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Abstract

Calculation of phase diagrams for terrestrial and planetary materials exerts a growing impact in geosciences today. In this

work, we demonstrate the feasibility of efficient delineation and visualization of complicated realistic multi-phase diagrams and

related in situ physical properties of rocks by using discontinuous second generation wavelets, allowing a representation of both

isotropic and anisotropic properties with arbitrary resolution. This is done by combining adaptive wavelet-based meshing

technology with recently developed efficient ‘‘phase diagram function’’ designed as a Gibbs free energy minimization. The

proposed automated strategy allows one to obtain an efficient delineation of physical properties using a uniform set of wavelet

nodes regardless of whether these variables are continuous or discontinuous functions of pressure, temperature, or composition.

The use of this strategy captures very small details of phase diagram morphology allowing both acceleration of the calculations

and compression of results on the order of 102 by comparison to uniform grids of the same effective resolution. The web-based

application of the proposed methodology for phase diagram visualization with interactive zooming capabilities is also

discussed.
D 2004 Published by Elsevier B.V.
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1. Introduction limited by semi-quantitative analysis of relatively
Recognition of the important role of phase trans-

formations for the evolution of complex geophysical

phenomena has a growing impact for modern geosci-

ence, e.g., [1–4]. Most of these applications are
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simple systems with few phase transformations [1,3–

8]. However, recent development of both large inter-

nally consistent, geologically oriented thermodynamic

databases [9–12], and state-of-the-art Gibbs energy

minimization approach [9,13,14] allow calculation of

equilibrium phase assemblages and prediction of in

situ physical properties of rocks [15–17]. New chal-

lenges emerge when accounting for realistic systems

with more than 10 components and complicated non-

ideal solid solutions closely representing a variety of
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natural terrestrial and planetary materials. Despite the

fact that a number of examples of combinations of

numerical thermomechanical modeling and Gibbs free

energy minimization approaches are present in the

literature [17,18], no uniform automated strategy of

compact delineation and visualization of complicated

realistic phase diagrams and related in situ physical

properties of multicomponent systems by geometric

mapping methods has been developed up to now.

Calculation and visualization of phase diagrams is

computationally intensive. A comprehensive over-

view of four basic existing computational strategies

is given by Connolly and Petrini [19]. In most

automated cases the phase diagrams are calculated

either on an a priori distributed dense set of points in

phase assemblage space [15–17] or using bisection

algorithms [14,20]. The former approach is very

expensive and impractical for phase diagrams with

dimensions higher that three. The latter lacks the

robustness and often requires manual tuning. Robust

fully adaptive multi-resolution algorithms for calcula-

tion of phase diagrams have not yet been explored.

Alternatively, wavelet-based refining grid strategy

can be used to rapidly construct and interrogate multi-

phase diagrams. This strategy, originally developed

for the solution of elliptic partial differential equations

[21], allows automatic grid refinement in the neigh-

borhood of a phase transition. The calculations start

on a coarse grid in phase assemblage space. Addi-

tional grid points are progressively added with in-

creasing resolution in the regions dictated by the

phase diagram. With this adaptive procedure, the grid

automatically adjusts to the structure of the phase

diagram and results in a minimal number of points in

phase assemblage space where calculation of ‘‘phase

diagram function’’ is required.

The present paper aims to demonstrate that effi-

cient delineation and visualization of complicated,

realistic, multi-phase diagrams and related in situ

physical properties of rocks can be reached by using

discontinuous second generation wavelets allowing

representation of both isotropic and anisotropic prop-

erties with arbitrary resolution. This is done by

combining adaptive wavelet-based meshing technol-

ogy [22,23] with recently developed efficient phase

diagram function designed as Gibbs free energy

minimization procedure [16]. The latter allows the

calculation of both the equilibrium phase assemblage
and the corresponding in situ physical properties

(density, heat capacity, thermal expansivity, com-

pressibility, etc.) of geological materials of variable

chemical composition.

The rest of this paper is organized as follows.

Section 2.1 describes the methodology behind calcu-

lation of phase diagrams. Section 2.2 describes the

discontinuous interpolating wavelet transform that is

used for grid adaptation and construction of phase

diagrams. The adaptive wavelet-based grid refinement

strategy is described in Section 2.3. Section 3 pro-

vides salient examples of phase diagram construction

using the proposed methodology. Application of the

proposed methodology to numerical modeling of geo-

dynamic processes is discussed there as well. Possible

extensions of this work, including the interactive web-

based applications, are discussed in Section 4.
2. Methodology

2.1. Phase diagrams

We have employed the Gibbs free energy minimi-

zation procedure for determining the equilibrium

assemblages and compositions of coexisting phases

for a given pressure, temperature and bulk chemical

composition of the system. The density was calculated

as the ratio of the sum of the molar masses to the sum

of the molar volumes of the constituent phases, where

each mass and volume is weighted by the mole

abundance of the mineral in the rock. The enthalpy

was calculated as the ratio of the sum of the molar

enthalpies to the sum of the molar masses of the

constituent phases, where each mass and enthalpy is

weighted by the mole abundance of the mineral in the

rock. We have employed a recently developed Gibbs

free energy minimization code DEKAP [16] based on

the modified version of the algorithm suggested by de

Capitani and Brown [14] for complex systems con-

taining non-ideal solid solutions. Thermodynamic

data for solid phases and aqueous fluid were taken

from the internally consistent database of Holland and

Powell [11,12]. Mixing models of solid solutions

consistent with this database were taken from the

literature [12,24,25].

The system was considered to be open for H2O,

i.e., the volatiles produced in dehydration reactions
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are assumed to be removed. Therefore, although

fluid phase saturation was ensured for all calculated

equilibrium phase assemblages, such fluids were not

involved in density/enthalpy calculations. P–T-de-

pendent volumes (V) and enthalpies (H) of phases

in equilibrium phase assemblages were calculated via

the Gibbs potential, G, using the respective thermo-

dynamic relations V=BG/BP and H =G + TBG/BT

and a numerical differentiation procedure. In order

to simulate melt-absent conditions, a lowered water

activity was assumed at temperatures above 630 jC
[16]. Thus, we have not considered any melting

processes involving the liquidus phase. However,

the methodology of minimization allows incorpora-

tion of melts into the calculations, when accurate

thermodynamic properties of melt components, e.g.,

[26,27] consistent with database for solid phases, are

available.

To provide unique coding of calculated phase

assemblages by our ‘‘phase diagram function,’’ we

use an output array with dimension equal to the

number of chemical components (oxides) in the

system. Every phase of thermodynamic database is

assigned by a unique index (1, 2, 3. . .). The indexes of
phases in equilibrium, calculated for given pressure,

temperature and rock composition, are placed in the

output array in the increasing order. In case when the

number of calculated equilibrium phases is less then

the number of chemical components last positions of

the output array are filled by 0 index. Thus, every

unique phase assemblage has a unique combination of

phase indexes placed in the output array. This com-

bination is then processed by the wavelet program

providing comparison of the newly coming phase

assemblage with previously found unique phase

assemblages. Overall numbering of the unique

assemblages is done by the wavelet program. In order

to increase visual contrast between the unique phase

assemblages, these assemblages are randomly

reshuffled.

2.2. Discontinuous interpolating wavelet transform

Interpolating wavelets [28,29] are best suited to

represent continuous changes in the field variables.

In the case of phase diagrams, the continuity re-

quirement is obviously not satisfied insofar as both

phase assemblages and calculated physical properties
may exert discontinuous (step-like) changes across

phase boundaries, e.g., [16,17]. To resolve this

problem we developed the discontinuous interpolat-

ing wavelet transform. Discontinuous interpolating

wavelets are the generalization of the interpolating

wavelets of Donoho [28] and Harten [29] and

second-generation wavelets [30,31]. This section

briefly describes the construction of the discontinu-

ous interpolating wavelet transform. To the best of

our knowledge, this is the first time the discontinu-

ous wavelet transform is introduced. For readers who

are interested in coding discontinuous interpolating

wavelet transform themselves, a schematic algorithm

is provided in Appendix A.

The algorithm for constructing discontinuous in-

terpolating wavelets on an interval is basically the

same as in [32] with the exception that a polynomial

interpolation is not allowed across the phase bound-

aries, which are assumed to be known a priori. The

main difference is in construction of local interpolat-

ing polynomials, Pp(x) (see Appendix A.1) that use

2N closest points that belong to the same phase

assemblage. If for a given resolution, the number of

closest points belonging to the same phase assemblage

is less than 2N, the order of the polynomial drops

accordingly. However, for the finer levels of the

resolution the polynomial order would increase back

to p = 2N� 1.

To illustrate how discontinuous interpolating

wavelet transform improves the results when applied

to discontinuous fields, we consider a function that

is discontinuous at the interface (see Fig. 1a). Two

distinct phase assemblages are shown in Fig. 1b.

The function is sampled on a very coarse grid

(17� 17) and then both continuous and discontinu-

ous wavelet transforms are performed on this grid.

After that the wavelet interpolation to 257� 257

grid is performed via the inverse wavelet transform.

The results of a standard (continuous) and discon-

tinuous wavelet interpolations are shown in Fig. 1c

and d, respectively. As easily seen, the discontinu-

ous wavelet transform drastically improves the

results, which is mostly due to the fact that no

interpolation is done across the phase boundaries.

This property together with adaptive capabilities,

which are discussed next, make discontinuous wave-

let transform a very useful tool for phase diagram

construction.



Fig. 1. Example of wavelet interpolation of a function sampled on 17� 17 to 257� 257 grid: (a) original function, discontinuous at the

interface, (b) phase assemblages, (c) standard wavelet interpolation, (d) discontinuous wavelet interpolation.
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2.3. Adaptive wavelet based refinement

A wavelet-based refining grid strategy is ideally

suited for construction of phase diagrams. This strat-

egy, originally developed for the solution of elliptic

partial differential equations [34], allows automatic

grid refinement in the neighborhood of phase transi-

tions. Grid adaptation occurs naturally in wavelet

methods and is based on the analysis of wavelet

coefficients. As shown in Appendix A.2, a function

f(x) can be decomposed as

f ðxÞ ¼
X
kaK0

c0k/
0
kðxÞ þ

Xþl

j¼0

X2n�1

l¼1

X
1aLl;j

d
l;j
l wl;j

l ðxÞ:

ð1Þ

The strength of the wavelet approach now appears.

For functions which contain isolated small scales on a
large-scale background, most wavelet coefficients are

small, thus a good approximation is retained even

after discarding a large number of wavelets with small

coefficients. Intuitively, the coefficient dl
l, j will be

small unless f(x) varies on the scale of j in the

immediate vicinity of wavelet w l
l, j(x). In fact, the

error incurred by ignoring coefficients with magnitude

lower than e is O(e). More precisely, if we rewrite Eq.

(1) as a sum of two terms composed respectively of

wavelets whose amplitude is above and below some

prescribed threshold e, i.e., f (x) = fz (x) + f < (x), then

it can be shown [22,35] that

f ðxÞ � fzðxÞ j VC1eVC2N
�p=n; ð2Þ

where N is the number of significant wavelet

coefficients, p = 2N� 1 is the order of the wavelets,

and n is the dimensionality of the problem.



O.V. Vasilyev et al. / Earth and Planetary Science Letters 223 (2004) 49–64 53
In order to realize the benefits of the wavelet

compression, we need to be able to reconstruct

fz (x) from the subset of N grid points, denoted by

Gz. Note that every wavelet w l
l,j(x) is uniquely

associated with a collocation point. Consequently,

the collocation point should be omitted from the

computational grid if the associated wavelet is omitted

from the approximation. The details of grid adaptation

procedure are given in Appendix A.3. With this

adaptive procedure the grid automatically adjusts to

the structure of the phase diagram and results in a

minimal number of points in phase assemblage space,

where calculation of ‘‘phase diagram function’’ is

required.
Fig. 2. Initial distribution of wavelet nodes (a) and corresponding phase d

coordinates. Diagrams are calculated for the composition of typical high-g

jC temperature range. Fifty-seven different colors in panel (b) correspond

assemblages) found for the given distribution of wavelet nodes. Lowere

conditions [16].
3. Results and discussion

Figs. 2–4 show the results of calculation of the

phase diagram and the related physical properties for

the bulk chemical composition of typical high-grade

metapelite [33]. Examples of phase assemblages and

compositions of coexisting phases for this metapelite

and other common rock types calculated with DEKAP

program are presented in [16]. Initial wavelet grid

(Fig. 2a) is taken to be uniform (33� 33 nodes) and

only partly and very roughly represent phase transi-

tions (Fig. 2b) and distribution of density (Fig. 2c) and

enthalpy (Fig. 2d) in P–T space. On the other hand,

the final distribution of wavelet nodes in P–T diagram
iagram (b) compared to density (c) and enthalpy (d) maps in P–T

rade metapelite [33] within 2–12 kbar pressure range and 400–900

to 57 different phase assemblages (see Fig. 4 for examples of these

d water activity at high temperature was used to ensure melt-free
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after 8 cycles of adjusting (Fig. 3a) is highly inhomo-

geneous following boundaries of different phase

assemblages (Fig. 3b) and related sharp changes in

calculated physical properties (cf. Fig. 3b and c). The

strategy of calculation includes both refinement and

coarsening of initial 33� 33 regular grid in different

areas of P–T diagram depending on distribution of

approximating phase assemblages and physical prop-

erties in P–T space. The proposed automated strategy

allows efficient delineation of physical properties with

contrasting distributions, using a uniform set of wave-

let nodes: compare the sharp variations in mineral

assemblages (Fig. 3b) with the continuous–discontin-

uous distribution of density (Fig. 3c) and relatively

smooth changes in enthalpy (Fig. 3d). The use of this

strategy captures the very minute details of the phase
Fig. 3. Final distribution of wavelet nodes (a) and corresponding phase d

coordinates. Parameters for calculation are the same as for Fig. 2. Sevent

assemblages (see Fig. 4 for examples of these assemblages) found for the

area amplified in Fig. 4.
diagram morphology, and also allows zooming in of

the most complicated regions (Fig. 4). This strategy

allows both acceleration of the calculations and com-

pression of the results on the order of 102 by com-

parison to uniform grids with the same effective

resolution.

3.1. Application to numerical thermomechanical

modeling

One of the straightforward application of devel-

oped approach is the use of calculated phase diagrams

and related in situ transport properties for numerical

modeling of geodynamic processes. Account for ther-

mal and density effects of phase transformations

including melting processes pose significant chal-
iagram (b) compared to density (c) and enthalpy (d) maps in P–T

y-five different colors in panel (b) correspond to 75 different phase

given distribution of wavelet nodes. Red square in panel (a) shows



Fig. 4. Zoomed area of the diagrams shown in Fig. 3. Fine details of different phase assemblages (b) are captured by adjusted wavelet distribution

(a). Corresponding density (c) and enthalpy (d) distribution is clearly seen. Letters in (b) denote different phase assemblages ( +Q+Ru +

Mu + Mt): a! Pa + Chl + Ep + Pl, b! Pa + Chl + Ep + Pl + Grt, c! Pa + Chl + Ep + Pl + Grt + Bt, d! Pa + Chl + Ep + Pl + fluid,

e! Pa +Chl + Pl + fluid, f!Chl + Pl + fluid, g!Chl + Pl + Ilm + fluid, h! Pa +Chl + Ep+ Pl +Grt + fluid, i! Pa +Chl + Pl +Grt + fluid, j!
Chl + Pl +Grt + fluid, k!Chl + Pl +Grt + Ilm + fluid, l!Chl + Pl +Grt + Bt + fluid, m! Pa +Chl + Pl +Grt + Bt + fluid, n! Pl +Bt + St +

fluid, o! Pl +Grt +Bt + St + fluid, p! Pa + Pl +Grt + Bt +Ky + fluid, q! Pl +Grt + Bt +Ky + fluid, r! Pa + Pl +Grt + Bt + fluid, where Chl,

Pl, Grt, St, Ep, Bt, Mu are solid solutions. Mineral abbreviations are taken from [12].
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lenges for themomechanical modeling, e.g., [6,36,39–

41]. As shown by Barboza and Bergantz [39] abrupt

changes in phase state associated with the disappear-

ance of a phase to be difficult to accommodate in a

numerical model especially to the continuity condi-

tion. To overcome these difficulties we used the

simplified approach combining incompressible fluid

approximation for the continuity equation and numer-

ical smoothing of thermal and density effects of phase

transformations for momentum and temperature equa-

tion [36]. According to our numerical approach based

on finite differences and marker in cell technique

[37,38] transport properties are computed for many

markers displaced by velocity field. Effective density

(q), isobaric heat capacity (Cp), and thermal expansion
(a) of each marker are calculated via equilibrium

enthalpy and density described in wide P–T interval

for every particular rock composition (e.g., Fig. 4).

Effective density is calculated for each marker as an

average value within 10 K � 200 bar intervals around

actual values of P and T for this marker. Effective

isobaric heat capacity and thermal expansion are

calculated via enthalpy and density, according to the

following standard thermodynamic relations:

Cp ¼
BH

BT

� �
P

a ¼ q
T

1

q
� BH

BP

� �
T

� �
:
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We use numerical differentiation procedure with 10

K and 200 bar step for T and P, respectively, to

avoid abrupt changes in effective Cp and a values.

We also used a time-step limitation to ensure less

than 10 jC changes in temperature for each com-

putation step. Fig. 5 shows an example of thermo-

mechanical modeling of crustal convection in

collisional orogen accounting for thermal and den-

sity effects of phase transformations. As shown in

our recent study [36], crustal convection enhanced

by density effects of phase transformations (Fig.

5c) is very efficient at elevated temperatures (Fig.

5a) providing rapid exhumation of lower crustal

rock toward the surface (Fig. 5b). This study show
Fig. 5. Example of thermomechanical modeling of crustal convection i

properties of crustal rocks [36]. (a) Distributions of different rock types (c

viscosity (color code) and velocity field (arrows). (c) Distribution of calc

The thermomechanical grid configuration is 281�101 regularly spaced

top—free sleep, T= 25 jC; walls—free sleep, no horizontal heat flow; b

and B
2T/Bz2 = 0, where x and z are the horizontal and the vertical coord

Numerical code I2VIS based on finite differences and marker in cell tech

considered phase transformations for the mantle rock. Further details of th

given in [36].
potential importance of automated coupling be-

tween numerical modeling and phase diagram cal-

culations. Further methodological challenges in this

direction are related to correct solving of continuity

condition, e.g., [39], and accounting for kinetics of

phase transformations.
4. Conclusion and perspectives

This paper is restricted to a relatively simple,

two-dimensional thermodynamic system with only a

few interpolated variables, namely phase assemb-

lages, density and enthalpy. We have demonstrated
n collisional orogen coupled with calculations of in situ physical

olor code) and isotherms (white lines). (b) Distribution of effective

ulated in situ rock density used for thermomechanical calculations.

points and 700,000 markers are employed. Boundary conditions:

ottom—‘‘infinity’’ (permeable boundary with BP/Bx= 0, Bvx/Bz = 0

inates, respectively, and vx is the horizontal velocity component).

nique [37,38] is used for thermomechanical modeling. We have not

ermomechanical modeling and phase diagrams for crustal rocks are



Fig. 6. Schematic diagram showing the determination of phase

assemblage and physical properties from the Gibbs free energy G.

G is the Gibbs free energy of the system in the equilibrium state

calculated from classical thermodynamics. T, P, C and DB are the

temperature, pressure, chemical composition of the system and

internally consistent thermodynamic database used for Gibbs free

energy calculation, respectively. The phase assemblages /, density
q and enthalpy H are then wavelet-transformed to obtain an

optimized description of the system. Inverse wavelet-transforms

bring optimized wavelet-based description back into real quantities

in physical space defined by ranges of T, P and C variations. The

details of the phase diagram, density and enthalpy are then

zoomed-in by interpolation. This data set can be accessed over the

internet by interrogative techniques using the server – client

paradigm [42].
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that wavelet transforms can be employed as a

straightforward and easy-to-use tool for delineating

the phase boundaries and determining thermody-

namic quantities, such as the density and enthalpy

in multi-component systems. Further progress is

related to the calculation and visualization of

phase diagrams and rock physical properties in

multidimensional space defined by more then two

thermodynamic parameters as pressure, temperature,

water fugacity, chemical components, etc. The use of

such diagrams for numerical thermomechanical mod-

eling of effects of realistic phase transformations in

evolving multi-phase geophysical flows [17] may

also be considered as an important direction for

future development. The scheme of our method is

summarized in Fig. 6, where we sketch the proce-

dure to be followed from the use of free energy

down to the construction of the phase boundaries by

means of wavelet-transformed quantities and its

inverse transformed counterpart. The last step in

Fig. 6 emphasizes the importance of using webtools

to interrogate the large data sets in terms of a large

data base. The ability to zoom into the data and to

visualize the complicated phase boundaries is an

important aspect of this kind of web-based set up

[42].

Apart from multi-dimensional phase diagrams,

wavelet-based delineation and visualization strategy

can also have broad applications in other geo-

physical and petrological fields. For example, the

discontinuous wavelet transform developed here

may be a very useful tool for compact storage

and visualization of large ultrahigh-resolution nu-

merical experiments for multi-phase geophysical

flows consisting of many different chemical com-

ponents and characterized by both continuous and

discontinuous spatial and temporal variations in

multiple field properties, e.g., [41,43]. Delineation,

visualization and mathematical, e.g., statistical,

processing of phase boundaries in 2D and 3D

real-space has multiple applications in modern

geosciences often dealing with complicated de-

formed and partially molten polycrystalline exper-

imental and natural materials [44–46]. This is

especially important for microstructural analysis

[44] and investigation of rheological properties

of various rocks and mineral aggregates [45–49].

As a source of data for automatic processing,
high-resolution electronic and optical microscopy

images are broadly used. The greatest novelty in

this work is the use of high-resolution computed

X-ray tomography (HRX-ray CT), a new tech-

nique for obtaining digital 3D images of the

interiors of polycrystalline objects [50–52]. Taking

into account that in the same deformed mineral

aggregate grain size commonly vary over several

orders of magnitude [44], application of the
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wavelet-based delineation, reconstruction and visu-

alization of 2D and 3D phase boundaries will

greatly facilitate and strengthen existing post-pro-

cessing procedures opening new opportunity for

further mathematical analysis. In this respect (i)

post-processing of the result of rheological experi-

ments in the case of grain size sensitive diffusio-

nal creep of solid and partially molten aggregates

[45,46,49] and (ii) study of melt dynamics in

crust and mantle using data on experimental and

natural systems with partially molten both de-

formed and undeformed rocks [53,54] seem to

be obvious important areas for the immediate

application of presented adaptive wavelet-based

technology.

There are immense computational and visuali-

zation challenges arising in higher dimensions as

the number of components in the system in-

crease. These include the memory requirements

due to the growing dimensionality of the prob-

lem, which will grow up exponentially with the

increase of the dimensionality. Some clever strat-

egy must be devised to cope with this situation

as well as visualization of the multidimensional

images using packages such as Amira [55] on

shared-memory processors. The same technique

can be employed to study rheology in grain-size

distributions [56] and melt domains from micros-

copy [57].
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Appendix A. Discontinuous interpolating wavelet

transform

This appendix briefly describes the essential

components of discontinuous wavelet transform,

wavelet construction, and adaptive grid refinement.

It is mainly written for readers, who is interested in

coding discontinuous interpolating wavelet transform

themselves. The provided pseudo-codes are detailed

enough, so anybody with very little knowledge of

wavelet theory is capable of programming the algo-

rithm. For readers, who are interested in mathemat-

ical details of the algorithm, we refer to the

following papers [22,30–32,58]. As we pointed

out earlier, the discontinuous interpolating wavelet

transform algorithm only differs in details of poly-

nomial interpolation by not allowing it across the

phase boundaries, which will be further elaborated

on.

We start by discussing the construction of dis-

continuous interpolating wavelet transform on an

interval. Then extend it to multiple dimension.

Finally, details of wavelet transform on adaptive

grid and adaptive grid refinement strategies will

be discussed.

A.1. One-dimensional transform

Wavelets can be constructed on an interval to

start, an arbitrary (usually uniformly spaced) set of

grid points xk, (k = 0, . . ., 2
Jm) needs to be defined.

With this construction we have 2Jm + 1 grid points.

The next step is to define the set of nested dyadic

grids xk
j ( j= 0, . . ., J, k = 0, . . ., 2 jm ), which are

formed by a simple restriction rule xk
j = x2k

j + 1, j = 0,

. . ., J� 1. Now the meaning of parameters J and m

is clear. J + 1 is the total number of nested levels

(levels of resolution), while m + 1 is the total

number of grid points on the coarsest level. For

convenience of the discussion, a collection of grid

points belonging to the same level of resolution, j,

will be called grid Gj. Example of uniformly spaced

dyadic nested grids Gj for j= 0, . . ., 4 are given in

Fig. 7.

Interpolating discontinuous wavelets can be for-

mally introduced through the recursive interpolating

subdivision scheme of Deslauriers and Dubuc [59],

which considers the problem of building an inter-



Fig. 7. Example of nested grids on an interval.

Fig. 8. Interpolating scaling function /(x).
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polant f j(x) on a grid G jþ1 for a given data

sequence f (xk
j). The subdivision scheme consists

of the recursive procedure of interpolating the data

fk
j = f (xk

j) to all dyadic points in between. The

algorithm proceeds by interpolating the data f (xk
j)

to the points on a grid G jþ1, which do not belong

to G j. This procedure does not modify any of the

existing data, and thus can be repeated until the

data are interpolated to all dyadic points up to the

desired level of resolution. The interpolation is

achieved by constructing local polynomials, Pp(x)

of order p = 2N� 1, which uses 2N closest points

that belong to the same phase assemblage. If for a

given resolution, the number of closest points

belonging to the same phase assemblage is less

than 2N, the order of the polynomial drops ac-

cordingly. However, for the finer levels of the

resolution the polynomial order would increase

back to p = 2N� 1. For example, to find the value

of the interpolant at location x2k + 1
j + 1 we construct

the polynomial of order 2N� 1 based on the values

of the function at the closest locations xk + l
j that

belong to the same phase assemblage as x2k + 1
j + 1 .

Let Lj
pðx

jþ1
2kþ1Þ denote the set of such points. Note

that when there exist N points on each side of

x2k + 1
j + 1 that belong to the same phase assemblage,

Lj
pðx

jþ1
2kþ1Þ ¼ �N þ 1; . . . ;N . The simplest way to

construct such a polynomial is to use Lagrange

interpolation that can be found in any textbook on
numerical methods. Thus, evaluating this polyno-

mial at point x2k + 1
j + 1 and substituting the values of

polynomial coefficients expressed in terms of val-

ues f (xk
j) we can easily get that

f jðx jþ1
2kþ1Þ ¼

X
laL

j
pðx jþ1

2kþ1
Þ

w
j
k;l fðx

j
kþ1Þ; ð3Þ

where wk,l
j are the weights of Lagrange interpolat-

ing polynomial.

The interpolating scaling function /k
j(x) can be

formally defined by setting f (xl
j) = dl,k, where dl,k is

Kronecker delta, and then performing the interpo-

lating subdivision scheme up to an arbitrary high

level of resolution J. This procedure will result in

the scaling function dk
j sampled at the locations xk

J.

Now, using the linear superposition, it is easy to

show that

f jðxÞ ¼
X
k

c
j
k/

j
k ðxÞ; ð4Þ

where for consistency with wavelet notation we set

ck
j= f (xk

j). It is easy to show that for the regularly

spaced grid G j , all scaling functions are translates

and dilates of one function /(x) =/0
0(x), called

interpolating scaling function. An example of inter-

polating scaling function /(x) for N = 3 is shown in

Fig. 8 [28,60].



Algorithm 1.

Forward discontinuous interpolating wavelet trans-

form on an interval.

Algorithm 2.

Inverse discontinuous interpolating wavelet trans-

form on an interval.

Algorithm 4.

In-place inverse discontinuous interpolating wave-

let transform on an interval.
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Algorithm 3.

In-place forward discontinuous interpolating wave-

let transform on an interval.
Repeating the procedure for j+ 1 level of resolu-

j + 1
tion, we construct the function f (x). Due to the

properties of interpolating subdivision scheme dis-

cussed above, it follows that f j + 1(xk
j) = f (xk

j). However,

f j(x2k + 1
j + 1 ) p f j + 1(x2k + 1

j + 1 ). Thus, we can define the detail

function dj(x) to be the difference between f j + 1(x)

and f j(x). If we define half the difference f j + 1� f j

at location x2k + 1
j + 1 to be a wavelet coefficient dk

j,

then it can be easily shown that

djðxÞ ¼
X
m

djmwj
mðxÞ; ð5Þ

where wk
j (x) = 2/2k + 1

j + 1 (x) is the wavelet function.

Using Eqs. (4) and (5), we obtain

X
k

c
jþ1
k /jþ1

k ðxÞ ¼
X
l

c
j
l/

j
lðxÞ þ

X
m

d
j
kw

j
mðxÞ: ð6Þ

Now we are in position to introduce a discon-

tinuous interpolating transform. Starting at the

finest level of resolution, we obtain ck
J= f(xk

J) = fk,

wavelet coefficients dk
j
can be found recursively using

the using forward discontinuous wavelet transform

given in Algorithm 1. The inverse transform is a simple

reversion of the operations and is given in Algorithm 2.

The strength of the wavelet transform is that it can be

performed in-place, i.e., wavelet coefficients can be

stored at the locations of the original function. Once the

transform is performed, wavelet coefficients can be

recovered from the transformed vector using the fol-
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lowing rule dk
j! f2J � j � 1(2k + 1). With these convention,

the forward and inverse wavelet transforms can be

rewritten in more practical forms, respectively given

in Algorithms 3 and 4.
Algorithm 5.

In-place forward discontinuous interpolating wave-

let transform in two dimensions.
A.2. Multi-dimensional transform

Wavelet construction can be easily extended to

multiple dimensions using tensor product wavelets,

which in two dimensions can be written as

wl;j
i;k ðxÞ ¼

w j
i ðx1Þ/

j
kðx2Þ l ¼ 1

/ j
i ðx1Þw

j
kðx2Þ l ¼ 2

w j
i ðx1Þw

j
kðx2Þ l ¼ 3

8>>>><
>>>>:

ð7Þ

with a two-dimensional scaling function /i,k
j (x) =

/i
j(x1)/k

j(x2), where wi
j(x1), wk

j(x2), /i
j(x1), /k

j(x2)

correspond to arbitrary one-dimensional wavelets

and scaling functions and x=(x1, x2). The n-dimen-

sional wavelets are constructed analogously, with the

exception that there will be 2n� 1 distinctive n-

dimensional wavelets. Note that in the case of n-

dimensional tensor product wavelets, the one step of

forward wavelet transform consists of the sequential

application of one-dimensional wavelet transform

starting from x1 direction, whereas the one step of

inverse wavelet transform consists of the sequential

application of one-dimensional inverse wavelet trans-

form in reverse order starting from xn direction. Also

note that in contrast to the standard interpolating wave-

lets, wavelets belonging to the same family can be

drastically different depending on the location of the
interface boundary. A practical form of two-dimen-

sional discontinuous forward interpolating wavelet

transform is given inAlgorithm 5.An inverse transform

is constructed analogously by simply reversing the

order of operations analogously to the one dimensional

case. As in one-dimension, multidimensional wavelets

and scaling functions can be formally constructed by

setting all except one wavelet coefficients to zero and

then performing the inverse wavelet transform up to an

arbitrary high level of resolution J. Once wavelets and

scaling functions are constructed, an n-dimensional

function f(x) can be decomposed as in Eq. (1).

A.3. Adaptive-wavelet based refinement

Algorithm 6.

Reconstruction check procedure for the wavelet

transform.



Algorithm 7.

Grid adaptation procedure. um
k is a solution vectors

for all phase diagram variables.
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As mentioned in Section 2.3, the adaptive wavelet

refinement strategy is based on omitting wavelets

from approximation (1) based on magnitude of their

coefficients. Due to one-to-one correspondence be-

tween wavelet and grid points, the collocation point

should be omitted from the computational grid if the

associated wavelet is omitted from the approximation

(1). Removal of collocation points in this manner

presents a potential problem. Since coefficient

information about fz (x) at all locations in space is

no longer available, the reconstruction of this function

from the available coefficient information may not be

possible. This can be easily overcome as long as one

requires that all grid points required for the recursive

computation of the wavelet coefficients d l
l,j present in

the approximation fz (x) are available. This is

achieved by the additional procedure, called the

perfect reconstruction check, which ensures that all

grid points required for the recursive computation of

the wavelet coefficients d l
l,j (hereafter referred as

minimal set of grid points), present in the approxi-

mation fz are available. For details of the perfect

reconstruction check procedure and its implementa-

tion in multiple dimensions, we refer to [22]. The

pseudocode for the perfect reconstruction check

procedure is shown in Algorithm 6. When construct-

ing the phase diagram, the calculation for each point
in P–T space can be expensive by itself. Thus,

minimizing the number of evaluations is essential and

a strategy for progressive grid refinement should be

developed. The calculations should start on a coarse

grid in P–T space. Additional grid points are

progressively added with increasing resolutions into

the regions dictated by the phase diagram. The

addition of grid points is based on an analysis of

wavelet coefficients: points are added at locations

where wavelet coefficients are or are predicted to be

significant. In other words, the computational grid

should include ‘‘adjacent’’ points at the finer scale in

the immediate neighborhood of wavelets for which the

magnitude of their coefficients is greater then an a

priori prescribed threshold. The adaptive gridding

procedure is illustrated in Algorithm 7.
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