Euclidian
norm of its vectorized version, we can also write (7) as

R(f) =

∫

Ω

‖Uf (x)‖2 dx , (12)

whereU is a differential operator defined asU =
{
∂ii,

√
2∂ij

}

i6=j
.

This reformulation of the Hessian Frobenius-norm regularizer is ad-
vantageous for the description of the minimization algorithm we
present in Section 3.

3. MINIMIZATION OF THE OBJECTIVE FUNCTION

3.1. Majorization-Minimization Approach

In this section, we depart from the continuous domain and we
consider the discrete formulation of the image-restoration problem.
Assuming that additive Gaussian noise is degrading the measure-
ments, the appropriate data term is quadratic. Thus, the overall ob-
jective function reads as

J (f) =
1

2
‖y −Af‖22 + τR (f) , (13)

whereA ∈ R
N×N is the convolution matrix describing the blurring

operation andy, f ∈ R
N are theN -dimensional rasterized observed

and unknown images, respectively, withN = n1 × n2 × n3.
Defining theℓ1 norm of a vector fieldu = (u1, u2, . . . ,uN ) ∈

R
N×k as‖u‖1 =

∑

1≤i≤N |ui|, where|ui| =
(
∑

1≤j≤k u
2
i,j

)1/2

,

we re-write the proposed regularizer in its discrete form as

R(f) = ‖Uf‖1 =
N∑

i=1

∣
∣(Uf)i

∣
∣ , (14)



where(·)i denotes theith element of the argument.
We minimize (13) following amajorization-minimization(MM)

approach [4, 6, 7]. To develop a MM-based algorithm, we first derive
an appropriate quadratic majorizerQR (f ; f

′) of our penalty function
R (f). To do so we employ the inequality

√

g (x) ≤
√

g (y)

2
+

g (x)

2
√

g (y)
, (15)

that holds true for any general functiong (·) : R 7→ R, ∀ (x, y) :
g (x) ≥ 0, g (y) > 0, with equality in (15) if and only ifg (x) =
g (y). Using the property that the majorization relation is closed
under the formation of sums and non-negative products [7], we can
then show that the function

QR

(

f ; f (t)
)

=
1

2

∥
∥
∥Uf

(t)
∥
∥
∥
1
+

1

2

N∑

i=1

∣
∣(Uf)i

∣
∣2

∣
∣(Uf (t))i

∣
∣

(16)

is a valid majorizer ofR (f) at the fixed pointf (t).
Since the data-fidelity termJdata(f) in (13) is quadratic, the fun-

tionQ (f ; f ′) = Jdata(f) +QR (f ; f
′) is itself a quadratic majorizer

of the complete objective functionJ (f). This implies that the mini-
mization of the resulting majorizer amounts to solving the system of
linear equations

(

A
T
A+ τUT

W
(t)

U
)

︸ ︷︷ ︸

S(t)

f
(t+1) = A

T
y , (17)

whereW(t) is anN ×N block-diagonal matrix with diagonal com-
ponents

(

W
(t)

)

ii
=

1

2
∣
∣(Uf (t))i

∣
∣
, i ∈ [1, N ] . (18)

To solve (17), we then employ an efficient preconditioned conjugate-
gradient (PCG) method [8] with a diagonal preconditioner. Specif-
ically, we use a left-and-right preconditioning scheme that exploits
the diagonal part ofS(t), which is most efficient in our 3-D setting
since no FFT is involved.

We describe now how these diagonal-matrix components can
be determined. Let us consider the generic matrix structureM =
BTDB, whereB andD areN × N circulant and diagonal ma-
trices, respectively. Given a rasterized image vectorc, the prod-
uct c′ = Mc in vector notation corresponds to the discrete spatial-
domain operation

c′ =
∑

ni

bT[n2]b[n1]d[· − n2]c[· − (n1 + n2)], (19)

wherec, c′ are the corresponding image sequences andb, d are the
filter and the pointwise-multiplication map associated to the matri-
cesB,D, respectively. Based on (19), we can show that the expres-
sion of the diagonal part ofM corresponds to the spatial-domain
pointwise-multiplication map

D[k] =
[

d ⋆ (b • b)T
]

[k], (20)

where⋆ and• denote discrete convolution and pointwise multipli-
cation, respectively. From its definition,S(t) decomposes as a sum
of matrices of the same structure asM. From (20), and by linearity,
the diagonal part of the whole system matrix can thus be determined.
Note that theATA term appearing in (17) can be handled in (20) as
a degenerate case whered reduces to the identity.

Table 1. PSNR comparisons of TV and Hessian Frobenius-norm
regularization on two test stacks of images.

Data Stack A Stack B

Methods Blurred TV Frob. Blurred TV Frob.

B
S
N
R 15 dB 23.93 26.19 26.35 27.92 30.51 30.58

20 dB 24.34 26.65 26.86 28.27 30.89 30.97

3.2. Relation between MM and Lagged-Diffusivity

One of the standard approaches for minimizing (13) under TV
regularization is the method oflagged diffusivitythat was first pro-
posed in [9]. This method is based on the Euler-Lagrange equation
and leads to an elliptical partial differential equation (PDE). To solve
this PDE a fixed-point iterative approach was presented in [9]. The
global convergence of its discrete approximations was established
in [10].

Following a similar approach for our continuous regular-
izer (12), the corresponding Euler-Lagrange equation leads to the
fourth-order PDE

g (f) = A∗ (Af − y) + τU ·
(

Uf
‖Uf‖2

)

. (21)

The global minimizer of the objective function is then foundas a
sequence of solutions to the system of equations

A∗Af (t+1) + τL
(

f (t)
)

f (t+1) = A∗y , (22)

whereA∗ is the adjoint of the blurring operatorA andL (f) is an
operator whose action onz is given by

L (f) z = U ·
(

Uz
‖Uf‖2

)

. (23)

This minimization strategy earns the name oflagged diffusivitybe-
cause, in order to obtain the next iteratef (t+1) that closer approxi-
mates the solution to the minimization problem, one has to solve a
PDE whose diffusivities are fixed and depend on the previous iterate
f (t). Upon discretization of the solution, this iterative approach co-
incides with the finite MM method we have proposed in Section 3.1.

4. EXPERIMENTS

To validate the effectiveness of the proposed Hessian-based reg-
ularization framework, we provide experimental results for the task
of 3-D image deblurring. We compare our results with TV on two
stacks of images. In our experiments, we use a Gaussianpoint-spead
function(psf) of support20 × 20 × 10. The standard deviation for
the Gaussian PSF changes linearly in the z-axis fromσa = 2 to
σb = 10. In Table 1, we provide numerical results in terms of PSNR
for two BSNRs(BSNR = var[Af ] /σ2) corresponding to differ-
ent levels of Gaussian noise. For the sake of fairness, the results
reported for each regularizer are obtained using the individualized
regularization parameterτ that gives the best PSNR performance.
For the discretization of the differential operators, we use forward fi-
nite differences. Finally, regarding the minimization of the objective
functions, we run 10 successive quadratic-bound minimizations and
for each one we use the PCG algorithm with a stopping criterion set
to either reaching a relative normed difference of10−5 between two
successive estimates, or a maximum of 20 iterations.

Apart from the quantitative results of Table 1, the efficacy of
our approach can be also appreciated visually from the representa-
tive deblurring examples shown in Figs. 1 and 2. In these examples,



(a) (b) (c)
Fig. 1. Restoration results on the stack A of size256 × 256 × 52.
Maximum-intensity projection (along the z-axis) of the (a)blurred
stack (PSNR=24.34 dB), (b) TV reconstruction (PSNR=26.65 dB),
(c) Hessian Frobenius-norm reconstruction (PSNR=26.86 dB).

(a) (b) (c)
Fig. 2. Restoration results on the stack B of size330 × 330 × 197.
Maximum-intensity projection (along the z-axis) of the (a)blurred
stack (PSNR=27.92 dB), (b) TV reconstruction (PSNR=30.51 dB),
(c) Hessian Frobenius-norm reconstruction (PSNR=30.58 dB).

despite the seemingly small differences in PSNR improvement be-
tween the two regularizers, we ascertain that, while TV regulariza-
tion introduces heavy staircase artifacts mixing structural details of
the images, our regularizer matches better the intensity variations
and results in a better reconstruction. To evaluate the practical rel-
evance of our approach, we also present in Fig. 3 deblurring results
on a real 3-D fluorescence two-channel widefield-microscopystack
using a standard diffraction-limited PSF model [1]. As visual ref-
erence, we use the confocal counterpart of the acquired data. In
this last example, we once more verify that—in contrast to TV—
the Frobenious-norm regularizer leads to solutions that donot suffer
from mixing or blocking artifacts. It can thus be consideredas a bet-
ter choice, especially when one has to deal with images that consist
mostly of ridges and filament-like structures.

5. CONCLUSIONS

We have proposed a second-order extension of TV for the re-
construction of 3-D images. We have demonstrated that the result-
ing Hessian Frobenius-norm regularizer can perform betterthan TV
for images that consist mostly of ridges and smooth transitions of
intensities, both from a qualitative and quantitative point of view. In
particular, our regularizer can match continuous intensity variations
better. Therefore, it can circumvent the staircase effectsas well fine-
scale-structure deformations that occur with TV.
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(a) (b)

(c) (d)

Fig. 3. Restoration results on a real two-channel fluorescent-cell
stack of size352× 512× 96. Maximum-intensity projection (along
the z-axis) of the (a) widefield stack, (b) reference confocal stack,
(c) TV reconstruction, (d) Hessian Frobenius-norm reconstruction.
The details of this figure are better seen in the electronic version of
this paper by zooming on the screen.
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