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Applicability of wavelet algorithm for geophysical
viscoelastic flow

Oleg V. Vasilyev,1 David A. Yuen,2 and Yuri Yu. Podladchikov3

Abstract. This paper introduces a newly developed wavelet
technique for modeling of geophysical flow processes in mul-
tiple dimensions. The method utilizes the idea of colloca-
tion with the multilevel wavelet approximation. The mul-
tilevel structure of the algorithm facilitates the computa-
tional adaptation of the grid refinement in regions where
sharp variations occur. We have tested this algorithm for
viscoelastic flows with viscosity contrasts up to 1012. We
have confirmed the findings of stress amplification in the
thin highly viscous layer. The new method allows us to
conduct the calculations for thin layers and high viscosity
contrasts, close enough for realistic mantle-lithospheric in-
teraction. Our results demonstrate the potential usefulness
of the wavelet technique in large-scale numerical simulations
in the geosciences.

Introduction

Wavelet theory has now been around for nearly a decade.
However, most of the applications of wavelets in geosciences
have been focussed on analyzing data [Kumar and Foufoula-
Georgiou, 1993; Li and Loehle, 1995] and there remains a
large gap in applying wavelets for solving the difficult par-
tial differential equations (PDE) in geophysics. The objec-
tive of this paper is to communicate the need for looking
at wavelets as a potential, viable tool in large-scale numer-
ical modeling of geophysical flow problems and to bridge
this communication gap by providing a short description of
wavelet based numerical algorithm and its advantages over
conventional numerical methods.

If the solution of a geophysical flow problem has regular
features, any of the conventional numerical techniques can
be applied. However, in many problems in geophysics there
exists a multiplicity of very different spatial and temporal
scales in the solution, as in strongly time-dependent non-
Newtonian convection [Malevsky et al., 1992; Larsen et al.,
1995], in faulting problems [Ben-Zion and Rice, 1993; Po-
liakov et al., 1994], or in rising diapirs with sharp viscosity
gradients [Weinberg and Podladchikov, 1995]. This partic-
ular attribute of multiple spatial scales requires an efficient
adaptive multi-scale numerical algorithm. In this respect
wavelet based numerical algorithms are ideally suited for
geophysical problems, since they provide a simple, efficient
and automatic way to adapt computational refinements to
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local demands of the solution. Far fewer grid points are
needed for wavelets than for conventional non-adaptive finite-
difference or finite-element techniques.

The applicability of wavelet based numerical algorithms
to geophysical problems is illustrated by the solution of the
viscoelastic model problem, using a dynamically adaptive
wavelet collocation method [Vasilyev and Paolucci, 1997].
The problem is similar to the one described in [Poliakov et
al., 1993]. A very thin upper boundary layer, the litho-
sphere, which is quasi-elastic, interacts with a highly vari-
able viscous mantle.

Mathematical Model

Consider a plane-strain viscoelastic flow with a strongly
variable viscosity driven by density inhomogeneities in a
vertical rectangular domain. Superscript “*” denotes di-
mensional quantities. The characteristic scales are the size
of the domain L∗, the reference dynamic viscosity µ∗, the
shear elastic modulus G∗, and gravity force per unit vol-
ume ρ∗g∗, where ρ∗ is the characteristic scale for the den-
sity deviations and g∗ is the gravity acceleration. There is
also an extra parameter “inertial density” ρ∗i , which may
not equal to the ρ∗ [Poliakov et al., 1993]. The three inde-
pendent scales used in dimensional analyses are L∗, µ∗ and
ρ∗g∗, which makes the stress, time and velocity scales to be
ρ∗g∗L∗, µ∗/(ρ∗g∗L∗) and (ρ∗g∗(L∗)2)/µ∗ respectively. We
denote the non-dimensional pressure, three in-plane devia-
toric components of stress tensor, and velocity components
in x1 and x2 directions by p, τ11, τ22, τ12, V1, and V2 respec-
tively. The viscoelastic equations described in [Poliakov et
al., 1993] are given by
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where i, j, k = 1, 2, repeated indices imply the summation,
δij is the Kronecker delta, and egi = (0,−1) is the unity
vector along gravity. The independent dimensionless pa-
rameters appearing in the equations are

Re =
ρ∗i ρ
∗g∗ (L∗)3

(µ∗)2 , De =
ρ∗g∗L∗

G∗
, K =

K∗

G∗
, (2)

where K∗ is the bulk elastic modulus. These parameters
represent the Reynolds and Deborah numbers, and the mea-
sure of the ratio of bulk and shear elastic moduli. Although
equations (1) can be rescaled in such a way that some of the
parameters are omitted, we have chosen this form for geo-
physical relevance. The density perturbation ρ is chosen to
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be ρ(x1, x2) = 0.1x2 cos(πx1), which serves the purpose of
driving the flow. The non-dimensional viscosity µ is taken
to be µ(x1, x2) = (µ0 + (µ1 − µ0) f1 (x2)) (1− f2 (x1, x2)) +

µ2f2 (x1, x2) , where f1 (x2) = exp
[
− (x2−1)2

λ2

]
and

f2 (x1, x2) = exp
[
− (x1−x10)2+(x2−x20)2

r20

]
. Constants µ0, µ1,

µ2, λ, r0 and functions f1 and f2 are chosen in such a
way that high viscosity region is concentrated near the top
(f1), in addition, a low viscosity “spot” is placed in the
neighborhood of (x10, x20) (f2). The problem is solved for
Re = 10−3, De = 10−2, K = 1, µ0 = 1, µ1 = 108, and
(x10, x20) = (1, 0.5). The parameter µ2 is chosen to be ei-
ther 1 or 10−4, depending on whether the low viscosity spot
is present or not. We have used two sets of geometrical pa-
rameters λ and r0. The first set is λ = 0.02 and r0 = 0.05
and the second is λ = 0.005 and r0 = 0.025. The initial and
boundary conditions are respectively given by

Vi(x1, x2, t)|t=0 = p(x1, x2, t)|t=0 = τij(x1, x2, )|t=0 = 0,

V1(x1, x2, t)|x1=0,1 = V2(x1, x2, t)|x2=0,1 = 0,

τ12(x1, x2, t)|x1=0,1 = τ12(x1, x2, t)|x2=0,1 = 0.

Computational Method

Here we briefly describe the numerical algorithm which
we will use to solve the system of equations (1). For more
details about the algorithm, we refer the reader to [ Vasilyev,
1996] and [Vasilyev and Paolucci, 1997].

Fast Wavelet Collocation Transform

Let us consider a function u(x1, x2) defined on a closed
rectangular domain. We take
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where ψ(x1, x2) is a two-dimensional wavelet (or scaling
function), ψjk,l(x1, x2) is a wavelet of j level of resolution

with scales a1j and a2j and location (bj1k , b
j
2l). It can be

shown [Vasilyev and Paolucci, 1997] that u(x1, x2) can be
approximated as
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where the approximation is composed of wavelets whose am-
plitudes satisfy the following criteria

|cjk,l| ≥ ε. (5)

The distinctive feature of the wavelet approximation (4) is
its multilevel nature. In other words, various scales present
in the function are approximated by wavelets of different
levels of resolution. Given the values of function at the col-
location points, which are chosen to be wavelet locations,
wavelet coefficients at all levels of resolution are found by
using fast wavelet collocation transform (FWCT). Knowing
cji,k at all levels of resolution, the values of the derivatives
of the approximate function at the collocation points can
be found by using fast inverse wavelet collocation transform
(FIWCT). Due to the compact support of the basic wavelet
and the cardinal properties (ψ(i, k) = δi,0δk,0) of wavelets in

this algorithm, the total computational cost of both FWCT
and FIWCT is O((J + 1)M2

WN operations, whereN is the
total number of collocation points and MW is a parameter
characterizing the wavelet support.

Dynamically Adaptive Numerical Algorithm

Following the classical collocation approach for evalu-
ating PDE’s, we obtain a system of ordinary differential
equations. Derivatives of the functions in the equations are
formed as described above.

In order for the algorithm to resolve all the structures,
the basis of active wavelets and, consequently, the computa-
tional grid should be adapted dynamically in time to reflect
local changes in the solution. This changing of the compu-
tational grid is based on the analysis of wavelet coefficients.
The contribution of a wavelet into the approximation is con-
siderable if and only if the nearby structures of the solution
have comparable size with the wavelet scale. Thus, we may
drop the large number of fine scale wavelets with small co-
efficients in the regions where the solution is smooth. This
property of the multilevel wavelet approximation allows lo-
cal grid refinement up to an arbitrary small scale without a
drastic increase of the number of grid points.

To ensure the accuracy, the basis should also consist of
wavelets whose coefficients can possibly become significant
during the period of time in between grid adaptation. Thus,
at any instant of time, the basis should not only include
wavelets satisfying criterion (5), but also the surrounding
wavelets.

Let us denote by Gt≥ the irregular grid of wavelet colloca-
tion points which are retained to approximate the solution
at time t. The numerical algorithm consists of three steps:

1. From the values of the solution uJi,k(t) we compute
the values of wavelet coefficients using FWCT. For a

given threshold ε we adjust Gt+∆t

≥ .

2. If there are no changes between Gt≥ and Gt+∆t

≥ , we go
directly to step 3. Otherwise, we compute the values

of the solution on Gt+∆t

≥ , which are not included in

Gt≥.
3. Integrate the resulting system of ordinary differential

equations to obtain new values uJi,k(t + ∆t) and go
back to step 1.

The basic hypothesis motivating the algorithm is that
during a time interval ∆t, the domain of wavelets with sig-
nificant coefficients does not move abruptly in the phase
space of wavelet coefficients. The irregular grid of wavelet
collocation points is dynamically adapted in time and fol-
lows the local structures that appear in the solution. By
omitting wavelets with coefficients below a threshold param-
eter ε, we automatically control the error of approximation.
Thus wavelet collocation method has an active control of the
accuracy of the solution. The smaller ε is chosen the smaller
the error of the solution is. Typically the value of ε varies
between 10−2 and 10−4.

Results and Discussion

The results have been obtained by using the dynami-
cally adaptive multilevel collocation method. The correla-
tion function of Daubechies scaling function of order five
[Beylkin and Saito, 1993] was employed with the threshold
parameter ε = 10−2, which means that the local relative



VASILYEV ET AL.: WAVELET ALGORITHM FOR GEOPHYSICAL VISCOELASTIC FLOW 3

early stage  

late stage

x1

x1

x1

x1

x 2
x 2

x 2
x 2

Figure 1. Absolute value of the τ11 component of stress
tensor and the associated computational grid for λ = 0.02
at two different times.

error is everywhere less than 10−2. The adaptation of the
computational grid is based on the analysis of coefficients
associated with all six dependent variables of equations (1).

The irregular grid Gt≥ of wavelet collocation points is con-
structed as a union of irregular grids corresponding to each
dependent variable.

The solution for the τ11 component of stress tensor and
corresponding to the computational grid for the case of
λ = 0.02 is illustrated in Figure 1 for two different times.
The high stress region is observed at the top 8% of the do-
main. With the decrease of λ and consequently the high
viscosity region, the thickness of the high stress is decreased
accordingly. This phenomena, which we call stress-focusing
effect, is illustrated in Figure 2 corresponding to the case
of λ = 0.005 and 2% high stress region. The zoomed-in
high viscosity region and corresponding computational grid
is also shown in Figure 2. It can be seen that the computa-
tional grid is dense only in the neighborhood of small scale
structures, such as high stress concentration region.

The capability of the numerical algorithm to resolve lo-
calized two dimensional structures such as low viscosity spot
is illustrated in Figure 3. The zoomed-in low viscosity
spot region and corresponding computational grid are shown
there as well. The effect of low viscosity spot region can be
seen from comparison of computational grids of Figure 2 and
Figure 3. We see the dense computational grid surrounding
the low viscosity spot. From comparing the solution and
the computational grid, we can observe that the computa-
tional grid is very fine only in the regions where small scale
features or large gradients are present. The total number of
grid points at any instant of time did not exceed 104 for all
cases presented here, while if one repeats the same calcu-
lation on a non-adaptive grid using conventional numerical
algorithms, it would require more than 106 regularly spaced
grid points.
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Figure 2. Solution and zoomed-in view of the high vis-
cosity region for the absolute value of the τ11 component
of stress tensor and the associated computational grid for
λ = 0.005, µ2 = 1.

We have applied a new adaptive wavelet based method
to solving PDEs arising in a geophysical context. The al-
gorithm has been employed for a viscoelastic flow having
strong variations in viscosity. We have verified the previ-
ous findings of stress amplification in the thin high viscous
layer [Kuznir and Bott, 1977, Poliakov et al., 1993, Podlad-
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Figure 3. Solution and zoomed-in view of the low viscosity
spot region for the absolute value of the τ11 component of
stress tensor and the associated computational grid for λ =
0.005, µ2 = 10−4.
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chikov et al., 1993]. The new method allows us to conduct
the calculations close enough for realistic lithosphere-mantle
interaction. This highly adaptive wavelet based method al-
lows us to resolve much thinner lithosphere and higher vis-
cosity contrasts with considerable reduction in the number
of unknowns as compared to conventional finite-difference
method [Poliakov et al., 1993]. High-resolution computa-
tions afforded by adaptive wavelet based method are needed
to follow the evolution of the stress-focusing process in a
plastic lithosphere, which results in localization in the strain
field [Tapponier and Molnar, 1976]. Similar computational
problems arise in modeling of faulting of brittle overburden
over viscous substratum at smaller (few km) scale [Poliakov
at al., 1995].
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