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Abstract One of the most practically important problems in aerodynamics is cal-
culating moderate to high Reynolds number flow around solid obstacles
of arbitrary shape. This problem arises in aerodynamics (e.g. turbu-
lent flow over the wings and fuselage of airplanes), in off-shore drilling
(e.g. water flow around riser tubes transporting oil from the sea bed
to the surface), and in the wind engineering of buildings. In each case
the primary difficulty arises from the need to calculate turbulent or
transitional flow with boundary conditions on complicated domains. In
addition, it may be important to allow for the obstacle to move or de-
form in response to the applied fluid forces (this motion in turn affects
the flow).
In this paper we propose combining two mathematical approaches to

calculate fluid–structure interaction numerically. The first technique,
the adaptive wavelet method, tackles the problem of efficiently resolv-
ing a high Reynolds number flow in complicated geometries (where grid
resolution should depend both on time and location). The second tech-
nique, Brinkman penalization, addresses the problem of efficiently im-
plementing solid boundaries of arbitrary complexity.
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Introduction

Adaptive wavelet methods have been developed recently to solve the
Navier–Stokes equations at moderate Reynolds numbers (e.g. Schnei-
der et al., 1997; Vasilyev and Bowman, 2000). The adaptive wavelet
method is appropriate to turbulence since the wavelets (which are local-
ized in both space and scale) adapt the numerical resolution naturally
to the intermittent structure of turbulence at small scales . The wavelet
method thus allows turbulent flows to be calculated with a greatly re-
duced number of modes with a well-controlled error. Furthermore, the
computational cost of the algorithm is independent of the dimensionality
of the problem and is O(N), where N is the total number of wavelets
actually used. We employ a collocation wavelet method using second
generation wavelets, which allows the order of the method to be easily
varied (we generally use an 8th-order method). Another advantage of
the collocation wavelet approach is that it should be straightforward (in
principle) to go from two dimensions (the case considered here) to three
dimensions.

Parallel to the development of efficient wavelet codes for turbulence,
we have been investigating the use of the Brinkman equation to sim-
ulate the presence of arbitrarily complex solid boundaries (Kevlahan
and Ghidaglia, 2001). This technique allows boundary conditions to
be enforced to a specified precision, without changing the numerical
method (or grid) used to solve the equations. The main advantage of
this method, compared to other penalization type methods, is that the
error can be estimated rigorously in terms of the penalization parame-
ter. It can also be shown that the solution of the penalized equations
converges to the exact solution in the limit as the penalization param-
eter tends to zero. The disadvantage of this method is that it makes
the equations stiff. In order to overcome this limitation we use a stiffly-
stable Krylov subspace method in time (Edwards et al., 1994). This
method is variable order and uses an adaptive step size.

In the following section we briefly outline the main features of the
numerical method, with an emphasis on its differences compared with
other commonly used simulation techniques. §2 presents some results
that illustrate the capabilities of our approach.

1. Numerical method

1.1 Penalized vorticity equation

We resolve the two-dimensional vorticity equations, to which we add
a volume Brinkman penalization term (see (Khadra et al., 2000) for more
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information about Brinkman penalization in velocity-pressure equations).
We choose the vorticity formulation, rather than primitive variables for-
mulation, for three reasons. First, in two dimensions the vorticity for-
mulation is simpler since vorticity is a pseudo-scalar. Secondly, vorticity
is more compact than velocity, which allows for greater compression. Fi-
nally, vorticity is the physically important quantity responsible for fluid
forces and vortex generation. By working directly with the vorticity we
expect to calculate these quantities more accurately.

The penalized two-dimensional vorticity-velocity equations may be
written in the following form

∂ω

∂t
= −u · ∇ω + ν∆ω −

1

η
∇× [χ(x,x0, t)(u− uO)], (1)

where ω is the vorticity, u is the fluid velocity, x0 is the obstacle centre,
u0 is the obstacle velocity, ν is the viscosity, and

χ(x,xo, t) =

{

1 if x ∈ solid,
0 otherwise,

(2)

is a mask function that defines the location of the solid obstacles.
The last term on the rhs of (1) is a penalization term that approxi-

mates the no-slip boundary conditions on the velocity as η → 0 (Angot
et al., 1999). Note that (1) is defined over the whole computational do-
main (both fluid and solid). The solid is now viewed as a porous medium
with very small permeability ∝ 1/η. In vorticity form the penalization
term is responsible for eliminating vorticity from the interior of the solid
and for generating vorticity at the fluid-solid interface. Angot et al.,
1999 have shown mathematically that the error due to the penalization
is ||u− uη|| ≤ Cη1/4, although in practice we find the error is O(η).

The penalization approach allows us to calculate flow around solid
obstacles of arbitrary complexity (that may also be moving) simply by
modifying the mask function χ in the appropriate way. A simple cal-
culation shows that the resultant fluid force F on the obstacle may be
found at little cost using the following volume integral,

F (t) =
1

η

∫

χ(x,x0, t)(u− u0) dA, (3)

where the integral is taken over the entire computational domain. This
volume integral is easier to calculate and is often more accurate than
the surface integrals usually employed to calculate the fluid force.

To allow for full fluid-structure interaction, the motion of the obsta-
cle’s centre of mass xo(t) is modelled as a forced oscillator (Khalak and
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Williamson, 1999),

mẍ0(t) + cẋ0(t) + kx0(t) = F (t), (4)

where m is the obstacle’s mass, c is the mechanical damping, k is the
spring constant and F (t) is the fluid force (calculated using 3). The
oscillator equation and vorticity equation are thus coupled via the force
F and the mask χ.

Equations (1) and (4) form a closed set of equations describing two-
dimensional fluid–structure interaction.

1.2 Adaptive wavelet numerical method

The penalized vorticity equations introduced in the previous section
are solved using an collocation wavelet method in space (Vasilyev and
Bowman, 2000) and an adaptive Krylov method in time (Edwards et al.,
1994). Both methods are adaptive and of variable order. Note that the
wavelet basis functions are localized in both position and scale, and are
thus well-adapted to the multi-scale vortex structures of turbulence and
fluid–structure interactions.

In the collocation wavelet method there is a one-to-one correspondence
between grid points and wavelets, which makes calculation of nonlinear
terms simple (compared with Galerkin wavelet methods) and allows the
grid to adapt automatically and dynamically to the solution by adding
or removing wavelets. Very briefly, at each time step we take the wavelet
transform of ω, remove all wavelets with coefficient magnitude less than
a threshold ε, and then reconstruct the solution. It can be shown that
the L∞ error of this approximation is bounded by ε. To account for the
evolution of the solution over one time step we add the nearest neighbour
wavelet coefficients in position and scale. Since each wavelet corresponds
to a single grid point this procedure allows the grid to automatically fol-
low the evolution of the solution in position and scale. The derivatives
are calculated using finite differences on the refined grid. We use sec-
ond generation wavelets (Sweldens, 1998), which allow the order of the
wavelet (and hence of the finite differences) to be easily varied. In the
results presented here we use fourth- or eighth-order derivatives. The
wavelet method has a computational complexity O(N), where N is the
number of wavelets retained in the calculation (i.e. those wavelets with
coefficients greater than ε plus nearest neighbours).

Because we are working with the vorticity equation we need a method
of calculating the velocity from the vorticity. We have decided to use a
sort of vortex method, where each wavelet is treated as a vortex with a
given circulation (found from its coefficient and scale). The velocity is
then found from these ‘wavelet-vortices’ using the Biot–Savart law. In
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practice, we take advantage of the Fast Multipole Method (FMM)
(Greengard and Rokhlin, 1987), which performs this calculation in O(N)
complexity, consistent with the rest of the numerical scheme.

Finally, we chose the Krylov scheme to integrate in time because it
is stiffly-stable (for the linear part of the equation), the error can be
controlled at each time step, and the order of the method can be easily
varied by changing the dimension of the Krylov sub-space. A stiffly-
stable method is necessary because of the small parameters ν and η.

The exterior boundary conditions may be either periodic, Dirichlet,
or von Neumann. The results presented in §2 use Brinkman penaliza-
tion to impose ω = 0 on all four exterior boundaries of the rectangular
computational domain. The exit (downstream boundary x = xmax) has
a slow transition from fluid to solid to absorb vorticity without inducing
unnecessary grid refinement.

In summary, we have developed an adaptive, variable order method for
calculating fluid–structure interactions of arbitrarily complex geometry
in two dimensions. Because the computational grid automatically adapts
to the solution (in position and scale), we do not have to know a priori

where the obstacle or vortices will be. In the following section we apply
the method sketched here to some examples of fluid–structure interaction
with fixed and moving obstacles.

2. Results

For simplicity (and so we can compare the results with other sim-
ulations and experiments) we will consider only cylindrical obstacles
here. In all cases we impose a positive uniform mean flow U = (1, 0) in
the horizontal x-direction about a cylinder with diameter D = 1. The
Reynolds number of the flow is thus defined as Re = |U |D/ν = 1/ν. We
choose the following values for the penalization and wavelet refinement
parameters respectively: η = 10−3 and ε = 10−5.

We first consider flow around a fixed cylinder at a moderate Reynolds
number. The computational domain has dimensions [−2.5, 2.5]×[−2.5, 2.5]
and the maximum resolution is 2562. Figure 1 shows the drag around
an impulsively started cylinder as a function of time at Re = 550 cal-
culated with the present method compared with the vortex method of
(Koumoutsakos and Leonard, 1995). Note the good agreement at all
times. This calculation is a good test of our method since drag is very
sensitive to even slight errors in vorticity generation at the obstacle’s
surface.

We now consider the case of coupled fluid–structure interaction where
the cylinder is free to move in the transverse y-direction. Because this
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Figure 1. Drag around an impulsively started cylinder at Re = 550. Comparison
with the vortex method (Koumoutsakos and Leonard, 1995).

flow is known to become three-dimensional for Re > 180, we ensure a
physically two-dimensional flow by choosing Re = 100. The compu-
tational domain has dimensions [−2.5, 17.5] × [−10, 10] and the max-
imum resolution is 5122. The mechanical frequency k is set equal to
the Strouhal fluid frequency, k = St = 0.167 and added mass m∗ =
m/(π/4) = 2 (i.e. the mass of the cylinder is twice the mass of the fluid
it displaces). These conditions ensure that the coupled fluid–mechanical
system is close to resonance. Figure 2 shows the lift and centre of the
cylinder as function of time. The cylinder undergoes large harmonic
oscillations (with amplitude equal to the cylinder radius) in phase with
the lift force. These results are similar to those observed in experiments
(Khalak and Williamson, 1999).

Figure 3 shows how the wavelet method automatically adapts the grid
in position and scale to follow the vortex gradients and the (changing)
location of the cylinder. Note that grid is very fine in the boundary
layer, but then coarsens downstream as the vortices diffuse. For this
calculation we use only 8% of the maximum possible 5122 modes.

3. Summary

In this paper we have presented an adaptive wavelet method for
coupled fluid–structure interaction which uses a Brinkman penalization
method to impose solid boundary conditions and a Krylov time scheme.
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Figure 2. Fluid–structure interaction at Re = 100 (time normalized by mechanical
frequency). (a) Lift. (b) y-position of cylinder centre.

(a) (b)

Figure 3. Fluid–Structure interaction at Re=100, t = 14. (a) Vorticity field.
(b) Wavelet-adapted grid.
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This approach gives accurate simulations with a greatly reduced num-
ber of modes compared with non-adaptive methods (about 16 times
compression for the cases considered here). Because the grid refinement
is automatic and dynamic, we do not need to know the location of the
obstacle or vortices a priori . Our approach is therefore well-adapted to
fluid-structure interaction problems where the obstacle moves or deforms
due to the fluid forces.

In the future we intend to extend the method to three dimensions,
and parallelize the algorithm. We will also consider more complicated
obstacles (e.g. airfoils) and verify the method more extensively against
experimental data.
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