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ABSTRACT

Inverse problems with shot noise arise in many modern bidcaéd
imaging applications. The main challenge is to obtain aimege of
the underlying specimen from measurements corrupted bgsBoi
noise. In this work, we propose an efficient framework fortphe
limited image reconstruction, under a regularization apph that
relies on matrix-valued operators. Our regularizers wwdhe Hes-
sian operator and its eigenvalues. They are second-omldarezers
that are well suited to biomedical images. For the solutidhearis-
ing minimization problem, we propose an optimization aitdon
based on an augmented-Lagrangian formulation and spdlyifiaia
lored to the Poisson nature of the noise. To assess theyjagthe
reconstruction, we provide experimental results on 3D erstgcks
of biological images for microscopy deconvolution.
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on the total variation (TV) semi-norm [4] and an efficientaithm
for computing the solution has been recently proposed [¥] piio-
duces good estimates for a variety of imaging applicatiblmvever,
it also promotes piecewise-constant solutions which cad te an
oversharpening of the image contours. This is known ascsisar
effect and can be a serious drawback in biomedical appdicsti
Having in mind that biomedical images consist mostly of esig
and filament-like structures, which can be modeled by piesw
smooth intensity variations, second-order regularizesrs to be
more appropriate than TV and can eliminate the staircaseteff his
motivated us to recently introduce a family of non-quadra&cond-
order regularizers [6, 7]. They are based on the Hessiam&gees
and can be considered as second-order extensions of T'¢ gsetise
that they satisfy exactly the same invariance propertigewivolv-
ing second-order derivatives instead of first-order ondgirTmain

Index Terms— Poisson noise, photon-limited imaging, Hessian feature is that they favor piecewise-smooth solutions posed to

operator, Schatten norms, ADMM.

1. INTRODUCTION

Fluorescense microscopy is a valuable tool for biologiktal-
lows them to observe and study the structure of specimerfates
two basic limitations. The first limitation is the presendean out-
of-focus blur which reduces the resolution of the acquiradgde
stacks and the ability to clearly distinguish fine strucsureThis
blur is an inherent limitation encountered in every difffan-limited
optical imaging system. The second limitation is the meament
noise which further degrades the quality of the recordedygmaln
many cases, due to practical constraints such as shortumeptisie
or photo-toxicity, the acquisition is performed under lbght con-
ditions. Then, the most dominant source of noise is quantm (
shot) noise [1], which is signal-dependent and obeys a Boidis-
tribution. Together, these two limitations can have a senegative
impact on biological studies.

To mitigate the degradations due to the optics of the adiprisi
system and to attenuate the measurement noise, Poissonage im
restoration can serve as a pre-processing technique.

1.1. Prior Work

Many reconstruction algorithms have been proposed foirsplv
Poisson inverse problems. Most of these methods can beiieted
as optimization techniques of an objective function. Fetance, the
Richardson-Lucy (RL) algorithm [2, 3] corresponds to comm
a Poisson maximum likelihood (ML) estimate. Another appipa
which is widely followed, is to obtain the solution as a péred
ML estimate. In this case, one of the most popular penakiesased
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TV which favors piecewise-constant ones. Therefore, feityipe of
images met in biomedical imaging applications, seconeoregu-
larization provides reconstructions that better appratérintensity
variations. Currently our regularizers are combined edfidiy with a
quadratic fidelity term, which is appropriate only for Gaaasoise.

1.2. Contributions
The contributions of this work are twofold:

e We introduce a family of derivative-based regularizers3or
photon-limited image reconstruction. These are secoddror
non-quadratic regularizers and depend on the eigenvafues o
the Hessian operator computed at every voxel of the image
volume.

We lift the restriction of a quadratic data term and propase a
optimization algorithm which is specifically tailored toeth
Poisson nature of the noise. Our proposed algorithm is based
on an augmented-Lagrangian framework and follows the
same principles as other existing algorithms in the litset
(see [5], for instance). However, while the latter are dasiy
to work with regularizers involving scalar and vectorial-
valued operators, ours is designed to handle matrix-valued
linear operators. This generalization is important sirtce i
introduces additional difficulties which cannot be handted

a trivial way. Moreover, the splitting approach we employ is
novel and reduces the number of required auxiliary vargable

The paper is organized as follows: In Section 2, we formullage
problem and introduce our regularizers. In Section 3, weriles
our proposed 3D Poisson restoration algorithm. Finall§3eation 4,
we perform deconvolution experiments on 3D biomedical iesap
assess the performance of our approach.



2. POISSON INVERSE PROBLEMS 2.2. Regularization Approach

2.1. Problem Formulation Our Hessian Schatten-norm regularizers are defined as [7]

Our approach for reconstructing the underlying intensitiem al

the measurements is based on the image-formation model HSp (x) = ||7"X|\1A,p = Z H[Hx]anp Vp 21, ®)
n=1
y=T(Kx+b), @ where

whereK € RMX_N is a matrix that models the spatial response of Arx),  [Drgmx],  [Aryex],
the imaging device, for instance tipeint spread function (psf) of A A A
the microscopeb € RY is constant and models the background [(Hx], = (Arirox],  [ArgroX],  [ArgryX], (6)
intensity of the image7 is a degradation operator that models the [Arirsx],  [Argrsx],  [Argryx],

measurement noise, agde R, x € RY are the vectorized ver-
sions of the observed image and the image to be estimatgacres  is the discrete Hessian afd,, ;x| ~denotes the discrete approxi-
tively. Bothx andy are assumed to be non negative valued. Wemations of the second-order partial derivatives along tinwedsions

further expand (1) by noting that the unobserved interssitief the
underlying image are related to other photon intenside@vhich
are also unobserved) through the relathos- Kx + b. For the ele-

ments of\ to be interpreted as photon intensities, we need to make
the hypothesis thax € RYY. This hypothesis is consistent with the

idea thatK represents a linear degradation effect, such as blur.

Under the basic photon-limited imaging model, the measure
ment noise implied byl in (1) is signal-dependent. In particular,
the observed imagg can be considered as a vector containing the

samples of a random sequen¥e = (Y1,...,Yn). The M ran-
dom variablesy;,, are conditionally independent updg and each
one follows a Poisson distribution with rate parametgy, so that
Y ~ Pois(Y»|Am ). The likelihood ofx is expressed as

M

p(Y=ylx)=]]

m=1

e~ [Kx+bl, [Kx + b}y

Yrm!

; @)

where[-]  indicates thenth element of the vector argument.
One standard approach to recoxdrom the measuremengsis
to minimize the negative log-likelihood

fr (x)=1" (Kx+b) —y" log (Kx +b) + i (x), (3)

wherel is a vector of sizel/ whose elements are set to 1 ard
is the indicator function of the convex sét= RY that represents
the non negativity constraints on the solution. The coriveris that
tc (x) takes value$ for x € C andoo otherwise. In order for (3) to
be consistent with (2), the convention thdbg (0) = 0 is also used.
The minimizer of (3) is equivalent to the ML estimate. One @y
obtain it is by using the RL algorithm, which is an iterativeilii
plicative gradient-type technique [2, 3]. Unfortunatehe ill-posed
nature of the problem implies that the operakdrfor the cases of
practical interest is either ill-conditioned or singuland the corre-
sponding ML estimator has a large variance. For this reaberlRLL
algorithm should be terminated early in practice, justrefres itera-
tions. Otherwise, the noise gets amplified and results irstimate
dominated by noise.

To alleviate this amplification of the noise, one can instedut
imize the penalized version of the negative log-likelihgdeen by:

fx)=fo(x)+é(x), 4)

of the image (volume) at voxei. In (5), ||X|\$p denotes the Schat-
ten norm of order p of a matriX € RE*X | defined as

P

K
IX[s, = (Z w) , )
k=1

whereoy, corresponds to théth eigenvalue ofX. Definition (5)
reveals a close relation between our regularizers and thesisp
promoting group norms commonly met in compressive sensing
(see [8], for instance). However, an important and nondridiffer-
ence is that, in (5), the mixed norm is a vector-matrix northea
than a vector-vector norm. Therefore, the sparsity is eefbon the
eigenvalues of the Hessian rather than directly on its etésne

3. PROPOSED MINIMIZATION STRATEGY

Based on the photon-limited imaging model (1) and under our
Hessian Schatten-norm regularization (5), a penalized Mimate
x of the underlying image is obtained as the minimizer

X = argmin(f (x) 217 (Kx +b) —y” log (Kx + b)

xERN
+ 7y, + e (%) ) | (®)

wherer > 0 is theregularization parameter which balances the
influence of the data fidelity and the penalty term. The forng)f
is difficult to work with due to the coupling that exists amottg
fidelity term and the regularizer. Another difficulty stemnerh the
fact that our regularizers involve matrix-valued (Hes}iastead of
vector-valued operators such as the gradient used in TV.

Next, we describe a novel algorithm which overcomes thdse di
ficulties. To remove the dependency among the fidelity terch an
the regularizer, we introduce the auxiliary variables= Kx + b,
z2 = x and express (8) in the equivalent constrained form

min 172, —y" log z1 + | Hzo||, p T (z2) . 9)
X, 29 ERYY e’ i
z €RM f1(z1) f2(22)

Our splitting approach differs from the one used in [5], r@dg

where the role of is to constrain the set of plausible solutions. The (he number of auxiliary variables from three to two. Sincg (9

minimizer of (4) leads to a maximum posteriori (MAP) estimate,

corresponds to a constrained minimization problem, weesdiv

with ¢ (x) being interpreted as the negative logarithm of the priorby forming the augmented Lagrangian and employing the ADMM

distribution of the underlying image. Note that the minimization
of (4) also arises from a variational viewpoint, with (4) satered
as an energy functional consisting of two terms: the datditfdé;,
and the regularizep.

algorithm [9]. We recall that ADMM solves problems of the geal
form

A (10)

g(x)+f(2),



Algorithm 1 : Hessian Schatten-norm Poisson image recon-
struction by augmented Lagrangian (HSPIRAL).

Inmput: y, K, b, 7 >0, >0,p>1,

Pp (Projection operator onto the convex set D).
Initialization: x° =y, s =0, s = 0.

Output: x (solution of (8)).

while stopping criterion is not satisfied do

uf + Kx'+b+s;

ufz +— xt + sé;

Lyt L iy .
2(“1 5T a>,

z4' « argmin 1 |22 — uﬁ”; + & I Hzall, , + o (22);
2z, E€R"

A (w17

«

vt « KT (z’i‘le —b-— st]) + (zé+l — sé);
Xt (KTK +1) 7' v

v

SL1+1 — sL1 + Kxitl +b— zi“;

st;l — sé + xitl — zt;l;
t—t+1;

end

return x‘;

wherex € RV, z € RM, A € RF*YN, B € RF*M andc € R,
This is compatible with the form of Problem (9) and can befiexti
by setting in (10)z = (z1,2z2), A = (K,In), B
¢=(~b,0),g(x) =0andf (z) = fi (z1) + f (22).
The augmented Lagrangian for Problem (9) is

—Insn,

Lo (x,2,m) = f(2)+ (n, Ax—z—c)+ 5 [|Ax —z — c|]3,
(11)

wheren = (m1,12) € RM+Y corresponds to the dual variables

(Lagrange multipliers) andv > 0 is a penalty parameter. The
ADMM iterations that solve (9) are given by
z'" = argmin f (z) + ad Hz — (Axt —c+ st)Hz (12a)
ZERM+N 2
x" = arg min HAx — (th +c— st) Hj (12b)
x€R™
st =s' + Ax"Tt —c— 2" (12c)

wheres = i/« is the scaled version of the dual variables. The only

remaining task is the solution of the subproblems appeanifg2).

For thez-update of the ADMM, we observe that the argument

in (12a) is decoupled in 2 independent components. Indeed,

f@)+5 |z = (Ax' —c+s)|;
2
= ka (zx) + % |z — (Arx" —cx + SZ)Hz , (13)
k=1

thus we can compute eaefj"" independently as

t+1

7, =prox, ., (ui) ,\Vk=1,2, (14)

where prox (y) is the Moreau proximity operator [10] of a func-
tion f evaluated ay andu, = Ayx' — cx + si. The proximal

Table 1. PSNR comparisons on 3D Poisson image deconvolution.

Data Avg. Photon Methods (PSNR)
Intensity Blurred RL GTK | TV HS2 HS1
Stack A 10 20.97 24.23 | 25.33 | 25.87 | 25.99 | 26.05
50 21.90 26.69 | 26.27 | 27.21 | 27.33 | 27.40
Stack B 10 20.65 22.66 | 22.99 | 23.37 | 23.44 | 23.48
50 21.16 24.02 | 23.35 | 24.38 | 24.46 | 24.48

map prox ., (ui), with uj = Kx' + b + s, is separable and
is computed component-wise. The solution for each compoofen
the auxiliary variablez; is standard and corresponds to finding the
positive root of a second-order polynomial. Based on theshave

1 1 1\*> 4
2 o o a

(15)

where all the operations are performed component-wise. ribine
standard part of our formulation is the evaluation of thexpral
map prox, ., (u%), with uy = x* + s5. To obtain it, we employ
the iterative algorithm that is fully described in our recpaper [7].
This method finds efficiently a numerical solution to the pea
(16)

1
arg min  [|x — ull; + 7 [Hx]|, , + 10 (x) ¥p > 1,

x€RN

whereD is a convex set. (In our casP, = C).
The x-update (12b) corresponds to solving a quadratic mini-
mization problem whose formal solution is given by

Xt = (ATA) TLAT (zH +c—s) 17)

= (KTK + I)i1 (KT (z’i+1 —b - sﬁ) + (ngrl — sg)) ,

where (~)T stands for the adjoint operator. Assuming periodic
boundary conditions fox, the matrix (KTK+I)71 is diago-
nalized by a fast Fourier transform and the solution is caexgbu
efficiently in the Fourier domain. Similarly to the-update, the
s-update in (12c) is performed in a decoupled manner as

sﬁ“ =st +Kx'""'+b-— z§+17 s; e RM (18)
t+1 t t+1 t+1 N
sttt =sb 4+ x!T — 2l sy e RY.

A summary of the overall proposed numerical algorithm, ndme
HSPIRAL (Hessian Schatten-norm Poisson image recongiruby
augmented Lagrangian), is provided in Algorithm 1.

4. EXPERIMENTS

To assess the performance of our Hessian Schatten-norm regu
larization framework, we report results for the task of 32a®/o-
lution, using two clean confocal image stacks as groundh taumd
simulating widefield acquisition with Poisson noise. We pamne
the results we obtained using two of our regularizerspfet 1, 2,
with three alternative approaches, namely the RL algoriffivhand
gradient-based Tikhonov regularization (GTK). In our siations,
we use a 3D psf produced by our software, which is freely alstel
athttp://bi gwww. epfl . ch/al gorithns/ psfgenerator/,ac-
cording to the Gibson-Lani PSF model. In Table 1, we provide n
merical results in terms of PSNR for two different levels of$3on
noise. Since Poisson noise is signal-dependent, to sientiatdif-
ferent noise levels we multiply the original confocal imagjacks
by the appropriate gain that results in an average numbéraibps



Fig. 1. 3D Poisson-deconvolution results on a stack of microsul
(Stack A) of size256 x 256 x 52. Maximum-intensity projection
(along the z-axis) of the (a) ground-truth (upper-left) didrred
(lower-right) stack (PSNR=20.97 dB), (b) GTK (PSNR=25.8 d
(c) TV (PSNR=25.87 dB), (dHS> (PSNR=25.99 dB).

at every voxel of (10, 50). For the sake of fairness, the teget
ported for every regularizer under comparison are obtaisét) the
individualized regularization parameterthat gives the best PSNR
performance. For the RL algorithm, we report the iterattuat pro-
duces the highest PSNR score.

Fig. 2. 3D Poisson-deconvolution results on a stack of microsul
(Stack B) of size272 x 272 x 72. Maximume-intensity projection
(along the z-axis) of the (a) ground-truth (upper-left) didrred
(lower-right) stack (PSNR=21.16 dB), (b) RL (PSNR=24.02),dB
(c) TV (PSNR=24.38 dB), (dHS1 (PSNR=24.48 dB).
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