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1 Introduction

The properties of wavelet transform, viz. the ability to identify and efficiently rep-
resent temporal/spatial coherent flow structures, self-adaptiveness, and de-noising,
have made them attractive candidates for constructing multi-resolution variable fi-
delity schemes for simulations of turbulence [10]. Stochastic Coherent Adaptive
Large Eddy Simulation (SCALES) [6] is the most recent wavelet-based method-
ology for numerical simulations of turbulent flows that resolves energy containing
turbulent motions using wavelet multi-resolution decomposition and self-adaptivity.
In this technique, the extraction of the most energetic structures is achieved using
wavelet thresholding filter with a priori prescribed threshold level.

SCALES is a methodology, which inherits the advantages of both Coherent Vor-
tex Simulations (CVS) [5] and Large Eddy Simulation (LES) while overcoming the
shortcomings of both. Unlike coherent/incoherent and large/small structures decom-
position in CVS and LES respectively, in SCALES the separation is between more
and less energetic structures. Therefore, unlike CVS, the effect of background flow
can not be ignored and needs to be modeled similarly to LES. As a result of using
SGS models, the number of degrees-of-freedom is smaller than CVS and conse-
quently a higher grid-compression can be achieved.

Ever since the emergence of the wavelet-based multi-resolution schemes for sim-
ulations of turbulence, there has been a major limitation for all wavelet-based tech-
niques: the use of a priori defined global (both in space and time) thresholding-
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parameter. In this work the robustness of the SCALES approach is further improved
by exploring the spatially and temporally variable thresholding strategy, which al-
lows more efficient representation of intermittent flow structures.

2 Stochastic Coherent Adaptive Large Eddy Simulation

To address the shortcomings of LES and CVS, SCALES uses a wavelet threshold-
ing filter to dynamically resolve and track the deterministic most energetic coherent
structures while the effect of less energetic unresolved modes is modeled. The un-
resolved less energetic structures have been shown to be composed of a minority of
deterministic coherent modes that dominate the total SGS dissipation and a major-
ity of stochastic incoherent modes that, due to their decorrelation with the resolved
modes, add little to the total SGS dissipation [6, 1]. In the current implementation,
similar to the classical LES, only the effect of coherent part of the SGS modes
is modeled using deterministic SGS models. The use of stochastic SGS models to
capture the effect of the incoherent SGS modes will be the subject of future inves-
tigations. The most significant feature of SCALES is the coupling of modeled SGS
dissipation and the computational mesh: more grid points (active wavelets) are used
for SGS models with lower levels of SGS dissipation. In other words, the SCALES
approach compensates for inadequate SGS dissipation by automatically increasing
the local resolution and, hence, the level of resolved viscous dissipation. Another
noticeable feature of the SCALES method is its ability to match the DNS energy
spectra up to the dissipative wavenumber range using very few degrees of freedom.

2.1 Wavelet Thresholding Filter

In the wavelet-based approach to the numerical simulation of turbulence the sep-
aration between resolved energetic structures and unresolved residual flow is ob-
tained through nonlinear multi-resolution wavelet threshold filtering (WTF). The
filtering procedure is accomplished by applying the wavelet-transform to the unfil-
tered velocity field, discarding the wavelet coefficients below a given threshold (ε)
and transforming back to the physical space. This results in decomposition of the
turbulent velocity field into two different parts: a coherent more energetic velocity
field and a residual less energetic coherent/incoherent one, i.e., ui = u>ε

i +u′i, where
u>ε

i stands for the wavelet-filtered velocity at level ε

u>ε
i (x) = ∑

l∈L 0

c0
l φ 0

l (x)+
+∞

∑
j=0

2n−1

∑
μ=1

∑
k ∈ K μ, j

|dμ, j
k | > ε‖ui‖WTF

dμ, j
k ψμ, j

k (x), (1)
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where ψμ, j
k are wavelets of family μ at j level of resolution, d j

k are the coefficients of
the wavelet decomposition, and φ 0

l are scaling functions at zero level of resolution.
The key role in the wavelet-filter definition is clearly played by the non-dimens-

ional relative thresholding level ε that explicitly defines the relative energy level
of the eddies that are resolved and, consequently, controls the importance of the
influence of the residual field on the dynamics of the resolved motions. In this work
we explore the use of spatially and temporary varying thresholding level ε , which
follows the evolution of the turbulent velocity field.

2.2 Wavelet-Filtered Navier-Stokes Equations

By filtering the Navier-Stokes equations, the following SCALES equations that gov-
ern the evolution of coherent energetic structures are obtained:

∂xi u
>ε
i = 0, (2)

∂tu
>ε
i +u>ε

j ∂x j u
>ε
i = −∂xi P

>ε +ν∂ 2
x jx j

u>ε
i −∂x j τ

∗
i j +Qu>ε

i , (3)

where τi j = uiu j
>ε − u>ε

i u>ε
j are the unresolved “SGS stresses” that need to be

modeled, Qu>ε
i is the linear forcing term [8], which is applied in the physical space

over the whole range of wavenumbers, and the superscript (·)>ε denotes wavelet
filtered quantities. The SCALES equations are similar to the LES ones with the
exception that the nonlinear multiscale band-pass wavelet filter, which depends on
instantaneous flow realization, is used. The unresolved SGS stresses represent the
effect of “unresolved less energetic deterministic coherent and stochastic incoher-
ent eddies” on the “resolved more energetic coherent structures”. In this study the
localized kinetic-energy-based model [4] is exploited to close the filtered momen-
tum equations. The SCALES methodology involving both the filtered momentum
and the SGS energy equations is implemented by means of the adaptive wavelet
collocation method [11].

3 Spatially Variable Thresholding

Previous studies, e.g. [7], demonstrated that in SCALES, the SGS dissipation is
proportional to ε2; therefore, one can enhance SCALES by exploiting spatially-
varying ε based on local SGS dissipation Π = −τ∗i j Si j

>ε
. This implies that rate of

local-transfer of energy from energetic-resolved-eddies to unresolved-less-energetic
structures can be controlled by varying the thresholding-factor. Therefore, the idea is
to locally vary ε wherever Π deviates from a priori defined goal-value. A decrease of
the thresholding level results in the local grid refinement with subsequent rise of the
resolved viscous dissipation, while an increase of ε coarsens the mesh resulting in
the growth of the local SGS dissipation. However, in order to vary ε in a physically



98 A.R. Nejadmalayeri, O. V. Vasilyev, A. Vezolainen, and G. De Stefano

consistent fashion, it should follow the local flow structures as they evolve in space
and time. This necessitates the Lagrangian representation of ε , which is achieved
using the Lagrangian Path-Line Diffusive Averaging approach [12]:

∂tε +u>ε
j ∂x j ε = −forcingterm +νε ∂ 2

x jx j
ε. (4)

For the sake of efficiency, instead of solving Eq. (4) for the evolution of ε , the
linear-interpolation along characteristics, similar to the idea of Meneveau et al. [9],
is performed

1
Δ t

[
εnew (x, t +Δ t)− εold (x−u>ε Δ t, t)

]
= −forcingterm. (5)

The use of linear interpolation results in sufficient numerical diffusion, thus, elimi-
nating the need for explicit diffusion. The proposed spatially variable thresholding
strategy ensures that the wavelet threshold is not a priori prescribed but determined
on the fly by desired turbulence resolution. In this work two different mechanisms
for the forcing term are studied:

FT1 The local fraction SGSD (FSGSD) is defined as Π
εres+Π , where

εres = 2ν Si j
>ε

Si j
>ε

is the resolved viscous dissipation. The idea is to maintain FSGD at
a “Goal” value which means retain Π at εres

Goal
1−Goal . The first forcing type (FT1) is an

attempt to implement this while normalizing the forcing term based on its time average:

forcingterm = εold (x−u>ε Δ t, t)Cfε

Π − εres
Goal

1−Goal

TAF
, (6)

where TAF stands for the time average of the forcing, is the time average of

|Π − εres
Goal

1−Goal |. The forcing constant coefficient, Cfε , is intentionally set to 400 in

order to make the time response of FT1 about three to four times faster than large eddy

turnover time which is discussed in the next section.
FT2 In this approach, the variations of local-FSGSD is controlled directly based on the

goal-value in conjunction with a relaxation time parameter (time-scale), τε ,

forcingterm = εold (x−u>ε Δ t, t)
1
τ ε

(
Π

εres +Π
−Goal

)
. (7)

Following the time-varying threshold studies [2], a time-scale associated to the charac-
teristic rate-of-strain is chosen: τ−1

ε = 〈|Si j
>ε |〉.

4 Results

The proposed methodology has been tested for linearly forced homogeneous tur-
bulence [3] with linear forcing constant coefficient Q = 6 at Reλ ∼= 72 (Taylor
micro-scale Reynolds number) on an adaptive grid with effective resolution 2563.
Figures 1(a,b) demonstrate the preliminary results of this implementation for three
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Fig. 1 Time-history of total fraction SGSD (a); Time-history of TAF and τ−1
ε (b).

different goal-values (0.25,0.3,0.4) for the local FSGSD with the upper and lower
bound for epsilon set as 0.2 and 0.43 (ε ∈ [0.2,0.43]). For reference, a constant-
thresholding case of ε = 0.43 is included as well. The local and total FSGSD
are defined respectively as Π

εres+Π and 〈Π〉
〈εres〉+〈Π〉 , where 〈Π〉 = 〈−τ∗i j Si j

>ε〉 and

〈εres〉 = 2ν〈Si j
>ε

Si j
>ε〉 are respectively the volume-averaged SGS dissipation and the

volume-averaged resolved viscous dissipation.
For the case of Goal=0.4, total-FSGSD never reaches the prescribed goal-value

(0.4). The reason is that the total-FSGSD for the case of constant-thresholding with
ε = 0.43 is smaller than 0.4 for most of the time. As a result, varying thresholding-
factor with a “local-FSGSD goal-value” larger than the average FSGSD of constant-
thresholding using the same ε and εmax resulted in total-FSGSD, which was bellow
the goal-value. Similarly to the previous case, the test case of the goal-value of 0.3
inherits a large-period oscillations due to capping ε at 0.43 level regardless of the
forcing method. These oscillations are removed by increasing εmax to 0.5. The suc-
cess of this test with larger εmax compared with the abovementioned two tests, where
εmax was 0.43, revealed that the upper bound of the interval for allowable threshold
variations was not large enough to increase the SGS dissipation accordingly, which
implies that with ε ∈ [0.2,0.43] flow was over resolved. Therefore, to achieve a FS-
GSD greater than the average of FSGSD corresponding to constant-thresholding at
a certain εconstant−thresholding, it is required to set the εmax > εconstant−thresholding. This
is further confirmed by considering the case with the goal set to 0.25, which illus-
trates how precisely the spatially variable thresholding methodology can maintain
Π at a priori defined level. In addition, when εmax is set up high enough, the SGS
dissipation approaches the desired level within few eddy turnover times.
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The time history of TAF and τ−1
ε are shown in Fig. 1(c). The relaxation time

parameter for FT2, τε , is approximately one-tenth of the large eddy turnover

time, τeddy = u′2
〈ε〉 =

2
3 K

2KQ = 1
3Q = 1

18 . While the relaxation time parameter for FT1,

Cfε TAF−1, is between one-third and one-fourth of τeddy. That is, FT2 has as much
as 2 to 3 times faster response compared with FT1. This faster time response was
able to partially recover the FSGSD. This improvement reveals the importance of
very localized and fast mechanisms for the forcing term. The time-averaged term in
FT1 destroys the localized Lagrangian nature of the algorithm; however, to smear
out the effect of possible very localized FSGSD values, it is recommended to have
some averaging mechanism. Hence, another approach, which is currently under in-
vestigation, is to track the forcing term itself within a Lagrangian frame so that the
forcing term inherits the history of the flow evolution.
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