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Wavelet theory, developed mostly over the last 15 years, 
has generated a tremendous interest in many areas of 

research in mathematics, physics, computer science, and en­
gineering. However, most applications of wavelets have 
focused on analysing data and using wavelets as a tool for data 
compression. 1,2 The application of wavelets to the solution of 
difficult partial differential equations (PDEs) arising in vari­
ous areas of physics and engineering has been very limited. 
This is mostly because wavelet-based numerical algorithms 
are in their infancy. 

A large communication gap must be diminished before 
researchers can take advantage ofthis new mathematical tool. 
In this article we hope to convince the reader that wavelets 
are a useful tool in large-scale numerical modeling of physical 
problems and to bridge the communication gap by providing 
a short description of wavelet-based numerical algorithms 
and their advantages over conventional numerical methods. 

Common numerical techniques for the solution of physi-
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cal problems mostly fall into three classes: finite-difference 
and finite-volume methods, finite-element methods, and 
spectral methods. Sometimes the latter two methods are con­
sidered as subsets of the method of weighted residuals. 

Briefly, the finite-difference method consists in defining 
the different unknowns by their values on a discrete (finite) 
grid and in replacing differential operators by difference 
operators using neighboring points. In the method of 
weighted residuals, the unknown solution is approximated by 
a linear combination of a set of linearly independent trial or 
basis functions. In the finite-element methods, the trial func­
tions are only piecewise continuous and nonvanishing on 
certain elements of the domain, whereas the spectral method 
utilizes basis functions that are infinitely differentiable and 
nonvanishing on the whole domain. 

The method of weighted residuals proceeds by substitut­
ing the approximation into a differential equation and impos­
ing the condition that the integral over the residual, weighted 
by some weighting function, is zero. Different choices of the 
weighting function give rise to the different methods, which 
collectively are known as methods of weighted residuals. Two 
well-known examples are the collocation method and the 
Galerkin method. In the collocation method, the weighting 
functions are taken to be Dirac delta functions. In the Galerkin 
method, the weighting functions are chosen from the same 
family as the test functions. 

If the solution of a physical problem has regular features, 
any of these numerical techniques can be applied. However, 
in many physical problems there exists a multiplicity of very 
different spatial and temporal scales in the solution. This 
situation arises in such cases as strongly time-dependent non­
Newtonian convection, the formation of shock waves in com­
pressible gas flow, pattern formation in hydrodynamic systems, 
turbulent flow around bluffbodies, and dendritic crystal growth. 

The particular attribute of multiple spatial scales, which 
possibly change over time, puts great strain on conventional 
numerical methods. Spectral methods have problems in cap­
turing large irregularities of the solutions. The main difficulty 
of existing adaptive finite-difference or finite-element meth­
ods is in developing a computationally efficient and robust 
procedure that dynamically adapts the computational grid to 
local structures of the solution. 

The basic idea behind wavelet decomposition is to rep­
resent a function in terms of building blocks, called wavelets, 
that are localized in both position and scale. 3,4 Good waveIet­
localization properties in physical and wavenumber spaces 
are to be contrasted with the spectral approach, which em­
ploys infinitely differentiable functions but with global sup­
port and small discrete changes in the resolution. On the other 
hand, finite-difference, finite-volume, and finite-element 
methods use bases with small compact support but poor 
continuity properties. Wavelets appear to combine the advan­
tages of both spectral and finite-difference bases. We can 
expect that numerical methods based on wavelets will attain 
both good spatial and spectral resolution. 

Methodologies 
The most important property of wavelet analysis is that 

a function is decomposed in terms of basis functions having 
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where bold symbols denote n-dimen­
sional vectors, e.g. x == (X], ... , xn ), k 
== (k],.~., kn ), bk == (bk p ... , bk), and ax,) 

and M I (i = I, ... , n, j E Z, k E zn) are 
wavelet scales and locations at the j level 
of resolution. 

Figure 1. Examples of wavelets and scalingfunctions: (a) Mexican hat wavelet, (b) Daubechies wavelet of order 
three, (c) Daubechies scalingfunction of order three, (d) correlation function of Daubechies scalingfunction 
of order three. 

Let us consider a function u(x) de­
fined on a closed n-dimensional domain 
n. Let j = ° be the coarsest level of reso­
lution with scales defined by the corre­
sponding dimensions of the domain n. 
The numerical resolution is constrained 
by memory limits and computational 
times. Thus u(x) can be approximated 
only up to a certain level of resolution. 
Let j = Jbe the finest level of resolution 
for the approximation of a function. Due 
to the compact or effectively compact 
wavelet support, at each level ofresolu­
tion j = 0, ... J there exists a finite n-di­
mensional integer set ZQ such that func­
tion u(x) can be approximated as 

various discrete scales and locations. These basis functions 
are constructed by the discrete (typically dyadic) dilation and 
translation of a single function that has good localization 
properties in physical as well as wavenumber spaces. In other 
words, wavelet analysis can be viewed as a multilevel or 
multiresolution representation of a function, in which each 
level of resolution consists of basis functions having the same 
scale but located at different positions. 

Wavelet theory is often discussed in light of the multire­
solution analysis introduced by Meyer3 and Mallat. 5 We 
choose to introduce a wavelet decomposition in a different 
way that is easier to understand in the context of partial 
differential equations. Here we describe only the essential 
points necessary for introducing the wavelet concept and 
wavelet-based numerical algorithms. 

In one-dimensional space, the wavelet basis consists of a 
double-indexed function set {I!f i (x):j,k E Z, x E R} given by 

( 
- b

j 1 . -If x k 
lfIJ (x) = a· 2 lfI -- , 

k J aj 
(la) 

where lfI(x) is a one-dimensional "mother" wavelet and 
I!f£(x) is a wavelet of scale aj = a02-i, located at position b t(x) = 

ajk. We use the superscript to denote the level of resolution 
and the subscript to denote the location in physical space (with 
the exception of aj). Examples of wavelets are shown in Fig. 
I (a, b). 

In multiple dimensions, wavelet bases can be constructed 
as a tensor product of one-dimensional bases. Thus an n-di­
mensional wavelet basis is given by 

( 
j, 

n X· - bk . -If 1 I 

lfI~ (x) = II a X,) 21jf -a--' , 
. I X;}) 
1=1 \ 

(lb) 

430 COMPUTERS IN PHYSICS, VOL. II, NO.5, SEP/OCT 1997 

J 

uJ(x) = L L e{lfI {(x). (2) 

)= 0 kEZQ 

The absolute value of the wavelet coefficient e' appear­
ing i n the approximation (2) depends upon the local regularity 
of u(x) in the neighborhood of the wavelet location. A good 
approximation is maintained even when wavelets whose co­
efficients are below a certain threshold e are omitted, that is, 
Ie {I < e, and only those wavelets whose coefficients are above 
the threshold, that is, Ie {I ::::: e, are kept. 

In Fig. 2 we sketch the locations of wavelets used in a 
four-level approximation of a function. Figure 2 also shows 
schematically the locations of wavelets whose coefficients are 
above a given threshold parameter for a function that has a 
sharp transition in the middle of the domain. This schematic 
example illustrates the considerable savings we can achieve 
by keeping in the approximation only significant wavelets and 
omitting those that play an insignificant role in the approxi­
mation. 

The next issue is how to compute wavelet coefficients for 
a given function u(x). With orthonormal wavelet bases, the 
natural choice is to use the wavelet-Galerkin projection to 
obtain a set of wavelet coefficients. This approach is easy to 
use in the case of a periodic function defined in a rectangular 
domain. Nevertheless, the efficient implementation of the 
wavelet-Galerkin projection in the case of general geometry 
is still an open issue, even though different possibilities have 
been studied. 6-8 

An alternative to the wavelet-Galerkin projection is to 
use a collocation method analogous to the spectral-colloca­
tion method. In this approach wavelet coefficients are found 
based on the values of a function at certain locations, called 
collocation points. In a wavelet-collocation algorithm a set of 



)( )( )( M M M )( )( )( j=2 
)( M M M )( j=l 
)( M t( j=O 

Figure 2. Locations of wavelets (x) used in the approximation of a function with 
four levels of resolution U = 0, ... , 3), where bold x denotes wavelets whose 
coefficients are above a given threshold E in the approximation of a function with 
a sharp transition. 
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Figure 3. Locations of wavelets (marked .) belonging to the adjacent zone of 
one-dimensional wavelet I{I { . 

collocation points {x { : kE ZiQ } is defined in such a way that 
the collocation points of the coarser level of resolution are a 
subset of the collocation points ofthe finer level of resolution. 
Once wavelet coefficients are known, derivatives of a func­
tion at collocation points are found by differentiating (2) and 
evaluating the resulting equation at collocation points. 

This collocation method therefore formalizes the proce­
dure of finding derivatives of a function in a two-stage proc­
ess. The first stage, which we call the Fast Wavelet 
Collocation Transform (FWCT), consists in finding wavelet 
coefficients based on values of a function at collocation 
points. The second stage, which we call the Fast Inverse 
Wavelet Collocation Transform (FIWCT), consists in map­
ping the values of wavelet coefficients into the values of the 
derivatives of the approximate function at the collocation 
points. The important feature ofthe FWCT and FIWCT is that 
they do not change even in the case in which some wavelets 
are omitted from the approximation. Furthermore, the com­
putational cost of both FWCT and FIWCT is O[(J + I) M;;' 
.N'], where .N is the total number of wavelets kept in the 
approximation, Mw is a parameter characterizing the wavelet 
support, and n is the dimensionality of the wavelet. 

Now we have all the necessary components for construct­
ing a dynamically adaptive wavelet-collocation numerical 
method for solving PDEs. Many systems of PDEs that arise 
in physics and engineering can be written in the following form: 

du at = F(x,t,u,V'u), (3a) 

0= <l> (x,t,u, Vu) (3b) 

where Eq. (3a) describes the time evolution of a vector 
function u and Eq. (3b) represents boundary conditions and 
possibly algebraic/differential constraints. 

There are two different ways to use the wavelet decom­
position (2) for the numerical solution of (3). The first ap­
proach, commonly known as the wavelet-Galerkin (WG) 
method, is to assume that wavelet coefficients are functions 
of time, then substitute this decomposition for each compo­
nent of the solution into (3) and use a Galerkin projection to 
derive the nonlinear system of ordinary differential-algebraic 
equations, which describe the time evolution of wavelet co­
efficients. The second approach is to evaluate (3) at colloca­
tion points and obtain a system of nonlinear ordinary 
differential-algebraic equations describing the evolution of 
the solution at these collocation points. This approach is 
called the wavelet-collocation (WC) method. 

Although WC algorithms are much more effective in the 
treatment of general boundary conditions and nonlineari­
ties,9-12 they have not enjoyed as much popularity as WG 
methods. 13- 17 One reason is that WC algorithms do not fall 
exactly into the theory of wavelet multiresolution approxima­
tion. Often they even utilize scaling functions (sometimes 
called interpolating wavelets l2) instead of wavelets I 1,12 or 
frames instead of orthonormal bases.9- 11 Examples of a scal­
ing function and interpolating "wavelet" are shown in Fig. 1 
(c, d). 

The reasons why WG and WC methods can be combined 
into the same class of numerical methods are the multilevel­
ness of the approximation, good spatial and spectrallocaliza­
tion properties of basis functions, and the existence of fast 
algorithms for obtaining wavelet coefficients. In distinguish­
ing WC from WG methods, we shall call the former multilevel 
WC algorithms and the latter multiresolution WG methods. 

In order for the numerical algorithm to be able to resolve 
all structures appearing in the solution and yet be efficient in 
terms of minimizing the number of unknowns, the basis of 
active wavelets and, consequently, the computational grid for 
the WC algorithm should adapt dynamically in time to reflect 
local changes in the solution. Such adaptation of the wavelet 
basis or computational grid is based on the analysis of wavelet 
coefficients. The contribution of a wavelet to the approxima­
tion is considerable if and only if the nearby structures of the 
solution have a size comparable with the wavelet scale. Thus, 
we may drop the large number of fine-scale wavelets with 
small coefficients in the regions where the solution is smooth. 

In the WC method, every wavelet is uniquely associated 
with a collocation point. Consequently, the collocation point 
should be omitted from the computational grid if the associ­
ated wavelet is omitted from the approximation. This property 
of the multilevel wavelet approximation allows local grid 
refinement up to an arbitrarily small scale without a drastic 
increase in the number of collocation points. 

To ensure accuracy, the basis should also consist of 
wavelets whose coefficients can possibly become significant 
during the period of time when the basis and consequently the 
computational grid remain unchanged. Thus, at any instant of 
time, the basis should include not only wavelets whose coef­
ficients are above a prescribed threshold parameter E, but also 
the surrounding wavelets. In other words, at any instant of 
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time, the basis should include 
wavelets belonging to an adja­
cent zone of wavelets for which 
the magnitude of coefficients is 
within an a priori prescribed 
threshold. The concept of adja­
cent zone is illustrated in Fig. 3 
by showing the adjacent zone of 
the one-dimensional wavelet 
lfI£. 
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The basic hypothesis moti­
vating the dynamic adaptation 
procedure, first suggested by 
Liandrat and Tchiamichian 16 for 
the WG method, is that during a 
time-integration step, the do­
main of wavelets with signifi­
cant coefficients does not move 
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cent zone. With such an algo­
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dynamically adapted in time and 
follows the local structures that 
appear in the solution. 
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parameter E, we automatically 
control the error of the approxi­
mation. Thus the we method 

Figure 4. Evolution of the pressure for the two-dimensional nonlinear thermoacoustic wave problem at four different times. 

has another important feature: active control of the local 
accuracy of the solution. The smaller E is chosen, the smaller 
the error of the solution is. In typical applications the value of 
E varies between 10-2 and 10-4, assuming that the unknown 
dependent variables have been properly normalized. We also 
note that the larger the set value of E, the fewer the number of 
grid points. 

The algorithm can utilize different criteria for adaptation 
of the collocation grid. For example, we can compose a 
computational grid based on the analysis of wavelet coeffi­
cients of both the function and its derivatives. If a system of 
equations is solved, the adaptation of the computational grid 
should be based on the analysis of wavelet coefficients asso­
ciated with all dependent variables. The computational grid 
is constructed as a union of grids corresponding to each 
dependent variable. Note that the algorithm can be easily 
extended to the case in which each variable is treated on a 
separate computational grid. The mapping from one grid to 
another can be achieved via wavelet interpolation. This may 
be very important for problems where scales associated with 
different variables are considerably different, such as in dou­
ble-diffusive convection with thermal and chemical fields . 

Applications and examples 
Most problems in physics and engineering requmng 

solution ofPDEs can be divided into two general classes. The 
first class of problems is characterized by a fairly uniform 
distribution of spatial scales. Note that separation of scales 
can be large, as long as they are uniformly distributed: both 
small and large scales should be present at every location 
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within the domain of interest. These problems generally do 
not require a time-adaptive and/or nonuniform computational 
grid and can be solved using a variety of conventional numeri­
cal algorithms with different degrees of computational effi­
ciency and accuracy. The computational complexity of these 
problems increases with the growth of the separation of scales 
that need to be resolved. 

The second class of problems is characterized by the 
presence of a wide range of spatial and temporal scales that 
are not distributed uniformly in space and time. In order to 
solve these problems in a computationally efficient way, the 
computational grid should adapt dynamically in time. For the 
numerical algorithm to be robust, grid adaptation- that is, 
local grid refinement and coarsening-should be based on the 
local demands of the solution and not on ad hoc assumptions. 

The multilevel structure of wavelet decomposition pro­
vides a simple and effective framework for spatially adaptive 
algorithms. The adaptation is achieved by retaining only those 
wavelets whose coefficients are greater than an a priori given 
threshold. Thus, high-resolution computations are carried out 
only in the regions where sharp transitions occur. This adap­
tive procedure is ideally suitable for handling problems with 
localized structures that might occur intermittently anywhere 
in the computational domain or change their locations and 
scales in space and time. 

The implementation of conventional adaptive algorithms 
in such problems is costly because the grids vary drastically 
within short space or time intervals. In addition, the use of 
conventional algorithms on a uniform grid is impractical. 
Thus, the main advantage of the dynamically adaptive we 



algorithm is that it will employ far fewer grid points (degrees 
of freedom) than the other algorithms when applied to prob­
lems with a great diversity of spatial/temporal scales. In 
addition, the computational grid can be refined locally to an 
arbitrarily small size grid. 

We emphasize here that the adaptation of the computa­
tional grid does not require additional efforts and consists 
merely in turning on and off wavelets at different locations 
and scales. Furthermore, the compression of the solution is 
performed dynamically as opposed to a posteriori as is done 
in data analysis. These features make adaptive wavelet algo­
rithms attractive in solving tough multiscale problems in 
physics and engineering. 

Thermoacoustic waves. As a first example, we consider 
a thermoacoustic wave problem for illustrating the prowess 
of the adaptive WC algorithm in treating problems with 
localized structures, whose positions and sharpness change 
both spatially and temporally. Here we discuss only the 
evolution of the solution and the' physical formulation of the 
problem. For the mathematical formulation we refer to Ref. 
18 for the one-dimensional case and Ref. 19 for the two-di­
mensional problem. 

Consider a compressible ideal gas in a rectangular cavity 
with rigid walls. The gas is initially quiescent at a uniform 
pressure and temperature. An abrupt temperature change in 
localized regions of the walls causes gas to expand in the 
immediate neighborhood of those regions. This expansion 
generates pressure waves, which propagate away from these 
regions. These thermally generated waves are referred to as 
thermoacoustic (TAC) waves. TAC waves, which decay on 
large time scales due to thermal and viscous diffusion, propa­
gate, interact with each other, and reflect from the walls, 
creating complicated two-dimensional patterns. The proc­
esses of reflection and diffusion continue until the waves die 
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Figure 5. Evolution of the collocation grid for the two-dimensional nonlinear 
thermoacoustic wave problem at four different times. 

out and a quiescent thermal-conduction state is achieved. 
The efficiency of the numerical algorithm was illustrated 

in Ref. 9, in which results for a one-dimensional TAC wave 
obtained by the adaptive WC method were compared with the 
results of Huang and Bau. 18 In their one-dimensional finite­
difference numerical algorithm, Huang and Bau required 
6000 evenly spaced grid points to achieve proper resolution 
of the physics. In the calculation using the adaptive WC 
method, the total number of collocation points did not exceed 
195 at any time, and adaptive WC maintained proper resolu­
tion of all scales. In addition, small spurious oscillations had 
been observed in the solution of Huang and Bau at small times 
and ascribed to unresolved scales associated with the initial 
large gradients, and these oscillations were not present in the 
results obtained by the WC algorithm. 

The two-dimensional T AC wave problem involves five 
unknowns, four partial differential equations (continuity, x­
and y-momentum, and energy), and one algebraic equation 
(equation of state). The adaptation of the computational grid 
was based on the analysis of coefficients associated with all 
dependent variables. The irregular grid of WC points was 
constructed as a union of irregular grids corresponding to each 
dependent variable. 

The solution of the problem (pressure field) correspond­
ing to the case of four symmetrically placed localized tem­
perature disturbances at the wall is shown in Fig. 4. These 
temperature sources generate four T AC waves, which in­
itially propagate independently of each other until they start 
to interact. After interaction, the waves go through each other, 
creating complicated patterns. 

The dynamical adaptation of the computational grid is 
shown in Fig. 5. As time progresses, this grid adapts to the 
multiple local structures appearing in the solution. Solved on 
a uniform nonadaptive computational grid, this problem 
would have required more than 106 grid points, whereas in 
the present calculation, the total number of collocation points 
did not exceed 103. This reduction in complexity illustrates 
the prowess and compression efficiency of the dynamically 
adaptive WC algorithm. 

Viscoelastic deformation. As a second example, we con­
sider a problem of geophysical relevance, viscoelastic defor­
mation involving both steep viscosity stratification and 
density variations. This example illustrates the ability of the 
adaptive WC method to solve problems with localized struc­
tures and sharp gradients in physical properties. The viscoe­
lastic-flow process involves a thin, highly viscous upper 
boundary layer (lithosphere) that interacts with a highly vari­
able viscous interior (the mantle) associated with a rising 
diapir. This is modeled kinematically by a rising small low­
density sphere with a viscosity considerably lower then the 
ambient mantle. 

The viscoelastic model problem involves six unknowns: 
two velocity components, pressure, and three components of 
the stress tensor. Six partial differential equations describe the 
temporal evolution of these variables. The computational grid 
is adapted in the same way as the previous example; that is, 
it is based on the analysis of wavelet coefficients associated 
with all dependent variables. The irregular grid ofWC points 
is constructed as a union of irregular grids corresponding to 
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each dependent variable. 
The solution for the Txx component of the stress tensor 

and the corresponding computational grid is illustrated in Fig. 
6 for two different times. The high-stress region is observed 
at the top 8% of the domain. Note that the computational grid 
is very fine only in regions where small-scale features or large 
gradients are present. The use of the dynamically adaptive 
we method allows us to conduct the calculations for thinner 
layers and higher viscosity contrast (up to 108), close enough 
for realistic mantle-lithospheric interaction. The multilevel 
wavelet approximation allows local grid refinement up to an 
arbitrary small scale without a drastic increase in the number 
of collocation points. The total number of collocation points 
at any instant of time does not exceed 104. Ifwe repeated the 
same calculation on a nonadaptive two-dimensional grid us­
ing conventional numerical algorithms, it would require more 
than 106 grid points. 

Discussion and future work 
Efficient, dynamically adaptive wavelet-based numeri­

cal algorithms have recently been developed for the solution 
of nonlinear PDEs. These algorithms are competitive with 
classical methods and have a number of attractive special 
features. The computational grid or wavelet basis can effi­
ciently adapt to local irregularities of the solution in order to 
resolve regions of large gradients. The algorithms can be 
applied to problems with wide ranges of temporal and spatial 
scales. More over, it is possible to actively control the relative 
error of the solution by prescribing a threshold parameter. 

In spite of the progress thus far, the wavelets approach 
could still be improved. Development of an implicit time-in­
tegration algorithm would be helpful. After the time discreti­
zation is applied, problem (3) reduces to essentially an elliptic 
problem. The main difference between the algorithm for 
elliptic problems and that for time integration is that the 

0.2 t;;;, 
0.0 ';". 

1.0 0.0 0.2 0.. 0.6 Q,B 1.0 
z/I. , 

0.0 O.Z 0. ... 0.8 0 .8 1.0 
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Figure 6. Absolute value of the Txx component of the stress tensor and associated 
computational grid at two different times. 
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computational grid is known for the latter. 
In the development of an efficient adaptive elliptic 

solver, the multilevel structure of the wavelet approximation 
provides a natural way to obtain the solution on an optimal 
grid-namely, by starting calculations on a coarse grid and 
progressively adding wavelets at finer scales of resolution. 
This procedure results in the resolution of all the scales 
present in the solution and reduction of the total number of 
unknowns. 

Due to the local character of the adjacent zone, between 
two successive grid changes the level of resolution increases 
at most by one. This local increase of the level of resolution 
guarantees that the solution on the new grid will not be too 
far off the solution on the old grid and that fewer iterations 
will be necessary to obtain the solution. Most of the iterations 
will be spent on the coarser levels. By the time the finest level 
of resolution is reached, a good initial guess of the solution 
will be available, so that only a few iterations will be needed. 

In order to accelerate the convergence of the iterative 
solver at each computational grid, a procedure analogous to 
the multigrid algorithm can be utilized. Multilevel iterations 
can be considered as a preconditioner for the iterative algo­
rithm. Due to the sparseness of the matrices involved in the 
multilevel wavelet approximation, it is natural to expect that 
an iterative algorithm will be much more efficient than direct 
solvers. Elliptic solvers for WG algorithms can be developed 
along the same lines. 

Another area of possible improvement of existing wav­
elet-based numerical algorithms is their extension to complex 
geometries. This type of improvement should be based on the 
locality of the support of the basic wavelet. Each complex 
domain can be locally embedded within a regular domain. 
Wavelets can be located the same way as when dealing with 
simple geometries. There will be two classes of wavelets 
connected with the irregular domain: wavelets located within 
the domain and wavelets located outside of the domain. The 
collocation points for internal wavelets can be chosen to be 
the locations of the wavelets themselves, whereas the collo­
cation points for external wavelets can be chosen on the 
boundaries of the domain. Thus, the problem reduces to a 
differential-algebraic system of equations, which can be 
solved by the methods described above depending on whether 
it is an elliptic or a time-evolution problem. The extension of 
WG algorithms to complex geometries is not as straightfor­
ward as in the case of the we method, and at this time it is 
another potential weak point ofWG algorithms. 

Wavelets have opened up new horizons in numerical 
analysis. In this article, we have discussed the main advan­
tages of adaptive wavelet-based algorithms and the benefits 
of using them in certain situations. Although we do not wish 
to suggest that wavelet-based approaches will replace all 
existing numerical algorithms, the application of wavelets to 
solving PDEs is a promising development. Researchers 
should not shy away from applying wavelets to complicated 
physics and engineering problems. 
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