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Abstract—This paper presents and analyzes an alternative for-
mulation of the locally low-rank (LLR) regularization framework
for magnetic resonance image (MRI) reconstruction. Generally,
LLR-based MRI reconstruction techniques operate by dividing
the underlying image into a collection of matrices formed from
image patches. Each of these matrices is assumed to have low
rank due to the inherent correlations among the data, whether
along the coil, temporal, or multi-contrast dimensions. LLR
regularization has been successful for various MRI applications
such as parallel imaging and accelerated quantitative parameter
mapping. However, a major limitation of most conventional
implementations of LLR regularization is the use of multiple
sets of overlapping patches. Although the use of overlapping
patches leads to effective shift-invariance, it also results in high
computational load, which limits the practical utility of LLR
regularization for MRI. To circumvent this problem, alterna-
tive LLR-based algorithms instead shift a single set of non-
overlapping patches at each iteration, thereby achieving shift-
invariance and avoiding block artifacts. A novel contribution
of this paper is to provide a mathematical framework and
justification of LLR regularization with iterative random patch
adjustments (LLR-IRPA). This method is compared with a state-
of-the-art LLR regularization algorithm based on overlapping
patches, and it is shown experimentally that results are similar
but with the advantage of much reduced computational load.
We also present theoretical results demonstrating the effective
shift invariance of the LLR-IRPA approach, and we show
reconstruction examples and comparisons in both retrospectively
and prospectively undersampled MRI acquisitions, and in T1
parameter mapping.

Index Terms—compressive sensing, parallel imaging, parame-
ter mapping, locally low-rank regularization

I. INTRODUCTION

CURRENT medical magnetic resonance imaging (MRI)
largely depends on undersampled data acquisitions, com-

bined with specialized reconstruction techniques, to reach the
levels of spatio-temporal resolutions and volumetric coverage
necessary for practical clinical purposes [1],[2],[3]. These
accelerated imaging methods recover images from highly re-
duced k-space samples by implementing optimization schemes
that incorporate a priori knowledge of the underlying image
information. Parallel imaging takes advantage of the inherent
data redundancy available from multiple coil measurements,
while compressed sensing (CS) exploits the low-dimensional
representation of spatiotemporal image characteristics with
respect to suitable sparsifying transforms or matrix decom-
positions [4],[5]. One of the most recently developed ideas in
CS includes the notion of low-rank constrained reconstruction,
which is based on the fact that image data tends to be

highly correlated across, for example, the temporal and/or
coil dimensions [6]. In the globally low-rank (GLR) model,
a time series or multi-coil image set, when treated jointly in
matricized form, can be accurately represented by a matrix of
much lower rank relative to the number of time points or coils
[7]. The reconstruction of such an undersampled image set is
generally posed as a low-rank constrained matrix completion
optimization problem. Several researchers have demonstrated
significant advantages in image quality and improved temporal
resolution from utilizing this low-rank optimization framework
in dynamic imaging [8],[9],[10], parallel imaging [11], func-
tional imaging [12], real-time imaging [13], and accelerated
quantitative parameter mapping [14].

Despite the success of the GLR approach, recent studies
have shown that adopting a locally low-rank (LLR) model—
which assumes correlations across multiple images only within
a relatively small neighborhood of pixels—yields more fa-
vorable results and involves less computational load than
the GLR approach. Studies by [15] have shown that the
LLR framework may provide better performance in terms
of the trade-off between imaging speed and data fidelity.
This framework has been applied in parallel imaging, where
Tzrasko and Manduca introduced an image domain-based
calibration-free method that is based on the observation that
coil sensitivities vary smoothly in space, such that images
are locally-correlated along the coil dimension [16]. In [17],
Zhang et al. demonstrated accelerated T1 and T2 mapping
using a similar concept, except that the local image correla-
tions are assumed to exist across images taken with different
pulse-sequence parameters. Locally low-rank constraints have
facilitated the combination of both compressed sensing and
parallel imaging reconstruction techniques, most notably in
the case of dynamic cardiac and contrast-enhanced imaging
[18]. Importantly, LLR-based reconstruction has the distinct
advantage of requiring considerably less computational load
and memory requirements than its GLR counterpart [16].

However, the LLR approach has certain drawbacks that re-
sult from the particular way of defining the set of patches into
which the underlying image is decomposed. The collection of
patches, or partition, delineates the local regions in the image
series where low-rank submatrices may be formed. Like most
patch-based reconstruction methods, LLR-based reconstruc-
tion can be implemented by using sets of either overlapping or
non-overlapping patches. A partition consisting of overlapping
patches can minimize the appearance of block artifacts as
the transform becomes approximately shift-invariant, but it



2

comes with the disadvantage of high computational cost due to
the large number of patches involved. In contrast, a partition
composed of non-overlapping, covering patches can greatly
reduce the computational load, but it inevitably leads to block
artifacts1. Both of these strategies, therefore, limit the utility
of LLR regularization for practical MRI applications.

Here, we present an implementation of LLR regularization
with iterative random patch adjustments (LLR-IRPA) that
utilizes an effectively shift-invariant, patch-based transform
without high computational cost. This paper promotes the
case of using partitions consisting of non-overlapping patches,
since these types of partitions require the computation of a
much smaller number of singular-value matrix decompositions
(SVD) [19], in comparison to using partitions formed from
overlapping patches. Inspired by the work of Xu and Yin [20],
we propose to randomly shift the partition at each iteration
of the iterative singular value soft-thresholding algorithm
that is used for solving the associated optimization problem
[21]. We compare LLR-IRPA with one of the state-of-the-
art LLR regularization methods, CLEAR [16], which uses
multiple sets of overlapping patches. We show that LLR-IRPA
performs equivalently or even better than CLEAR but with
the added advantage of substantially reduced computational
load. This strategy is not limited strictly to parallel MRI,
but can be extended within the context of MR quantitative
parameter mapping. As also shown in the results, the LLR-
IRPA approach applies equally well to accelerated T1 mapping
from undersampled, calibrationless k-space data.

We provide theoretical support to justify LLR-IRPA, based
on results related to cycle spinning in the wavelet-based
iterative soft-thresholding algorithm (ISTA) [22]. A proof
of convergence of the LLR-IRPA algorithm is given within
the ISTA framework, although all reconstruction methods are
implemented with FISTA, an accelerated version of ISTA.
Similar to non-cycled wavelet-based `1-regularization, locally
low-rank regularization based on a fixed partition lacks the
necessary shift invariance to prevent residual block artifacts.
A key advantage of LLR-IRPA is the simultaneous suppression
of block artifacts and reduction of computational load through
iterative random shifts.

This paper is organized as follows: In section II we describe
the theoretical framework for locally low-rank reconstruction
with and without iterative random patch adjustments. Sec-
tion III presents the experimental methods for undersampled
parallel imaging and quantitative parameter mapping recon-
structions. In section IV, numerical and imaging results are
presented which show equivalent or comparable performance
of LLR-IRPA in relation to CLEAR. In Section V, we discuss
potential implications and extensions of the method, followed
by concluding remarks in Section VI and further theoretical
considerations in the Appendix.

II. THEORY

A. Locally Low-Rank Regularization (LLR) based on a fixed
partition of non-overlapping patches

For simplicity, we consider the case of multi-coil two-
dimensional (2D) imaging, although this framework can be
adapted to more general 3D or multi-contrast imaging. In the
case of 2D multi-coil images, the M ×N images from all C
coils are vectorized into x ∈ CMNC . The forward model of
the data acquisition is then represented by

y = Fx + n (1)
where F : CMNC 7→ CKC is the Fourier undersampling
operator, y ∈ CKC is the undersampled k-space data, and
n ∈ CKC is a vector of i.i.d Gaussian noise, where K < MN .
The reduction factor (RF) for the acquisition is defined as
MN/K.

To form locally low-rank submatrices, the fixed-partition
LLR framework divides the underlying image into a parti-
tion Ω of non-overlapping, covering patches. The number of
patches within Ω is denoted by |Ω|, and each is labeled as
q ∈ Ω, where q = 1, 2, ..., |Ω|. For a given set of patch dimen-
sions, the image plane can be divided in a number of different
ways by shifting the partition by different pixel amounts along
each dimension. Therefore, we denote any particular shift of
the partition Ω by Ωk, where k ∈ {1, 2, ..., NΩ}, and NΩ is
the total number of distinct shifts. Each patch is assumed to
have dimensions m×n, where at the image boundaries either
(i) periodic boundary conditions are imposed, or (ii) the patch
is zero-padded in regions beyond the boundary. This paper
adopts the latter approach.

Let Pq : CMNC 7→ Cmn×C be the linear operator that
extracts from x the image data corresponding to the qth patch
of the partition Ω and forms a matrix Pq(x) whose kth column
is the vectorized patch from the kth coil image, k = 1, 2, ..., C.
(Fig. 1). The underlying image is modeled as locally correlated
within a relatively small region across the coil dimension. The
key assumption is that the coil sensitivities are locally smooth,
so that the cumulative coil sensitivity within a sufficiently
small region, i.e. patch, has a low-order representation with
respect to some basis. Therefore, in cases where the image
patches do not consist entirely of noise, the matrix Pq(x) will
be low rank [16]. This locally-low rank property is central
to the LLR regularization scheme for reconstruction from
undersampled data.

Using the inner product 〈A,B〉Cmn×C = Re(tr(AHB))
over Cmn×C , the adjoint operator P∗q satisfies

〈Pq(x), Y 〉Cmn×C = 〈x,P∗q (Y )〉2 (2)
for any x ∈ CMNC and Y ∈ Cmn×C . Specifically, it is
defined as the linear operator P∗q : Cmn×C 7→ CMNC that
maps all vectorized patches in Pq(x) back to their respective
locations in a vector in CMNC , where all the entries in this
vector are zero except those corresponding to the qth patch.

With these operations, we can now define the linear operator
TΩ : CMNC 7→ X , where X ≡ C |Ω|×mn×C , and each

1Reconstruction example showing block artifacts is included in the supple-
mentary material (Figure S1).
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Fig. 1: (A) The patch location q ∈ Ωt from each image x(j) in the multi-coil set x ( j = 1, 2, ..., C ) is extracted to form the
columns of the locally-low rank matrix Pq(x). The adjoint operation is applied to reconfigure this matrix onto the original
image space. (B) Illustration of the FISTA scheme with random shift of partition Ωt (blue) at iteration t to partition Ωt+1

(red) at iteration t+ 1. The patch is zero-padded in locations outside the image boundary.

component of TΩx is given as
[TΩx]q = Pq(x) (3)

for q = 1, 2, ..., |Ω|. For X, Y ∈ X , the inner product is

〈X,Y〉X =

|Ω|∑
q=1

Re(tr(YH
q Xq)) (4)

and norm ‖X‖X =
√
〈X,X〉X , where the components

Xq,Yq ∈ Cmn×C . The adjoint T ∗Ω : X 7→ CMNC is the
linear operator that satisfies

〈TΩx,Y〉X = 〈x, T ∗Ω Y〉2 (5)
for any Y ∈ X and x ∈ CMNC , and it is defined as

T ∗Ω Y =

|Ω|∑
q=1

P∗qYq (6)

Because all possible partitions consist only of non-
overlapping, contiguous patches that completely cover the
entire image [20], we also have that

T ∗Ω (TΩx) = x (7)
TΩ(T ∗Ω Y) = Y (8)

Since the rank of a matrix is a non-convex function and
minimization of rank is an NP hard problem, matrix rank
is approximated by the Schatten 1-norm, also known as the
nuclear norm. This norm is the closest convex relaxation of
matrix rank. We recall the definition of the Schatten p-norm
[23] of a matrix A ∈ Cn1×n2 as

‖A‖Sp = ‖σ(A)‖p (9)
where σ(A) is the vector of singular values of A, σi(A)
is the ith singular value, and ‖ · ‖p is the `p norm. Based
on the Schatten 1-norm, the patch-based locally-low rank
regularization term can be defined in terms of the mixed `1-S1

norm [24] which, for an element X ∈ X , is defined as

‖X‖1,1 =

|Ω|∑
q=1

‖Xq‖S1 (10)

Accordingly, the optimization problem is formulated as

x̂ = arg min
x∈CMNC

1

2
‖y −Fx‖22 + λ‖TΩx‖1,1 (11)

where λ ≥ 0 is a regularization parameter that balances
the trade-off between data fidelity and the locally low-rank
representation of the image. Equation (11) represents the
general formulation for recovering a locally-low rank image
x from its undersampled measurements, assuming a particular
partition Ω of non-overlapping, covering patches.

B. Optimization

We use the ISTA formalism [25], [26] to solve (11), since
the regularization functional is convex but non-smooth [24].
ISTA and its variants, such as FISTA, are majorization-
minimization (MM) algorithms that successively minimize a
sequence of surrogate functions that upper bound the original
objective function. Using an initial estimate x0, a quadratic
upper bound f of the objective function in (11) can be written
as

f(x,x0) =
α

2
‖x− z‖22 + λ‖TΩx‖1,1 (12)

where z = x0 + 1
αF

H(y − Fx0) and α ≥ λmax(FHF).
The algorithm proceeds by iteratively minimizing (12), setting
x0 to the solution of the previous iteration. To minimize the
function in (12), we use the fact that the dual of the mixed
`1-S1 norm is the mixed `∞-S∞ norm [24], [27]. Thus, for
X ∈ X , the `1-S1 norm can be written equivalently as

‖X‖1,1 = max
Ψ∈B∞,∞

〈Ψ,X〉X (13)
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TABLE I: nRMSE results of restrospective undersampling along two phase-encoding directions, for the brain and knee data
sets, at various reduction factors (RF) and patch sizes (PS). Results for CLEAR, LLR-IRPA, and CLEAR using iterative patch
adjustmens (CLEAR-IRPA) are shown.

RF=3 RF=4 RF=5 RF=6 RF=7
PS CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA

B
ra

in

4 2.57E-2 2.54E-2 2.62E-2 3.2E-2 2.95E-2 3.01E-2 3.39E-2 3.31E-2 3.40E-2 3.71E-2 3.59E-2 3.66E-2 4.13E-2 3.93E-2 4.07E-2
6 2.53E-2 2.52E-2 2.58E-2 2.94E-2 2.90E-2 2.96E-2 3.28E-2 3.22E-2 3.25E-2 3.56E-2 3.46E-2 3.52E-2 3.93E-2 3.82E-2 3.92E-2
8 2.57E-2 2.54E-2 2.59E-2 2.95E-2 2.91E-2 2.96E-2 3.27E-2 3.21E-2 3.26E-2 3.53E-2 3.45E-2 3.50E-2 3.90E-2 3.80E-2 3.96E-2
10 2.57E-2 2.58E-2 2.61E-2 2.93E-2 2.90E-2 2.95E-2 3.28E-2 3.21E-2 3.26E-2 3.54E-2 3.46E-2 3.52E-2 3.89E-2 3.79E-2 3.87E-2
12 2.59E-2 2.57E-2 2.62E-2 2.95E-2 2.92E-2 2.99E-2 3.28E-2 3.20E-2 3.26E-2 3.53E-2 3.48E-2 3.59E-2 3.87E-2 3.79E-2 3.92E-2
14 2.62E-2 2.60E-2 2.62E-2 2.99E-2 2.92E-2 3.00E-2 3.28E-2 3.21E-2 3.30E-2 3.55E-2 3.47E-2 3.56E-2 3.89E-2 3.81E-2 3.93E-2

K
ne

e

4 2.05E-2 2.05E-2 2.15E-2 2.51E-2 2.51E-2 2.61E-2 3.08E-2 3.06E-2 3.28E-2 3.82E-2 3.78E-2 3.97E-2 4.50E-2 4.32E-2 4.59E-2
6 2.13E-2 2.13E-2 2.15E-2 2.53E-2 2.53E-2 2.58E-2 2.96E-2 2.95E-2 3.03E-2 3.56E-2 3.51E-2 3.61E-2 4.06E-2 4.06E-2 4.26E-2
8 2.18E-2 2.18E-2 2.21E-2 2.56E-2 2.56E-2 2.61E-2 2.96E-2 2.96E-2 2.98E-2 3.47E-2 3.49E-2 3.52E-2 3.92E-2 3.91E-2 4.04E-2
10 2.22E-2 2.22E-2 2.23E-2 2.61E-2 2.59E-2 2.59E-2 2.99E-2 2.97E-2 3.01E-2 3.52E-2 3.46E-2 3.49E-2 3.89E-2 3.89E-2 3.92E-2
12 2.26E-2 2.24E-2 2.26E-2 2.64E-2 2.63E-2 2.63E-2 3.01E-2 3.01E-2 3.02E-2 3.52E-2 3.48E-2 3.49E-2 3.90E-2 3.89E-2 3.93E-2
14 2.29E-2 2.28E-2 2.29E-2 2.67E-2 2.69E-2 2.68E-2 3.07E-2 3.07E-2 3.09E-2 3.53E-2 3.54E-2 3.53E-2 3.94E-2 3.98E-2 4.02E-2

where the set B∞,∞ denotes the `∞-S∞ unit norm ball
B∞,∞ = {Ψ ∈ X : ‖Ψq‖S∞ ≤ 1, ∀q = 1, 2, ..., |Ω|} (14)

Using these definitions and the adjoint operator T ∗Ω , the
minimization of (12) can be expressed equivalently as

x̃ = arg min
x∈CMNC

1

2
‖x− z‖22 +

λ

α
max

Ψ∈B∞,∞
〈T ∗Ω Ψ,x〉2 (15)

Because the objective function in (15) is strictly convex in x
and concave in Ψ, an optimal saddle-point (x̃, Ψ̃) exists [24]
at which the objective function attains a common value, and
the order of minimization and maximization does not affect the
solution. Thus, defining L(x,Ψ) = 1

2‖x−z‖22 + λ
α 〈T

∗
Ω Ψ,x〉2,

min
x∈CMNC

max
Ψ∈B∞,∞

L(x,Ψ) = L(x̃, Ψ̃)

= max
Ψ∈B∞,∞

min
x∈CMNC

L(x,Ψ) (16)

From (16), one can identify the primal objective function ρ(x)
and the dual objective function s(Ψ) as

ρ(x) = max
Ψ∈B∞,∞

L(x,Ψ) =
1

2
‖x− z‖22 +

λ

α
‖TΩx‖1,1 (17)

s(Ψ) = min
x∈CMNC

L(x,Ψ) =
1

2

(
‖z‖22 − ‖z−

λ

α
T ∗Ω Ψ‖22

)
(18)

Accordingly, one can find the minimizer x̃ of ρ(x) by finding
the maximizer Ψ̃ of s(Ψ), using the relation

x̃ = z− λ

α
T ∗Ω Ψ̃ (19)

From (18), one can see that by using (5), (7), and (8),

max
Ψ∈B∞,∞

s(Ψ) = min
Ψ∈B∞,∞

1

2
‖z− λ

α
T ∗Ω Ψ‖22

= min
Ψ∈B∞,∞

‖α
λ
TΩz−Ψ‖2X (20)

Therefore, the maximizer of (18) can be found by projecting
α
λTΩz ∈ X onto the B∞,∞ unit norm ball. This projection
onto B∞,∞ can be done by projecting each of the compo-
nents of α

λTΩz onto the unit norm ball BS∞ , the space of
matrices with Schatten ∞-norm ≤ 1 [24]. If the singular
value decomposition of the component matrix α

λ [TΩz]q =
Uqdiag(σ(αλ [TΩz]q))V

H
q , then its projection onto BS∞ is

PBS∞ (
α

λ
[TΩz]q) =

α

λ
Uqdiag(min(σ([TΩz]q),

λ

α
1))VH

q

= Ψ̃q (21)

Based on (19) and (21), we conclude that

x̃ = z− λ

α
T ∗Ω Ψ̃ = T ∗Ω (TΩz− λ

α
Ψ̃)

⇒ x̃ =

|Ω|∑
q=1

P∗q
(
Uqdiag

(
S λ
α

[
σ([TΩz]q)

])
VH
q

)
(22)

where Sβ [σ(Xq)] = max(σ(Xq) − β, 0) is defined as the
soft-thresholding operator, applied component-wise on the
vector of singular values σ(Xq). Importantly, we note that the
minimization of ρ(x) is the proximal mapping of the patch-
based regularizer λ‖TΩx‖1,1:

x̃ = min
x∈CMNC

ρ(x) ≡ proxλ‖TΩ·‖1,1(z;
1

α
) (23)

Summarizing the above, the overall iterative soft-thresholding
scheme based on FISTA becomes

zt ← wt − γtFH(Fwt − y) (24)
xt = proxλ‖TΩ·‖1,1(zt; γt) (25)

`t+1 ←
1 +

√
1 + 4`2t
2

(26)

wt+1 ← xt +
`t − 1

`t+1
(xt − xt−1) (27)

where γt ≤ 1
α is the gradient descent step size and w1 =

FHy. In short, (22) represents reconstructing the image after
singular-value thresholding of each matrix formed from each
patch in the partition. The iterations (24) to (27) represent the
FISTA technique for solving (11), using a fixed partition Ω.

C. Locally Low-Rank Regularization (LLR) based on overlap-
ping patches

LLR regularization based on overlapping patches is ex-
emplified by the state-of-the-art CLEAR algorithm [16]. In
CLEAR, the entire image is covered by patches that are
overlapped by a certain factor of the image patch dimensions.
Suppose that patch dimensions of m× n are used to cover a
M ×N image matrix, where m|M and n|N . The amount of
overlap along the first dimension is designated by a factor
0 < r ≤ 1 of m , i.e., patches overlap each successive
patch by rm pixels. Along the other dimension, patches are
overlapped by sn pixels (0 < s ≤ 1). Then the total number
of overlapping patches P that cover the image is

P =
(N + n(1− s)

sn

)(M +m(1− r)
rm

)
(28)
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Fig. 2: Brain images reconstructed with RF = 5 and PS = 10 × 10. Reconstruction times and nRMSE values included. (A)
Reference image, (B) result using non-overlapping patches, (C) CLEAR, (D) LLR-IRPA. (E)-(H) corresponding zoom-in
images. (I) Absolute difference image between the reference and zero-filled reconstructed image. (J), (K), and (L) are absolute
difference images for non-overlapping patch-based, CLEAR and LLR-IRPA reconstructions, respectively. Note the reduction
in block artifacts (indicated by yellow arrows) using CLEAR and LLR-IRPA in (G) and (H). Window level: 2.4 - 5.6% of the
maximum reference signal in (A).

Let Γ be the set of non-overlapping partitions that, when taken
together, correspond to the entire collection of P overlapping
patches. Then the optimization problem of CLEAR can be
expressed within the framework described in the previous
section as

x̂ = arg min
x∈CMNC

1

2
‖y −Fx‖22 + λ · rs

∑
Ω∈Γ

‖TΩx‖1,1 (29)

Note that this problem entails solving for a significantly
higher amount of SVD’s, as compared to (11) in which
at most only (Mm + 1)(Nn + 1) are computed. In addition,
the regularization term must be multiplied by a factor rs
in order to compensate for taking the SVD’s of multiple
overlapping patches. Due to overlapping patches, each image
patch is actually not independent of the others, since any
particular patch in the output image contains contributions
from the image patches that surround it. Therefore, including
this factor in the regularization term essentially represents a
heuristic approach to reconstructing the final image from sets
of overlapping patches [28].

D. Locally Low-Rank Regularization with Iterative Random
Patch Adjustments (LLR-IRPA)

In the LLR regularization approach described in section B,
the partition Ω remains fixed throughout all iterations. As an
alternative strategy, the proposed LLR-IRPA method updates
the partition at each iteration. This modification leads to
reduced appearance of block artifacts while exhibiting similar
behavior to CLEAR in terms of reconstruction error and con-
vergence rate. The partition is shifted by random amounts in
each direction. The FISTA iterations are modified such that the
partition updates as Ωkt+1

← Ωkt where kt ∈ {1, 2, ..., NΩ} is
chosen at random for each iteration t, and Ωkt runs through the
NΩ possible partitions as the iterative process continues2. Note
that in this case, each image patch is independent of the others
throughout the reconstruction process, in contrast to CLEAR.
A major feature is that LLR-IRPA achieves the property

2Algorithm pseudocode for both LLR-IRPA and CLEAR is included in the
supplementary material (Figure S2).
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of shift-invariance without the need of overlapping patches,
leading to a much reduced computational load compared to
CLEAR.

Although at each iteration we obtain a solution using a
different patch arrangement, and thus a different decompo-
sition of the image, we provide a proof which shows that the
LLR-IRPA iterations converge to a solution that represents
the outcome from averaging the singular value thresholdings
from all unique patch-based SVD’s of the entire image matrix,
i.e., the regularizer is effectively shift-invariant. These results
are inspired by the variational justification for cycle spinning
using the wavelet transform [22], and a proof of convergence
is provided in the Appendix. For simplicity, this proof is given
in the context of ISTA, which is equally valid for the FISTA
algorithm.

III. METHODS

The effectiveness of the proposed algorithm was tested
with retrospectively-undersampled data in parallel imaging
and quantitative parameter mapping experiments3, as well as
with prospectively undersampled contrast-enhanced magnetic
resonance angiography (CE-MRA) data. Both the CLEAR
and LLR-IRPA algorithms, including the reconstruction ex-
periments, were implemented ‘in-house’ using MATLAB (The
Mathworks, Natick, MA) and run on a Linux workstation with
a 4.4 GHz CPU and 96 GB memory.

Two types of undersampling schemes were tested: (1)
reducing the number of samples along a single phase-encoding
direction (1D undersampling), and (2) reducing the number
of samples along two phase-encoding directions (2D under-
sampling). For the 2D undersampling case, variable-density,
Poisson-disk undersampling masks of various reduction factors
(RF) were applied to the fully-sampled k-space to simulate
accelerated acquisitions. The 2D probability density function
that characterizes the sampling density was set as a normalized
Gaussian with standard deviations σx and σy equal to one-
fourth of the corresponding image dimensions Nx and Ny , in
pixels. For the 1D undersampling case, the random sampling
density was determined by a one-dimensional normalized
Gaussian probability density function with standard deviation
equal to one-fourth of the corresponding largest image dimen-
sion. For the cases involving quantitative parameter mapping,
this standard deviation was set equal to one-fourth the size
of the actual phase-encoding dimension. For the CLEAR
algorithm, the extent of overlapping was set as one-half the
dimensions of the image patch, so that r = s = 1

2 in (28).
This choice of overlapping ratio provides a balanced trade-off
between computational load and the extent of shift-invariance
of CLEAR’s patch-based regularizer.

We used the first-order, fast iterative soft-thresholding algo-
rithm (FISTA) to solve the associated nuclear-norm regularized
optimization problem. For simplicity, we take ISTA as the
algorithmic framework with which to show theoretical results
concerning the per-iteration random shifts of the image par-
titions. All reconstructions were performed with a maximum

3Methods and Results sections for quantitative parameter mapping experi-
ments are included in Supplementary Section 1.

TABLE II: CLEAR and LLR-IRPA nRMSE results of re-
strospective undersampling along a single phase-encoding
direction, for the brain and knee data sets, at various reduction
factors (RF) and patch sizes (PS)

RF=2 RF=2.5 RF=3
PS CLEAR LLR-IRPA CLEAR LLR-IRPA CLEAR LLR-IRPA

B
ra

in

6 2.99E-2 3.03E-2 3.74E-2 3.69E-2 5.32E-2 5.38E-2
8 3.02E-2 3.03E-2 3.69E-2 3.71E-2 5.36E-2 5.30E-2
10 3.08E-2 3.07E-2 3.72E-2 3.76E-2 5.39E-2 5.37E-2
12 3.13E-2 3.11E-2 3.80E-2 3.74E-2 5.40E-2 5.46E-2

K
ne

e

6 2.57E-2 2.60E-2 3.10E-2 3.14E-2 3.55E-2 3.53E-2
8 2.59E-2 2.61E-2 3.10E-2 3.13E-2 3.56E-2 3.57E-2
10 2.68E-2 2.61E-2 3.17E-2 3.19E-2 3.63E-2 3.60E-2
12 2.66E-2 2.66E-2 3.17E-2 3.17E-2 3.59E-2 3.60E-2

number of 100 iterations. Moreover, we set a stopping criterion
dependent on the relative error between successive solutions,
namely ‖xt+1−xt‖/‖xt‖ < 10−5. The regularization parame-
ter λ for both CLEAR and LLR-IRPA was set as the estimated
standard deviation of the collection of singular values from
all matrices formed from all image patches, computed at each
iteration. This estimate was obtained using the median absolute
deviation of the collection of singular values.

The quality of the reconstruction was quantified using the
normalized root mean square error (nRMSE), defined as

nRMSE =
1

max(X0)

||X0 −X||2√
N

(30)

where X0 is the true image and X is the reconstruction image,
and N is the number of pixels. The algorithmic performances
were compared on the basis of image quality and nRMSE
values. Difference images were computed and the rate of
convergence was characterized by plotting nRMSE as a func-
tion of iteration. The criteria to determine the image quality
includes the extent of visible blocky artifacts and preservation
of edge-features.

A. Parallel Imaging - Retrospective Undersampling

Two fully-sampled data sets, one of the knee and the brain,
were acquired from a healthy volunteer after Institutional
Review Board (IRB) approval. The data set of the knee was
acquired with a 3T Skyra (Siemens Healthcare, Erlangen,
Germany) MRI scanner, using a 3D GRE sequence with
the following acquisition parameters: matrix size 160 × 160,
isotropic resolution of 1 mm2, TE = 3.78 ms, TR = 8.6 ms,
flip angle 15◦, and bandwidth of 810 Hz/px. The brain data
set was acquired with the same scanner and sequence, using
the following parameters: matrix size 224 × 224, isotropic
resolution of 1 mm2, TE = 3.5 ms, TR = 8.5 ms, flip angle
12◦, and bandwidth of 400 Hz/px. The knee and brain data
sets consisted of 15 and 20 channels, respectively.

These 3D data sets were retrospectively undersampled at re-
duction factors (RF) of 3, 4, 5, 6, and 7, and were reconstructed
using square patch sizes (PS) of side lengths of 4, 6, 8, 10, 12,
and 14 pixels. For 2D undersampling, a fully-sampled, square
region with a 12-pixel side was retained in each undersampling
mask. In the 1D undersampling case, 16 fully sampled central
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Fig. 3: (A) Algorithmic convergence in terms of nRMSE, at RF = 7 and with PS = 8 and 12. (B) nRMSE values as a function
of reduction factor for PS = 8 and 12, using 2D undersampling (C) Algorithmic convergence in terms of nRMSE, at RF = 4
and with PS = 4 and 10. (D) comparing the difference in the effect of patch size on the resulting nRMSE value for RF = 4
and 7. Plots based on reconstruction results from restrospectively undersampled 2D brain image data.

phase-encoding lines were retained for undersampling the k-
space of the brain data set, while 12 fully-sampled central
lines were kept in the mask for undersampling the k-space of
the knee data set. Each data set was reconstructed for each
combination of reduction factor and patch size.

To emphasize the advantage of LLR-IRPA in terms of both
computational efficiency and reconstruction accuracy, these
data sets are also reconstructed with CLEAR using iterative
random patch adjustments (CLEAR-IRPA). Reconstruction
times and nRMSE values resulting from this additional re-
construction approach are compared with LLR-IRPA.

B. Parallel Imaging - Prospective Undersampling

Multi-phase, contrast-enhanced cardiac- and ventilator-
gated MR angiography data [29] was acquired with prospec-
tive variable density Poisson-disk undersampling pattern on
a 6-month-old pediatric patient with congenital heart disease.
The data was acquired with a 3T Trio (Siemens Healthcare,
Erlangen, Germany) scanner. The acquisition matrix size was
480 × 266 × 128, with a total of 12 channels, and a fully-
sampled central 24 × 24 square region. Further image acqui-
sition details are as described in [29]. This data was prop-
spectively underampled with RF = 6.5, and was subsequently

reconstructed using CLEAR and LLR-IRPA with PS = 4, 6,
8, 10, 12, and 14.

IV. RESULTS

A. Parallel Imaging - Retrospective Undersampling

As shown in Fig. 2, reconstructions from the retrospectively
undersampled data sets4 show that LLR-IRPA leads to similar
reduction in block artifacts and comparable fidelity to the
actual images, in relation to the results from CLEAR. This
observation can be seen from the reconstructed and difference
images, in which LLR-IRPA exhibits minimal block artifacts
and recovers structural features just as well or better than
CLEAR. We observe also that, in terms of nRMSE, the
larger patch sizes (PS = 10,12,14) lead to better recovery of
images undersampled at the higher reduction factors (RF =
5,6,7). For comparison, we also include in the figures images
reconstructed with LLR regularization using non-overlapping
patches.

Numerical results listed in Table I and Table II show that
LLR-IRPA is as stable as CLEAR with respect to changes in
patch size, in terms of nRMSE. The nRMSE values from LLR-
IRPA regularization follow CLEAR’s trend as the reduction

4Results for the knee data set are included in the supplementary material
(Figure S3).
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Fig. 4: Reconstruction results and times for the prospectively undersampled MRA data set, at a reduction factor of 6.5. (A)
CLEAR result and (B) LLR-IRPA result using PS = 10. (C) undersampled variable-density k-space sampling. (D) difference
between (A) and (B). Cropped image series (E) shows the progression of CLEAR imaging results as patch size increases
from 4 to 14. Red arrows indicates block artifacts in the CLEAR reconstruction. (F) Cropped image series from LLR-IRPA,
in which block artifacts are more suppressed in comparison to CLEAR. (G) Difference images between (E) and (F). Window
level: 0 - 7.6% of the maximum signal in (A).

factor increases, for any given patch size (Fig. 3). Similarly,
at a fixed reduction factor, the nRMSE values obtained from
LLR-IRPA are as low or slightly lower than those produced
from CLEAR. Finally, it is evident that the the LLR-IRPA
strategy leads to convergence of the algorithm to a final value
that is very close or equal to that of images reconstructed
by CLEAR, although at a much faster rate. These results are
consistent with what is expected because, similar to the case
of wavelet cycle spinning, the use of various shifted patch
arrangements reduces the appearance of block artifacts and
avoids the extra computational cost of overlapping patches. In
terms of the time per iteration for 2D multi-coil reconstruction
experiments, Table III demonstrates that LLR-IRPA is com-
putationally more efficient than CLEAR, being approximately
3-4 times faster per iteration.

To show that LLR-IRPA is indeed shift-invariant at no extra
computational cost, we also include in Table II and Table
III nRMSE values and computation times from the CLEAR
algorithm implemented with per-iterative random shifting.
As seen from the tables, the use of per-iterative random
shifting in addition to overlapping patches in the CLEAR
algorithm results in almost the same performance compared
to LLR-IRPA. However, the computational time per iterations
is similar to that of conventional CLEAR. Thus, LLR-IRPA
achieves a performance that would result from combining the
benefits of overlapping patches and random shifting, but with
no extra computational cost. Thus, LLR-IRPA retains a definite
advantage in both computational efficiency and reconstruction
accuracy.
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B. Parallel Imaging - Prospective Undersampling

Similar to the results from retrospective undersampling, the
prospectively undersampled MRA data set shows comparable
results in image quality, except that CLEAR displays more ap-
parent block artifacts than LLR-IRPA within the myocardium
and along its edges, as shown in Fig. 4. Due to the shift
invariance induced from using different image partitions, the
LLR-IRPA reconstructed images remain relatively stable and
less prone to block artifacts as a function of patch size. We
also see in the difference images between LLR-IRPA and
CLEAR that various residual, block artifacts that remain due
to the overlapping patches used by CLEAR. One can also
observe that LLR-IRPA also avoids artifacts along edges of the
anatomy. Importantly, note that the difference images in Fig.
4 indicate the contrast in the levels of residual blocks artifacts
produced by CLEAR. This result shows that LLR-IRPA can
avoid these types of artifacts without compromising image
quality. Unlike the retrospectively undersampled experiments,
this data retained a much larger central sampling region of size
24×24, and slightly more dense sampling in the central region
of k-space. Even in such a case, LLR-IRPA still provides an
advantage in terms of robustness to differences in patch size.

V. DISCUSSION

Although the imaging results show the similarity of the
LLR-IRPA and CLEAR reconstruction approaches, it is im-
portant to note that these results are affected by the choice
of sampling pattern, the sampling density, and the extent of
the fully sampled central region, both in the 2D and 1D
undersampling experiments. Even though the shift invariance
due the random shifting of the patch grid can be reasonably
expected to provide consistent improvement in image quality,
it may provide more advantageous results in other instances
where the sampling density or fully sampled region may
not be so favorable. This type of case may arise in a pure
calibrationless setting in which no fully sampled region may
be acquired, or in cases where the sampling scheme does not
produce an incoherent sampling pattern. In these cases, LLR-
IRPA may still have an advantage due to the added redundancy
and shift invariance that results from iterative shifting of the
image partition. It is important to note that the method of
[17], which also shifts partitions at each iteration, depends
on an auto-calibration acquisition, so that it may not be as
applicable to general sampling schemes as the calibrationless
LLR-IRPA technique, or CLEAR. The LLR-IRPA algorithm
is applicable for arbitrary undersampled k-space trajectories
without incurring the higher computational cost of CLEAR.
Although CLEAR yields equivalent results, its algorithmic
framework implicitly assumes that each patch is independent
when applying singular-value thresholding and reconstructing
each patch, which is not necessarily the case because this
method uses overlapping patches. The step of dividing the
resulting image by the number of times that each pixel is
overlapped, as in (29), is at best a heuristic approach for re-
constructing the final image from multiple overlapping patches
[28]. This approach only renders the optimization problem
of CLEAR more mathematically tractable. In contrast, the

LLR-IRPA algorithm treats each patch independently from the
others throughout the iterative process, and the framework
described in the Theory section provides a mathematically
justifiable basis for solving the optimization scheme with
shifting, non-overlapping patches.

As mentioned in the Theory section, each partition Ω can
be shifted in a number of NΩ different ways. In contrast to
the wavelet cycle spinning strategy, each shift is performed
randomly and the number of shifts is dependent on the pre-
scribed patch size. The number of iterations needed to traverse
all possible shifts is at least NΩ, and this number increases as
the patch size becomes larger. In the reconstruction performed
in this study, the limit of 100 iterations can be approximately
sufficient for patch sizes ≤ 10 × 10. However, results for
patch sizes of 12× 12 and 14× 14 may not reflect those that
would be obtained using the corresponding greater number of
iterations. Despite the lower number of iterations used, the
reconstruction results for these patch sizes still demonstrate
considerable improvement, as seen in the MRA images where
block artifacts are clearly suppressed in reconstructions with
LLR-IRPA. This result shows the robustness of the LLR-IRPA
strategy, which maintains improved computational efficiency
compared to CLEAR without introducing block artifacts.

In terms of computational complexity, LLR-IRPA has a sig-
nificant advantage over CLEAR, without sacrificing algorith-
mic performance or image quality. In terms of computational
cost, to reconstruct a 2D multi-coil M × N × C image set
using m×n patches (where m|M and n|N ), LLR-IRPA would
require at most Q = (Mm + 1)(Nn + 1) SVD computations
of mn × C matrices per iteration, whereas CLEAR requires
P = (N+n(1−s)

sn )(M+m(1−r)
rm ), where r and s are as given in

(28). Suppose, as adopted in the experiments, that r = s = 1
2 ,

and that M
m = a and N

n = b. Then Q = ab+ a+ b+ 1 while
P = 4ab+ 3(a+ b) + 9

4 ≈ 4ab+ 3(a+ b) + 3. To quote the
result given in [16], the number of floating point operations
(FLOPS) required for one thin SVD calculation would be

FLOPS = min(14mnC2 + 8C3, 6mnC2 + 20C3)

Thus, as seen from the comparison of P and Q, this means
that CLEAR would require approximately 3 to 4 times more
FLOPS than LLR-IRPA. This estimation also agrees with the
results in Table III, which show that the average per-iteration
time of LLR-IRPA can be roughly 3 to 4 times shorter than
that of CLEAR. Evidently, this makes LLR-IRPA a much more
efficient reconstruction scheme that produces comparable if
not better imaging results to CLEAR. However, it is important
to note that the use of graphical processing units (GPU) would
highly accelerated these iteration times, yet the efficiency of
LLR-IRPA would still outperform CLEAR.

In the context of local, patch-based methods for accelerated
quantitative parameter mapping, we also note that alterna-
tive SVD-based techniques such as dictionary learning for
blind compressive sensing also show promise in reducing the
computational load of locally low-rank regularized reconstruc-
tion [30], [31]. In the absence of a learning step, however,
LLR-IRPA represents a highly efficient class of algorithms
for implementing effectively shift-invariant locally low-rank
reconstruction in a calibrationless setting. Globally low rank
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TABLE III: Average time (seconds) per iteration for CLEAR, LLR-IRPA, and CLEAR using iterative random patch adjustments
(CLEAR-IRPA) at various reduction factors (RF) and patch sizes (PS), for retrospective undersampling experiments. The matrix
sizes for the brain and knee images are 224× 224× 20 and 160× 160× 15, respectively.

RF=3 RF=4 RF=5 RF=6 RF=7
PS CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA CLEAR CLEAR-IRPA LLR-IRPA

B
ra

in

4 12.7 19.1 3.4 11.8 18.8 3.9 10.5 18.7 4.2 9.7 17.7 3.3 9.6 19.7 3.3
6 7.3 9.6 2.0 5.9 9.5 2.3 5.2 9.3 2.5 5.1 9.3 1.8 5.2 10.3 1.7
8 8.2 8.2 1.5 6.0 8.7 2.4 4.1 6.6 3.8 4.4 6.3 1.9 4.5 8.7 1.4
10 7.5 6.3 1.6 3.5 5.4 1.7 3.3 4.9 2.5 3.4 5.9 1.5 3.4 6.6 1.3
12 4.3 4.5 1.9 2.3 3.9 2.0 2.6 3.8 1.9 2.6 4.9 1.1 2.6 4.8 1.2
14 2.1 3.6 1.6 2.5 3.8 1.6 2.2 3.1 1.1 2.1 4.5 1.0 2.2 4.0 1.4

K
ne

e

4 5.9 8.8 1.5 6.0 8.6 1.7 5.4 8.9 1.8 4.9 8.5 2.0 4.9 9.3 3.0
6 4.7 4.9 0.9 5.7 6.0 1.5 3.4 4.8 1.5 3.9 5.1 1.7 3.2 5.2 1.7
8 2.4 2.8 0.6 3.2 3.5 1.0 2.1 2.9 1.0 2.1 3.5 1.1 1.7 2.8 1.3
10 1.7 2.0 0.5 2.1 2.4 0.8 1.4 2.0 0.7 1.4 2.5 1.1 1.2 2.0 0.8
12 1.4 1.5 0.4 2.0 1.9 0.7 1.0 1.6 0.6 1.2 1.9 1.0 1.0 1.5 0.9
14 1.4 1.5 0.4 1.8 1.6 0.6 0.8 1.4 0.5 1.0 1.6 0.8 0.8 1.4 0.7

regularization techniques, such as the k-space domain based
SAKE method for parallel imaging [11], can also operate in a
calibrationless setting, yet they may entail significantly more
FLOPS per iteration than the locally low rank LLR-IRPA and
CLEAR methods, as discussed in [16].

Further considerations include examining the performance
of LLR-IPRA in more diverse acquisition and reconstruc-
tion settings, for example in dynamic reconstructions using
more advanced algorithms based on constrained formulations
and accelerated convergence schemes. However, while more
advance algorithms may improve the convergence rates of
LLR-IRPA and CLEAR, the relative computational efficiency
between the two methods would not change because CLEAR
would still require the computation of many more SVD’s per
iteration than LLR-IRPA. Therefore, the reconstruction speed
of each method may increase, but the relative improvement of
LLR-IRPA over CLEAR would remain valid.

VI. CONCLUSION

In this paper, we have shown that LLR-IRPA retains the
same level of image reconstruction and quantitative parameter
mapping results compared to overlapping patch-based LLR
regularization, in terms of image quality and nRMSE, but
with the distinct advantage of substantially reduced com-
putational load. We describe this patch adjustment strategy
for LLR regularization and set a theoretical framework for
formulating this novel development in the context of patch-
based image reconstruction techniques. This technique is an
improvement over conventional LLR-based algorithms such as
CLEAR, since the computational load is substantially reduced
without promoting block artifacts. In fact, the amount of
acceleration from using random shifting has been shown to
reach up to a factor of 3 to 4. The iterative random patch
adjustment strategy is experimentally shown to suppress these
artifacts while retaining the convergence rate of the more
computationally expensive CLEAR algorithm. Experimental
results and theoretical analysis of the proposed method support
these findings. The implications of LLR-IRPA is to facilitate
the application of LLR-based regularization for clinical MRI
applications.
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APPENDIX A
PROOF OF SHIFT INVARIANCE

In order to justify the shift invariance that results from
random iterative patch adjustments, we prove the result for the
deterministic case, in which the iterations traverse all possible
partition shifts. Similar to the case of cycle spinning using the
wavelet transform, in the context of patch-based LLR-IRPA
regularization, the partition Ω is changed by shifting it by
some amount at each iteration. For simplicity, this proof of
convergence is given in the context of ISTA and is equally
valid for the case of FISTA which is an accelerated version of
ISTA [26]. In the context of ISTA, the iterations are given by

zt = xt−1 − γtFH(Fxt−1 − y) (31)
xt = proxλ‖TΩ·‖1,1(zt; γt) (32)

Using the notation introduced in the Theory section, we write
the cost function associated with the partition Ωk as

Hk(x) =
1

2
‖y −Fx‖22︸ ︷︷ ︸

D(x)

+λ‖TΩkx‖1,1︸ ︷︷ ︸
GΩk

(x)

(34)

We write the cost function whose regularization term repre-
sents the average of the nuclear norms of all locally low-rank
matrices formed from the NΩ unique shifts of Ω:

h(x) =
1

NΩ

NΩ∑
k=1

Hk(x)

= D(x) +
1

NΩ

NΩ∑
k=1

GΩk(x) (35)

The following assumptions are made:
• The feasible set C ⊆ CMNC is nonempty, convex, closed

and bounded, i.e., ∃ d > 0 such that for any x,y ∈ C,
‖x− y‖2 ≤ d.

• The data fidelity term D is continuously differentiable
with Lipschitz continuous gradient, i.e., ∃ L > 0 such
that ∀ x,y ∈ C, ‖∇D(x)−∇D(y)‖2 ≤ L‖x− y‖2
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• The gradient of D is bounded and the subgradients of
GΩk are bounded, i.e., ∃S > 0 such that ∀ x ∈ C,
‖∇D(x)‖2 ≤ S and ‖∂GΩk(x)‖2 ≤ S.

Referring to Theorem 1 of [22], if L > λmax(FHF) and
the step size γt = 1/L

√
t, then we claim that the sequence

{xt} generated according to Equations (31) and (32) satisfies
lim
t→∞

h(xt) = h∗ (36)

where h∗ = minx∈C h(x). The claim in (36) essentially says
that shifting the partitions throughout the iteration process
leads to the minimization of the cost function that simultane-
ously minimizes the nuclear norms of the submatrices formed
from all partition shifts. Therefore, the underlying regularizer
in (35) is effectively shift-invariant.

For simplicity, we consider the case of an image with square
dimensions N ×N and square patch sizes (m = n), such that
n divides N (results for arbitrary dimensions can be obtained
through similar arguments). In this case NΩ = n2 and the
number of patches |Ωk| within any partition Ωk falls within
[(Nn )2, (Nn )2 +2Nn +1]. We also note that in patch-based LLR
regularization, it is generally assumed that each of the (N +
n)2 possible (overlapping) patch locations lead to low-rank
submatrices. Therefore, all submatrices Pq(x) formed by q ∈
Ωk for any k, are assumed low-rank.

We first characterize the subdifferential of the function
GΩk(x) = λ‖TΩkx‖1,1 to show that the subgradients are
indeed bounded [33]. To do so, we find the conjugate function
of the mixed `1-S1 norm. Denote the function F (X) = ‖X‖1,1
for X ∈ X and denote the function g(x) = TΩkx for
x ∈ CMNC . Using the duality between the `1-S1 norm and
the `∞-S∞ norm, it is straightforward to show the conjugate
function F ∗ of F is

F ∗(X) =

{
0 ‖X‖∞,∞ ≤ 1

∞ otherwise,
(37)

i.e., the conjugate is the indicator function of the `∞-S∞ unit
norm ball. Recalling the well-known fact from convex analysis
[33], [34] that if G ∈ ∂F (X) then

F ∗(G) + F (X) = 〈G,X〉X (38)
and noting that GΩk(x) = λ(F ◦ g)(x) = λF (g(x)), one can
use the chain rule to characterize the subdifferential of GΩk

at x as the set
∂GΩk(x) =

{λT ∗ΩkY ∈ CMNC | ‖Y‖∞,∞ ≤ 1,

〈T ∗ΩkY,x〉2 = ‖TΩkx‖1,1} (39)

This characterization implies that the subgradients of
GΩk(x) = λ‖TΩkx‖1,1 are indeed bounded. We also recall
the important fact from convex analysis that if

x = proxλ‖TΩkt
·‖1,1(z; γt) (40)

then z− x ∈ λ∂‖TΩkx‖1,1.

Given these observations, we can follow the steps as in the
proof of Lemma 1 [22] to conclude that ∀ x∗ ∈ C,

Hkt(x
t)−Hkt(x

∗) ≤
1

2γt

(
‖xt−1 − x∗‖2 − ‖xt − x∗‖2

)
+ 6γtS

2 (41)

For convenience, we restate Lemma 2 of [22] in this context

as

lim
n→∞

{ 1

nNΩ

nNΩ∑
t=1

Hkt(x
t)
}

= h(x̄) (42)

where {xt} is a sequence in C such that xt → x̄.
In a similar manner to the proof of Theorem 1 in [22], if

we let x∗ denote a minimizer of the function h and sum the
bound in (41), then

nNΩ∑
t=1

(
Hkt(x

t)−Hkt(x
∗)
)
≤ d2

2γnNΩ

+ 6S2
nNΩ∑
t=1

γt (43)

Choosing the step size γt = 1/L
√
t and dividing both sides

of (43) by nNΩ , the above inequality can be simplified to
1

nNΩ

nNΩ∑
t=1

Hkt(x
t)− h(x∗) ≤ C√

n
(44)

for a constant C depending on the parameters d, S and L
defined above. Therefore, using (42) and (44),

0 ≤ h(x̄)− h(x∗)

= lim
n→∞

{ 1

nNΩ

nNΩ∑
t=1

Hkt(x
t)
}
− h∗ ≤ 0 (45)

where the first inequality is due to the optimality of x∗. This
result shows that the sequence generated by (31) and (32)
converges to a minimizer x∗ of the function h, which is
the cost-function that incorporates the effective shift-invariant
regularizer that penalizes the nuclear norms of all submatrices
that can be formed from all the NΩ shifts of the partition Ω. As
stated above, this argument considers the deterministic shifting
strategy in which all possible NΩ partitions are traversed
throughout the iteration process. However, as is the case for
wavelet-based cycle spinning, the most practical method to
implement this technique is to shift the partition randomly at
each iteration. Although it considers the deterministic case,
this proof serves as a justification for the more practical
method of iterative random shifting.
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