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ABSTRACT

Inverse problems with shot noise arise in many modern biomedical
imaging applications. The main challenge is to obtain an estimate of
the underlying specimen from measurements corrupted by Poisson
noise. In this work, we propose an efficient framework for photon-
limited image reconstruction, under a regularization approach that
relies on matrix-valued operators. Our regularizers involve the Hes-
sian operator and its eigenvalues. They are second-order regularizers
that are well suited to biomedical images. For the solution of the aris-
ing minimization problem, we propose an optimization algorithm
based on an augmented-Lagrangian formulation and specifically tai-
lored to the Poisson nature of the noise. To assess the quality of the
reconstruction, we provide experimental results on 3D image stacks
of biological images for microscopy deconvolution.

Index Terms— Poisson noise, photon-limited imaging, Hessian
operator, Schatten norms, ADMM.

1. INTRODUCTION

Fluorescense microscopy is a valuable tool for biologists.It al-
lows them to observe and study the structure of specimens butfaces
two basic limitations. The first limitation is the presence of an out-
of-focus blur which reduces the resolution of the acquired image
stacks and the ability to clearly distinguish fine structures. This
blur is an inherent limitation encountered in every diffraction-limited
optical imaging system. The second limitation is the measurement
noise which further degrades the quality of the recorded images. In
many cases, due to practical constraints such as short exposure-time
or photo-toxicity, the acquisition is performed under low-light con-
ditions. Then, the most dominant source of noise is quantum (or
shot) noise [1], which is signal-dependent and obeys a Poisson dis-
tribution. Together, these two limitations can have a severe negative
impact on biological studies.

To mitigate the degradations due to the optics of the acquisition
system and to attenuate the measurement noise, Poisson 3D image
restoration can serve as a pre-processing technique.

1.1. Prior Work

Many reconstruction algorithms have been proposed for solving
Poisson inverse problems. Most of these methods can be interpreted
as optimization techniques of an objective function. For instance, the
Richardson-Lucy (RL) algorithm [2, 3] corresponds to computing
a Poisson maximum likelihood (ML) estimate. Another approach,
which is widely followed, is to obtain the solution as a penalized
ML estimate. In this case, one of the most popular penalties is based
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on the total variation (TV) semi-norm [4] and an efficient algorithm
for computing the solution has been recently proposed [5]. TV pro-
duces good estimates for a variety of imaging applications.However,
it also promotes piecewise-constant solutions which can lead to an
oversharpening of the image contours. This is known as staircase
effect and can be a serious drawback in biomedical applications.

Having in mind that biomedical images consist mostly of ridges
and filament-like structures, which can be modeled by piecewise-
smooth intensity variations, second-order regularizers seems to be
more appropriate than TV and can eliminate the staircase effect. This
motivated us to recently introduce a family of non-quadratic second-
order regularizers [6, 7]. They are based on the Hessian eigenvalues
and can be considered as second-order extensions of TV, in the sense
that they satisfy exactly the same invariance properties while involv-
ing second-order derivatives instead of first-order ones. Their main
feature is that they favor piecewise-smooth solutions, as opposed to
TV which favors piecewise-constant ones. Therefore, for the type of
images met in biomedical imaging applications, second-order regu-
larization provides reconstructions that better approximate intensity
variations. Currently our regularizers are combined efficiently with a
quadratic fidelity term, which is appropriate only for Gaussian noise.

1.2. Contributions

The contributions of this work are twofold:

• We introduce a family of derivative-based regularizers for3D
photon-limited image reconstruction. These are second-order
non-quadratic regularizers and depend on the eigenvalues of
the Hessian operator computed at every voxel of the image
volume.

• We lift the restriction of a quadratic data term and propose an
optimization algorithm which is specifically tailored to the
Poisson nature of the noise. Our proposed algorithm is based
on an augmented-Lagrangian framework and follows the
same principles as other existing algorithms in the literature
(see [5], for instance). However, while the latter are designed
to work with regularizers involving scalar and vectorial-
valued operators, ours is designed to handle matrix-valued
linear operators. This generalization is important since it
introduces additional difficulties which cannot be handledin
a trivial way. Moreover, the splitting approach we employ is
novel and reduces the number of required auxiliary variables.

The paper is organized as follows: In Section 2, we formulatethe
problem and introduce our regularizers. In Section 3, we describe
our proposed 3D Poisson restoration algorithm. Finally, inSection 4,
we perform deconvolution experiments on 3D biomedical images to
assess the performance of our approach.



2. POISSON INVERSE PROBLEMS

2.1. Problem Formulation

Our approach for reconstructing the underlying intensities from
the measurements is based on the image-formation model

y = T (Kx+ b) , (1)

whereK ∈ R
M×N is a matrix that models the spatial response of

the imaging device, for instance thepoint spread function (psf) of
the microscope,b ∈ R

M
+ is constant and models the background

intensity of the image,T is a degradation operator that models the
measurement noise, andy ∈ R

M
+ , x ∈ R

N
+ are the vectorized ver-

sions of the observed image and the image to be estimated, respec-
tively. Both x andy are assumed to be non negative valued. We
further expand (1) by noting that the unobserved intensitiesx of the
underlying image are related to other photon intensitiesλ (which
are also unobserved) through the relationλ = Kx+b. For the ele-
ments ofλ to be interpreted as photon intensities, we need to make
the hypothesis thatλ ∈ R

M
+ . This hypothesis is consistent with the

idea thatK represents a linear degradation effect, such as blur.
Under the basic photon-limited imaging model, the measure-

ment noise implied byT in (1) is signal-dependent. In particular,
the observed imagey can be considered as a vector containing the
samples of a random sequenceY = (Y1, . . . , YM ). TheM ran-
dom variablesYm are conditionally independent uponλ, and each
one follows a Poisson distribution with rate parameterλm, so that
Ym ∼ Pois(Ym|λm). The likelihood ofx is expressed as

p (Y = y|x) =
M∏

m=1

e−[Kx+b]m [Kx+ b]ymm
ym!

, (2)

where[·]m indicates themth element of the vector argument.
One standard approach to recoverx from the measurementsy is

to minimize the negative log-likelihood

fL (x)=1
T (Kx+ b)− y

T log (Kx+ b) + ιC (x) , (3)

where1 is a vector of sizeM whose elements are set to 1 andιC
is the indicator function of the convex setC = R

N
+ that represents

the non negativity constraints on the solution. The convention is that
ιC (x) takes values0 for x ∈ C and∞ otherwise. In order for (3) to
be consistent with (2), the convention that0 log (0) = 0 is also used.
The minimizer of (3) is equivalent to the ML estimate. One wayto
obtain it is by using the RL algorithm, which is an iterative multi-
plicative gradient-type technique [2, 3]. Unfortunately,the ill-posed
nature of the problem implies that the operatorK for the cases of
practical interest is either ill-conditioned or singular,and the corre-
sponding ML estimator has a large variance. For this reason,the RL
algorithm should be terminated early in practice, just after few itera-
tions. Otherwise, the noise gets amplified and results in an estimate
dominated by noise.

To alleviate this amplification of the noise, one can insteadmin-
imize the penalized version of the negative log-likelihoodgiven by:

f (x) = fL (x) + φ (x) , (4)

where the role ofφ is to constrain the set of plausible solutions. The
minimizer of (4) leads to a maximuma posteriori (MAP) estimate,
with φ (x) being interpreted as the negative logarithm of the prior
distribution of the underlying imagex. Note that the minimization
of (4) also arises from a variational viewpoint, with (4) considered
as an energy functional consisting of two terms: the data fidelity fL
and the regularizerφ.

2.2. Regularization Approach

Our Hessian Schatten-norm regularizers are defined as [7]

HSp (x) = ‖Hx‖1,p =
N∑

n=1

∥
∥[Hx]n

∥
∥
Sp

, ∀p ≥ 1, (5)

where

[Hx]n =






[∆r1r1x]n [∆r2r1x]n [∆r3r1x]n
[∆r1r2x]n [∆r2r2x]n [∆r3r2x]n
[∆r1r3x]n [∆r2r3x]n [∆r3r3x]n




 (6)

is the discrete Hessian and
[
∆rirjx

]

n
denotes the discrete approxi-

mations of the second-order partial derivatives along two dimensions
of the image (volume) at voxeln. In (5), ‖X‖

Sp
denotes the Schat-

ten norm of order p of a matrixX ∈ R
K×K , defined as

‖X‖
Sp

=

(
K∑

k=1

|σk|
p

) 1
p

, (7)

whereσk corresponds to thekth eigenvalue ofX. Definition (5)
reveals a close relation between our regularizers and the sparsity-
promoting group norms commonly met in compressive sensing
(see [8], for instance). However, an important and non-trivial differ-
ence is that, in (5), the mixed norm is a vector-matrix norm rather
than a vector-vector norm. Therefore, the sparsity is enforced on the
eigenvalues of the Hessian rather than directly on its elements.

3. PROPOSED MINIMIZATION STRATEGY

Based on the photon-limited imaging model (1) and under our
Hessian Schatten-norm regularization (5), a penalized ML estimate
x̂ of the underlying image is obtained as the minimizer

x̂ = argmin
x∈RN

(

f (x) , 1
T (Kx+ b)− y

T log (Kx+ b)

+ τ ‖Hx‖1,p + ιC (x)
)

, (8)

whereτ ≥ 0 is the regularization parameter which balances the
influence of the data fidelity and the penalty term. The form of(8)
is difficult to work with due to the coupling that exists amongthe
fidelity term and the regularizer. Another difficulty stems from the
fact that our regularizers involve matrix-valued (Hessian) instead of
vector-valued operators such as the gradient used in TV.

Next, we describe a novel algorithm which overcomes these dif-
ficulties. To remove the dependency among the fidelity term and
the regularizer, we introduce the auxiliary variablesz1 = Kx + b,
z2 = x and express (8) in the equivalent constrained form

min
x,z2∈R

N

z1∈R
M

1
T
z1 − y

T log z1
︸ ︷︷ ︸

f1(z1)

+ ‖Hz2‖1,p + ιC (z2)
︸ ︷︷ ︸

f2(z2)

. (9)

Our splitting approach differs from the one used in [5], reducing
the number of auxiliary variables from three to two. Since (9)
corresponds to a constrained minimization problem, we solve it
by forming the augmented Lagrangian and employing the ADMM
algorithm [9]. We recall that ADMM solves problems of the general
form

min
Ax+Bz=c

g (x) + f (z) , (10)



Algorithm 1 : Hessian Schatten-norm Poisson image recon-

struction by augmented Lagrangian (HSPIRAL).

Input: y, K, b, τ > 0, α > 0, p ≥ 1,

PD (Projection operator onto the convex set D).

Initialization: x0 = y, s01 = 0, s02 = 0.

Output: x̂ (solution of (8)).

while stopping criterion is not satisfied do

ut
1 ← Kxt + b+ st1;

ut
2 ← xt + st2;

zt+1

1
← 1

2

(

ut
1 −

1

α
+

√

(

ut
1
− 1

α

)2
+ 4y

α

)

;

zt+1
2
← argmin

z2∈R
n

1

2

∥

∥z2 − ut
2

∥

∥

2

2
+ τ

α
‖Hz2‖1,p + ιD (z2);

vt ← KT
(

zt+1
1
− b− st1

)

+
(

zt+1
2
− st2

)

;

xt+1 ←
(

KTK+ I
)−1

vt;

st+1

1
← st1 +Kxt+1 + b− zt+1

1
;

st+1
2
← st2 + xt+1 − zt+1

2
;

t← t+ 1;

end

return xt;

wherex ∈ R
N , z ∈ R

M , A ∈ R
L×N , B ∈ R

L×M , andc ∈ R
L.

This is compatible with the form of Problem (9) and can be verified
by setting in (10)z = (z1, z2), A = (K, IN ), B = −IM+N ,
c = (−b,0), g (x) = 0 andf (z) = f1 (z1) + f2 (z2).

The augmented Lagrangian for Problem (9) is

Lα (x, z,η) = f (z) + 〈η , Ax− z− c〉+
α

2
‖Ax− z− c‖22 ,

(11)

whereη = (η1,η2) ∈ R
M+N corresponds to the dual variables

(Lagrange multipliers) andα > 0 is a penalty parameter. The
ADMM iterations that solve (9) are given by

z
t+1 = argmin

z∈RM+N

f (z) +
α

2

∥
∥z−

(
Ax

t − c+ s
t)
∥
∥
2

2
(12a)

x
t+1 = argmin

x∈Rn

∥
∥Ax−

(
z
t+1 + c− s

t
)∥
∥
2

2
(12b)

s
t+1 = s

t +Ax
t+1 − c− z

t+1 , (12c)

wheres = η/α is the scaled version of the dual variables. The only
remaining task is the solution of the subproblems appearingin (12).

For thez-update of the ADMM, we observe that the argument
in (12a) is decoupled in 2 independent components. Indeed,

f (z)+
α

2

∥
∥z−

(
Ax

t − c+ s
t)
∥
∥
2

2

=

2∑

k=1

fk (zk) +
α

2

∥
∥zk −

(
Akx

t − ck + s
t
k

)∥
∥
2

2
, (13)

thus we can compute eachzt+1
k independently as

z
t+1
k = proxfk/α

(
u
t
k

)
,∀ k = 1, 2, (14)

where proxf (y) is theMoreau proximity operator [10] of a func-
tion f evaluated aty andut

k = Akx
t − ck + stk. The proximal

Table 1. PSNR comparisons on 3D Poisson image deconvolution.

Data
Avg. Photon Methods (PSNR)
Intensity Blurred RL GTK TV HS2 HS1

Stack A
10 20.97 24.23 25.33 25.87 25.99 26.05

50 21.90 26.69 26.27 27.21 27.33 27.40

Stack B
10 20.65 22.66 22.99 23.37 23.44 23.48

50 21.16 24.02 23.35 24.38 24.46 24.48

map proxf1/α
(
ut
1

)
, with ut

1 = Kxt + b + st1, is separable and
is computed component-wise. The solution for each component of
the auxiliary variablez1 is standard and corresponds to finding the
positive root of a second-order polynomial. Based on this, we have

z
t+1
1 =

1

2



u
t
1 −

1

α
+

√
(

ut
1 −

1

α

)2

+
4y

α



 , (15)

where all the operations are performed component-wise. Thenon
standard part of our formulation is the evaluation of the proximal
map proxf2/α

(
ut
2

)
, with ut

2 = xt + st2. To obtain it, we employ
the iterative algorithm that is fully described in our recent paper [7].
This method finds efficiently a numerical solution to the problem

argmin
x∈RN

1

2
‖x− u‖22 + τ ‖Hx‖1,p + ιD (x) ∀p ≥ 1 , (16)

whereD is a convex set. (In our case,D ≡ C).
The x-update (12b) corresponds to solving a quadratic mini-

mization problem whose formal solution is given by

x
t+1 =

(

A
T
A
)−1

A
T (

z
t+1 + c− s

t) (17)

=
(

K
T
K+ I

)−1 (

K
T
(
z
t+1
1 − b− s

t
1

)
+
(
z
t+1
2 − s

t
2

))

,

where (·)T stands for the adjoint operator. Assuming periodic

boundary conditions forx, the matrix
(
KTK+ I

)−1
is diago-

nalized by a fast Fourier transform and the solution is computed
efficiently in the Fourier domain. Similarly to thez-update, the
s-update in (12c) is performed in a decoupled manner as

s
t+1
1 = s

t
1 +Kx

t+1 + b− z
t+1
1 , s1 ∈ R

M

s
t+1
2 = s

t
2 + x

t+1 − z
t+1
2 , s2 ∈ R

N .
(18)

A summary of the overall proposed numerical algorithm, named
HSPIRAL (Hessian Schatten-norm Poisson image reconstruction by
augmented Lagrangian), is provided in Algorithm 1.

4. EXPERIMENTS

To assess the performance of our Hessian Schatten-norm regu-
larization framework, we report results for the task of 3D deconvo-
lution, using two clean confocal image stacks as ground truth and
simulating widefield acquisition with Poisson noise. We compare
the results we obtained using two of our regularizers, forp = 1, 2,
with three alternative approaches, namely the RL algorithm, TV, and
gradient-based Tikhonov regularization (GTK). In our simulations,
we use a 3D psf produced by our software, which is freely available
athttp://bigwww.epfl.ch/algorithms/psfgenerator/, ac-
cording to the Gibson-Lani PSF model. In Table 1, we provide nu-
merical results in terms of PSNR for two different levels of Poisson
noise. Since Poisson noise is signal-dependent, to simulate the dif-
ferent noise levels we multiply the original confocal imagestacks
by the appropriate gain that results in an average number of photons



(a) (b)

(c) (d)

Fig. 1. 3D Poisson-deconvolution results on a stack of microtubules
(Stack A) of size256 × 256 × 52. Maximum-intensity projection
(along the z-axis) of the (a) ground-truth (upper-left) andblurred
(lower-right) stack (PSNR=20.97 dB), (b) GTK (PSNR=25.33 dB),
(c) TV (PSNR=25.87 dB), (d)HS2 (PSNR=25.99 dB).

at every voxel of (10, 50). For the sake of fairness, the results re-
ported for every regularizer under comparison are obtainedusing the
individualized regularization parameterτ that gives the best PSNR
performance. For the RL algorithm, we report the iteration that pro-
duces the highest PSNR score.

From Table 1, we observe that our regularizers provide the best
PSNR scores, with theHS1 penalty achieving a slightly better per-
formance than theHS2. Besides the quantitive comparisons and the
seemingly small PSNR improvement over TV, the efficacy of our
proposed framework can also be visually appreciated from the rep-
resentative deconvolution examples shown in Figs. 1 and 2. In these
examples, we verify that our regularizers restore in a better way the
fine structures of the specimens without introducing severeartifacts.
On the other hand, the RL algorithm does not remove the noise ef-
ficiently, the GTK suffers from ringing artifacts, while TV tends to
oversmooth the images. This tendency is responsible for shuffling
details of the image and broadening its fine structures.

5. CONCLUSIONS

We proposed a framework for 3D Poisson image restoration
subject to second-order derivative-based regularization. The em-
ployed regularizers depend on the eigenvalues of the Hessian op-
erator. We showed experimentally that these functionals are well
suited to biomedical images and provide better reconstruction re-
sults than other popular deblurring techniques. We designed a novel
and efficient optimization algorithm for the minimization of the
corresponding objective functions. Our algorithm is basedon an
augmented Lagrangian formulation and can effectively dealwith the
high dimensionality of the data.
Acknowledgments: The authors would like to thank George von
Dassow for kindly providing the confocal stacks used in Figs. 1-2.

(a) (b)

(c) (d)

Fig. 2. 3D Poisson-deconvolution results on a stack of microtubules
(Stack B) of size272 × 272 × 72. Maximum-intensity projection
(along the z-axis) of the (a) ground-truth (upper-left) andblurred
(lower-right) stack (PSNR=21.16 dB), (b) RL (PSNR=24.02 dB),
(c) TV (PSNR=24.38 dB), (d)HS1 (PSNR=24.48 dB).
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