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Acoustic timescale Deflagration-to-Detonation Transition (DDT) has been shown to
occur through the generation of compression waves emitted by a hot spot or reaction
centre where the pressure and temperature increase with little diminution of density. In
order to compensate for the multi-scale nature of the physico-chemical processes, pre-
vious numerical simulations in this area have been limited to relatively small activation
energies. In this work, a computational study investigates the effect of increased activa-
tion energy on the time required to form a detonation wave and the change in behaviour
of each hot spot as the activation energy is increased. The simulations use a localised
spatially distributed thermal power deposition of limited duration into a finite volume
of reactive gas to facilitate DDT. The Adaptive Wavelet-Collocation Method is used to
solve efficiently the 1-D reactive Euler equations with one-step Arrhenius kinetics. The
DDT process as described in previous work is characterised by the formation of hot
spots during an initial transient period, explosion of the hot spots and creation of an ac-
celerating reaction front that reaches the lead shock and forms an overdriven detonation
wave. Current results indicate that as the activation energy is raised the chemical heat
release becomes more temporally distributed. Hot spots that produce an accelerating
reaction front with low activation energies change behaviour with increased activation
energy so that no accelerating reaction front is created. An acoustic timescale ratio is
defined that characterises the change in behaviour of each hot spot.

Keywords: detonation initiation; deflagration-to-detonation transition; acoustic
timescale; inertial confinement; wavelets

1. Introduction

Thermal energy deposition into a reactive gas provides an ignition source for detonations.
Sufficiently fast and large energy addition can facilitate a direct initiation. Clarke, Kassoy
and Riley [1] and Clarke, Kassoy, Meharzi, Riley and Vasantha [2] model detonation
initiation following localised spatially distributed transient energy deposition from a planar
boundary via conduction into an adjacent reactive gas in a semi-infinite domain. The
Navier–Stokes equations are integrated numerically to resolve a quantitative time-history of
localised spatially distributed reactive gasdynamic processes that lead to planar detonation
formation. The authors recognise that ‘. . . direct initiation of detonation requires sufficient
power input to first of all generate a suitably strong precursor shock wave, which then
becomes the trigger to switch on vigorous chemical activity in its wake. The hall mark of
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this vigour is its capacity to exploit the inertia of the fluid by raising local pressures and
temperatures, with little diminution in local density; the pressure waves so formed propagate
and increase precursor shock strength which therefore lifts the overall density levels, as
well as those of pressure and temperature. All of these processes interlock in a continuously
accelerated sequence that progresses towards a steady-state. . . ZND detonation’ [1].

Subsequently, Mazaheri [3] and Eckett, Quirk and Shepherd [4, 5], model planar
and spherical detonation initiation, respectively, initiated by blast waves subsequent to
instantaneous deposition of energy at a plane or a point. Energy deposition criteria are
used to distinguish between sustained and failed detonations. Computational modelling
results demonstrate that blast wave propagation through unreacted gas mixture leads to
the formation of localised regions of rapid chemical heat release (thermal explosions)
characterised by relatively high temperature and pressure, similar to those found in [1]
and [2]. These hot spots are the subsequent sources of compression waves that may run up
to and strengthen the blast wave front enough to generate and sustain a classical detonation
(shock coupled to a reaction zone).

Sileem, Kassoy and Hayashi [6] (SKH) and Kassoy et al. [7, 8] (KKNC), model the
reactive gas response to relatively smaller spatially distributed, transient energy deposition
into a finite target volume.1 They describe the sequence of reactive gasdynamic events
occurring beyond the initially heated volume that are classified as DDTs. Computational
results, based on MacCormack numerical methods with fixed grids, demonstrate that hot
spots are inherent to the detonation initiation process.

Gu, Emerson and Bradely [9] use computational solutions to the Euler equations with
multistep kinetics relevant to H2–CO–air and H2–air mixtures to identify five distinct
modes of reaction front propagation arising from a preexisting local hot spot. They find
that evolution of the detonative mode depends on the temperature distribution properties
of the hot spot AND ‘. . . the ratio of the hot spot acoustic time to the heat release rate
excitation time. . . ’ [9].

Hot spots appear to be common to all forms of detonation initiation studies, including
those associated with reflected shocks and shock flame interactions studied intensively
by Oran and co-workers beginning in the 1980s ( [10–14] and reviewed by Oran and
Gamezo [15]). Nearly all studies of detonation initiation contain qualitative descriptions
of the role played by hot spots in the development of detonations. Since the early ex-
perimental observation by Oppenheim [16] of an ‘explosion in an explosion’ (reaction
centre) it has been argued qualitatively that hot spots are local sources of compression
waves that strengthen existing lead shocks to promote the existence of coupled reac-
tion zones. That argument depends on the simultaneous local increase in temperature
and pressure caused by localised chemical heat release in a nearly inertially confined
fluid volume (constant volume heating) characterised by a minimal change in density as
recognised in [1].

Zeldovich et al. [17], Zeldovich [18] and Lee [19] proposed concepts to quantify how
hot spots contribute to the formation of detonations. Both concepts depend on a spatial
gradient in chemical induction time τ (r) where a reaction forms at the minimum induction
location and a spontaneous reaction wave propagates at a speed equal to the inverse gradient
of the induction scalar field usp = |∇τ (r)|−1. As an alternative to the Zeldovich [17] and
Lee (SWACER) [19] models, Bauwens [20, 21] developed a 1-D alternative theory that

1Extensive discussions of both direct initiation of detonations and Deflagration-to-Detonation Tran-
sition (DDT), including references, are found in all of the aforementioned publications.
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focuses on the chemical and gasdynamic timescales of shocks and expansion waves to
create detonability limits for one or a series of hot spots.

Hot spot modelling, based on spatially distributed Thermal Explosion Theory (TET),
has been developed with a combination of asymptotic and computational methodologies
(e.g. Jackson, Kapila and Stewart [22], Short [23,24]). Results describe spatially distributed,
transient chemical heat release during a relatively lengthy induction period, followed by a
much shorter period of extremely rapid energy deposition (the explosion) into a relatively
tiny spatial volume. These hot spot theories describe the thermomechanical properties of
the chemically heated gas, but are not formulated to consider the subsequent impact of
focused rapid heat release on environmental gases.

Vasquez-Espi and Linan [25] formulate a model for non-diffusive ignition of a gaseous
reacting mixture subject to a point energy source. Their intuitive analysis identifies the ther-
modynamic response of the gas-to-source heating. The fluid motion induced by spatially
distributed transient energy addition, observed in many related studies (e.g. [1–9]) is not
calculated. Gas expansion subsequent to thermal energy addition is shown to be a signif-
icant cooling mechanism that may suppress any anticipated spatially distributed thermal
explosion or lead to diffusive ignition.

An initial step toward developing a completely rational parameter-based asymptotic
thermomechanical study of hot spots has been developed by Kassoy [26]. An external
source provides spatially distributed transient heat addition to a finite volume of inert
gas on a timescale short compared to the acoustic time of the volume where the ratio is
represented by the parameter ε. The theory defines limits on energy addition compatible
with near inertially confined heat addition within the targeted volume (nearly constant
volume heating in the near field) characterised by a synchronised increase in spatially
distributed temperature and pressure with only small changes in density. The internal
expansion Mach number will be asymptotically small with respect to the parameter ε when
the energy addition is sufficiently small during the heating time period. Hot gas expelled
from the volume (the piston effect) during the heating process generates only acoustics
in the neighbouring cold gas (the far field). Alternatively, for sufficiently large energy
addition, more ‘robust’ piston Mach numbers are predicted leading to immediate shock
propagation in the far field. When the energy addition reaches a specific maximum value the
near field heating process is entirely compressible, characterised by localised hypersonic
expansion Mach numbers, compatible with very strong blast wave generation in the
far field.

Although it is tangential to the current work, it should be noted that hot spots are
also of interest in homogeneous charge compression ignition (HCCI) engine modelling
(Sankaran et al. [27]). ‘High fidelity’ simulations are performed to identify autoignition
processes in turbulent, high-pressure homogeneous H2–air mixtures with localised temper-
ature distributions. Two distinct ignition regimes are identified: spontaneous propagation
and deflagration. Here the objective is to avoid detonation initiation and the presence of
shock waves.

Clarke et al. [1,2], Sileem, Kassoy and Hayashi [6] and Kassoy et al. [7,8] perform 1-D
numerical simulations based on the reactive Euler equations whereby DDT is initiated by
depositing energy into a finite volume of reactive fluid of size l′ for a finite duration t ′h such
that the fluid response is characterised by some degree of inertial confinement if t ′h � t ′a
or t ′h � t ′a, where the acoustic timescale t ′a = l′/a′ is defined by the fluid dimension and
the local speed of sound. The simulations demonstrate that if t ′h ∼ t ′a a chemical explosion
occurs in the deposition region, leading to the formation of compression waves that become
shock waves. The shocks decouple from the reaction zone and an induction zone is formed
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between the reacted volume of fluid and the lead shock that conditions the reactive gas.
After a period of time, a localised explosion occurs inside of the induction zone. In [6], the
localised explosion occurs when a hot spot releases chemical heat rapidly. Hot spots are
observed to form behind a strong lead shock created by the coalescence of two relatively
weak shocks, similar to the experimental observations in Oppenheim [28]. Coalescence of
two shocks initiates the rapid localised reaction process leading to a sequence of events
resulting in an overdriven detonation. Transition to detonation is conditional upon creating
a sufficiently strong lead shock, which provides the temperature rise required for adequate
chemical heat addition.

In [8], similar trends are observed while exploring the effects of a narrow range of
nondimensional activation energies (13.79, 13.33, 12.90 and 12.50) and variations in local
power deposition rates. Smaller activation energy is associated with relatively shorter times
to detonation formation. However, the basic characteristics of global heat release profiles
(spatially integrated chemical heat release at each instant of time) are similar. Each shows
evidence of discrete localised hot spot formation and evolution. In [8], the authors also
explore the effects of decreasing the power deposition rate up to 50% of the initial value.
As the rate is decreased the time to form a detonation increases. The global heat release
profiles exhibit a definitive change in behaviour, especially in the case of 50% power. In
this case the global heat release plot suggests that the sequence of hot spots evolves with
time creating multiple peaks in the global heat release rate. The authors conclude that the
induction zone time increases as a result of a decrease in induction zone temperature. No
explanation is offered for the appearance of a sequence of heat release maxima. A point
worth noting, although not formally concluded by the authors, is that increased power
deposition is shown to reduce the number of heat release maxima.

The previous studies by Kassoy and co-workers [6, 8] are based on the reactive Euler
equations. A 1-D uniform grid is used in a MacCormack scheme. Proper resolution of a
detonation half-reaction length requires a minimum of 50 or more points [29–31]. Since the
previous work used uniform grid serial based solvers involving computational limitations,
relatively small nondimensional activation energiesE ∈ [10, 13.78] (see Table 1) were em-
ployed. This is effectively done by reducing the multi-scale nature of the thermomechanical
behaviour such that the size of the localised hot spots is within an order of magnitude of the
computational domain and the timescale associated with the chemical heat release of the
hot spots is approximately within an order of magnitude of the total time to form a detona-
tion. However, activation energies typical of hydrocarbon–air mixtures are approximately
in the range 25–50 and other large-scale simulations [15] and experiments [28] demonstrate
the full multi-scale nature of these thermomechanical processes. Although these examples
contain multi-dimensional effects, it is still reasonable to question whether the initiation
sequence description observed for relatively small activation energies will prevail when
higher, more realistic values are employed.

The multi-scale nature of acoustic timescale detonation initiation requires more ad-
vanced numerical integration schemes that use dynamically changing grids. The dynami-
cally Adaptive Wavelet-Collocation Method (AWCM) has been shown to use computational
resources efficiently for simulations that involve localised structures [32–34], such as those
found in the detonation initiation process. The efficiency of the AWCM arises from the
use of wavelets to determine which grid points to use during each time step, based upon
a given error threshold parameter ε. A hyperbolic solver has been developed specifically
for the AWCM [35, 36] and efficiently captures shocks, contacts and material interfaces
by maintaining a Total Variation Diminishing (TVD) solution through the use of artificial
viscosity. With this numerical algorithm, it is possible to capture the multi-scale phenomena
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inherent with larger activation energies. The one-dimensional results presented in this work
appear in a PhD thesis [36] also containing two-dimensional results [37]. The latter are to
be described in more detail in a forthcoming manuscript.

There are five primary objectives in this work. The first is to confirm qualitative
conceptual ideas about DDTs obtained originally from computational results based on
MacCormack methods with results obtained from AWCM computations. Second, to ex-
plore the sensitivity of the evolutionary process to relatively small increases in activation
energy beyond that done in [8]. Third, to demonstrate the truly multi-scale behaviour ob-
served with more realistic activation energies and explain how the difference in behaviour
occurs. Fourth, to identify the importance of full or partial inertial confinement in the evo-
lution of 1-D hot spots. Finally, to explain the thermomechanical response of the reactive
gas in terms of concepts developed by Kassoy [26].

2. Mathematical model

The nondimensional 1-D reactive Euler equations (see Table 1 for variable definitions) are
used to model detonation initiation. They are written in terms of the conserved quantities
ρ, ρu, the total energy ρeT and the reactant mass ρY :

∂ρ

∂t
+ ∂ρu

∂x
= 0, (1a)

∂ρu

∂t
+ ∂

∂x
(ρu2 + p) = 0, (1b)

∂ρeT

∂t
+ ∂

∂x
(ρeT + p)u = Q̇+ Ẇq, (1c)

∂ρY

∂t
+ ∂ρYu

∂x
= −Ẇ . (1d)

The equation of state and reaction rate are defined by

p = (γ − 1)

(
ρeT − 1

2
ρu2

)
, (2)

Ẇ = BρY exp(−E/T ), (3)

Table 1. Nondimensional variable definitions (primes
denote dimensional quantities).

Position x = x ′/l′

Time t = t ′/t ′a
Velocity u = u′/a′

o

Pressure p = p′/γp′
o

Density ρ = ρ ′/ρ ′
o

Temperature T = T ′/T ′
o

Total Energy eT = e′
T/a

′
o

2

Activation energy E = E′/R′T ′
o

Heat of reaction q = q ′/a′
o

2

External power deposition Q̇ = Q̇′t ′a/ρ
′
oa

′
o

2

Pre-exponential factor B = B ′t ′A
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where Y is the mass fraction of the reactants, q is the heat of reaction and Q̇ is an externally
added power addition term. The reaction rate Ẇ represents an Arrhenius reaction rate where
B is the pre-exponential factor, E is the activation energy and T = γp/ρ.

The nondimensional variables are defined in Table 1 where the thermodynamic variables
(p, ρ, T ) are expressed with respect to the undisturbed dimensioned initial state (p′

o, ρ
′
o, T

′
o)

and primes indicate a dimensioned quantity. The spatial variable x is defined with respect to
a characteristic length l′ in the undisturbed fluid such that the acoustic timescale t ′a = l′/a′

o,
where a′2

o = γR′T ′
o .

3. Numerical method

Since detonation initiation is a multi-scale process, a uniform-grid based scheme may
be incapable of resolving all physically important scales without intense utilisation of
computational resources. For this study the dynamically Adaptive Wavelet-Collocation
Method (AWCM) is used to perform the simulations [32–34]. The AWCM utilises second-
generation wavelets with an error thresholding parameter ε to determine which grid points to
use during each timestep in the solution of a partial differential equation while maintaining
a prescribed level of accuracy. The hyperbolic solver [35,36] developed for the AWCM uses
wavelets on the finest level of resolution to create a shock locator function φ ∈ [0, 1], which
explicitly applies artificial viscosity to resolve shocks and contact discontinuities so that
spurious oscillations in the solution are minimised. With this definition, a locator function
with a value of zero indicates a smooth solution and a locator value of unity indicates a
strong gradient in the solution such as a shock. It varies continuously from 0 to 1 based upon
the smoothness of the solution. Further details can be found in [35]. The locator function
φ is used in this work to track localised maxima and minima such as reaction centres or
hot spots. The differencing technique is centred and is capable of using any arbitrary order
of accuracy. For the simulations presented in this work the central differencing scheme is
4th-order accurate. In regions near near localised structures such as shocks and contact
discontinuities, the artificial viscosity limits the accuracy in these regions to between 1st-
and 4th-order accuracy.

Since previous investigations [6, 8] used a MacCormack scheme, it is anticipated that
there will be quantitative differences between previous results and those presented in Section
3.1.1. Differences are expected to exist because each scheme uses different amounts of
artificial viscosity near shocks and contact discontinuities. The artificial viscosity acts as a
diffusion mechanism. When it is combined with an Arrhenius reaction, the reaction and heat
release rates may differ between methods. The quantitative differences are most apparent in
the globally integrated heat release plots. The quantitative results identified in Section 3.1.1
imply that the DDT scenarios described in [6, 8] are conceptually valid and qualitatively
correct.

Since the detonation initiation transients are of primary interest and the length scales
are as much as an order of magnitude larger than the reaction region, approximately 25
points are used to resolve the steady-state half-reaction length. Consequently, the globally
integrated chemical heat release at each timestep can be oscillatory when a detonation
eventually forms. This has been observed before in previous work [6] and it has been
shown that increased resolution reduces the magnitude of these oscillations, but does not
change the initiation process. A convergence study has also been performed to ensure that
the results presented in this work are independent of resolution.
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3.1. Validation

Prior to the current work, the AWCM-hyperbolic solver combination has never been applied
to compressible reacting flows. In addition, the results in [6] and [8] have never been
verified by comparison with those obtained from other methods. Therefore, it is important
to establish a numerical starting point that ensures continuity between the past and present
simulation techniques. The purpose of this section is to demonstrate the ability of the
AWCM to capture compressible reacting flow and to confirm the conceptual perspectives
developed in earlier papers are not dependent upon the numerical method.

In order to confirm the concepts developed in earlier work are independent of the
numerical method a replica of the 1-D detonation initiation simulation with zi = 3 in [8] is
performed using the AWCM. First, it is necessary to demonstrate that the numerical method
correctly captures the steady-state detonation propagation velocity and to understand the
level of resolution required to resolve the von Neumann spike. A numerical simulation
is performed with the Zeldovich–Neumann–Döring (ZND) model [38–40] solution as the
initial condition. The detonation propagation velocity obtained from the numerical method
is found to be nearly identical to the theoretical value and is independent of resolution.
Approximately 100 points are needed to resolve the half-reaction length so that the density
reduction at the von Neumann spike is less than 2% of the theoretical value. However, the
pressure and temperature at the von Neumann spike are accurately captured using as little
as 22 points. A detailed discussion of this validation problem can be found in Appendix A.
These results indicate that the method is capable of accurately modelling compressible
reacting flows.

3.1.1. Time history evolution to detonation initiation benchmark

Before attempting to add to the conceptual discoveries made in [6,8], it is best to confirm that
the results in the previous work are not dependent upon the numerical method. This is done
by replicating a simulation performed in [8]. Differences are expected to be present between
the two schemes, but the underlying concepts describing the DDT process should remain
consistent. The purpose of this step is to identify the differences between schemes and
demonstrate that the concepts developed in [6,8] are independent of the applied numerical
method.

The simulation performed is case (zi = 3) in [8]. The 1-D problem is set up using the
reactive Euler equations (1), the equation of state (2), the reaction rate equation (3) and an
equation for the spatially resolved, transient thermal power deposition Q̇:

Q̇ =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ x ≤ 1

3f (t) cos

[
π

4
(3 − x)

]
1 < x ≤ 5

0 x > 5

(4)

f (t) = 0.7A{tanh[5(t − ta)] − tanh[5(t − tb)]}. (5)

The parameters ta and tb are chosen to ensure rise and fall-off times of about 0.5 acoustic
times while the power deposition is sustained for a much longer time. For this simulation
ta = 0.5 and tb = 10 and the amplitude term A = 1. The heat of reaction q = 15, spe-
cific heat ratio γ = 1.4, pre-exponential factor B = 15 and activation energy E = 13.79.
Equation (4) describes the power deposited in the region x ∈ [1, 5]. An adiabatic reflecting
wall is located at x = 0. The simulation begins with the reactive gas at rest in thermal
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Table 2. Dimensional values for acoustic time, pre-exponential factor, power addition rate and
energy addition per unit area A′ are presented for various different length scales.

Length Acoustic Pre-exponential Power addition Energy addition
scale timescale B ′ = B/t ′a Q̇′/ρ ′

o = Q̇a′2
o/t

′
a Q′/A′ = Q̇′l′t ′h

l′ [m] t ′a = l′/a′
o [s] [1/s] [W/kg] [J/m2]

1 2.9E−3 5.21E+3 1.76E+8 1.92E+7
10−1 2.9E−4 5.21E+4 1.76E+9 1.92E+6
10−2 2.9E−5 5.21E+5 1.76E+10 1.92E+5
10−3 2.9E−6 5.21E+6 1.76E+11 1.92E+4
10−6 2.9E−9 5.21E+9

equilibrium with initial condition

ρo = To = Yo = 1 uo = 0. (6)

To add context to these nondimensional values, an example of a dimensional initial
condition could be

T ′
o = 300 K ρ ′

o = 1.16 kg m−3 p′
o = 1 bar (7)

with nondimensional parametersB = 15 (see Equation 5), a total heating time th = t ′h/t
′
a =

9.5 and a speed of sound a′
o = 347.2 m s−1. The peak nondimensional power deposition

rate for an amplitude A = 1 is Q̇ = 4.2. Table 2 lists dimensional values of the acoustic
time t ′a , the pre-exponential factor B ′, the power/mass deposition amplitude Q̇′/ρ ′

o and the
energy deposition per unit area into a slab of width 4l′ during a period of t ′h = 9.5t ′a , as
functions of the length scale l′ in the range 1 m to 1 µm. These numbers provide some
perspective on the dimensional time and space scales incorporated by the model, as well
as the power and energy deposition levels used to initiate the DDT. The pre-exponential
factors are smaller than those anticipated in real fuel-oxidiser reactions, even if the largest
value cited in Table 3 is used.

In the previous 1-D simulations found in [6, 8] a common figure used to compare
different cases is the globally integrated heat release as a function of time. The global heat
release is defined as the integral over the fluid volume V of the chemical heat release rate
at each instant in time so that

Q̇ch(t) =
∫
V

Ẇ (t)q dV. (8)

Figure 1 shows the currently calculated global heat release transient for E = 13.79 in
comparison with that in [8]. The two solutions are nearly identical, with the exception of the
small local maximum that occurs when 27 < t < 30 in [8] after the overdriven detonation
is formed. That local maximum is attributed in [8] to the consumption of a localised pocket
of unburned fuel still present after the detonation wave is formed.

Both solutions decay eventually to the theoretical steady-state heat release value of
Q̇CJ = 83.14. Although there are some minor quantitative differences between the two
results, the concepts developed in [6] and [8] are observed to be independent of the applied
numerical method.
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Figure 1. The global chemical heat release shows the initial ignition of the reactive fluid (2 ≤ t ≤ 4),
the induction period (5 ≤ t ≤ 13) and the localised explosion (15 ≤ t ≤ 18) that releases the energy
that creates an over-driven detonation wave that decays to a C–J wave. The Kassoy et al. results
closely match the AWCM results leading to detonation formation.

4. Acoustic timescale theory

The evolution of detonation formation following localised acoustic timescale power depo-
sition can be visualised on the x–t diagram schematically illustrated in Figure 2, which is
constructed from previous work [6,8] and detailed computational results presented in Sec-
tion 5.2. The process includes localised thermal power deposition causing a shock wave to
form and propagate away, an immediate exothermic rapid reaction on the acoustic timescale
(explosion) that is the source of compression waves, an induction period within the reactive
gas conditioned by the passage of shocks and compression waves, including shock reflec-
tion and transmission, a subsequent localised explosion that creates an accelerating reaction
front, overdriven detonation wave formation, and relaxation to a steady-state detonation
wave. This figure is very similar to others seen in [6, 21, 41]. Figure 2 focuses explicitly
on the interaction between two individual explosions (dark grey field) in which the final
explosion (right-hand boundary) intersects with the lead shock to produce an overdriven
detonation wave. The results presented in Section 5.2 will show a more complex evolution
process for cases with larger activation energies. Once the results are discussed, a modified
diagram (Figure 8) will be proposed to explain the different evolution processes observed.

The process begins near the wall x = 0 at t = 0 with the initial thermal power deposition
that creates a compression wave that transitions to a shock and propagates downstream.
The shock wave heats the gas to a temperature Ts1 labelled in the legend of Figure 2. When
the reactants reach an adequately high temperature, a chemical explosion occurs inside
the deposition region, which creates compression waves in both the positive and negative
directions. Waves are commonly labelled using the symbol ψ . Figure 2 denotes the waves
travelling in positive and negative directions as ψR and ψL, respectively. The ψR wave
decouples from reaction zone and propagates toward the lead shock. At some point the ψR

wave reaches the lead shock and the two waves coalesce into a single shock wave with a
higher post-shock pressure and temperature. When the two waves coalesce a momentary
increase in the reaction rate releases a small amount of heat, which forms a localised
hot spot.
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Figure 2. Generic x–t diagram demonstrating the process of power deposition, gasdynamic heating,
localised reaction formation, accelerating reaction front, overdriven detonation wave formation and
relaxation to steady-state detonation.

The material interface between the burned and unburned fluids acts as a partial re-
flection and transmission boundary for the ψL shock wave. Each time it reflects off the
material interface its pressure ratio decreases because of the energy loss in transmission.
The transmitted portion of the ψL branch wave coalesces with the lead shock and the lead
post-shock temperature is increased. As with the ψR branch wave’s coalescence with the
lead shock, when the ψL branch wave intersects with the lead shock a momentary increase
in the reaction rate releases a small amount of heat which forms a localised hot spot. Figure 2
shows theψL andψR branch waves reaching the lead shock simultaneously. This is rarely if
ever the case, but this assumption is made to simplify the diagram. In previous work [6, 8]
with low activation energies, even though the two hot spots are formed at different times,
they explode nearly simultaneously, which is why a wide single hot spot is portrayed in the
x–t diagram.

Figure 2 has been labelled to represent the different regions of temperature. The undis-
turbed reactants at To are coloured white, the combustion products are coloured dark grey,
the induction zone created by the initial power deposition is denoted by Ts1, Ts2 denotes the
induction zone created by the ψR shock and TsIZ denotes the final induction zone tempera-
ture created by the ψL branch wave. The post-shock temperature increases each time a new
shock passes through the induction zone such that

T0 < Ts1 < Ts2 < TsIZ . (9)

This highly transient process creates an induction zone with a non-uniform induction time
τ (x). The hot spots created by the subsequent shocks coalescing with the lead shock mark
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the location of minimal induction time and are indicated in Figure 2 as black dots that move
tangentially with the local fluid velocity.

After the induction zone’s time τ has elapsed a localised explosion of nondimensional
width lL occurs in a period of time tL as labelled in Figure 2. This explosion forms an
accelerating reaction front that eventually reaches the lead shock and forms an overdriven
detonation wave. The accelerating reaction front can be seen as the reduction in slope dt/dx
of the explosion’s right boundary.

The nondimensional local acoustic timescale for this volume of fluid is defined as

taL = lL

aL
= lL√

TL
, (10)

where the local nondimensional speed of sound is a function of the local fluid temperature:
aL = √

TL. Partial inertial confinement will occur when the chemical heat release time
tL � taL and total inertial confinement will occur in the limit tL � taL . It is convenient to
define a local acoustic timescale ratio

rL = tL

taL

(11)

that can be used to characterise the results. When the local acoustic timescale ratio for
a given hot spot is unity the pressure rise is limited by gas expansion simultaneous with
the local heat release. Thus, timescale ratios less than unity should be associated with
pronounced inertial confinement and significant local pressure enhancement that promotes
the appearance of an accelerating reaction front that forms an overdriven detonation wave.
Timescale ratios greater than unity are associated with significant gas expansion leading to
a decelerating heat release process that eventually terminates.

5. DDT with large activation energies

As the activation energy is increased to values beyond that used in the benchmark simulation,
the amount of time required to achieve a DDT increases as observed in [6] and [8]. This is
readily explained by inverting Equation (3) to obtain a proportionality relationship between
the characteristic reaction time tch and the activation energy E for a localised volume of
fluid that has been compressed by a shock wave so that the post-shock temperature of the
fluid is Ts:

tch ∝ e(E/Ts)/B. (12)

As the activation energy increases the time required for the preheated fluid to react increases
exponentially. Kassoy et al. [8] observed this sensitive response to activation energy by
reducing the activation energy from 13.79 to 12.50, which reduced the induction time by an
amount similar in magnitude to the induction time itself. It is also observed that reducing
the deposition amplitude increases the DDT time by reducing the post-shock induction
zone temperature. In the 50% amplitude case, it was shown that the heat release profiles
showed multiple inflection points in the globally integrated heat release rate. This change
in heat release rate occurs because there is not one but two hot spots that are formed during
the initial transients. Multiple inflection points arise in the heat release rate because the hot
spots no longer react simultaneously. Thus, a reduction in the power deposition amplitude

 



Combustion Theory and Modelling 661

not only reduces the induction zone temperatures, but also introduces a variation in the
induction times for each hot spot.

Modification of the power deposition amplitudes by up to 50% show only minor varia-
tions in the induction periods of the two hot spots. Since the reaction rate is an exponential
function of activation energy, it can be anticipated that an increase in activation energy may
create substantial variations in induction periods for each hot spot and potentially lead to
behaviour different from that seen in [6, 8].

One of the primary objectives of the present work is to investigate the effect of incre-
mental increases in activation energy higher than 13.79 to determine if a similar staggered
hot spot behaviour occurs. A second objective is to model a scenario that uses a moderately
high activation energy and determine if the trends observed in the incremental study are
consistent with that observed for the high activation energy case. The final objective is to
characterise the thermomechanical behaviour of the observed hot spots in terms of localised
length and acoustic timescales.

5.1. Problem formulation

Four different 1-D simulations are presented for the activation energies and pre-exponential
factors given in Table 3. The simulations are identical to that in the validation problem in
Section 3.1.1 and the theoretical discussion in Section 4. The initial conditions are for a
reactive mixture at rest in a homogeneous thermodynamic state. Thermal power deposition
occurs in the region x ∈ [1, 5]. Cases 1–3 focus on an incremental increase in activation
energy while maintaining the same pre-exponential factorB. Case 3 uses a power deposition
amplitude 20% higher than Cases 1 and 2. The discussion in Section 5.2.3 will explain why
this modification does not adversely affect the conclusions drawn from the results. Case
4 uses an activation energy E = 25, a pre-exponential factor B = 440 and an increased
amplitude A = 2. The change in pre-exponential factor and amplitude is necessary since
the relatively high activation energy makes it difficult to predict a priori the computational
domain size needed to capture detonation formation inside the domain. However, since
Case 4 varies so significantly from the other cases it should be considered an example of

Table 3. Summary of parameters used for each case in 1-D simulations.
The amplitude and power deposition duration have been modified for Cases 3
and 4 to ensure detonation initiation occurs within the computational domain
while still depositing the same energy as in the previous two cases (xmax is the
domain length, nx is the maximum effective number of grid points, �x is the
finest grid spacing, �1/2 is the steady-state half-reaction length and nx/�1/2

is the effective number of points to resolve the half-reaction length).

Case 1 2 3 4

ε∗ 0.0750 0.0675 0.0650 0.0400
B 15 15 15 440
ta 0.5 0.5 0.5 0.5
tb 10 10 8.1 5.25
A 1 1 1.2 2
xmax 150 150 300 60
nx 7680 7680 15360 30720
�x 0.0195 0.0195 0.0195 0.00195
�1/2 0.3808 0.4548 0.4868 0.0532
nx/�1/2 19.5 23.3 24.9 27.2
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what happens in the limit of large activation energies and not an incremental extension of
Cases 1–3.

5.2. Results

Results for various simulations have been used to construct x–t diagrams as seen in
Figures 3, 5, 6 and 7. The coloured contour portions provide results for some or all of
the pressure, reaction rate, temperature and fuel mass fraction. In each x–t diagram the
creation of a hot spot is demarcated by a closed white circle and is numbered in the order
of appearance. Open black circles mark the time and location that the hot spots release
the majority of their chemical energy in a rapid reaction after their induction period has
elapsed. Red circles indicate locations where a reaction front intersects another shock wave.

Figure 4 plots the globally integrated chemical heat release defined in Equation (8) for
each case. Each plot is labelled to indicate the creation of a hot spot, the spot’s induction
time τ and the heat release period for that localised explosion tL as discussed in Section 4
and in Figure 2.

The black dots trace coordinates of the shock locator function φ described in
Section 3 for values greater than 0.9. These dots are good indicators of local maxima
and shocks. A value of 0.9 is chosen because at higher values the shocks become difficult to
recognise and at lower values the dots become overly abundant and structures become diffi-
cult to distinguish from each other. The white arrows are used to represent the fluid velocity.
A vertical arrow indicates zero velocity and a horizontal arrow would indicate an infinite
velocity. Each of the examples depicts a sequence of events similar to that in Figure 2.
Although the reactive gasdynamics becomes increasingly complex with increased activa-
tion energy the basic driving mechanism of localised chemical heat release is common to
each simulation.

5.2.1. Case 1: E = 13.33

Figure 3 shows the x–t diagrams of (a) temperature, (b) fuel mass fraction, (c) pressure and
(d) reaction rate for the simplest case with an activation energy E = 13.33. The simulation
begins with energy deposited in the region x ∈ [1, 5], heating the gases and creating a local
rise in temperature and pressure. Two trails of black dots that start at t = 0 indicate shock
waves that are created by the thermal power deposition. The right set propagates to the
right away from the energy source and the left branch propagates to the left. At t = 2 the
reactants inside of the deposition region are consumed in a rapid explosion producing left
and right (ψL and ψR) compression waves. The right ψR compression wave coalesces with
the lead shock created by the original thermal power deposition and creates localised hot
spot 1. This hot spot is marked as a closed white circle in Figure 3. The ψL wave reflects
off the left wall and travels back through the hot gas, the material interface that marks the
boundary between the reacted and unreacted fluids and into the unreacted fluid. The black
dots show the path of this shock starting at the left wall at t = 3. When the reflectedψL wave
reaches the material interface at t = 4.2, the pressure contour indicates that part of this
wave is reflected while the majority of it is transmitted. The initial post-shock temperature
as described in Section 4 after the creation of the first hot spot is Ts1 = 1.7.

At t = 4.2 the transmission of the reflected ψL branch wave occurs and increases the
post-shock temperature to Ts2 = 2.2. The transmitted ψL wave reaches the lead shock at
t = 6.5. The second hot spot forms when the ψL transmitted wave coalesces with the lead
shock at t = 6.5. Hot spot 2 is labelled in Figure 3(a) by a closed white circle.
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Figure 3. Case 1: x–t diagrams for (a) temperature, (b) fuel mass fraction, (c) pressure and
(d) reaction rate are shown using B = 15 and E = 13.33. Black dots indicate areas of localised
activity, e.g. shock waves and other localised structures. The white arrows indicate fluid velocity di-
rection. This case contains two hot spots that react simultaneously and create an accelerating reaction
front that ends when it reaches the lead shock at SI1.

After hot spots 1 and 2 have been created, an induction period commences in which
small amounts of chemical heat are released. Figure 4(a) labels the hot spot creation and
induction times for the globally integrated heat release. Once the induction period has
ended at t = 12 with an increase in heat release rate, Figure 3(d) shows that these hot
spots simultaneously form two spontaneous explosions and consume all the reactants in
the induction region. The event resembles a classic spontaneous explosion that can be
characterised by concepts developed by Zeldovich [17] and co-authors and Lee [19], where
each particle reacts according to its individual chemical induction time. Figure 3(d) also
shows that the chemical heat release between t = 12 and t = 14 differs from that from
t = 14 to t = 15.6. When 12 ≤ t ≤ 14, the explosion begins. As discussed in Section 4,
the final explosion includes an accelerating reaction front. This reaction front is seen in
Figure 3 during the interval 14 ≤ t ≤ 15.6. The slope of the reaction front, dt/dx, in that
interval is approximately equal to the slope of the detonation wave for t > 15.6. Equal
slopes indicate that the propagation speed usp = DCJ, which suggests that a detonation
wave will form.

Just before the reaction front reaches the lead shock front at t = 15.6 the gas temperature
from the compression wave is T ≈ 4. When the wave reaches the lead shock the local
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Figure 4. Global heat release plots for the four different cases. Each case shows multiple explosions
leading to a final explosion that coincides with a compression wave entering a cooler fluid, which
increases the acoustic timescale so that the reaction is more inertially confined and an overdriven
detonation wave is created.

acoustic time equals the unreacted acoustic time. Once the reacting structure of substantial
width is inside the unreacted gas the acoustic timescale increases by a factor of 2 (because
T ≈ 4) so that one final rapid chemical explosion takes place and consumes the remainder
of the reactants located behind the shock leading to an overdriven detonation wave. This
final explosion corresponds to the peak heat release rate at t = 16.7 in Figure 4(a), beyond
which the global heat release decays to the steady-state CJ rate Q̇CJ = 83.2.

5.2.2. Case 2: E = 14.81

In Case 2 the activation energy is increased to E = 14.81, 11% greater than Case 1, while
the pre-exponential factor remains the same with B = 15. Figure 5 shows that the sequence
of events begins similarly to that in Case 1, but quickly differs as time evolves. Two hot
spots are formed in the same early transient process as in Case 1. However, their evolution
into a detonation wave is distinctly different. This evolution includes the creation of an
additional hot spot out of the explosion of one of the original hot spots.

Perhaps the most obvious difference is that the time required to create the detonation
wave in the undisturbed reactive gas is increased from t = 15.6 to t ≈ 42. With the in-
creased activation energy the gas reacts more slowly to the initial power deposition, which
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Figure 5. Case 2 x–t diagrams for (a) pressure and (b) temperature using B = 15 and E = 14.81.
Two hot spots (1 and 2) form during the initial transients. The second hot spot explosion begins slowly
and creates another reaction centre (3). When the reaction front from hot spot 2 intersects with hot
spot 3 the third explosion occurs.

creates an initial explosion with smaller post-shock pressures than is seen in Figure 3 for
Case 1. Lower shock pressures create lower post-shock temperatures and longer induction
times for each hot spot.

Figure 4(b) plots the global heat release for Case 2 and labels the formation (subscript
f) and explosion (subscript e) times for each hot spot. The hot spots are numbered in the
order in which they are formed. The heat release profile shows that there is not one but
two local peaks in heat release that occur after the initial explosion and prior to the global
maximum.2 Each heat release maximum is indicative of a separate explosion somewhere
between the wall and the lead shock.

The inflection in heat release near t = 25 can be used to locate the first explosion that
ignites hot spot 2. This explosion is labelled on the x–t diagram in Figure 5 at x = 38 and
t = 25 with two black circles. Circle 2 marks the beginning of the explosion of hot spot 2
and highlights the origination of compression waves that emanate from it. Slightly after the
beginning of explosion 2, circle 2a marks the rapid end of the explosion. Circle 2a captures
the creation of compression waves that originate from this point. The compression waves
that originate from point 2a travel at a faster speed than the waves originating from point 2,
which causes them to coalesce to create hot spot 3. Figure 5 demonstrates the convergence
of these two characteristic lines with black dotted lines that terminate at the white circle
3. The two waves coalesce into a single shock wave which propagates downstream until it
intersects the emerging detonation wave at the point SI1.

At t ≈ 35, Figure 4(b) shows the induction times for both hot spots 1 and 3 to come to
an end. Figure 5 shows that both explosions 1 and 3 occur at roughly the same time. The
heat release maximum near t = 35 is likely to be formed from contributions of both hot
spot’s chemical heat release. However, it is only the heat release from hot spot 3 that plays
a direct role in the detonation formation process. The explosion from hot spot 3 creates
a strong shock wave with a slope substantially less than the shock created by explosion 2.

2Although the heat released in 25 < t < 30 does not create a true maximum, it still acts as an
indication of an explosion that has occurred. Thus it will be referred to as a maximum in the heat
release.
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The pressure associated with this shock wave exceeds 20 as indicated in Figure 5. The
figure shows that the two shocks intersect at x ≈ 76 and t ≈ 40, marked by the red
shock intersection circle SI1. Just as in Case 1, when the two shocks intersect the fluid
changes from one acoustic timescale to another, which creates a moment of partial inertial
confinement and a rapid release of chemical energy occurs. The rapid increase of heat
release shown in Figure 4(b) near t = 40 or SI1 delineates this event.

What is distinctly different about this case from Case 1 is that the overdriven detonation
wave is formed before reaching the undisturbed gas. Beyond this point the detonation
propagates through the low-temperature fluid until it reaches the lead shock front at t ≈ 42.5
or SI2. The global maximum for the heat release plot in Figure 4(b) coincides with the
detonation wave reaching the lead shock front. Although Case 1 and Case 2 share similar
origins, the basic character of the global heat release differs dramatically from that in
Figure 4(a).

5.2.3. Case 3: E = 15.38

The Case 3 activation energy is only 3.8% larger than that in Case 2 corresponding to
E = 15.38. The pre-exponential factor remains at B = 15 as in Cases 1 and 2. In this case
the amplitude of the power deposition has been enhanced from unity to 1.2. Figures 4(c)
and 6 show that the induction time has increased so that the detonation in the unreacted gas
does not form until t ≈ 128.

Figure 6 shows that three hot spots form during the initial transient process. The first two
occur in the same fashion as in the previous cases. Hot spot 3 is formed by a compression
wave that is created by a localised explosion that occurs in the unburned reactants near
the wall. The black dotted path the compression wave takes is not visible until it enters
the unreacted fluid. Once the compression wave travels through the unreacted fluid and
coalesces with the lead shock, hot spot 3 is created.

Three localised explosions occur after the initial power deposition and prior to
detonation initiation. The first hot spot to react is hot spot 2 and is distinctly separate
from explosion 3. Explosion 2 does not release heat fast enough to produce compression
waves that can preheat the gas sufficiently to create an accelerating reaction front. This

Figure 6. Case 3 x–t diagrams are shown for (a) pressure and (b) temperature with B = 15 and
E = 15.38. Three recognizable hot spots are generated during the initial transients. Hot spot 2 is the
first to react and reacts in two parts, 2 and 2a. Explosion 3 creates an accelerating reaction front that
intersects its own created shock wave and the previous two shock waves created before it.
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is evidenced in Figure 6(b) by observing that the slope of the interface between the
reacted and unreacted gases increases instead of decreases. The global heat release plot in
Figure 4(c) shows that the heat release at t = 50 does not create an accelerating reaction
front characterised by an increasing heat release rate as seen in Figure 4(b) between
t = 27 and t = 37 of the previous case. Instead, the hot spot reacts rapidly enough to
generate compression waves, but the reaction is subsequently terminated, as indicated by
the reduction in heat release rate. The figure shows that the global heat release rate of
the reactive fluid has increased from a rather low value ∼ 2 before the explosion of hot
spot 2 to a value of 5 near t = 60. Although this explosion does not create an accelerating
reaction front, it does increase the heating rate of the induction zone. What is remarkably
different about explosion 2 in this case is that the time associated with the heat release time
is easily identifiable with a distinguishable start and finish as indicated by the label tL2. This
is characterised by the relatively constant heat release both before and after the explosion,
which indicates that the explosion did not remove the fluid from an induction state.

At t = 95 explosion 3 occurs after its induction period has ended. Figure 6(a) shows the
creation of compression waves with pressures above 5 such that an accelerating reaction
is created. The decreasing slope in Figure 6(b) as well as the increasing heat release rate
in Figure 4(c) from t = 95 to t = 100 typifies the accelerating reaction wave. Shortly after
the beginning of explosion 3, explosion 3a and explosion 1 release additional amounts of
heat, as indicated by two maxima inside of the tL3 heat release region. At x ≈ 138 and
t ≈ 113 (point SI1) the accelerating reaction intersects the shock wave produced by hot
spot 3’s localised explosion and the acoustic timescale changes. As seen in the previous
cases, when this occurs a rapid release of chemical energy occurs and is evidenced in
Figure 4(c) by the sudden increase in heat release between t = 110 and t = 115 after SI1.
Once this occurs a detonation wave has formed and now propagates through two more
shocked regions before entering the undisturbed fluid at t ≈ 128.

5.2.4. Case 4: E = 25

Case 4 is distinctly different than the other cases because it is based on an activation energy
E = 25 and a pre-exponential factor B = 440. These values are significantly different than
the previous three cases and it should be considered as a limiting case of the type of
behaviour that might be expected from a reactive fluid with a moderately high activation
energy. The initial transient behaviour is similar to that in the previous cases. Here again
hot spots are created during the initial transients, which then trigger localised explosions.
However, the difference in parameters substantially alters the DDT time-frame and the
number of localised explosions that occur prior to detonation formation.

Figure 7 demonstrates the pressure (a) and temperature (b) response to the initial
explosion induced by the thermal power deposition. Three distinct hot spots are formed
during the initial transient period. Hot spots 1 and 2 are formed from the same processes as
in the previous cases, but are created in less time. Hot spot 3 is created from an explosion
of the reactants located along the wall at t = 3. A black dot along the wall at t = 3 in
the x–t diagram identifies this explosion location. The black lines tracing the compression
wave’s path are diffuse, but adequate enough to see that they lead to the formation of hot
spot 3. These three hot spots explode sequentially with the third explosion creating the
accelerating reaction front that leads to detonation formation. The pressure contours and
black dots that highlight the shock paths look remarkably similar to figure 3 in [21]. Each
successive explosion increases the induction zone temperature until an accelerating reaction
wave is formed. Figure 4(d) quantifies this progression by showing the gradual increase
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Figure 7. Case 4 x–t diagrams for pressure (a) and temperature (b) with B = 440 and E = 25.
Three distinct hot spots are formed and react in successive order. Hot spot 3 creates an accelerating
reaction front and the previous two do not.

in reaction rate with each successive explosion. At t = 14 the final explosion needed to
facilitate the overdriven detonation wave occurs. The detonation forms at t = 17.5 while
still in the shocked fluid and reaches the lead shock near t = 18. Figure 7 identifies the
detonation formation with SI1 and when the detonation reaches the lead shock with SI2.

5.2.5. Timescale analysis

The local timescale ratio (Equation 11) can be used to explain how each localised hot
spot affects the entire DDT process. If the ratio is less than unity (heating times less than
the local acoustic time) the thermomechanical response is characterised by near inertial
confinement [26] with the local pressure rising with temperature. The reactant is consumed
on a timescale during which the low Mach number of induced motion implies that the
fluid moves only a small fraction of the spot size. That fluid expelled from the hot spot
acts as a piston, driving gasdynamic waves into the environment. If the ratio is greater
than unity there is sufficient time for relative pressure equalisation to occur during the heat
release period [26], which limits the maximum rise in local pressure. In this case the piston
effect associated with expelled gas is smaller and the induced gasdynamic disturbances are
weaker. Thus, if the ratio is less than unity an accelerating reaction front will be driven by
relatively strong gasdynamic disturbances arising from the thermomechanical response of
the hot spot and a subsequent detonation will appear.

Table 4 contains the local timescale ratios rL for each hot spot in the four cases. The data
presented in the previous sections suggests that there are two different types of hot spots.
There are ‘strong’ hot spots that create an accelerating reaction front and there are ‘weak’
hot spots that release their chemical heat and produce a shock wave, but no accelerating
reaction front is created. The x–t diagram in Figure 2 is an example of a strong hot spot
and does not depict the behaviour of a weak hot spot. Figure 8 shows an x–t diagram for
a weak hot spot. In both diagrams, the local explosion time tL and length lL are labelled.
For the strong hot spot, the explosion time is defined as the time from which the rapid
explosion begins to when it is interrupted by an external process such as another shock. In
the case of the weak hot spot, the explosion time is determined by looking at the global
chemical heat release in Figure 4 and noting when the chemical heat release of the hot spot
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Table 4. Table containing the local timescale ratios for Cases 1–4 and the values used in the
calculations. The start and end times correspond to the times that each hot spot begins and ends its
rapid chemical explosion. The left and right boundaries define the length scale associated with the
hot spot explosion. This is taken as the width of the reacted hot spot at the finish time. The explosion
times and lengths are labelled in Figure 2.

Case

1 2 3 4

Hot spot number 1 2 3 2 3 1 2 3
Start time, tsL 12 25 36 50 95 6.50 11.4 14.0
End time, teL 15.6 36 40 56.3 122 7.6 12.4 17.5
tL = teL − tsL 3.6 11 4 6.3 27 1.1 0.91 3.50

Left boundary, xL 18 32 60 46.6 80 15.4 25.1 32.0
Right boundary, xR 38 60 78 55.7 180 16.3 26.2 44.0
lL = xR − xL 20 28 18 9.1 100 0.875 1.1 12.0

Induction temperature, TL 2.2 1.85 2.2 1.8 1.85 2.45
Acoustic timescale, taL 13.48 20.6 12.1 6.78 73.5 0.56 0.72 7.67

Weak (W) / Strong (S) S S S W S W W S

Timescale ratio, rL = tL/taL 0.27 0.53 0.33 0.92 0.37 2.03 1.26 0.46

has terminated. Weak hot spots are characterised by a distinct small localised maximum in
heat release following the end of the induction period. The localised heat release time tL
is labelled for each hot spot in each of the four cases considered with one exception.3 The
characteristic length associated with a weak hot spot’s localised explosion is defined as the
width of the burned fluid at the end of the heat release time tL. The widths are retrieved
from Figures 3, 5, 6 and 7. Table 4 has tabulated the start and end times as well as the
left (xL) and right (xR) boundaries of each explosion in addition to the actual length and
timescales. It contains the local induction zone temperatures, acoustic timescales, whether
the hot spots form weak or strong explosions and the timescale ratios for each hot spot that
plays a role in detonation formation.

Prior to the discussion of the results, several remarks should be made about the timescale
ratios. First, the temperature used to determine the local timescale is evaluated at the time
the hot spot is created. When each of the hot spots are first formed the hot spot temperature is
about 10% higher than the rest of the induction zone. Remarkably, gradual chemical heating
causes the average spatial temperature inside the induction zone to be approximately equal
to the initial temperatures listed in Table 4. However, just before explosion, the temperature
variation can be as high as 50% of the mean. For example, at t = 85 the average induction
zone temperature for hot spot 1 in Case 3 is 1.8, while the minimum and maximum
temperatures vary from 1.4 to 2.1. With this range of values, the local timescale ratio of
hot spot 1 in Case 3 can range from 1.0 at the hot spot peak to 0.81 far from the hot spot
centre. It should also be noted that hot spot 2 in Case 2 is treated as a strong hot spot,
even though it does not directly lead to a detonation wave, because Figure 4(b) shows that
the explosion period for hot spot 2 contains an increasing heat release, which typifies an
accelerating reaction front. The accelerating reaction front for this hot spot is represented
on the x–t diagram (Figure 5) by the decrease in slope of the material interface following

3The heat release time for hot spot 3 in Case 4 is not explicitly labelled, but it is to be understood as
the time the induction period ends until the first shock interaction at SI1.
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Figure 8. Generic x–t diagram for the creation of a hot spot that produces a shock wave, but does
not create an accelerating reaction front. The localised heat release time tL is defined as the time it
takes for the majority of the chemical energy contained inside the hot spot to be released in a rapid
explosion creating a local maximum in the global heat release. The length scale is defined using the
width of the burned hot spot after the heat release is finished.

explosion 2. The primary reason hot spot 2 does not directly form a detonation is because
it is interrupted by the explosion from hot spot 3.

5.3. Discussion on large activation energies

The results from the previous sections indicate that as the activation energy increases
and other parameters are fixed, the time required to form a detonation increases – see
Figures 4(a)–(c). This expected result is consistent with those in [8] where the activation
energy was varied over a small range of values (13.79, 13.33, 12.90 and 12.50). The
results showed that the overall structure of the global heat release remained consistent over
the observed range with a single localised maximum in heat release prior to the global
maximum. Over that range of values, there was no appearance of additional localised
inflection points or maxima because the two hot spots explode nearly simultaneously.

In the present work, the results indicate that as the activation energy increases, a
variance in the induction times of each hot spot is introduced and the DDT heat release
process becomes more staggered in time. This phenomena was first observed in [8] when
the power deposition amplitude was decreased to 50%. This behaviour is characterised by
the multiple inflection points and local maxima in the heat release rate prior to the global
maximum. For convenience, the data for the 100% and 50% cases has been replotted in
Figure 9. The reduction in the original chemical explosion volume temperature causes a

 



Combustion Theory and Modelling 671

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

Nondimensional time t

G
lo

ba
l I

nt
eg

ra
te

d 
H

ea
t R

el
ea

se

100%
50%

Figure 9. Global heat release rates from figure 15 in [8] for the full and half amplitude cases
demonstrate a clear difference in the global heat release behaviour between the two cases. The
multiple inflection points and localised maxima prior to the global maximum for the 50% magnitude
case indicates the hot spots created during the initial transients react at different times during the
DDT evolution process.

variation in induction times between the two hot spots, leading to multiple inflection points.
These multiple inflection points and localised maxima in the heat release are a part of an
overall increase in heat release rate characterised by an accelerating reaction front.

In Case 1 of the current work with E = 13.33, the activation energy is still within the
range of activation energies used in [8]. The global heat release in Figure 4(a) contains
a smooth transition from the original chemical explosion to the subsequent peak in heat
release associated with hot spots 1 and 2. This characteristic behaviour is synonymous with
the full power behaviour observed in [8].

Case 2 is based on an increased activation energy E = 14.81. The global heat release
profile seen in Figure 4(b) shows a longer induction period followed by a sudden rise in heat
release and then the heat release continues to rise until it reaches a local maximum. The
sudden rise in heat release is caused by the explosion of hot spot 2 and the local maximum
is created from the explosions of both hot spots 1 and 3. Explosions 2 and 3 are both
considered strong hot spot explosions because of the accelerating reaction fronts created
by each of them.

Figure 4(c) shows for Case 3 that, for just a 4% increase in activation energy above Case
2, the DDT time nearly triples. This trend is consistent with the results in [8], but there is a
distinct change in behaviour not observed in any of the previous cases. The small increase
in activation energy causes hot spot 2 to transition from a strong hot spot to a weak hot
spot. The heat release profile demonstrates that after the explosion time tL2 of hot spot 2
has finished, the reactive gas is still in an induction state. In this case, hot spot 3 is the only
hot spot that facilitates an accelerating reaction front.

Recall that Case 3 amplifies the power deposition amplitude by 20% to force the
detonation to form inside the computational domain. An increase in amplitude will create
a more rapid explosion and increase the induction zone temperature. This means that an
increase in amplitude will inhibit hot spot 2’s transition from the strong to the weak form.
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Although, the change in amplitude may shorten the induction period, it does not play a role
in the transition of hot spot 2 from strong to weak. This transition is purely a consequence
of increased activation energy.

Case 4 differs significantly from the previous cases because it uses an activation energy
E = 25, a pre-exponential factor B = 440 and a power deposition amplitude A = 2. Three
distinct hot spots are formed in this case. Hot spots 1 and 2 are weak hot spots as demon-
strated by the fact that the fluid remains in an induction state after they have released their
chemical heat. It is hot spot 3 that facilitates an accelerating reaction front and ultimately a
detonation wave.

The results presented in [6, 8] are based on activation energies small enough to ensure
that the induction times for each of the hot spots created are nearly identical. This causes
the hot spots to explode simultaneously and the globally integrated heat release to contain
a single local maximum when both explosions occur. This explosion ensemble facilitates
an accelerating reaction front that leads to an overdriven detonation wave. The current
results show that as the activation energy increases the induction periods vary enough to
create multiple inflection points and local maxima in the heat release while still creating an
accelerating reaction front. At some transitional activation energy, the hot spots transition
from strong to weak and their explosions no longer form an accelerating reaction front. It
is essential to recognise that the localised thermomechanical response of the heated gas as
described in [24] is the immediate source of the gasdynamic waves responsible for DDT
evolution rather than the heat release itself.

The transition between weak and strong hot spots can be characterised in terms of the
acoustic timescale theory developed in Section 4 and the timescale analysis performed
in Section 5.2.5. The concept behind the timescale ratio is that, if the ratio is near unity,
the fuel in the hot spot is consumed on a timescale similar to that on which pressure
relaxation occurs (near inertial confinement cannot occur). In contrast, timescale ratios that
are less than unity are associated with fluid volume fuel consumption on a timescale that
does not permit pressure relaxation to occur (near inertial confinement). Ratios greater
than unity are associated with extensive pressure relaxation concurrent with chemical heat
addition. Thus, the local timescale ratio can be used to identify the transition between a
runaway accelerating explosion and an explosion that terminates after being consumed. A
weak hot spot is characterised by a minimal thermomechnical response (limited pressure
rise and induced fluid motion amplitude) and a strong hot spot is characterised by a much
stronger thermomechanical response, including gasdynamic wave generation that facilitates
an accelerating reaction front. Table 4 lists the hot spots for each case, whether they create
weak or strong explosions and the local timescale ratio for each hot spot. For each strong
hot spot, the timescale ratio rL is substantially less than unity. The timescale ratios for each
weak hot spot are usually close to unity or greater. The one exception is the weak hot spot
in Case 3, but as discussed in Section 5.2.5, this hot spot was classified as strong in Case 2.
In Case 2 this hot spot’s timescale ratio is rL2 = 0.53, whereas in Case 3 the timescale ratio
is increased to rL2 = 0.92. The minute increase in activation energy reduces the induction
zone temperature such that the hot spot’s explosion timescale ratio is near unity and the
fuel in the hot spot is consumed on a timescale similar to that on which pressure relaxation
occurs. Thus the hot spot does not experience the inertial confinement required to facilitate
an accelerating reaction front.

Each of the cases presented show a successful DDT process. With the exception of hot
spot 3 in Case 2, each of the hot spots that play a role in achieving DDT are created during
the initial transients. The analysis thus far has been predicated on at least the final hot spot
exploding in a strong form. It is unclear whether a detonation will form if the final hot spot
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to explode reacts in a weak form and terminates without creating an accelerating reaction
front. The cases presented here focus on hot spots with timescale ratios near unity. In order
to determine what happens for hot spots with higher timescale ratios where the final hot
spot terminates, simulations must be done on significantly larger domains for extended
periods of time.

6. Conclusions

The five objectives stated in the introduction have been achieved. The AWCM is shown
to be a useful tool for resolving multi-scale compressible reacting flows. A replica of a
problem addressed previously by Kassoy et al. [8] is solved using the AWCM. The results
show that concepts developed in the previous work [6, 8] are independent of the applied
numerical method. The results presented in this work confirm the qualitative conceptual
ideas developed in earlier work and explain the concepts more quantitatively using x–t
diagrams and timescale analysis.

The sensitivity of the DDT evolutionary process to small increases in activation energy
is demonstrated by performing four different simulations. As the activation energy increases
the multi-scale nature of the DDT evolutionary process, missing from the previous work, is
demonstrated through the appearance of multiple peaks in the heat release rate. Although
increased activation energy and decreased power deposition rates both show trends towards
more temporally distributed heat release, it is the increased activation energy that reveals
the truly multi-scale nature of the DDT process.

The importance of inertial confinement is demonstrated when the activation energy is
increased such that, at some transitional activation energy, hot spots that facilitate an accel-
erating reaction front at lower activation energies cannot sustain an accelerating reaction
front at higher activation energies. A distinction is made between the two different types of
hot spot explosions, classified as weak and strong. Strong hot spots undergo an induction
period and rapidly react creating compression waves that propagate away from the reaction
source and facilitate an accelerating reaction front that eventually leads to detonation for-
mation. These are the same types of explosions seen in previous work [6,8]. Weak hot spots
follow the same process, but terminate once the reactants are consumed. These weak hot
spots have not been observed in the previous simulations [6,8] because of the low activation
energies used.

The distinction between weak and strong explosions is quantified by defining an acoustic
timescale ratio associated with each hot spot explosion. A timescale ratio is defined as the
ratio of the explosion heat release timescale to the local hot spot acoustic timescale. A strong
hot spot explosion is characterised by a ratio less than unity and a weak hot spot explosion
has a ratio near or greater than unity. These two types of hot spots are related to the work
contained in [26] where the rate of heat addition into an inert gas determines the relative
strength of a ‘fluid piston’ arising from localised gas expansion that drives gasdynamic
waves into the surrounding fluid. The theory in [26] demonstrates quantitatively for an
inert gas that when the localised energy addition is sufficiently limited for a given heating
timescale, the induced Mach number of expansion is quite subsonic and only weak acoustic
disturbances propagate into the neighbouring unheated gas. Alternatively, larger levels of
energy deposition lead to much larger induced Mach numbers of expansion and more
significant gasdynamic wave generation. In particular, the heating timescale and the energy
addition are used to quantify the thermomechanical response of a locally heated hot spot.
The stated conceptual perspectives are likely to pertain to reactive gases in which hot spots
are generated by chemical heat release. Thus, it is possible that a more rigorous concept,
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similar to that for inert gases in [26], may be developed for reactive gases that improves
upon the timescale ratio presented here.
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Appendix A. Steady-state ZND propagation

It is important when employing a new numerical technique to a compressible reacting flow
to verify that the numerical algorithm can correctly capture the detonation propagation
velocity. In order to do this, an exact solution for the ZND model is found using [39]
and is used as the initial condition for the AWCM solver. The solution is developed for
a detonation wave moving with a Mach number M = 5 relative to the unburnt gas. The
nondimensional heat of reaction q is related to the Mach number M by

q = 1

2

(M2 − 1)2

(γ 2 − 1)M2
(A1)

so that the heat of reaction q = 12 with a specific heat ratio γ = 1.4. The activation energy
E = 10 and pre-exponential factor B = 5. The jump conditions across the shock are found
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Table A1. Each ZND case is listed with the total number of
points nx, their number of points per half-reaction length nx/�1/2

and the peak post-shock density.

Case nx nx/�1/2 ρmax

1 1000 22 4.354
2 2000 45 4.624
3 4000 90 4.795
4 8000 180 4.892

using the Rankine–Hugoniot relation giving the pre- and post-shock conditions

ρo = 1 ρs = 5
uo = 0 us = √

γ

po = 1 ps = 29.
(A2)

A single ODE for the fuel mass fraction is solved as a function of space downstream of the
post-shock condition in order to determine the other dependent flow variables. It is verified
that the flow satisfies the Chapman–Jouget conditions after combustion is complete with
pCJ = 15, ρCJ = 5/3 and M = 1.0. The ZND solution is solved in a domain x ∈ [0, 20]
with the shock located at x = 20. The computational domain used for the benchmark
problem doubles the size of this domain so that x ∈ [0, 40] with the initial shock location
at x = 20. The solution is evolved until t = 1.5 so that the wave propagates approximately
40% of the computational domain. The exact solution is translated using the time t and the
theoretical propagation velocity for comparison with the numerical solution. The simulation
is performed with four different levels of resolution: 1000, 2000, 4000 and 8000 grid points.
The half-reaction length for this simulation is 0.9, which, as discussed below, is important
for assessing the level of resolution required for properly resolving the von Neumann spike.

Table A1 summarises the four different cases with their resolution (nx), the number
of points per half-reaction length and the corresponding maximum post-shock density.
Figure A1 shows the comparison between the exact and numerical simulations for the
detonation wave after a time t = 1.5 has elapsed. There is little noticeable difference in the
shock’s location for the numerical and exact solutions, which indicates that the numerical
detonation velocity matches the theoretical velocity. Hence, the primary objective of this
benchmark problem has been achieved.

Figure A1 shows that with the exception of the density there is little difference in post-
shock conditions for most of the variables. For Case 1 the post-shock density is 12.9% below
its theoretical value of 5 as noted in Equation (A2). The resolution in this case uses 22 points
per half-reaction length, which is not adequate to capture the peak post-shock density fully.
As shown in Table A1 and in Figure A2, the density maximum approaches the theoretical
value of 5 as resolution is increased. Even though the post-shock peak amplitudes vary with
resolution, the results confirm that the detonation velocity is independent of the numerical
resolution. The slight fluctuations located at x = 20 and 26 in the solution profiles are
standard initialisation errors that occur as a result of the initial transients encountered when
starting the simulation with a discontinuous initial condition.
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Figure A1. Comparison between the exact ZND solution and the Case 1 numerical solution after a
time of t = 1.5 has elapsed. The solid lines and squares represent the exact and numerical solutions,
respectively.
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Figure A2. A close-up view of the density at t = 1.5 comparing the numerical solution with the
exact solution for nx/�1/2 equal to (a) 22, (b) 45, (c) 90 and (d) 180. Although the post-shock density
deviation decreases and the shock width decreases with increased resolution, the detonation velocity
stays constant.

 




