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Abstract An adaptive wavelet collocation method for three-dimensional fluid–structure
interaction at large Reynolds numbers is presented. This approach is shown to
give accurate results with a reduced number of computational elements. The
method is applied to two-dimensional flow past moving and fixed cylinders at
Re = 102 and Re = 104, and to three-dimensional flow past a sphere at Re =
500. This is the first three-dimensional calculation of a flow past an obstacle
using a dynamically adapted wavelet based approach.
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1. Introduction
One of the most important applied problems in fluid dynamics is calculat-

ing moderate to high Reynolds number flow around solid obstacles of arbitrary
shape. This problem arises in aerodynamics (e.g. turbulent flow over the wings
and fuselage of airplanes), in off-shore drilling (e.g. water flow around riser
tubes transporting oil from the sea bed to the surface), and in the wind engi-
neering of buildings. In each case the primary difficulty arises from the need
to calculate turbulent or transitional flow with boundary conditions on com-
plicated domains. In addition, it may be important to allow for the obstacle
to move or deform in response to the applied fluid forces (this motion in turn
affects the flow).

In this paper we combine two mathematical approaches to calculate tur-
bulent flow in complex domains. The first technique, the adaptive wavelet
method, tackles the problem of efficiently resolving a high Reynolds number
flow in complicated geometries (where grid resolution should depend both on
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time and location). The second technique, Brinkman penalization, addresses
the problem of efficiently implementing solid boundaries of arbitrary complex-
ity.

Adaptive wavelet methods have been developed recently to solve the Navier–
Stokes equations at moderate Reynolds numbers (e.g. Schneider et al., 1997;
Vasilyev and Bowman, 2000; Vasilyev and Kevlahan, 2002; Griebel and Koster,
2002; Vasilyev, 2003). Adaptive wavelet methods are appropriate for turbu-
lence since wavelets (which are localized in both space and scale) adapt the nu-
merical resolution naturally to the intermittent structure of turbulence at small
scales. The wavelet method thus allows turbulent flows to be calculated with a
greatly reduced number of modes and a well-controlled error. Furthermore, the
computational cost is O(N ) (where N is the total number of wavelets actually
used), which does not depend directly on the dimensionality of the problem.
In this work we employ a wavelet collocation method using second generation
wavelets Sweldens, 1998. This approach allows the order of the method to be
varied easily (we generally use a 6th-order method). Another advantage of the
wavelet collocation approach is that it is equally easy to implement in two or
three dimensions. Indeed, the same code is used to do both two-dimensional
and three-dimensional simulations presented here.

Parallel to the development of efficient wavelet codes for turbulence, we
have been investigating the use of the Brinkman equation to simulate the pres-
ence of arbitrarily complex solid boundaries (Kevlahan and Ghidaglia, 2001).
This technique allows boundary conditions to be enforced to a specified preci-
sion, without changing the numerical method (or grid) used to solve the equa-
tions. The main advantage of this method, compared to other penalization
methods, is that the error can be estimated rigorously in terms of the penaliza-
tion parameter. It can also be shown that the solution of the penalized equations
converges to the exact solution in the limit as the penalization parameter tends
to zero. Because this volume penalization is very simple and cheap to calcu-
late, it is well-suited to moving obstacles. The adaptive wavelet method then
allows the computational grid to following the moving obstacle, without the
need for accelerating reference frames, or large areas of very fine grids.

The combination of the above two methods is applied here to the two- and
three-dimensional Navier–Stokes equations. We have also developed a multi-
level elliptic solver, based on the adapted multiscale wavelet grid, to solve the
Poisson problem for the pressure at each timestep. Note that we do not use a
subgrid-scale model: we resolve fully all significant length-scales. Thus, the
wavelet grid follows the natural intermittency of the flow.

In §1.2 and §1.3 we briefly sketch the penalization and numerical methods.
Some results for two- and three-dimensional flow past obstacles for Reynolds
numbers up to 104 are shown in §1.4, and in §1.5 we make some conclud-
ing comments. Note that this is the first time a dynamically adaptive wavelet
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method has been implemented for the three-dimensional Navier–Stokes equa-
tions with obstacles.

2. Brinkman penalization for complex geometries
Incompressible fluid flow is described by the Navier–Stokes equations:

∂u

∂t
+ (u + U) · ∇u + ∇P = ν∆u, (1)

∇ · u = 0, (2)

where U is an imposed mean flow. We consider here the case where the fluid
occupies the complement in ℜ3 of a set of N obstacles Oi, i = 1, . . . N . The
problem is solved on a rectangular computational domain Ω = [L11, L21] ×
[L12, L22] × [L13, L23] containing all obstacles. To these equations are added
appropriate external (inflow, outflow and side) boundary conditions.

On the surface of the obstacles the velocity must satisfy the no-slip condi-
tion,

u + U = U o on ∂Oi, ∀i, (3)

where U o is the velocity of the obstacle. Imposing these boundary condi-
tions explicitly is difficult and computationally expensive when the obstacles
have complicated shapes, move, or deform. To model the effect of the no-
slip boundary conditions on the obstacles Oi without explicitly imposing (3)
we replace (1-3) by the following set of L2-penalized equations (Angot et al.,
1999)

∂uη

∂t
+ (uη + U) · ∇uη + ∇Pη = ν∆uη

−1
η
χ(x, t)(uη + U − U o), (4)

∇ · uη = 0, (5)

Note that equations (4-5) are valid in the entire domain Ω: the last term on the
right hand side of (4) is a volume penalization of the flow inside the obstacle.
Here 0 < η ≪ 1 is a penalization coefficient and χ is the characteristic (or
mask) function defining the obstacle geometry:

χ(x, t) =
{

1, if x ∈ Oi;
0, otherwise. (6)

Angot (Angot, 1999) proved that the solution of the penalized equations (4-5)
converges to that of the Navier–Stokes equations (1-2) with the correct bound-
ary conditions (3) as η → 0. For finite η the error in the boundary conditions
is O(η1/2).
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In general, the obstacles may be fixed, or allowed to move (or even deform).
We consider here the case where there is a single obstacle that is either fixed or
moves like a harmonic oscillator forced by the fluid. We therefore couple the
penalized Navier–Stokes equations (4–5) to a harmonic oscillator equation for
the motion of the obstacle’s centre of mass xo,

m
d2xo

dt2
+ b

dxo

dt
+ kxo = F (t), (7)

where m is obstacle’s mass, b is the mechanical damping, k is its natural fre-
quency, and F (t) is the fluid force. Since F (t) is given by

F i(t) = F i(u(t)) =
1
η

∫
Oi

(u + U − U o) dx. (8)

the obstacle and fluid motions are fully and explicitly coupled.
The penalization error is found to be approximately O(η) in practice, and

we have found that a value of η = 10−4 gives good results, in particular the
drag and lift forces are accurate to within less than one percent.

3. Numerical method
We use an adaptive wavelet collocation method (Vasilyev and Bowman,

2000; Vasilyev and Kevlahan, 2002; Vasilyev, 2003) to dynamically adapt the
grid to the solution, and to interpolate on the adapted grid. Derivatives are
then calculated on the adapted grid using high-order finite differences (usu-
ally 6th-order). The grid is adapted at each time step by nonlinear wavelet
filtering: only those points whose associated wavelet coefficients are greater
than a threshold ϵ are retained. The solution may then be interpolated onto the
adapted grid with an L∞ error of O(ϵ). Since the wavelet transform has O(N )
complexity (where N is the number of points in the adapted grid), the method
is computationally efficient and scales well to large problems.

To allow for the change in the solution over one time step, nearest neigh-
bours in position and scale are added to the adapted grid. Adding nearest
neighbours in position corresponds to a CFL criterion of one. As the scales are
dyadic, adding nearest neighbours in scale means allowing for the creation of
scales twice as small and twice as large via the quadratic nonlinearity of the
Navier–Stokes equations.

Because the wavelet basis is not divergence free, we employ the usual split-
step method to make the velocity of the first half-step u∗ divergence free. This
Leray projection involves solving a Poisson equation for the pressure P ,

∇ · ∇P =
1

∆t
∇ · u∗. (9)

Equation (9) is solved using a standard multilevel technique with V-cycles
(Brandt, 1982). In our case, however, the grids on each level are provided
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by the adaptive wavelet multiresolution, which produces a natural adaptive
method for the Poisson equation. Wavelets are also used to interpolate between
levels. This is the first time a wavelet multilevel solver has been developed, and
it is described fully in a companion publication (Vasilyev and Kevlahan, 2003).
Note that since it is based on the wavelet transform, the elliptic solver also has
complexity O(N ).

Finally, we use a stiffly-stable 2nd-order time integration scheme that is
semi-implicit for the advective term, and implicit for the penalization and dif-
fusion terms.

4. Results
In this section we briefly present the results of some two- and three-dimen-

sional calculations. They have been selected to illustrate the effectiveness of
the dynamically adapted grid, and the flexibility of the method. The results
presented below used a tolerance of ϵ = 10−4 for grid adaptivity, and the time
step is chosen to maintain a CFL criterion of one. This value of ϵ corresponds
to an L∞ tolerance of 10−4, and was found to be the largest value to give
quantitatively accurate results. Note that this nonlinear wavelet filtering is not
equivalent to the linear large-scale filtering done in LES: in wavelet filtering
both large and small scales are retained. We have shown (Farge et al., 1999)
that wavelet filtering retains the coherent vortices, and the neglected part of the
flow is noise (i.e. dynamically unimportant).

The first example demonstrates the ability of the adaptive wavelet method
to adapt the grid to fine-scale vortical structure. This result is interesting since
although we actually solve the velocity form of the fluid equations, the grid
points are distributed like the vortices of a (grid-free) vortex method. Figure 1
shows the vorticity and adapted grid for two-dimensional flow through a tightly
packed periodic array of cylinders at Re = 104. Note that very few points are
required inside the obstacle, and the grid refines and coarsens as needed in
order to resolve the vorticity. Only 66 862 points out of a maximum of 8962

are used, which corresponds to a compression ratio of 12.
In the second example we plot the drag, lift and amplitude of a two-dimen-

sional cylinder moving in response to fluid forces at Re = 102. The oscillation
amplitude A = 0.42, lift amplitude CL = 0.81 and Strouhal frequency St =
0.189 are reasonably close to Shiels et al.’s (Shiels et al., 2001) vortex method
values of A = 0.57, CL = 0.83, St = 0.194.

The final example is flow through a periodic array of spheres at Re =
500. This is a fully three-dimensional calculation, and shows the ability of
the method to efficiently solve the three-dimensional Navier–Stokes equations
with obstacles. Figure 3 shows an isosurface of the vorticity magnitude, and
the computational grid at t = 3.8. Note that the flow is still at an early stage,
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(a) (b)

Figure 1. Two-dimensional periodic cylinder array at Re = 104, t = 3.5. (a) Vorticity.
(b) Adapted grid.

Figure 2. (a) Lift and drag for a moving cylinder at Re = 100. Note that the average drag
during the shedding phase is CD = 1.74, lift amplitude is CL = 0.81, and the Strouhal number
is St = 0.189. (b) Cylinder displacement as a function of time (amplitude A = 0.42).
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so no instabilities have developed. The maximum resolution is 1443, but only
258 000, or 11.6%, of the points are active. This example shows the importance
of using a dynamically adaptive method in three-dimensional calculations.

5. Conclusions
In this paper we have presented a new method for calculating three-dimen-

sional flows at moderate to high Reynolds numbers with obstacles of arbitrary
shape. The method uses an adaptive wavelet collocation method to dynami-
cally adapt the grid to the flow, and as the basis of a multilevel solver for the
associated Poisson equation for pressure.

We showed results for two-dimensional flow past a moving cylinder at Re =
102 and a fixed cylinder at Re = 104, and three-dimensional flow past a sphere
at Re = 500. This is the first three-dimensional calculation of flow past an
obstacle using a dynamically adapted grid.

Further three-dimensional test cases will be investigated in future work. In
particular, we would like to determine if the number of active grid points is pro-
portional to the Taylor scale (λ = Re−1/2), as is the case in two dimensions
(Kevlahan and Vasilyev, 2003). If this is true, the overall computational com-
plexity would scale like Re which is much better than the classical estimate of
Re3 based on a uniform grid.
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Figure 3. Flow past a sphere at Re = 500, t = 3.4 (looking upstream). (a) Isosurface of
vorticity magnitude. (b) Computational grid. Note that the maximum resolution is much lower
than in figure 1 (which means their is less detail in the grid), and we are showing the projection
of a three-dimensional array of points (which means the centre of the sphere appears filled).
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