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Abstract—We propose a new variational framework for the
problem of reconstructing flow fields from noisy measurements.
The formalism is based on regularizers penalizing the singular
values of the Jacobian of the field. Specifically, we rely on the
nuclear norm. Our method is invariant with respect to funda-
mental transformations and can be efficiently solved. We conduct
numerical experiments on several phantom data and report
improved performance compared to existing vectorial extensions
of total variation and curl-divergence regularizations. Finally,
we apply our reconstruction method to an experimentally-
acquired phase-contrast MRI recording for enhancing the data
visualization.

Index Terms—Denoising, flow fields, vector fields, Jacobian,
regularization, Schatten norms, phase-constrast MRI, PCMRI,
flow MRI, 4D MRI, vectorial total variation.

I. INTRODUCTION

Regularized reconstruction of flow data is becoming a
prominent subject of research. This is partly due to the
appearance of vector fields as the appropriate mathematical
representation of objects of interest (for instance, the dis-
placement field in motion estimation, or the deformation field
for image registration). More importantly, recent progress in
imaging technologies enables direct measurements of flows as
vector quantities. The optical measurement technique known
as the particle image velocimetry (PIV) provides instantaneous
velocity vector measurements in fluid flows [1]. Another
modality used in velocity field imaging is called the phase-
contrast magnetic resonance imaging (PC MRI) in which we
shall specifically be interested. PC MRI allows the acquisition
of blood flow with a volumetric coverage in a time-resolved
fashion [2]. Since measurement noise and imperfections are
always present, it is of interest to develop methods that can re-
move these perturbations efficiently. Practically speaking, such
algorithms are useful for data visualization and quantitative
analysis.

Variational denoising algorithms have been investigated
noticeably from two main perspectives. One approach is to
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impose certain physical attributes as the field measurements
are fundamentally related to some physical phenomenon.
Accordingly, curl and divergence operators are frequently used
since they control the rotational and laminar characteristics, re-
spectively. Combined with vector L1-norms, these regularizers
have been effectively used for denoising fields with disconti-
nuities (occurring at interfaces between different fluids and
object boundaries) [3]–[5] and overperformed their quadratic
counterparts [6]–[8]. Another approach is based on modeling
multi-channel data (for example, color and hyperspectral im-
ages) as vector-valued functions. Likewise, the design goal is
to effectively couple the information coming from different
channels as the discontinuities are preserved. Researchers
have designed vectorial extensions of total variation (TV)
regularization following its success for scalar fields [9]–[11].

In the present paper, we are interested in a reconstruction
framework that is well-suited for flow fields with discontinu-
ities. Our guiding principle is to regulate the vector-variations
through the consideration of a local geometry. To that purpose,
we follow our previous line of research [11] and employ a
regularizer that penalizes the singular values of the Jacobian
operator.

The main contributions of this work are: 1) The formulation
of a regularization scheme that is appropriate for flow field
denoising. The regularizer—termed as nuclear total variation
(TVN)—penalizes the nuclear norm of the Jacobian evaluated
at every spatial location of the flow. We show that this regular-
izer is a valid vectorial extension of TV and highlight connec-
tions with some other well-known vectorial TV extensions. 2)
The derivation of an efficient optimization algorithm—based
on duality principles—that is applicable to large volumes of
data. 3) The illustration of our algorithm achieving better
denoising performance than the existing vectorial TV and curl-
divergence models. We further apply the framework to a real
PC MRI data of blood flow in the human aorta.

II. FLOW FIELD REGULARIZATION

We represent a flow field (d-dimensional vector field with d
components) by the vector function f(x) = (f1(x), . . . , fd(x))
over Rd and consider the generic regularized least-squares
problem:

f? = arg min
f

1
2‖y − f‖22 + τR(f). (1)

In (1), y is the noisy flow while R is the regularizer that
imposes certain characteristics on f?.The parameter τ > 0
controls the strength of regularization. We note that (1) is well-
suited for Gaussian noise and can be modified for different
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a) Blood b) Gradient c) Torus d) Tube
Fig. 1. Illustration of the flow fields used in the experiments: From left to right, they are called 1) Blood flow, 2) Gradient, 3) Torus, and 4) Tube.

noise models [12]. Next, we review some existing regulariza-
tion methods.

As mentioned in Section I, curl-divergence regularization is
commonly used for the reconstruction task. Fundamentally, the
irrotational and incompressible characteristics of fluid flows
are governed by these operators. As a regularizer, they are
combined together in the following form:

CD(f) = τc‖curl f‖1 + τd‖div f‖1, (2)

where ‖ · ‖1 denotes (both scalar and vector) L1-norms1. We
refer the reader to [3] for further details regarding the treatment
of curl and div operators in d-dimensions.

Total variation (TV) is among the most popular regularizers
for imaging applications [13]. TV is applicable to scalar fields,
f : Rd 7→ R, and is defined as

TV (f) =

∫
Rd

‖∇f (x)‖2 dx. (3)

TV does not over penalize high variations of f so that
it preserves intensity discontinuities. Due to this favorable
property, TV has been extended to vector fields with the main
requirement being that the vectorial variants should coincide
with the definition of the scalar one (3) for d = 1.

The most simple and straightforward extension of TV
involves the penalization of the intensity variation of every
component of the vector field in a separable way. This leads
to the following definition of the separable TV [14]:

TVS (f) =

d∑
i=1

∫
Rd

‖∇fi (x)‖2 dx. (4)

While (4) is easy to work with, one potential problem is
that it does not take into account the dependencies (whether
they are physical or not) that might exist among the different
components of the vector data. For this reason, alternative
extensions that provide a coupling between the components
have also been studied. Among them, the most popular one is
the vectorial total variation (VTV) [9] which is defined as

VTV (f) =

∫
Rd

(
d∑
i=1

‖∇fi (x)‖22

)1/2

dx. (5)

1Vector L1-norms are defined as the scalar L1-norm of the magnitude of
the vector field.

A. Nuclear Total Variation

In this work, we propose to solve the flow field denoising
problem in (1) by using an alternative vectorial extension
of TV, termed as nuclear total variation, (TVN). As we
shall show experimentally, the TVN regularizer can model
the dependencies between the flow field components more
efficiently than the existing vectorial TV extensions and, thus,
it leads to improved denoising results.

To motivate the definition of TVN, we first need to establish
a connection with the standard TV functional. The main com-
ponent of TV is the gradient magnitude which is essentially
capturing the intensity variations that are being penalized. As
for the flow field case, the natural extension of the gradient
is the Jacobian operator defined as Jf = [∇f1 . . .∇fd]>.
The Jacobian evaluated at a spatial location x corresponds
to a matrix of size d × d that embodies all possible first-
order information at that specific point. The information about
the strength of the flow field variation is encoded in its d
singular values while the directions of these variations are
encoded in the corresponding singular vectors. This implies
that a vectorial extension of TV should penalize the singular
values of the Jacobian. One way to accomplish this is to define
a generic regularizer of the form

TVp (f) =

∫
Rd

‖Jf (x)‖Sp dx, ∀p ≥ 1 (6)

where ‖·‖Sp is the Schatten p-norm of a matrix [15]. This
norm corresponds to computing the `p-norm of the singular
values of the matrix argument. We note that in the case of
a scalar field the Jacobian reduces to the gradient and the
`p norm (for any p ≥ 1) of its singular value is equal to
the gradient magnitude. Therefore, all the regularizers of the
form (6) are valid vectorial TV extensions. In fact, the two
existing vectorial extensions of TV that couple the components
of the field can be directly obtained from the above definition.
Specifically, for p = 2, we recover the vectorial total variation
(VTV) [9]

TV2 (f) =

∫
Rd

‖Jf (x)‖F dx = VTV (f), (7)

where ‖·‖F is the Frobenius norm, while for p =∞, we obtain
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Algorithm 1: TVN Reconstruction
1: input: y, τ > 0
2: initalization: ψ1 = ξ0 = 0 ∈ X , t1 = 1
3: output: f? – Denoised flow field.
4: repeat
5: ξn ← ΠS

(
ψn + 1

12τ J (y − τJ∗ψn)
)

6: tn+1 ←
1+
√

1+4t2n
2

7: ψn+1 ← ξn +
(
tn−1
tn+1

)
(ξn − ξn−1)

8: n← n+ 1
9: until stopping criterion

10: return (y − τJ∗ξn−1)

the so-called “natural vectorial TV” of [10] defined as

TV∞ (f) =

∫
Rd

‖Jf (x)‖S dx = TVJ (f), (8)

with ‖·‖S being the spectral (or the operator) norm.
Based on the above discussion, it is further possible to derive

another vectorial extension of TV by choosing p = 1. In this
case, we have

TV1 =

∫
Rd

‖Jf (x)‖N dx = TVN (f), (9)

where ‖·‖N is the nuclear norm. From definition (9), we
observe that TVN introduces a coupling between the flow field
components by imposing an `1-penalty on the singular values
of the Jacobian. In other words, TVN promotes flow field
reconstructions where the Jacobian at each spatial location is
approximately of low-rank2. Therefore, it preserves the vari-
ation at the dominant orientation (expectedly the flow itself),
as the small variations (introduced by noise) are reduced.
We note that TVN can be interpreted as a special case of
the regularization family that we recently introduced in [11],
which penalizes the rooted eigenvalues of the structure tensor
of an image. Finally, we show that the TVp regularizers satisfy
the following invariance properties3, which are essential for
any regularizer applied on flow fields (see [3] for a detailed
discussion).

Proposition 1. The regularizer TVp, defined as in (6), is
invariant under translation, scaling (up to a multiplicative
factor), and rotation, where the rotation of a flow field f by
some orthogonal matrix ξ is given by f 7→ ξTf(ξ ·).

III. RECONSTRUCTION ALGORITHM

In the sequel, we consider the discrete version of TVN
and describe a fast algorithm for solving (1). Specifically, we
obtain the denoised flow field as the minimizer of the following
strictly convex energy functional

f? = arg min
f

1
2 ‖y − f‖22 + τ ‖Jf‖1,N , (10)

where f has been vectorized and is of size Rk·d, with k denot-
ing the cardinality of the discrete index set (e.g. the number

2The nuclear norm is the convex envelope of the rank of a matrix.
3Proof is available at http://bigwww.epfl.ch/publications/bostan1501doc01.pdf
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Fig. 2. Denoising of the simulated blood flow: original flow (left), noisy
flow (middle, SNR= 0 dB), and the denoised flow (right, SNR= 16.55 dB)
by using the proposed method.

of voxels in 3-D). Further, ‖Jf‖1,N =
∑k
j=1

∥∥∥(Jf)j

∥∥∥
N

is
a compact notation for the discrete TVN that employs the
mixed `1-nuclear norm and the discrete Jacobian J : Rk·d 7→
Rk×d×d , X . Invoking [16, Lemma 1] and considering
Legendre-Fenchel duality [17], we derive the following dual
definition for the discrete TVN:

TVN (f) = max
ξ∈X ,ξj∈Bd×d

S

d∑
i=1

k∑
j=1

(fi)j ∇
∗ (ξi)j

= 〈f , J∗ξ〉X (11)

where ∇∗ and J∗ are the adjoints of the discrete gradient
and Jacobian, respectively. In (11), ξ = (ξ1, . . . , ξk) ∈ X
is a dual variable with (ξi)j referring to the ith row of the
matrix ξj ∈ Rd×d, while Bd×dS =

{
A ∈ Rd×d : ‖A‖S ≤ 1

}
is the spectral unit-norm ball. Using the min-max theorem, we
rewrite (10) in the equivalent form

max
ξ∈X ,ξj∈Bd×d

S

min
f

1
2

(
‖f − u‖22 + ‖y‖22

)
− ‖u‖22 (12)

where u = (y − τJ∗ξ). Based on this development, the
solution is derived in closed form as f? = (y − τJ∗ξ?), where
ξ? corresponds to the maximizer

ξ? = arg max
ξ∈X ,ξj∈Bd×d

S

‖y‖22 − ‖y − τJ
∗ξ‖22 . (13)

Since the function in (13) is smooth with well-defined gradient
we compute ξ? using an accelerated projected gradient ascent
based on Nesterov’s method [18]. The details of the approach
are given in Algorithm 1. We note that in Algorithm 1 the
operation ΠS refers to the indepckendent projection of each
of the k matrices onto the Bd×dS unit ball. To perform this
operation, we rely on the result of [16, Proposition 1] which
provides a connection between matrix and vector projections.
For a matrix X with singular value decomposition SVD(X) =
USV, the projection is performed as ΠS (X) = XVS+S̃VT.
Here, S+ is the pseudo-inverse of S and S̃ is the diagonal
matrix which contains the projected singular values of S onto
the `∞ unit-norm ball. This projection sets to one the singular
values that exceed this value while leaving the rest untouched.
It is noteworthy that SVD can be performed very efficiently
for 3D flow fields.
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TABLE I
RESULTS OF THE DENOISING EXPERIMENTS ON SIMULATED DATA.

Reconstruction SNR [dB]

SNR [dB] CD TVS VTV TVJ TVN

Tu
be

0 14.47 19.66 17.64 16.42 19.19
10 22.67 27.09 24.62 23.37 26.47
20 30.72 34.89 31.96 30.75 34.20
30 39.29 43.38 40.09 39.05 42.89

To
ru

s

0 13.49 17.59 16.25 14.63 18.07
10 20.37 25.30 23.63 22.24 26.08
20 29.17 33.66 31.78 30.48 34.63
30 38.28 42.34 40.40 39.42 43.60

G
ra

di
en

t 0 15.19 19.51 19.64 18.43 20.77
10 23.24 26.82 27.72 26.81 28.39
20 31.86 35.30 36.54 35.77 36.80
30 41.07 44.40 45.73 45.03 45.89

B
lo

od

0 12.70 15.80 15.33 13.86 16.55
10 19.34 22.44 22.43 21.35 23.45
20 27.44 29.92 30.35 29.62 30.92
30 36.37 38.42 39.01 38.44 39.24

IV. EXPERIMENTAL RESULTS

Based on the above developments, we now conduct exper-
iments in simulated and practical configurations, where all
visualizations are generated with ParaView (Kitware Inc.).

We first consider the problem of recovering a volumetric
(d = 3) flow field from noisy measurements and compare the
reconstruction performance of the following methods: 1) CD
regularization given in (2), 2) TVS regularization given in (4),
3) VTV regularization given in (5), 4) TVJ regularization
given in (8), and 5) Our method TVN given in (9).

We generate a dataset composed of four different three-
dimensional phantom models (see Figure 1). The measure-
ments are obtained by degrading the data with different levels
of additive white Gaussian noise. For all methods, we use the
same optimization algorithm that combines the duality argu-
ments with Nesterov’s method [18]. Note that this algorithm
has been developed in [19] for CD, and in [10], [20], [21]
for the existing vectorial extensions of TV. In all cases, the
stopping criterion is set to either reaching a relative `2-normed
difference of 10−4 between two successive estimates, or a
maximum of 500 iterations. For each regularization method,
the regularization parameter is optimized for the best-possible
SNR performance using an oracle.

By inspecting the results given in Table I, we see that
the TVN outperforms CD and the vectorial TV methods for
most of the simulated fields considered in the experiments.
This demonstrates the ability of our regularization scheme to
preserve the rapid changes at the boundaries (see Figure 2).
One surprising result provided by the experiments is that the
performance of TVS is highly competitive. Even though, this
model simply does not capture the vectorial nature of the flow
data, it achieves the best performance for the Tube phantom.
This is explained by the fact that Tube is a separable phantom
(superposition of 2D flow fields) by construction.

As a supplement to our in silico experiments, we now
consider a volumetric PC MRI dataset in the aortic arch
region of a young, healthy, male volunteer. PC MRI data was
acquired with a sagittal oblique 3D slab covering the entire

Fig. 3. Enhancement of streamline visualizations of a real phase-contrast
MRI recording: Original aortic blood flow data in the aortic arch (top) and the
data after processing with the proposed method (bottom). See text for further
details of the experiment.

aortic arch, using a navigator-gated, ECG-gated RF-spoiled
gradient echo (GRE) sequence [22]. The scan was performed
at a 3T clinical MR scanner (MAGNETOM Trio, Siemens
AG, Healthcare Sector, Erlangen, Germany). The sequence
was motion compensated.

To regularize the data, we assess for the time point of
peak ascending aortic flow. We use TVN with 250 iterations
where we manually calibrate the regularization parameter.
Streamlines are generated for both pre- and post-regularization
states by using identical number of seed points, seed area and
integration length.

A qualitative examination of Figure 3 shows that the amount
of streamline artifacts is decreased especially in the ventral
side of the arch. We also observe that the rapid velocity
changes in the flow (at both the ascending and descending
aorta) are reduced. The latter can be useful for estimating the
first order velocity derivatives that are required for important
physical parameters such as vorticity and flow helicity [22],
[23]. These aspects suggest that our method is beneficial for
the visualization of aortic hemodynamic phenomena.

V. CONCLUSION

We considered the problem of flow field denoising and
employed a regularizer that penalizes the nuclear norm of
the Jacobian of the field.We first conducted denoising experi-
ments on different phantom data involving rapid transitions at
the flow boundaries. We observed that the proposed method
yielded better SNR performance (up to 1.3 dB) than the curl-
divergence regularizers and the existing vectorial extensions
of total variation. We also used our reconstruction algorithm
for enhancing streamline visualizations of a real phase-contrast
MRI recording.
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