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1 Introduction

Volume penalization is a subclass of immersed boundary methods for modeling

complex geometry flows, which introduces the effects of obstacles by modifying

the governing equations. The method presented in this paper encompasses general

boundary conditions as an extension of the Brinkman Penalization Method (BPM)

[1], which was originally developed for solid, isothermal obstacles in incompress-

ible flows. A principal strength of Brinkman penalization is that error can be rigor-

ously controlled a priori, with the solution converging to the exact in a predictable

fashion [4, 5].

While much work has been done to refine BPM for various numerical techniques

and flow regimes, boundary conditions have lacked generality, especially for com-

pressible flows. They have been typically limited to slip and no-slip conditions for

the inviscid and viscous flow around isothermal obstacles, though additional bound-

ary conditions have been developed on a problem specific basis. In this way, BPM

has been inapplicable and inflexible for many fluid problems, notably those demand-

ing heat-flux and insulating boundary conditions on solid surfaces.

The novel Characteristic-Based Volume Penalization method (CBVP), discussed

in this paper, employs hyperbolic forcing terms to impose general homogeneous and

inhomogeneous Neumann and Robin boundary conditions. The method is flexible

and can be applied to parabolic and hyperbolic evolutionary equations. In this paper

it is demonstrated for viscous and inviscid flows of arbitrary Mach number. As with

BPM, this method maintains rigorous control of the error through a priori chosen

parameters for all boundary conditions.
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2 Characteristic-Based Volume Penalization

The Characteristic-Based Volume Penalization method imposes Dirichlet, Neu-

mann, and Robin type boundary conditions by introducing localized forcing terms

into the constitutive equations. For a domain containing obstacles Om, a masking

function, χ(x, t), is defined where

χ(x, t) =

{

1 if x ∈ Om,
0 otherwise,

separates the domain into a physical region and a penalized region.

Dirichlet conditions are imposed in the same fashion as with the Brinkman pe-

nalization method [7, 9]. For the boundary condition u = u0(x, t) on an obstacle

surface ∂Om(x, t), the constitutive equation is modified into the penalized equation

∂u

∂ t
= (1− χ)×RHS−

χ

ηb

(u− u0(x, t))+ χνn
∂ 2u

∂xi,∂xi

, (1)

with summation implied over repeated indices and where RHS is simply the phys-

ical right hand side fluxes. Convergence of the penalization parameter, as ηb → 0,

controls the error on the solution by decreasing the timescale of the forcing term [1].

The Robin boundary condition, of which the Neumann condition is a special

case, has the form a(x, t)u+ b∂u/∂n = g(x, t) for inward-oriented surface normal

n = nk. It is penalized through forcing applied to the appropriate derivatives of u.

The result is a hyperbolic equation,

∂u

∂ t
= (1− χ)×RHS−

χ

ηc

(

a(x, t)u+ bnk

∂u

∂xk

− g

)

. (2)

With the normal defined everywhere, (2) has inward-pointing characteristics that

extend perpendicular to the surface into Om. This propagates the solution at the

surface inward with a spatial growth or decay, based on g and au, that enforces

the desired BC. It can easily be seen that within Om, Robin/Neumann penalized

equation (2) converge to the desired boundary condition on the timescale ηc. With

ηc << 1 on the normalized problem timescale, the disparity asymptotically controls

the penalization error.

3 Compressible Viscous Flows

3.1 Penalized Navier-Stokes Equations

For viscous flows, the fluid is governed by the fully compressible Navier-Stokes

equations. The nondimensionalized continuity, momentum and energy equations are
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∂ρ

∂ t
= −

∂ρu j

∂x j

, (3)

∂ρui

∂ t
= −

∂ (ρuiu j)

∂x j

−
∂ p

∂xi

+
1

Rea

∂τi j

∂x j

, (4)

∂ρe

∂ t
= −

∂

∂x j

[(ρe+ p)u j]+
1

Rea

∂ (uiτi j)

∂x j

+
1

(γ − 1)

1

ReaPr

∂

∂x j

(

µ
∂T

∂x j

)

. (5)

The acoustic Reynolds number is Rea and Pr is the Prandtl number, and the charac-

teristic velocity is a reference speed of sound c0.

For the viscous benchmark problems considered in this paper, no-slip and adia-

batic/heat flux conditions are imposed on velocity and temperature through (1) and

(2). In order to apply these penalized boundary conditions to the constitutive equa-

tions (3-5), the equations of state are used to determine consistent penalization of the

integrated variables ρ , ρu, and ρe, from the native variables u, T , and an appropriate

penalized equation for ρ .

For ρ to be a passive, evolutionary condition, a CBVP Neumann condition is

applied within Om, where the target is

Φ = nk

∂ρ

∂xk

∣

∣

∣

∣

∂Om

. (6)

This closes the penalized equations for the desired conditions on u and T with-

out over constraining the problem. The forcing terms for the compressible Navier-

Stokes equations then become

∂ρ

∂ t
= (χ − 1)×RHS−

χ

ηc

(

nk

∂ρ

∂xk

−Φ

)

(7)

∂ρui

∂ t
= (χ − 1)×RHS− χ

[

1

ηb

ρ (ui − u0i)

+ρνn
∂ 2ui

∂x j∂x j

+
1

ηc

ui

(

nk

∂ρ

∂xk

−Φ

)]

(8)

∂ρe

∂ t
= (χ − 1)×RHS− χ

[

1

ηc

(

nk

∂ρe

∂xk

)

+
ρ(u j − u0 j)u j

ηb

−
ρu j

ηc

nk

∂u j

∂xk

−ρu jνn

∂ 2u j

∂xi∂xi

−
1

ηc

eΦ −
1

ηc

cvρq

]

, (9)

where RHS denotes the corresponding right hand sides of equations (3 -5).
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Fig. 1 The vorticity fields for flow past a circular (Re = 1000) and square (Re = 150) 2-D cylin-

ders, demonstrating the flexibility of CBVP for arbitrary geometry.

3.2 Benchmark: 2D Cylinder Flow

To verify the efficacy of CBVP for unsteady solutions, CBVP is applied for low

Reynolds number vortex shedding around a two-dimensional cylinder. For Ma = 0.2
and Re = 1000, the flow past a cylinder remains laminar but experiences vortex

shedding from the trailing edge. The domain discretization and penalization param-

eters remain as for the pseudo-incompressible case, namely Ω = [−5,10]× [−5,5],
ηb = 5×10−3 and ηc = 10−2. Two temperature conditions are considered: an adia-

batic cylinder and constant heat flux at ∂T/∂n = 1.5.

Periodic vortex shedding can be seen in the laminar wake behind the cylinder in

Figure 1. For laminar flows in the region of Re≈ 1000, the frequency is insensitive to

the Reynolds number [3] and temperature driven viscosity fluctuations. The heating

is therefore best seen only through the direct effect on the temperature of the fluid.

Examination of the temperature profile along an arbitrary surface normal verifies

that the desired heat-flux of q = 1.5 is properly enforced on the penalized boundary.

Time varient lift and drag coefficients CL and CD agree well with previous numer-

ical results [3], though a slightly shorter shedding period can be seen. This higher

frequency is reflected in a Strouhal number of St = 0.245, compared to St = 0.238

from published results [3].

To demonstrate the applicability of the method to arbitrary geometry, flow past a

square cylinder is shown in Figure 1 for Re = 150. The masking function χ(x) and

normal n(x) were assembled from piecewise smooth facets.

4 Compressible Inviscid Flows

4.1 Penalized Euler Equations

Inviscid flow is governed by the Euler equations, where the viscous terms are re-

moved from (4) and (5). In this case, only the normal component of velocity will be
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Fig. 2 Numerical Schlieren image of supersonic flow around randomly spaced multiple 2D cylin-

ders (left) and density field of supersonic flow around the wedge with subcritical angle (right). The

exact steady-state solution for the attached oblique shock wave at the wedge is drawn as the solid

black line.

penalized for a no-penetration condition and the curvature of the surface must be ac-

counted for in the boundary conditions. For consistency, the energy and momentum

equations are modified based upon the penalized native variables and the equations

of state. The following terms are added to the Navier-Stokes equations (7 - 9) in the

inviscid limit:

∂ρ

∂ t
= · · ·+

κ

ηc

ρuτ
jρuτ

j

p
, (10)

∂ρuτ
j

∂ t
= · · ·+

κ

ηc

ρuτ
jρuτ

ju
τ
i

p
, (11)

∂ρe

∂ t
= · · ·+

κ

ηc

ρuτ
ju

τ
j

γ − 1
+

κ

ηc

ρuτ
jρuτ

j

p

uτ
i uτ

i − un
i un

i

2
, (12)

where un = (u ·n)n, uτ = u− un, τ = uτ/‖uτ‖, and κ = ∇nτ ·n is a curvature along

the streamline based on τ . The operator ∇nτ is a projection of gradient operator to

the n,τ plane, that is ∇nτ = n(n ·∇)+ τ (τ ·∇).

4.2 Benchmark: 2D Shocks Around Obstacles

In order to evaluate efficacy of the method, several test problems were examined:

supersonic flow around multiple cylinders, and supersonic flow around the wedges

with sub- and supercritical apex angles. All results showed good qualitative cor-

respondence with published experimental and numerical results [2, 8]. For the case

with supersonic flow around a wedge at a subcritical angle, there is an oblique shock
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inclined with some angle β . The exact, steady-state oblique shock solution is well

known [6]. As shown in Figure 2, the numerical solution for a volume penalized

wedge approaches the exact at steady-state. For the case with supercritical angle, a

detached bow-shape shock was observed, in accordance with established results [6].

5 Conclusions

A new volume penalization method has been developed and demonstrated to ex-

tend Brinkman penalization to generalized Neumann and Robin conditions. This is

accomplished through hyperbolic penalization terms whose characteristics point in-

ward along the surface-normal direction. The process of prescribing general bound-

ary conditons is flexible and systematic, allowing for straightforward construction

of penalization schemes for arbitrary Mach and Reynolds number flows.
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