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Liandrat and Tchiamichian [2], Bacry et al. [3], Maday
and Ravel [4], and Bertoluzza et al. [5] have shown thatA dynamically adaptive multilevel wavelet collocation method

is developed for the solution of partial differential equations. The the multiresolution structure of wavelet bases is a simple
multilevel structure of the algorithm provides a simple way to adapt and effective framework for spatially adaptive algorithms.
computational refinements to local demands of the solution. High In their Galerkin algorithms, they retain wavelets, whoseresolution computations are performed only in regions where sharp

coefficients are larger than a given threshold. In order totransitions occur. The scheme handles general boundary condi-
be able to track singularities they also retain wavelets thattions. The method is applied to the solution of the one-dimensional

Burgers equation with small viscosity, a moving shock problem, are adjacent to such regions. This adaptive procedure,
and a nonlinear thermoacoustic wave problem. The results indicate based on the analysis of wavelet coefficients, allows them
that the method is very accurate and efficient. Q 1996 Academic

to follow the local structures of the solution.
Press, Inc.

In wavelet Galerkin algorithms nonlinearities can be
handled using either the connection coefficients (see [3])
introduced by Beylkin [6, 7] or quadrature formulae (see1. INTRODUCTION
[4]). The first approach is computationally expensive, due

A multilevel wavelet collocation method for the solution to the summations over multiple indices. The second one
of partial differential equations has been developed re- loses its accuracy due the approximate calculations of the
cently by Vasilyev et al. [1]. The method utilizes the classi- scalar products (see [8]). In contrast, the treatment of non-
cal idea of collocation with the wavelet approximation. linear terms in the multilevel wavelet collocation method
The authors suggest two different approaches of treating (see [1]) is a straightforward task due to the collocation
general boundary conditions: differential and integral. The nature of the algorithm.
differential approach uses standard wavelets as a basis Most of the wavelet algorithms for solving partial differ-
and results in a differential–algebraic system of equations, ential equations can handle periodic boundary conditions
where the algebraic part arises from the boundary condi- easily. The effective treatment of general boundary condi-
tions. The integral approach utilizes extended wavelets, tions is still an open question even though different possi-
which satisfy boundary conditions exactly. This approach bilities of dealing with this problem have been studied.
results in a system of coupled ordinary differential equa- One approach is to use wavelets specified on an interval
tions. The method is tested on the one-dimensional Burg- as suggested by Meyer [9] and Andersson et al. [10]. These
ers equation with small viscosity and the solutions were wavelets are constructed satisfying certain boundary condi-
compared with those resulting from the use of other meth- tions. The disadvantages of this approach are inconve-
ods. Their results indicate that the method is competitive nience of implementation and wavelet dependence on
with well-established numerical algorithms. boundary conditions. A more satisfactory approach is to

The multilevel wavelet collocation method proposed in make a change of variable in conjunction with the tau
[1] is based on the localization property of wavelets. Due method to treat Dirichlet boundary conditions [4]. This
to the fact that the zero-mean restriction plays no role in approach may lead to some instabilities associated with
the algorithm, the method is applicable with any suitable the introduction of extra equations to treat boundary con-
basis function which has compact or essentially compact ditions, which in turn makes the system of equation overde-
support in both physical and wavenumber spaces. Another termined.
very important aspect of the algorithm is its spectral accu- The main objective of the present work is to extend the
racy [1]. Unfortunately while spectral convergence of the collocation method developed in [1] and to incorporate
method is indicated by the numerical results, an analytical the dynamically adaptive multilevel algorithm suggested

by Liandrat and Tchamitchian [2]. The essential featureproof is lacking at this time.
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of the multilevel wavelet collocation method is that the c j
k 5 O

m[ZJ

C
j,J
k,muJ

m, 0 # j # J, k [ Z j, (3)
unknown functions themselves are solved for at collocation
points, in comparison with the wavelet Galerkin algorithms

wherewhich solve for wavelet coefficients. Even though wavelet
coefficients do not explicitly enter into the final form of
the wavelet collocation method, an adaptive algorithm C

j,J
k,m 5 O

p[Zj

(Aj,j)21
k,pDj,J

p,m, 0 # j # J, k [ Z j, m [ ZJ, (4)
analogous to the one proposed in [2] can be utilized.

The rest of the paper is organized as follows. In Section Al,j
i,k 5 c j

k(xl
i), 0 # l, j # J, i [ Zl, k [ Z j, (5)

2 we briefly review the wavelet interpolation technique
developed in [1] with modifications which allow the exten-
sion to an adaptive algorithm. The dynamically adaptive
method for solving partial differential equations is de- Dj,J

i,m 5 5R j,J
i,m 2 Oj21

l50
O

p[ZJ
O

k[Zl

R j,J
i,pAJ,l

p,kC
l,J
k,m,

1 # j # J, i [ Z j, m [ ZJ,

R0,J
i,m, j 5 0, i [ Z 0, m [ Z J. (6)

scribed in Section 3. Finally, in Section 4, the method is
applied to the solution of the Burgers equation with small
viscosity, the modified Burgers equation producing a mov-
ing shock solution, and a nonlinear thermoacoustic wave

In the above expressions the operator (A j, j )21
k,p denotes theproblem.

(k, p)-element of the inverse of the matrix Aj,j and the
operator Rl,j

i,m is the restriction operator defined as2. WAVELET INTERPOLATION

2.1. Interpolation on a Regular Grid
Rl,j

i,m 5 H1 for xl
i 5 x j

m,

0 otherwise.
(7)

Let us consider a function u(x) defined on a closed inter-
val V ; [xl, xr]. If we take c j

k(x) 5 a21/2
j c((x 2 b j

k)/aj),
where c(x) is a wavelet and aj 5 22ja0, b j

k 5 (xr 1 xl)/2 1 Since the restriction operator is known, than we have
aj b0k, a0 5 22L(xr 2 xl)/b0, and L [ Z, then it can be an explicit form for D0,J

i,m and, consequently, for C
0,J
k,m. Then

shown (see [1]) that there exist b0, L, Nl, Nr such that u(x) using (4) and (6) the operators Dj,J
i,m and C

j,J
k,m are ob-

can be approximated as tained recursively.
Next, the interpolation operator is defined as

u J(x) 5 OJ

j50
O

k[Zj

c j
k c j

k(x), (1)
uJ(x) 5 O

i[ZJ

Ii(x)uJ
i , (8)

where hZ j : 22L1j21 2 Nl, ..., 2L1j21 1 Nrj and Nl, Nr are where
the number of external wavelets on each side of the domain
V. Note that levels j 5 0 and j 5 J correspond respectively
to the coarsest and finest scales present in the approxima- Ii(x) 5 OJ

j50
O

k[Zj

c j
k(x)C

j,J
k,i, i [ Z J. (9)

tion, and the largest scale present in the approximation is
determined by L.

Since the collocation points are known, the interpolationFor clarity of discussion we will call wavelets correspond-
operator can be constructed. In addition, using (1), (4),ing to the same j as wavelets at the j level of resolution,
(5), (6), and (9) the mth derivative of the approximateand for notational convenience we use the superscript to
function can be written asdenote the level of resolution and the subscript to denote

the location in physical space (with the exception of aj).
We follow [1] in defining a set of collocation points uJ(m)(x) 5 O

i[ZJ

D(m)
i (x)uJ

i , (10)
hx j

i : i [ Z j j in such a way that for any j (0 # j # J 2 1)
the following relation between the collocation points at

wheredifferent levels of resolution is satisfied

hx j
i j , hx j11

i j. (2) D(m)
i (x) 5 OJ

j50
O

k[Zj

c j(m)
k (x)C

j,J
k,i, i [ Z J. (11)

Then the operator C
j,s
k,m which maps the set of functional

values at the J level of resolution into the set of wavelet Note that D(0)
i (x) 5 Ii(x).

All wavelets whose centers are located within the do-coefficients at the j level can be constructed (see [1]):
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depends upon the local regularity of u(x) in the neighbor-
hood of location b j

k. As mentioned in [1], numerical results
indicate that for appropriately chosen Nl and Nr the
method converges uniformly with increasing J. This indi-
cates a decay of the magnitude of wavelet coefficients as the
level of resolution increases. For the algorithm presented in
[1] we show a typical collocation grid using a seven-level

FIG. 1. Locations of collocation points and wavelets near xl for approximation. This grid, reproduced in Fig. 3b, is used
Nl 5 2. regardless of the approximation function, assuming it can

resolve all the scales present in the function. It seems that
for a function which has singularities or sharp transitions,
it is far from the optimal representation. In Fig. 3a wemain, will be called internal wavelets; the other wavelets
illustrate a function defined on the interval [21, 1] whichwill be called external wavelets. Since every wavelet is
has a sharp transition. For this function we present in Fig.characterized by its location b j

k, then for internal wavelets
3c the grid of collocation points of the correlation functionthese locations seem to be the most natural choice for
of the Daubechies scaling function of order 5 with coeffi-collocation points, provided that wavelets are symmetric
cients whose absolute value is larger than a threshold « 5and nonzero at b j

k. Nonsymmetrical wavelets can also be
5 3 1023. We see a pyramid of collocation points thatutilized, but in this case the choice for collocation points
marks the location of the sharp transition. The width andis not clear. Collocation points for external wavelets are
height of the pyramid depend mostly on the magnitude oflocated as described in [1]. Briefly, at any level of resolution
the gradient of u(x), the size of the wavelet support, andj the collocation points corresponding to the external wave-
the type of wavelet. In our case, out of the 275 collocationlets are located in the intervals [xl, xl 1 b0 aj] and [xr 2
points (shown in Fig. 3b) only the 34 (shown in Fig. 3c)b0 aj , xr] and are taken to correspond to the collocation
correspond to the wavelet coefficients which are above thepoints of possible internal wavelets of smaller scales. The
threshold. This example indicates the tremendous savingplacement strategy is illustrated in Fig. 1 with two external
if we design the algorithm to automatically take into ac-wavelets (Nl 5 2).
count the structure of the approximated function.We enumerate the collocation points in such a way that

The approximation (1) can be rewritten as a sum of twofor any j (0 # j # J) and i, k [ Z J, x j
i , x j

k if and only if
terms composed of wavelets whose amplitudes are abovei , k. Subsequently, it is easy to show that
and below the threshold «:

x j
22L1j212Nl

5 xl, x j
2L1j211Nr

5 xr . (12)
uJ(x) 5 uJ

$(x) 1 uJ
,(x), (13)

Up to this point we have indicated that c(x) is a wavelet; where
however, we emphasize that the present method is applica-
ble for any suitable function, provided it has compact or

uJ
$(x) 5 OJ

j50
O

k[Zj

uc j
k u$«

c j
k c j

k(x), uJ
,(x) 5 OJ

j50
O

k[Zj

uc j
k u,«

c j
k c j

k(x). (14)
essentially compact support. In order not to cloud the
discussion we will keep referring to our functions as wave-
lets, keeping in mind that true wavelets have additional
properties. In fact, we illustrate the method using the corre- Let us formulate and prove the following proposition.
lation function of the Daubechies scaling function of order

PROPOSITION 1. For any « . 0 there exists a positive
5 with b0 5 1.0 (see Beylkin and Saito [11]). We choose

constant C̃ such that iuJ(x) 2 uJ
$(x)iL2(V) 5 iuJ

,(x)iL2(V) #
the order 5 as a compromise between the requirement on

«C̃.
continuity of the second derivative (which we will need

Proof.later) and the demand to have the support as small as
possible. The correlation function of Daubechies scaling
function of order 5 and its Fourier transform C(j) 5
e1y

2y c(x)e2ijx dx are shown in Fig. 2. Note that for symmetri-
iuJ

,(x)iL2(V) 5 IOJ

j50
O

k[Zj

uc j
k u,«

c j
k c j

k(x)I
L2(V)

cal functions the imaginary part of the Fourier transform
is always zero.

2.2. Interpolation on an Irregular Grid
# OJ

j50
O

k[Zj

uc j
k u,«

uc j
k u ic j

k(x)iL2(V) # «NWic(j)iL2(R),
The absolute value of the wavelet coefficient c j

k ap-
pearing in the approximation (1) and computed in (3)
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FIG. 2. The correlation function of the Daubechies scaling function of order 5 (c(x)) and its Fourier transform (C(j)).

where NW is the total number of wavelets. The last inequal- uc j
ku $ a1/2

j «. (15)
ity follows since uc j

ku , « and ic j
k(x)iL2(V) # ic(j)iL2(R).

The estimate for the constant C̃ can be made much Note that by omitting a wavelet whose amplitude is below
the threshold, the collocation point associated with thisless conservative at the expense of complicating the proof.

Consequently, Proposition 1 allows us to omit wavelets wavelet should be omitted as well. We call the grid of
collocation points an irregular grid G$ if at least one colloca-whose coefficients are below a certain threshold, and if we

keep in approximation (1) only coefficients which are tion point at any level of resolution is omitted. Otherwise
we will call it a regular grid G. Examples of regular andabove the threshold, then we will still retain a good approx-

imation. Due to the collocation nature of the algorithm irregular grids of wavelet collocation points are presented
respectively in Figs. 3b and 3c. Note that the irregular gridwe are interested in the Ly norm of the error and, since

the magnitude of wavelet c j
k(x) is of the order a21/2

j , we becomes a regular one by setting the threshold parameter
« to zero.only retain wavelets whose amplitude satisfy the criteria

FIG. 3. (a) Function u(x), (b) regular grid (« 5 0), (c) irregular grid (« 5 5 3 1023, M 5 0, C 5 0), (d) irregular grid (« 5 5 3 1023, M 5 1,
C 5 1) of wavelet collocation points used in approximating the function.
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If we look closely at Fig. 3c we see that the relation (2) tive approach and the second is the integral approach.
Since the objective of this paper is to present an adaptivebetween collocation points at different levels is violated.

However, the algorithm on the irregular grid can be for- algorithm, we will illustrate it using the derivative approach
only, keeping in mind that the same adaptive proceduremally interpreted as the algorithm on a regular one where

the coefficients which are below the threshold are set to with slight modifications can be applied with the integral
approach as well. We also note that in general the integralzero. Let us define two subsets of integers Z j

$ , Z j and
Z C , Z J such that x j

i [ G$ if and only if i [ Z j
$ and adaptive approach requires more degrees of freedom than

the derivative one. This is due to the fact that extendedx J
k [ <

J
j50 hx j

m : m [ Z j
$j if and only if k [ Z C. In other

words, Z j
$ is the set of indices of wavelets (and collocation wavelets, which are used in the integral approach, have

larger support than regular wavelets once they are closepoints) at the j level of resolution, and ZC is the set of
indices of the ultimate set of collocation points used in the to the boundary of the domain.

We will demonstrate the method through its applicationinterpolation. Subsequently, Eqs. (3), (4), (6), (10), and
(11) can be rewritten as to the solution of a second-order partial differential equa-

tion of the type

c j
k 5 O

m[ZC

C
j,J
k,muJ

m, 0 # j # J, k [ Z j
$, (16)

­u
­t

5 F(t, x, u, ux, uxx) for t . 0, u(x, 0) 5 u0(x), (21)
C

j,J
k,m 5 O

p[Zj
$

(Aj,j)21
k,pDj,J

p,m,

where F is a linear or nonlinear operator. We illustrate
0 # j # J, k [ Z j

$, m [ ZC, (17) the method by solving (21), together with the Dirichlet
boundary conditions,

u(xl, t) 5 ul(t), u(xr, t) 5 ur(t). (22)
Dj,J

i,m 5 5R j,J
i,m 2 Oj21

l50
O

p[ZC
O

k[Zl
$

R j,J
i,pAJ,l

p,kC
l,J
k,m,

1 # j # J, i [ Z j
$, m [ ZC,

R0,J
i,m, j 5 0, i [ Z 0

$, m [ Z C, (18)
The time integration algorithm can be chosen depending

on the applications. It can be either explicit or implicit.
For some applications it can be mixed. For example, inuJ(m)(x) 5 O

i[ZC

D(m)
i (x)uJ

i , (19)
many applications in fluid mechanics the Adams–
Bashforth scheme is used for nonlinear terms and the
Crank–Nicolson scheme is used for the linear terms. InD(m)

i (x) 5 OJ

j50
O

k[Zj
$

c j(m)
k (x)C

j,J
k,i, i [ Z C. (20)

our work we do not concentrate on the time integration
scheme, since we want to focus on the adaptation in scale
and space, retaining the freedom to choose the integration

Equations (16)–(20) can be formally obtained by substitut- algorithm which is most appropriate for the particular ap-
ing the sets of the subscripts Z j

$ and ZC, instead of Z j and plication. In the present research we use a fifth-order Gear
Z J, respectively. Note that in the process of this formal implicit integration algorithm implemented in the IMSL
substitution, Z J

$ is substituted everywhere, where Z j ap- routine IVPAG [12].
peared for j 5 J, and ZC, where Z J appears explicitly. Also We refer to the present method as dynamically adaptive
note that the size of the matrix Aj,j is determined by the in the sense that the irregular grid of collocation points is
number of elements in the set Z j

$. dynamically adapted in time and follows the local struc-
Since the main objective of this work is to use an irregu- tures that appear in the solution. Let us describe the way

lar grid in an adaptive algorithm for solving partial differen- we adapt the computational grid in time. The most straight-
tial equations, we will not elaborate any further on the forward approach for dynamical adaptation of the irregular
influence of all the parameters associated with the algo- grid is to retain only those collocation points for which the
rithm on the interpolation characteristics. For this purpose magnitude of associated wavelet coefficients satisfy criteria
we refer the reader to [1] for the case where « 5 0. (15). Even though this approach works in interpolation

problems, it is not applicable in the solution of partial
differential equations for the following two reasons: the3. THE DYNAMICALLY ADAPTIVE ALGORITHM
first reason is that, due to the finite support of wavelet and
the recursive character of the algorithm, any change in aThe treatment of general boundary conditions on a finite

domain is one of the difficulties for most wavelet algo- wavelet coefficient affects adjacent wavelets at the same
and finer levels of resolution; the second reason is that, inrithms. In [1] two different approaches of dealing with

boundary conditions are suggested. The first is the deriva- order for the algorithm to be able to track sharp transitions
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in the solution, we have to retain wavelets whose amplitude
can possibly become significant during the next time inter- D(m)

i,k 5 OJ

j50
O

p[Zj
$

c j(m)
p (x J

i )C
j,J
p,k, (25)

val. Both reasons suggest that we retain collocation points
associated with wavelets that are adjacent in location and
scale. Thus, at any instant of time the grid of wavelet where i [ ZC and C

j,J
p,k is given by (17). From (12) it

coefficients should include wavelets belonging to an adja- follows that
cent zone. We say that the wavelet c s

k belongs to the adja-
cent zone of wavelet c j

i (i.e., for which criteria (15) is
x J

22L1J212Nl
5 xl, x J

2L1J211Nr
5 xr , (26)

satisfied), if the following relations are satisfied

us 2 j u # M, uxs
k 2 x j

iu # Caj, (23) and (21) reduces to a system of nonlinear ordinary differen-
tial equations,where C defines the width of the adjacent zone in physical

space and M determines the extent of which coarser and
finer scales are included into the adjacent zone. In Fig. 3d d

dt
u J

i (t) 5 F(t, x J
i , u J

i (t), D(1)
i,k u J

k(t), D(2)
i,k u J

k(t)),
(27)the irregular wavelet collocation grid for the function

shown in Fig. 3a is obtained with C 5 1 and M 5 1. Note u J
i (0) 5 u0(x J

i ),
that, as discussed earlier, the irregular wavelet collocation
grid shown in Fig. 3c corresponds to the case with C 5 0

where i [ ZC and repeated indices imply summation overand M 5 0.
ZC. The boundary conditions (22) becomeThe values of C and M affect the total number of colloca-

tion points present in the irregular grid at any instant of
u J

22L1J212Nl
(t) 5 ul(t), u J

2L1J211Nr
(t) 5 ur(t) . (28)time and the time interval during which the calculations

can be carried out without modifying the computational
grid and subsequently the matrix operators required in After solving (27) with boundary conditions (28), the solu-
the computations. Note that in order to have an efficient tion on the interval is approximated by
algorithm we want to keep the number of collocation points
as small as possible while at the same time we want to be uJ(x, t) 5 O

i[ZC

Ii(x)uJ
i (t). (29)

able to resolve all sharp transitions present in the solution.
Furthermore, for efficiency reasons we would like to mini-
mize changes in the collocation grid. If ts(x j

k ) is the time Note that for Neumann or mixed boundary conditions,
scale of development coarser aj21 or finer scale aj11 in the (28) is replaced by an algebraic relation in terms of uJ

i ,neighborhood of x j
k , and tc(x j

k ) 5 Caj /v(x j
k ), where i [ ZC. Thus one has to solve a differential–algebraic

v(x j
k ) is local convection speed, then the time interval system of equations, which can be rewritten as a system

during which the computational grid can be kept un- of coupled ordinary differential equations by expressing
changed is determined by t 5 minj,k (ts(x j

k ), tc(x j
k )). For the values of the function at the end points in terms of its

convenience we denote t1 5 minj,k (ts(x j
k )) and t2 5 values at the interior locations.

minj,k (tc(x j
k )). In other words, in problems for which the Let us summarize the numerical algorithm. Assuming

convection time scale t2 is much larger than the time scale that a time integration scheme is chosen, the present nu-
associated with development of sharp transitions t1, the merical algorithm involves three steps:
value of C should be taken larger than in problems for
which sharp transitions develop on a time scale much 1. Assume we have computed the approximate solu-

tion uJ
i (t) at positions on the irregular grid G t

$ (from initialsmaller than the one associated with convection. As far as
the value of M is concerned, we found that the choice of conditions or from the previous time step). For a given

threshold « we adjust G t1Dt
$ based on the magnitude ofM 5 1 is the best compromise between requirements to

minimize the number of collocation points and upgrade wavelet coefficients at time t which are obtained using (16).
the computational grid as rare as possible. 2. If G t

$ and G t1Dt
$ are the same go to step 3; otherwise:

Let us denote by G t
$ the irregular grid of wavelet colloca- a. values of the solution uJ

i (t) at collocation points
tion points that are retained to approximate the solution of G t1Dt

$ , which are not included in G t
$, are com-

at time t. Following the classical collocation approach and puted using (29), and
evaluating (19), (20) at collocation points hx J

i : i [ ZC j at b. recalculate operator C
j,J
p,k and the derivative ma-

the finest level of resolution we obtain trix D(m)
i,k using (17) and (25), respectively.

3. Integrate (27) to obtain new values uJ
i (t 1 Dt) atuJ(m)

i (t) 5 O
k[ZC

D(m)
i,k uJ

k(t), (24)
positions on the irregular grid G t1Dt

$ , and go back to step 1.
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The basic hypothesis behind this algorithm is that during in the second we present numerical results. In both subsec-
tions, because of the fact that the first two problems havea time interval Dt, the domain of wavelets with significant

coefficients does not move in phase space beyond the bor- analytical solutions with which we can more rigorously
check the algorithm, we split the discussion into two parts.der of the irregular grid. With such an algorithm the irregu-

lar grid of wavelet collocation points is dynamically In the first part we discuss the performance of the algorithm
and its competitiveness with other numerical methodsadapted in time and follows the local structures that appear

in the solution. The accuracy in the adaptive multilevel based on the results of the first two test problems. In the
second part we illustrate the application of the presentwavelet algorithm depends upon the threshold parameter

«. In addition, other parameters such as L, J, b0, Nl, Nr, algorithm to the solution of third problem.
and the choice of wavelet affect the performance of the

4.1. Problem Formulationsalgorithm for fixed «. If all parameters are appropriately
chosen, so that all the scales present in the problem are I. Burgers Equation. For the first test problem we con-
resolved, then the accuracy of the method is determined sider the Burgers equation
solely by «. The accuracy of the algorithm is increased with
the decrease of « until it reaches a limit determined by J.
In this case in order to further increase the accuracy by ­u

­t
1 u

­u
­x

5 n
­2u
­x2 , x [ (21, 1), t . 0, (30)

decreasing «, J should be increased first. In other words
for each J there exists «J such that, in order for the approxi-

with initial and boundary conditionsmation error to be determined by «, the threshold parame-
ter must satisfy the inequality « $ «J.

Note that the most computationally expensive part of u(x, 0) 5 2sin(fx), u(61, t) 5 0 (31)
the proposed algorithm is recalculating matrices C

j,J
p,k and

D(m)
i,k . If NC is the total number of collocation points and whose analytical solution is known (see [13]). Also note

MW is the parameter which depends on the support (or that the boundary conditions at the two ends are of Dirich-
effective support) of the wavelet (MW effectively defines let type and, since the wavelets that we utilize are symmet-
the bandwidth of the matrices A j, j

i,k, A J, j
i,k, c j(m)

k (x J
i )), then ric, we use the same number of external wavelets on each

the upper bound of the total number of operations involved side of the domain, i.e., Nl 5 Nr 5 N. In light of (27) and
in calculating the matrix operators is given by C1 MW NC

(28) the problem reduces to
(MW 1 C2NC ) and the storage requirement based on the
matrix structures is C3NC (MW 1 C4NC ), where the coeffi- d

dt
u J

i (t) 5 O
k[ZC

[2uJ
i (t)D(1)

i,k 1 nD(2)
i,k ] uJ

k(t),cients Ci (i 5 1, ..., 4) are of order 1. In contrast with
the nonadaptive algorithm [1], where these matrices are
calculated only once, here whenever the irregular grid uJ

i (0) 5 2sin(fx J
i ), (32)

G t
$ changes these matrices have to be recalculated. How-

u J
6(2L1J211N)(t) 5 0,ever, because of the substantial decrease in the number of

collocation points on each level of resolution in comparison
with the nonadaptive approach, the resulting algorithm where i [ ZC, i ? 6(2L1J21 1 N). The system (32) is solved
is considerably more efficient. In addition, the numerical with the fixed integration step Dt 5 5 3 1024/f.
procedure can be organized very efficiently by appropri-

II. Modified Burgers. Equation. As a second test prob-ately modifying the previously known matrices whenever
lem we consider the modified Burgers equation,additional wavelets or collocation points are added.

4. RESULTS AND DISCUSSION ­u
­t

1 (v 1 u)
­u
­x

5 n
­2u
­x2 , x [ (2y, 1y), t . 0, (33)

In order to test the ability of the numerical algorithm
to resolve rapid and localized variations in the solution, where v is a constant. The initial and boundary condi-
we consider three different problems. The first problem tions are
tests the ability to resolve a shock which is fixed in space
but whose gradient changes in time. The second problem
tests the ability to resolve a moving shock. The third prob- u(x, 0) 5 2tanh Sx 2 x0

2n D, u(6y, t) 5 71. (34)
lem illustrates the ability of the algorithm to be successfully
applied to more complicated problems.

The rest of the section is organized as follows. In the The analytical solution of this problem is a shock wave
moving with the uniform velocity v given byfirst subsection we discuss the problem formulations and
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P 5 r 1 T 1 rT, (40)
u(x, t) 5 2tanh Sx 2 x0 2 vt

2n D. (35)

where Pr is the Prandtl number, and c is the ratio of specific
heats, which is assumed to be temperature independent.For numerical purposes, due to the exponential decay of
Nondimensional viscosity and thermal conductivity are ap-the solution at infinity, the problem can be considered in
proximated bya finite domain. Thus for n 5 1022, x0 5 20.25, v 5 1, and

0 # t # 0.5, it is legitimate to consider the problem in the
e(T) 5 c1Ï1 1 T 1 c2, k(T) 5 c3Ï1 1 T 1 c4. (41)domain x [ [21, 1] with Dirichlet boundary conditions.

Analogous to the first test problem we take Nl 5 Nr 5 N.
In light of (27) and (28) the problem reduces to The boundary conditions are

T(0, t) 2 Tw(t) 5 T(L, t) 5 V(0, t) 5 V(L, t) 5 0 (42)d
dt

u J
i (t) 5 O

k[ZC

[2(v 1 uJ
i (t))D(1)

i,k 1 nD(2)
i,k ] uJ

k(t),

and the initial conditions are
uJ

i (0) 5 2tanh Sx J
i 2 x0

2n D, (36)
r(x, 0) 5 V(x, 0) 5 T(x, 0) 5 0. (43)

u J
6(2L1J211N)(t) 5 71,

The temperature at the left wall is taken to be Tw(t) 5
AH(t), where H(t) is the Heaviside function.where i [ ZC, i ? 6(2L1J21 1 N). The system (36) is solved

Analogous to the previous two problems we take Nl 5with the fixed integration step Dt 5 5 3 1024.
Nr 5 N. In light of (27) and (28), the problem (37)–(43)

III. Nonlinear Thermoacoustic Waves Problem. As a reduces to
third problem we consider a nonlinear thermoacoustic
(TAC) wave problem. Below we just give the mathematical
formulation of the problem. For details regarding the phys- d

dt
rJ

i 5 2S­V
­xDJ

i
2 S­(rV)

­x DJ

i
, (44)

ical aspects of the problem we refer to [14]. Let us briefly
describe the origin of the equations. Consider a compress-
ible ideal gas between two rigid walls. The gas is initially d

dt
V J

i 5 2V J
iS­V

­xDJ

i
2

1
c(1 1 r J

i ) S­P
­xDJ

iquiescent at a uniform pressure and temperature. As a
result of a temperature change at the left boundary, devia-
tions from quiescent values will occur. We denote the non- 1

1
c(1 1 rJ

i ) S ­

­x Fe(T)
­V
­xGDJ

i
, (45)

dimensional velocity, density, pressure, and temperature
deviations by V, r, P, and T, respectively. The nondimen- d

dt
T J

i 5 2V J
iS­T

­xDJ

i
2 (c 2 1)

1 1 P J
i

1 1 rJ
i
S­V

­xDJ

i
sional continuity, momentum, energy, and state equations
for the one-dimensional nonlinear TAC wave are given by

1
3

4Pr(1 1 r J
i ) S ­

­x Fk(T)
­T
­xGDJ

i­r

­t
1

­V
­x

1
­(rV)

­x
5 0, (37)

1
c 2 1
1 1 r J

i
e(T J

i ) FS­V
­xDJ

i
G2

, (46)­V
­t

1 V
­V
­x

5 2
1

c(1 1 r)
­P
­x

P J
i 5 r J

i 1 T J
i 1 rJ

i T
J
i , (47)

1
1

c(1 1 r)
­

­x Fe(T)
­V
­xG, (38) T J

2(2L1J211N)(t) 2 Tw(t)

5 T J
(2L1J211N)(t) 5 V J

6(2L1J211N)(t) 5 0, (48)­T
­t

1 V
­T
­x

1 (c 2 1)
1 1 P
1 1 r

­V
­x rJ

i (0) 5 V J
i (0) 5 T J

i (0) 5 0, (49)

5
3

4Pr(1 1 r)
­

­x Fk(T)
­T
­xG where i [ ZC for Eqs. (44), (47), (49) and i [ ZC, i ?

6(2L1J21 1 N) for (45), (46), since the values for velocity
and temperature at the boundaries are determined by (48).1

c 2 1
1 1 r

e(T) S­V
­xD2

, (39)
For clarity of presentation we denote
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S­f
­xDJ

i
5 O

k[ZC

D(1)
i,k f J

k . (50)

Note that there are two different forms of the discretization
of terms such as (­/­x)(e(T)(­V/­x)), the conservative
form

S ­

­x Fe(T)
­V
­xGDJ

i
5 O

k[ZC

D(1)
i,k e(T J

k) O
l[ZC

D(1)
k,l V

J
l , (51)

and the nonconservative form,

FIG. 4. Analytical solution of the Burgers equation at times t 5S ­

­x Fe(T)
­V
­xGDJ

i
5 e(T J

i ) O
k[ZC

D(2)
i,k V J

k

(52)
2i/5f, i 5 O(1)5.

1
de
dT

(T J
i ) O

k[ZC

D(1)
i,k T J

k O
l[ZC

D(1)
i,l V J

l .

of the solution of Burgers equation from the uniformly
smooth distribution to the shock structure results in the

We find that both formulations lead to numerically indis- growth of the wavelet coefficients corresponding to the
tinguishable results. smaller scales, which in turn results in the refinement of

The problem is solved with c1 5 1.489, c2 5 20.489, the grid. Figure 5 illustrates the progressive refinement of
c3 5 1.66, c4 5 20.66, A 5 1, c 5 1.4, and Pr 5 Df, which the irregular grid with the decrease of the shock thickness.
correspond to nitrogen gas at a reference temperature of In the second test problem we demonstrate that the algo-
300 K. The system of Eqs. (44)–(49) is solved using an rithm dynamically adapts to the moving irregularities of
adaptive time integration step Dt such that Dt # t, where the solution. Figure 6 shows that the region of collocation
t is the maximum time interval during which the computa- points associated with the small scales moves with the
tional grid can remain unchanged. shock, thus permitting continuous proper resolution of the

shock structure.
4.2. Numerical Results

In Figs. 7a and b we show how the total number of
collocation points NC change with time for the first andProblems I and II. Basdevant et al. [13] presented a

comparative study of spectral and finite difference methods second test problems. In Fig. 7a we note that NC progres-
sively increases with time until the gradient of the solutionfor the solution of (30) and (31) with n 5 1022/f. For such

a small viscosity, the solution develops into a sawtooth reaches its maximum. Then due to the viscous diffusion
the value of the gradient decreases on a much slower timewave at the origin for t * 1/f. The gradient at the origin

reaches its maximum value u­u/­xux50umax 5 152.0051616 at scale, which in turn results in a slow decrease of NC. In
Fig. 7b we see that the total number of collocation pointstime tmax 5 1.60369/f. In the second test problem the region

of large gradients is moving with the constant velocity v. oscillates around the average of NC 5 101. The reason for
these oscillations is the sensitivity of the total number ofThe maximum value of the gradient is u­u/­xumax 5 1/(2n),

which for n 5 1022 becomes u­u/­xumax 5 50. It appears collocation points on whether the shock is located at a
collocation point or between collocation points.from the study of Basdevant et al. [13] that the performance

of a numerical method can be judged from its ability to The numerical results indicate that the biggest errors
occur in the neighborhood of the shocks. Due to finiteresolve the large gradient regions that develop in the solu-

tions, which are given in Fig. 4 for the first test problem viscosity, the shock has a finite width. One would expect
to resolve a shock properly if the scale associated with theand by (35) for the second one.

The dynamical adaptation of the solution and irregular finest level of resolution is smaller than the width of the
shock. Since for our particular problem b0aJ 5 212L2J, thengrids G t

$ of wavelet collocation points is illustrated in Figs.
5 and 6 for first and second problems, respectively. In the shock can be resolved with sufficient accuracy with

L 1 J $ 9 in the first test problem and with L 1 J $ 7 inboth cases we use the dynamically adaptive multilevel
collocation method with the correlation function of the the second one. For a more thorough discussion on this

issue we refer to [1]. Note that even though the shock isDaubechies scaling function of order 5 with b0 5 1.0,
N 5 1 and threshold parameter « 5 1 3 1023. The evolution resolved with L 5 1, J 5 8 and with L 5 1, J 5 7 in first
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FIG. 5. Evolution of the solution (left column) and collocation points (right column) for the solution of the Burgers equation using the correlation
function of the Daubechies scaling function of order 5.

and second test problems, respectively, the error in the the Gaussian function or the Mexican hat wavelet. This
phenomenon is associated with the localization propertiesneighborhood of the shock is determined by J in both cases

(« , «J in these cases). Addition of an extra level decreases of these bases. The Mexican hat wavelet has the worst
localization, so that the adaptive algorithm utilizing it re-«J and changes the inequality to « . «J, which in turn

increases the accuracy of the solutions (see Tables I and quires considerably more collocation points and, conse-
quently, wavelets.II, cases 2 and 3).

The performance of the adaptive algorithm is strongly We emphasize that the multilevel approach is essential
for an efficient adaptive algorithm. For fixed «, with theaffected by the choice of wavelet. Although not given here,

numerical results indicate that the adaptive algorithm using decrease in number of levels of resolution the number of
wavelets increases (see Tables I and II, cases 4–6). Thethe correlation function of the Daubechies scaling function

requires considerably fewer collocation points than using algorithm becomes practically nonadaptive if only few lev-
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FIG. 6. Evolution of the solution (left column) and collocation points (right column) for the solution of the modified Burgers equation using
the correlation function of the Daubechies scaling of order 5.

els are utilized. This can be explained simply by the fact collocation method (« . 0) requires considerably fewer
degrees of freedom than the nonadaptive method (« 5that more wavelets are required to approximate the large

scales, which could be accomplished more effectively with 0) without much loss in accuracy of the solution. This
considerable reduction is achieved due to the local gridfewer wavelets of larger scale.

Note that with an increase of the threshold parameter refinement which is done automatically based on the analy-
sis of wavelet coefficients. With regard to the accuracy of« the number of collocation points decreases dramatically

(see Tables I and II, cases 1, 2, 4). We point out that the the solution in comparison with those obtained with other
numerical algorithms, we can say that for the same accu-algorithm becomes nonadaptive; i.e., it utilizes a regular

grid, when « is set to zero (Tables I and II, Case 1). racy the adaptive multilevel wavelet collocation method
requires substantially fewer degrees of freedom than spec-Summarizing the results presented in Tables I and II

we see that the dynamically adaptive multilevel wavelet tral, finite difference, and nonadaptive wavelet Galerkin
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FIG. 7. Time evolution of the total number of collocation points NC for (a) the first test problem with M 5 1 and C 5 1, (b) the second test
problem with M 5 1 and C 5 2, (c) the third test problem with M 5 1 and C 5 2, using the correlation function of the Daubechies scaling function
of order 5 and « 5 1 3 1023.

schemes (see [1, 2]). In comparing the adapative wavelet of wavelets. In addition, treatment of nonlinear terms in
partial differential equations leads to loss of accuracy dueGalerkin method of Liandrat and Tchamitchian [2] with

the present algorithm, we observe that both require practi- to the approximate calculation of scalar products using
quadrature rules. For detailed discussion on the error asso-cally the same number of degrees of freedom to achieve

comparable accuracy. However, the present algorithm has ciated with the use of quadrature formulas we refer to [8].
We also note that an adapative wavelet Galerkin methodtwo clear advantages, in comparison with adaptive wavelet

Galerkin algorithms. The first advantage is the simplicity cannot take advantage of the fast wavelet transform, unless
the solution is interpolated to the finest uniform grid, asin the treatment of general boundary conditions. The sec-

ond is the handling of nonlinearities which requires only is originally done in [15]; but this procedure is even more
computationally expensive. The only disadvantage of theO(NC ) operations, while the wavelet Galerkin algorithms

require O(n2) operations [4], where n is the total number present algorithm is the O((NC )2) operations involved in
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TABLE I

Numerical Results Obtained with the Present Algorithm for the Solution of Burgers Equation Using the Correlation Function of
the Daubechies Scaling Function of Order 5 with N 5 1 and b0 5 1.0

Maximum number of Numerical
L J « collocation points ftmax 2(­u/­x)(0, tmax) max

x,t
uu 2 uJ u

1 1 8 0 515 1.6030 149.28 1.72 3 1023

2 1 8 1 3 1023 99 1.6030 149.28 1.73 3 1023

3 1 9 1 3 1023 115 1.6035 151.90 1.04 3 1024

4 1 8 5 3 1023 95 1.6030 149.27 1.67 3 1023

5 6 3 5 3 1023 159 1.6035 149.32 1.91 3 1023

6 8 1 5 3 1023 515 1.6050 147.15 1.09 3 1022

calculations of matrix operators. But even with this disad- Fig. 8. The results are shown for the dynamically adaptive
multilevel collocation method with the correlation functionvantage the present algorithm is very competitive with
of the Daubechies scaling function of order 5 with b0 5wavelet Galerkin algorithms for the solution of nonlin-
1.0, N 5 1 and threshold parameter « 5 1 3 1023. Fromear problems.
the figure we see that for small time, in order to resolve

Problem III. The thermoacoustic wave problem is the region of sharp gradients, small scale wavelets are
fairly difficult to solve numerically because of the existence present in the approximation. With the time evolution of
of two very different spatial scales present in the problem. the solution the finest level of resolution gradually de-
The first scale is given by the size of the domain, while creases. This is caused by the decreasing steepness of the
the second is associated with the nonlinear wave itself. wave due to heat and viscous diffusion. In addition, the
Furthermore, for small time a small region of very large fine levels of resolution are not present in regions far from
gradients exists close to the left wall. the wave.

Let us briefly discuss the evolution of the solution. The In comparison with the first two problems, which are
abrupt temperature change at the left wall generates a described by single equations with one dependent variable,
pressure wave, which propagates at the local speed of the thermoacoustic wave problem involves four unknowns,
sound of the medium and gradually, over a long time scale, three partial differential equations (continuity, momen-
damps out because of thermal and viscous diffusion. Once tum, and energy), and one algebraic relation (equation of
the wave reaches a wall it reflects and propagates in the state). Thus the adaptation of the irregular grid G t

$ of
opposite direction. The process of reflection and diffusion wavelet collocation points is based on the analysis of coef-
continues until the wave dies out and a quiescent thermal ficients associated with all the dependent variables. The
conduction condition is achieved. For full discussion of this irregular grid G t

$ is constructed as a union of irregular
problem we refer to [16]. grids corresponding to each dependent variable. Note that

the present algorithm can be easily extended to the caseThe dynamical adaptation of the solution and the irregu-
lar grid G t

$ of wavelet collocation points is illustrated in where each variable is treated on separate computational

TABLE II

Numerical Results Obtained with the Present Algorithm for the Solution of Modified Burgers Equation Using the Correlation
Function of the Daubechies Scaling Function of Order 5 with N 5 1 and b0 5 1.0

Maximum number of Numerical
L J « collocation points u­u/­xumax max

x,t
uu 2 uJ u

1 1 7 0 259 49.86 4.31 3 1024

2 1 7 1 3 1023 94 49.86 4.95 3 1024

3 1 8 1 3 1023 110 50.00 1 61 3 1024

4 1 7 5 3 1023 83 49.92 4.27 3 1023

5 5 3 5 3 1023 103 49.94 2.12 3 1023

6 7 1 5 3 1023 259 49.64 9.48 3 1023
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FIG. 8. Evolution of the pressure (left column) and collocation points (right column) for the one-dimensional nonlinear thermoacoustic wave
problem with t0 5 L 5 13000 and A 5 1, using the correlation function of the Daubechies scaling function of order 5.

grids. The mapping from one grid to another can be in the ultimate computational grid which reflects the pres-
ence of the boundary layer at the left wall. Were eachachieved via wavelet interpolation. This may be very im-

portant for the problems where scales associated with the variable solved on a separate grid, the computational grid
for the pressure in the neighborhood of the left wall woulddifferent variables are considerably different. In such a

case the computational cost could be reduced substantially. not have collocation points corresponding to the fine levels
of resolution.We also note that examination of the irregular grid gives

information on the structure of the solution. For example, In Fig. 7c we show the time evolution of the total number
of collocation points NC. The time interval for which thethe irregular grid shown in Fig. 8 indicates the presence

of a boundary layer at the left wall, which is not apparent computational grid can be kept unchanged is much less
than the time t0 5 L associated with the wave travelingin the pressure distribution. The presence of a boundary

layer in density, temperature, and velocity profiles results from one wall to another. Since the results in Fig. 7c are
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FIG. 9. Comparison of solutions at different times for the one-dimensional nonlinear thermoacoustic wave problem with t0 5 L 5 13000 and
A 5 1 using the dynamically adaptive wavelet collocation method (3) and a finite difference method (– – –) [16].

presented on a scale comparable with t0, it is difficult to tion to two- and three-dimensional domains. This work is
currently underway.see the fast variations in NC. Nevertheless we observe that

the total number of collocation points gradually decreases,
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