
Computational Complexity of Adaptive LES
with Variable Fidelity Model Refinement

Alireza Nejadmalayeri, Oleg V. Vasilyev, and Alexei Vezolainen

1 Introduction

Adaptive methods with both mesh and polynomial order refinements have been used
extensively in computational fluid dynamics to achieve optimal accuracy with the
minimal computational cost. Howeverhp-refinement by itself is not sufficient for
numerical simulation of turbulent flows of engineering interest. For instance, even
for the extremehp-refinement such as spectral DNS, the requirement to resolveKol-
mogorov length-scale results in a daunting computational cost. LES is a much less
expensive approach, but for high Reynolds number turbulentflows only large scales
of the flow are captured and most of the dissipation is provided by the SGS model.
The marginally resolved LES with small ratio of SGS and the total dissipations re-
solves more of the flow physics, but scales approximately thesame as DNS in the
limit of high Reynolds numbers, thus, making it impractical.

The quest for an appropriate criteria to identify the hierarchical change of scale
for multi-scale simulations brought us to define the turbulence resolution in a
broader perspective rather than the structure-size distinction as in classical LES, or
the extreme case of resoling Kolmogorov length-scale as in DNS, or decomposing
deterministic-coherent and stochastic-incoherent modesas in CVS, or even captur-
ing more/less energetic structures as in SCALES. This new definition is based on
the measure that is required in practical applications: “how much the flow-physics
is modeled/resolved?” In essence, maintaining the percentage of modeled and re-
solved physically important quantity (e.g. turbulent kinetic energy, dissipation, or
enstrophy) at a constant level implies that the methodologyshould exhibit syner-
gistic transition between various levels of fidelity both inspace and time as well as
take advantage of spatial and temporal flow intermittency. This dynamically adap-
tive transition between different regimes necessitates the model adaptation.
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Therefore, the missing component for turbulence simulation is not eitherh- or
p-refinement butcoupling the model with the numerics. That is to say, the selec-
tion and adjustments of the model fidelity, computational mesh, and/or the order of
the numerical method need to be dynamically adaptive in order to take into account
the intermittency of the turbulent flow filed. This new concept of model-refinement,
which is namedm-refinement [4], is utilized to perform Stochastic CoherentAdap-
tive Large Eddy Simulation (SCALES) of linearly-forced homogeneous turbulence
at various fixed levels of turbulence resolution.

2 Computational Framework

The SCALES equations that govern evolution of coherent energetic structures are
obtained by filtering the Navier-Stokes equations using wavelet-thresholding filter
[2]. In this study, homogeneous turbulence with linear forcing [3] applied in the
physical space over the whole range of wavenumbers [1] is investigated. The ob-
jective is to control the turbulence resolution, defined as the local fraction of SGS
dissipation,F : Π

εres+Π , whereεres= 2ν Si j
>ε

Si j
>ε

is the resolved viscous dissipation

andΠ = −τ∗i j Si j
>ε

is the local SGS dissipation. This ratio of the SGS dissipation to
the total dissipation, can be viewed as turbulence resolution since it indicates how
much the flow is modeled/resolved. Therefore, by controlling F , one can explicitly
control the percentage of the flow physics that is desired to be resolved. To main-
tain the turbulence resolution at a constant level, the spatially variable thresholding
methodology [4, 5] is used. This approach automatically provides the required nu-
merical resolution and the model-fidelity in a space/time adaptive fashion based on
a two-way coupling of numeric and physics. This method dynamically tracks the
regions of interest in spatial and time space and not only adapts the grid but adjusts
the model as well (hm-refinement).

In the classical non-adaptive explicitly filtered LES, the filter-width is priori
user-defined based on which the resolution is determined; therefore, both the CFD
engine (through the resolution) and the filtering mechanism(via the filter-width)
depend on priori defined filter-width, which is not fine-tunedbased on the results
(Figure 1a). The original SCALES has improved this by its dynamically adaptive
wavelet-filtering mechanisms via constantly adapting boththe numerical grid and
the filter-width based on the instantaneous flow field (Figure1b). However, the
wavelet thresholding filter (WTF) uses a priori user-definedthreshold-level and as
a result of filtering the velocity-filed with this constant threshold, the WTF is in-
deed imposing a feedback based on a constant level of resolved kinetic energy. This
limitation has been recently removed [4] by means of constructing a fully adap-
tive wavelet thresholding filter [5]. The newm-refined SCALES requires a priori
user-defined level of resolution/fidelity based on which thethreshold is dynamically
adapted in order to maintain the fidelity constant as user hasrequested. In original
SCALES, the filtering mechanism is a function of the results (kinetic energy) and
a constant threshold, while in the newly developedm-refined SCALES, threshold



Computational Complexity of Adaptive LES with Variable Fidelity Model Refinement 3

G

SGS

CFD

h

(x)

G

SGS

AWCM

num K.E.

K.E.

G (K.E.,   )
G

SGS

AWCM

m

G (K.E.,   (R,F))

 (R,F)

K.E.

num

(a) (b) (c)

Fig. 1 Dependency diagram for (a) classical explicitly filtered LES, (b) original SCALES, and (c)
the variable-fidelity SCALES. Notation: G – filter, R – results, m – model refinement,∆ – user
provided LES filter width,ε – wavelet threshold for model adaptation,εnum – wavelet threshold
controlling the accuracy of the solution, F – an arbitrary dynamically important physical quantity
to be controlled, e.g.,F .

itself is a function of the results (any physical quantity and not limited to kinetic
energy) and the user-defined fidelity. All in all,m-SCALES integrates all compo-
nents of the computational methodology including numerics, models, and physics
altogether to construct a fully dynamically adaptive computational framework (Fig-
ure 1c).

3 Reynolds Number Scaling

To construct the Reynolds number scaling statistics, a series of simulations where
the Reynolds number is progressively increased are performed. SCALES of lin-
early forced homogeneous turbulence [1] with linear forcing constant coefficient
Q = 20/3 are performed in the computational domain of[0,2π ]3 on a dynami-
cally adaptive dyadic grid with effective nonadaptive resolutions of 2563, 5123,
10243, and 20483. These correspond to Taylor micro-scale Reynolds number of
Reλ ∼= 70,120,190,320 based on viscosities ofν = 0.09,0.035,0.015,0.006. These
choices of viscosities are based on maintaining the ratio ofKolmogorov length-scale
to the smallest grid-spacing constant, i.e.,η

∆min
= 2, to ensure the resolution required

for a well-resolved DNS.
In order to study the influence of the fidelity of simulation onthe Reynolds num-

ber scaling of SCALES, a series of simulations of different turbulence resolution is
conducted. The different fidelity is achieved by using spatially variable thresholding
approach [5] with different goal values ofF , namelyG = 0.2,0.25,0.32,0.4,0.5.
It is observed that in the logarithmic scale the slope ofReλ scaling of SCALES
spatial modes at least up to 10243 remains approximately the same regardless of
the level of turbulence resolution, Figure 2. In other words, the scaling exponent of
constant-fidelitym-SCALES is nearly insensitive to the level of fidelity.
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Fig. 2 Reynolds scaling of constant-dissipation SCALES at various goal values.

The scaling statistics presented by this work proves that the developed model
can resolves more flow-physics phenomena yet with profoundly smaller number of
spatial modes compared with marginally resolved LES. It is demonstrated that de-
pending on what flow physics is desired to be captured, the same model and the same
numerical method result in different Reynolds scaling. Therefore, the broad message
of this computational complexity work is not to advertise the wavelet-based methods
but to promote the physics-based turbulence modeling as a marriage of model and
numerics. Thism-refinement concept can be easily implemented into the existing
adaptive Large Eddy Simulation methodologies in order to construct continuously
variable fidelity LES. The possible implementation can be illustrated as Figure 3.
Such an LES would include an additional feedback mechanism from the results (any
physical quantity) in order to incorporate a filter-width/model adaptation preferably
coupled with adaptation of the numerical resolution as well. Hence, both filtering-
mechanism/model (via the filter-width) and CFD-engine/numerics (through the res-
olution) should be dynamically coupled based on any objective physics-based fi-
delity measure.
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Fig. 3 Proposed dependency diagram for a possible variable-fidelity LES.
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Fröhlich, J. (eds.) Proceedings of Direct and Large-Eddy Simulation Workshop 8: Eindhoven
University of Technology, the Netherlands, July 7-9, 2010,pp. 95–100. Springer (2011)




