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1 Introduction

Although turbulence is common in engineering applications, a solution to the
fundamental equations that govern turbulent flow still eludes the scientific
community. Due to the prohibitively large disparity of spatial and temporal
scales, direct numerical simulation (DNS) of turbulent flows of practical engi-
neering interest are impossible, even on the fastest supercomputers that exist
or will be available in the foreseeable future. Large eddy simulation (LES) is
often viewed as a feasible alternative for turbulent flow modelling, e.g., [1].
The main idea behind LES is to solve only large-scale motions, while modelling
the effect of the unresolved subgrid scale (SGS) eddies.

When dealing with complex turbulent flows, current LES methods rely on,
at best, a zonal grid adaptation strategy to attempt to minimize the computa-
tional cost. While an improvement over the use of regular grids, these methods
fail to resolve the high wavenumber components of spatially intermittent co-
herent eddies that typify turbulent flows, thus, neglecting valuable physical
information. At the same time, the flow is over-resolved in regions between
the coherent eddies, consequently wasting computational resources. Another
important drawback of LES, which is often overlooked, is that a priori decided
grid resolution distorts the spectral content of any vortical structure by not
supporting its small-scale contribution.

Recently, a novel approach to turbulent complex flow simulation, called
stochastic coherent adaptive large eddy simulation (SCALES) has been intro-
duced [2, 3]. This method addresses the above mentioned shortcomings of LES
by using a wavelet thresholding filter to dynamically resolve and “track” the
most energetic coherent structures during the simulation. The less energetic



2 De Stefano, Goldstein, Vasilyev and Kevlahan

unresolved modes, the effect of which must be modeled, have been shown to
be composed of a minority of coherent modes that dominate the total SGS
dissipation and a majority of incoherent modes that, due to their decorrela-
tion with the resolved modes, add little to the total SGS dissipation [2, 4].
The physical coherent/incoherent composition of the SGS modes is reflected
in the naming of the SCALES methodology, yet as pointed out in [4] this
physical coherent/incoherent composition of the SGS modes is also present
in classical LES implementations. For this work, as in much of classical LES
research, only the coherent part of the SGS modes will be modeled using a
deterministic SGS stress model. The use of a stochastic model to capture the
effect of the incoherent SGS modes will be the subject of future work.

The first step towards the construction of SGS models for SCALES was un-
dertaken in [3], wherein a dynamic eddy viscosity model based on Germano’s
classical dynamic procedure redefined in terms of two wavelet thresholding
filters was developed. The main drawback of this formulation is the use of a
global (spatially non-variable) Smagorinsky model coefficient. The use a global
dynamic model unnecessarily limits the SCALES approach to flows with at
least one homogeneous direction. This is unfortunate since the dynamic adapt-
ability of SCALES is ideally suited to fully non-homogeneous flows. In this
paper a localized dynamic model is developed to allow the application of the
SCALES methodology to inhomogeneous flows. The proposed model is based
on the Lagrangian formulation introduced in [5].

2 Stochastic coherent adaptive large eddy simulation

2.1 Wavelet thresholding filter

Let us very briefly outline the main features of the wavelet thresholding filter.
More details can be found, for instance, in [6]. A velocity field ui(x) can be
represented in terms of wavelet basis functions as

ui(x) =
∑

l∈L0

c0
l
φ0
l
(x) +

+∞
∑

j=0

2
n−1
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where φ0
k
(x) and ψµ,j

l
are n-dimensional scaling functions and wavelets of

different families and levels of resolution, indexed with µ and j, respectively.
One may think of a wavelet decomposition as a multilevel or multiresolution
representation of ui, where each level of resolution j (except the coarsest one)
consists of a family of wavelets ψµ,j

l
having the same scale but located at

different positions. Scaling function coefficients represent the averaged values
of the field, while the wavelet coefficients represent the details of the field at
different scales.

Wavelet filtering is performed in wavelet space using wavelet coefficient
thresholding, which can be considered as a nonlinear filter that depends on
each flow realization. The wavelet thresholding filter is defined by,
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where ε > 0 stands for the non-dimensional (relative) threshold value, Ui

being the (absolute) dimensional velocity scale. The latter can be specified,
for instance, as the norm Ui = ‖u‖2.

2.2 Wavelet-filtered Navier-Stokes equations

When applying the wavelet thresholding filter to the Navier-Stokes equations,
each variable should be filtered, according to Eq. (2), with a corresponding
absolute scale. However, this would lead to numerical complications due to
the one-to-one correspondence between wavelet locations and grid points. In
particular, each variable would be solved on a different numerical grid. In order
to avoid this difficulty, in the present study, the coupled wavelet thresholding
strategy is used. Namely, after constructing the masks of significant wavelet
coefficients for each primary variable, the union of these masks results in a
global thresholding mask that is used for filtering each term. Note that other
additional variables, like vorticity or strain rate, can be used for constructing
the global mask.

Once the global mask is constructed, one can view the wavelet thresholding
as a local low-pass filtering, where the high frequencies are removed according
to the global mask. Such interpretation of wavelet threshold filtering highlights
the similarity between SCALES and classical LES approaches. However, the
wavelet filter is drastically different from the LES filters, primarily because it
changes in time following the evolution of the solution, which, in turn, results
in an adaptive computational grid that tracks the areas of locally significant
energy in physical space.

Therefore, the SCALES equations for incompressible flow, which describe
the evolution of the most energetic coherent vortices in the flow field, can be
formally obtained by applying the wavelet thresholding filter to the incom-
pressible Navier-Stokes equations:

∂ui
>ε

∂xi
= 0 , (3)

∂ui
>ε

∂t
+
∂(ui

>ε uj
>ε)

∂xj
= −

1

ρ

∂p>ε

∂xi
+ ν

∂2ui
>ε

∂xj∂xj
−
∂τij
∂xj

, (4)

where ρ, ν are the constant density and kinematic viscosity, and p stands for
the pressure. As a result of the filtering process the unresolved quantities

τij = uiu
>ε
j − u>ε

i u>ε
j , (5)

commonly referred to as SGS stresses, are introduced. They represent the
effect of unresolved (less energetic) coherent and incoherent eddies on the
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resolved (energetic) coherent vortices. As usual in a LES approach, in order
to close equations (4), a SGS model is needed to express the unknown stresses
in terms of the resolved field.

From a numerical viewpoint, the SCALES methodology is implemented us-
ing the dynamically adaptive wavelet collocation (DAWC) method, e.g., [7].
The DAWC method is ideal for the actual approach as it combines the reso-
lution of the energetic coherent modes in a turbulent flow with the simulation
of their temporal evolution. The wavelet collocation method employs wavelet
compression as an integral part of the numerical algorithm such that the solu-
tion is obtained with the minimum number of grid points for a given accuracy.

3 Lagrangian dynamic SGS model

The primary objective of the current work is to develop a local SGS model
for SCALES of inhomogeneous turbulent flows. In previous work a dynamic
Smagorinsky model with a global (spatially non-variable) coefficient has been
developed and successfully tested for decaying isotropic turbulence [3]. In this
work this idea is further extended by exploring the use of a local Lagrangian
dynamic model [5]. Following [3], where it was shown that when a wavelet
thresholding filter is applied to the velocity field, the resulting SGS stresses
scale like ε2, the following Smagorinsky-type eddy viscosity model is used for
simulating the deviatoric part (hereafter noted with a star) of the SGS stress
tensor (5):

τ∗ij
∼= −2CS∆

2ε2
∣

∣

∣
S

>ε
∣

∣

∣
Sij

>ε
, (6)

where Sij
>ε

= 1

2

(

∂ui
>ε

∂xj
+

∂uj
>ε

∂xi

)

is the resolved rate-of-strain tensor and

∆(x, t) is the local characteristic vortical lengthscale implicitly defined by
wavelet thresholding filter. Note that ∆ is distinctively different from the
classical LES, where the local filter width is used instead. Also note that
despite its implicit definition, ∆ can be extracted from the actual thresholding
mask during the simulation.

Following the modified Germano’s dynamic procedure redefined in terms
of two wavelet thresholding filters, originally introduced in [3], the SGS stress

corresponding to the wavelet test filter at twice the threshold, noted (·)
>2ε

, is
defined as

Tij = uiuj
>2ε − ui

>2ε uj
>2ε . (7)

Note that, the wavelet filter being a projection operator, by definition, it holds

(·)
>ε>2ε

≡ (·)
>2ε

. Filtering (5) at the test filter level and combining with (7)
results in the following modified Germano identity for the Leonard stresses:

Lij ≡ Tij − τij
>2ε = ui

>εuj
>ε>2ε

− ui
>2ε uj

>2ε . (8)
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Exploiting the model (6) and the analogous relation for the test filtered SGS
stresses
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one obtains
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A least square solution to (10) leads to the following local Smagorinsky model
coefficient definition:

CS(x, t)ε2 =
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ijMij
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, (11)
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The coefficient CS can be actually positive or negative, that allows for local
backscatter of energy from unresolved to resolved modes. However, it has been
found that negative values of CS cause numerical instabilities. To avoid this
fact, for homogeneous flow, one can introduce an average over homogeneous
directions. This procedure results in the global dynamic model proposed in
[3].

In this study we follow a Lagrangian dynamic model formulation [5] and
take the following statistical averages over the trajectory of a fluid particle:

ILM (x, t) =
1

T

∫ t

−∞

e
τ−t

T Lij (x (τ) , τ)Mij (x (τ) , τ) dτ , (13)

IMM (x, t) =
1

T

∫ t

−∞

e
τ−t

T Mhk (x (τ) , τ)Mhk (x (τ) , τ) dτ , (14)

which leads to the following local Smagorinsky model coefficient

CS(x, t)ε2 =
ILM

IMM
. (15)

To avoid the computationally expensive procedure of Lagrangian pathline
averaging, following [5], Eqs. (13) and (14) are differentiated with respect to
time leading to the following evolution equations for ILM and IMM :

∂ILM

∂t
+ u>ε

l

∂ILM

∂xl
=

1

T
(LijMij − ILM ), (16)

∂IMM

∂t
+ u>ε

l

∂IMM

∂xl
=

1

T
(MhkMhk − IMM ). (17)

As in [5] the relaxation time scale T is defined as T (x, t) = θ∆ (ILMIMM )−1/8,
θ being a dimensionless parameter of order unity.
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Fig. 1. Kinetic energy decay (left) and grid compression (right) for GDM (dashed
line) and LDM (solid line). The reference energy decay for DNS is also reported
(dotted line).

The equations (16) and (17) should be solved together with the SCALES
equations, (3) and (4). It should be noticed that both ILM and IMM have
higher frequency content when compared to the velocity field. This is due to
two main factors: the quartic character of nonlinearity of ILM and IMM with
respect to velocity and the creation of small scales due to chaotic convective
mixing. Thus, in order to adequately resolve both ILM and IMM , one needs
to have a substantially finer computational mesh than the one required by
the velocity field, which is impractical. To by-pass this problem, an artificial
diffusion term is added to Eqs. (16) and (17):

∂ILM

∂t
+ u>ε

l

∂ILM

∂xl
=

1

T
(LijMij − ILM ) + DI

∂2ILM

∂xl∂xl
, (18)

∂IMM

∂t
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∂xl
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. (19)

To avoid the creation of small scales, the diffusion time scale, ∆2/DI , should

be smaller than the convective time scale associated with local strain,
∣

∣
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∣
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,

which results in DI = CI∆
2

∣

∣

∣
S

>ε
∣

∣

∣
, where CI is a dimensionless parameter of

order unity.

4 Results

In this paper, the preliminary results of the application of SCALES method
together with Lagrangian dynamic modeling (for discussion: LDM) to incom-
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pressible isotropic decaying turbulence simulation are presented. The LDM
solution is compared to SCALES with global dynamic model (for discus-
sion: GDM) [3]. The initial velocity field is a realization of a statistically
stationary turbulent flow at Reλ = 48, as provided by a pseudo-spectral DNS
database, e.g. [4]. In both SCALES cases the wavelet thresholding parameter
is set to ε = 0.5. For a deep discussion of the way this choice can be made
one can see in [2]. The additional SGS modeling variables are initialized as
IMM = MhkMhk and ILM = C̄sε

2IMM , C̄s being the volume averaged value.
For the time relaxation scale definition, the suggested value θ = 1.5 is chosen.
For a discussion of the model sensitivity to this parameter, one can see the
original work [5]. As to the artificial diffusion coefficient, several experiments
have been performed, leading to the choice of CI = 5 for this preliminary test,
in order to have a stable solution.

In Figure 1 the kinetic energy decay and grid compression for LDM are
compared to GDM. The energy decay for a pseudo-spectral DNS solution is
also reported for reference. The compression is always evaluated with respect
to the maximum field resolution, that is 1283 for both SCALES cases. The
LDM case appears initially slightly over dissipative in comparison to DNS.
Though both SCALES use the same relative ε, yet the compression for the
LDM run is slightly better. In fact, a very interesting aspect of the SCALES
methodology is that the dynamic grid evolution is closely coupled to the flow
physics and is therefore affected by the SGS stress model forcing.

Figure 2 shows the energy density spectra at a given time instant, that
is t = 0.104. The spectral DNS and wavelet-filtered DNS solutions are also
shown for reference. It can be seen that, at this point in the decay, both the
LDM and the GDM models show excess energy in the small scales, leading
to the conclusion that the model is either not damping out small scales or is
itself introducing excess small scale motions. This again highlights the strong
coupling between the dynamically adapting grid and the flow physics.

In conclusion, we want to emphasize that the work on local Lagrangian
model is ongoing. However, from these limited initial results, one can con-
clude that the local model works as well as the global one. Further work will
pursue a more computationally efficient formulation as well as improve the
model behavior at small scales level. It is worth reporting that SCALES with
GDM at higher Reynolds number have provided better agreement with DNS
solution [3]. The same good results are expected for the LDM case. Moreover,
once a cost effective model implementation is developed, the LDM approach
will allow to study non-homogeneous flows.
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