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ABSTRACT

In this work we present a calibration-free parallel magnetic reso-

nance imaging (pMRI) reconstruction approach by exploiting the

fact that image structures typically tend to repeat themselves in sev-

eral locations in the image domain. We use this prior information

along with the correlation that exists among the different MR im-

ages, which are acquired from multiple receiver coils, to improve

reconstructions from under-sampled data with arbitrary k-space tra-

jectories. To accomplish this, we follow a variational approach and

cast the pMRI reconstruction problem as the minimization of an

energy functional that involves a vectorial non-local total variation

(NLTV) regularizer. Further, to solve the posed optimization prob-

lem we propose an iterative algorithm which is based on a variable

splitting strategy. To assess the reconstruction quality of the pro-

posed method, we provide comparisons with alternative techniques

and show that our results can be very competitive.

Index Terms— MRI, Parallel Imaging, compressive sensing,

non-local regularization, NLTV.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful imaging

modality that is widely used in medical applications to provide

anatomical and physiological information of the human body. The

MRI scanners provide data that are samples of the spatial Fourier

transform (a.k.a k-space) of the object that is being imaged. Since

the rate that the k-space data can be collected is inherently limited by

physical and physiological constraints, full sampling of the k-space

can be a very time-consuming process. The relative low speed of an

MRI scanning can be a limiting factor in cases where (a) it leads to

an uncomfortable experience for the patient and (b) it increases the

chance of image quality degradation due to the presence of motion

artifacts. This has triggered the development of MRI techniques

that can accelerate the scanning process by reducing the number of

required measurements but without compromising the image quality.

Parallel MRI (pMRI) techniques make use of spatially dis-

tributed receiver coils to allow for fast MRI acquisition. These

methods exploit the data redundancy provided by the spatial sensi-

tivity from the different coils and allow for a significant reduction

of the number of necessary k-space samples that falls below the

Shannon-Nyquist rate. In general, the solution from pMRI depends

on the knowledge of the spatial sensitivity functions of the multiple

receiver coils, and two strategies have been adapted to cope with this

requirement. The first one utilizes pre-estimated coil sensitivities

or interpolation kernels derived from calibration regions, while the
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second one aims to reconstruct both the underlying image and the

sensitivity maps. The main drawback of the first approach is that the

quality of the reconstructed image heavily depends on the accuracy

of the estimated sensitivity functions. On the other hand, the joint

estimation of the underlying image and the sensitivity functions cor-

responds to solving a non-convex problem with only local solutions,

which is also very challenging.

To deal with these fundamental limitations of pMRI methods,

calibration-free techniques have been introduced, such as SAKE [1]

and CLEAR [2], which do not require any explicit knowledge of the

sensitivity functions. While these approaches are very appealing,

they come with the cost of significant computational complexity due

to the low-rankness constraints that they both impose. In this work,

we follow a different approach and introduce a calibration-free im-

age domain pMRI technique which exploits the correlation of the

different coil images and the non-local self-similarity property of

natural images. The latter property implies that image structures

tend to repeat themselves in several locations in the image domain.

Specifically, we propose to formulate the MRI reconstruction prob-

lem as the optimization of a convex objective function that involves

a vectorial non-local total variation (NLTV) functional.

This paper is organized as follows: in Section 2 we formulate

the pMRI reconstruction problem and in Section 3 we describe our

proposed non-local regularization approach. In Section 4 we intro-

duce our pMRI reconstruction algorithm. Finally, in Section 5 we

perform comparisons with alternative techniques on simulated data

to assess the performance of our method.

2. PROBLEM FORMULATION

We consider MRI acquisition with M receiver coils in two di-

mensions and denote by x ∈ Ω ⊆ R
2 the coordinates in the 2-D

k-space. The relationship between the multi-coil images and the

measurements acquired by the MRI scanner can be mathematically

expressed as:

m (x) = Eu (x) + n (x) . (1)

Here, u (x) = [u1 (x) . . . uM (x)] : Ω 7→ C
M represents the

vector-valued image consisting of the M coil images, E is the

Fourier sampling operator, which is defined according to the k-

space trajectory that is utilized, and n (x) is a complex-valued

Gaussian term which accounts for all possible errors during MRI ac-

quisition, such as scanner imprecisions and stochastic measurement

noise. Each one of the coil images, ui (x), can be further written as:

ui (x) = Si (x) ũ (x) ,∀i = 1 . . .M (2)

where Si (x) corresponds to the sensitivity function of the i-th MRI

coil and ũ (x) is the underlying image.



Based on the forward model of Eq. (1) and assuming that the

complex Gaussian noise in the different coils is uncorrelated1, the

reconstruction of the multichannel data, u, can be cast as the mini-

mization of a cost functional of the form:

J (u) =
1

2
‖m−Eu‖22 + τR (u) . (3)

The first term in Eq. (3) quantifies the proximity of the estimated

data to the measurements, while the second term promotes certain

favorable properties in u. The regularization parameter τ ≥ 0 is

used to balance the contribution of the two terms.

3. NON-LOCAL REGULARIZATION

Recently there has been an increasing research interest in the

development of non-local regularization functionals that can model

certain image properties. The main reason is that non-local varia-

tional techniques seem to have great potentials in capturing infor-

mation about complex image structures and promoting reconstruc-

tions that exhibit the non-local self-similarity property. This has

been supported by results in several imaging applications (see for

example [3, 4, 5]).

Among the best representatives of this class of regularization

functionals is the non-local Total Variation (NLTV) introduced

in [4]. The definition of NLTV is directly related to the notion of

non-local differential operators. We note that while its original def-

inition considers real functions/images, the extension of NLTV to

also cover complex-valued functions is straightforward. Let u (x)
be a complex-valued function u : Ω 7→ C. Then, the non-local

gradient of u evaluated at x, ∇wu (x) : Ω 7→ Ω× Ω, is defined as

the vector of all partial derivatives

∇wu (x,y) = (u (y)− u (x))
√

w (x,y), x,y ∈ Ω, (4)

where w (x,y) : Ω × Ω 7→ R+ is a non-negative and symmetric

weight function, i.e., w (x,y) = w (y,x). In the context of non-

local differential operators another very useful operator is the non-

local divergence, divw~v : Ω × Ω 7→ Ω, which corresponds to the

negative adjoint of the non-local gradient and can be computed as

(divw~v) (x) =

∫

Ω

(v (x,y)− v (y,x))
√

w (x,y)dy. (5)

Based on this non-local framework, Gilboa and Osher defined

the NLTV functional in [4] as:

NLTV (u) =

∫

Ω

‖∇wu (x)‖2 dx. (6)

The choice of the non-local weights w (x,y) plays a central role

in the definition of NLTV. The strategy for computing these weights

is inspired by the non-local means filtering [6] which has been in-

troduced for image denoising. In particular, the weight that links a

pair of image points (x,y) is computed by comparing the distance

of two patches centered on the image points of interest. A widely

used formula for the weight computation is given by

w (x,y) = e
−

∫
Ω

G(t)|u(x+t)−u(y+t)|2

h2 dt
, (7)

where G is a windowing function, such as a Gaussian kernel, and h
is a filtering parameter.

1This assumption is not restrictive since in the case of correlated noise
a whitening process of the measurements can take place as a preprocessing
step.

3.1. Vectorial NLTV

The above definition of NLTV applies to single-channel images.

In our case we wish to regularize the multi-coil image and therefore

we need to adjust the definition of NLTV to suit our needs. To do

so, we first note that the M coil images are highly correlated. This is

clear by inspecting Eq. (2) and observing that each of the coil images

corresponds to a component-wise product of the sensitivity map of

the respective coil and the underlying image ũ. We also note that the

sensitivity maps of the coils typically have a spatial overlap and they

are varying smoothly. Based on the above, we propose to employ

the following vectorial version of NLTV

VNLTV (u) =

∫

Ω

(
M∑

m=1

‖∇wum (x)‖22

) 1
2

dx. (8)

We note that the way our proposed penalty imposes a depen-

dency among the data is twofold. First, it introduces a coupling be-

tween the different channels (coil images) and second it employs the

same non-local weights in all channels. We compute these weights

from a single-channel image that results as the root-sum-of-squares

(RSoS) of the back-projected measurements. Our choice for using

common non-local weights is motivated by the fact that all the coil

images contain the same structural information which is determined

from the unique underlying image ũ.

4. PARALLEL MRI RECONSTRUCTION

Since in practice we have to deal with discrete measurements,

hereafter we will focus on the discrete version of the MRI recon-

struction problem. In this case the multi-coil data u correspond to a

complex vector of size N ·M×1, where N is the number of pixels of

each coil image ui, E ∈ C
KM×NM with K<N , is the MRI system

matrix and m is a complex vector of size K·M×1 consisting of the

measurements.

Based on the discrete counterpart of the pMRI observation

model in (1) and under the vectorial NLTV regularization (8), a

penalized maximum likelihood (ML) estimate u⋆ of the multi-coil

data is obtained as the minimizer

u
⋆ = argmin

m∈CN·M

1

2
‖m−Eu‖22 + τ ‖∇wu‖1,F , (9)

where (∇wu)n =
[
(∇wu1)n . . . (∇wuM )n

]
∈ C

L×M is a matrix

formed by stacking in its ith column the non-local gradient of ui

evaluated at the nth pixel, which is a vector of size L, and ‖·‖1,F is

a mixed vector-matrix norm defined as

‖∇wu‖1,F =
N∑

n=1

∥
∥(∇wu)n

∥
∥
F
, (10)

with ‖·‖F being the Frobenius norm.

The main difficulties in obtaining the minimizer of Eq. (9) are

the non-smoothness of the VNLTV regularizer, which does not allow

us to employ a gradient descent scheme, and the coupling that exists

between the two terms of the objective function. To deal with this

problem, we introduce the auxiliary variable z = ∇wu ∈ X =
C

N×L×M and express (9) in the equivalent constrained form

min
m∈C

N·M

z=∇wu

1

2
‖m−Eu‖22

︸ ︷︷ ︸

f(u)

+ τ ‖z‖1,F
︸ ︷︷ ︸

g(z)

. (11)



Algorithm 1 : Parallel MRI reconstruction.

Input: m, E, τ > 0, α > 0

Initialization: u0 = F
H
m, s0 = 0, t = 0.

while stopping criterion is not satisfied do

z
t+1
n ← Sτ/α

((

∇wu
t
)

n
+ s

t
n

)

;

A←
(

E
H
E − αdivw∇w

)

;

u
t
← A

−1
(

E
H
m− αdivw

(

z
t+1
− s

t
))

;

s
t
← s

t +∇wu
t+1
− z

t+1;

t← t+ 1;

end

ũ⋆ =
(

∑M
m=1 um

Hum

)1/2
;

return ũ⋆;

Now, since we have transformed our original problem to a con-

strained minimization, we can solve it by forming the augmented La-

grangian and employing the ADMM/Split Bregman algorithm [7, 8].

We recall that ADMM solves problems of the generic form,

min
Au+Bz=c

f (u) + g (z) (12)

which covers our problem as a special case by setting A = ∇w,

B = −I , and c = 0.

Ignoring irrelevant constants to the optimization task, the aug-

mented Lagrangian associated to Problem (11) can be written as:

Lα (u,z, s) = f (u) + g (z) +
α

2
‖∇wu− z + s‖2

X
(13)

where s = η/α are the scaled Lagrange multipliers and α > 0 is a

penalty parameter. Now, it is easy to show that the ADMM iterations

that solve (11) are given by

z
t+1 = argmin

z

1

2

∥
∥z −

(
∇wu

t + s
t
)∥
∥
2

X
+

τ

α
‖z‖1,F (14a)

u
t+1 = argmin

u

‖m−Eu‖22+α
∥
∥∇wu−

(
z
t+1−s

t
)∥
∥
2

X
(14b)

s
t+1 = s

t +∇wu
t+1 − z

t+1. (14c)

To solve subproblem (14a) we first note that by using (10) we

can express its argument as:

N∑

n=1

1

2

∥
∥zn −

((
∇wu

t)

n
+ s

t
n

)∥
∥
2

F
+

τ

α
‖zn‖F

and, thus, we can compute each zt+1
n independently as

z
t+1
n = Sτ/α

((
∇wu

t)

n
+ s

t
n

)
. (15)

In Eq. (15) Sγ corresponds to a shrinkage function that accepts a

complex matrix X as an argument and is defined as

Sγ (X) = max
(
‖X‖F − γ, 0

) X

‖X‖F
. (16)

Table 1. nRMSE comparisons on pMRI reconstruction for various

noise levels and reduction factors (RF) using two sampling masks.

RF=5 RF=6 RF=7

SNR 5dB 10dB 15dB 5dB 10dB 15dB 5dB 10dB 15dB

B
ra
in

im
a
g
e

R
V
D

CLEAR 3.93E-2 2.71E-2 2.16E-2 3.71E-2 2.67E-2 2.21E-2 3.82E-2 2.86E-2 2.40E-2

SPIRiT 3.22E-2 2.08E-2 1.66E-2 3.08E-2 2.12E-2 1.77E-2 3.06E-2 2.26E-2 1.94E-2

VNLTV 2.18E-2 1.81E-2 1.61E-2 2.23E-2 1.87E-2 1.72E-2 2.36E-2 2.00E-2 1.88E-2

P
V
D

CLEAR 4.17E-2 2.68E-2 1.99E-2 4.11E-2 2.80E-2 2.16E-2 4.12E-2 2.92E-2 2.31E-2

SPIRiT 3.46E-2 2.03E-2 1.48E-2 3.28E-2 2.08E-2 1.60E-2 3.23E-2 2.17E-2 1.74E-2

VNLTV 2.18E-2 1.77E-2 1.52E-2 2.33E-2 1.94E-2 1.74E-2 2.47E-2 2.11E-2 1.95E-2

K
n
ee

im
a
g
e

R
V
D

CLEAR 4.99E-2 3.42E-2 2.62E-2 4.85E-2 3.49E-2 2.83E-2 5.04E-2 3.82E-2 3.19E-2

SPIRiT 4.79E-2 3.14E-2 2.35E-2 4.68E-2 3.25E-2 2.60E-2 4.75E-2 3.46E-2 2.84E-2

VNLTV 3.02E-2 2.48E-2 2.16E-2 3.08E-2 2.61E-2 2.37E-2 3.36E-2 2.89E-2 2.67E-2

P
V
D

CLEAR 5.05E-2 3.11E-2 2.10E-2 4.94E-2 3.24E-2 2.33E-2 4.99E-2 3.46E-2 2.62E-2

SPIRiT 4.89E-2 2.85E-2 1.85E-2 4.68E-2 2.89E-2 2.01E-2 4.64E-2 3.05E-2 2.25E-2

VNLTV 2.84E-2 2.23E-2 1.83E-2 3.07E-2 2.47E-2 2.11E-2 3.31E-2 2.73E-2 2.44E-2

The subproblem (14b) is a quadratic one and thus the minimizer

can be obtained by solving the following system of linear equations:

(

E
H
E − αdivw∇w

)

u
t+1 =

(

E
H
m− αdivw

(
z
t+1 − s

t)
)

.

(17)

Since the inversion of the matrix in the l.h.s of (17) is prohibitive

due to its large size, we employ instead the conjugate gradient (CG)

method [9]. We have experimentally observed that if we choose the

starting point of CG to be the solution of the quadratic sub-problem

of the previous ADMM iteration (“warm-start” strategy), then as few

as two CG iterations suffice for the convergence of the overall algo-

rithm.

A summary of our overall reconstruction approach is provided

in Algorithm 1.

5. EXPERIMENTS

In this section we report reconstruction results on two 8-channel

k-space datasets of a brain and knee, which are shown in Fig. 1(a)

and Fig. 2(a), respectively. These data were retrospectively under-

sampled using two different sampling masks, namely a Poisson-Disk

(PD) variable density and a random variable density mask at reduc-

tion factors (RF) of 5 - 7. All k-space data retained a 24 × 24 fully

sampled central region. Besides the under-sampling, we also consid-

ered three different levels of i.i.d complex Gaussian noise degrading

the fully sampled k-space measurements. These noise levels corre-

spond to signal-to-noise-ratios (SNRs) of 5, 10, and 15 dBs, respec-

tively.

To assess the performance of our pMRI reconstruction ap-

proach we compared it with two alternative pMRI methods, namely

CLEAR [2] and L1-SPIRiT [10]. CLEAR is an image-domain pMRI

method that imposes a locally low-rank constraint on the multi-coil

images, while L1-SPIRiT is a k-space based method that enforces

both a calibration consistency constraint and wavelet sparsity. The

latter method similarly to VNLTV and CLEAR does not require

knowledge of the coil sensitivities, but still uses an auto-calibration

region. This is also the reason that in our comparisons we consider

sampling patterns that retain a fully sampled central region.

Regarding the implementation details of the methods under

study, the patch-size for the computation of the non-local weights

of VNLTV was set to 7 × 7 and the size of the search window

(constant windowing function) to 11 × 11. For the minimization

of VNLTV we run 50 iterations of the algorithm described in Al-

gorithm 1. The patch size for CLEAR was set to 8 × 8 and the



(a) (b) (c)

(d) (e) (f)

Fig. 1. Reconstruction results of a brain image for a reduction

factor 7 and SNR=10 dB. (a) Fully-sampled and noise-free result,

(b) CLEAR (nRMSE=2.86E-2), (c) VNLTV (nRMSE=2.00E-2), (d)

random variable density sampling pattern, (e) error map for CLEAR,

(f) error map for VNLTV.

thresholding parameters were adaptively adjusted (per iteration) to

be proportional to the median magnitude of the transform domain

coefficients. The number of iterations for the minimization of the

corresponding objective function was set to 50. Finally, the ker-

nel size for L1-SPIRiT was set to 5 × 5 and the ℓ1-norm penalty

was imposed on Daubechies wavelet coefficients. The L1-SPIRiT

reconstruction was performed using a Projection-Onto-Convex-Set

(POCS) algorithm with a maximum of 50 iterations.

In Table 1 we report the reconstruction results of all the three

methods under comparison. The quality of the reconstructions is

measured in terms of normalized root mean squared error (nRMSE).

From these results we observe that especially for high and medium

levels of noise, corresponding to SNRs of 5 and 10 dBs, respec-

tively, our method consistently outperforms the other two methods

regardless the reduction factor and the sampling mask, while for

lower levels of noise our method is still very competitive. Apart

from the quantitative comparisons, the effectiveness of our proposed

approach can also be visually appreciated by inspecting the repre-

sentative examples shown in Figs. 1 and 2. These results confirm

that our method is robust and leads to satisfactory reconstructions

even for high reduction factors and noise conditions.

6. CONCLUSIONS

We proposed a variational framework for a calibration-free

pMRI reconstruction that exploits the non-local self-similarity prop-

erty of natural images and the correlation between the different

MRI coil images. This is accomplished by employing a vectorial

counterpart of the non-local total variation regularizer. Our method

compares favorably with alternative pMRI techniques and shows

significant advantages especially when the measurements are con-

taminated by high levels of noise.
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