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A method of constructing discrete filters for large eddy simulation of turbulent
flows on unstructured meshes is presented. The commutation error between differ-
entiation and filtering can be made arbitrarily small with these filters. The filtering
method is applied to various test cases to demonstrate commutation. An extension
to three dimensions and implementation into an unstructured solver for LES are
discussed. (© 2002 Elsevier Science (USA)

1. INTRODUCTION

The application of large eddy simulation (LES) to flows with increasingly complex ge
ometry necessitates the extension of the LES technique to unstructured meshes. A desi
feature for LES on unstructured meshes is that the filtering operation used to remove sn
scale motions from the flow commutes with the differentiation operator. If this commutatic
requirement is satisfied, the LES equations have the same form as the unfiltered Na
Stokes equations. Commutation is generally satisfied if the filter has a constant wic
However, ininhomogeneous turbulent flows, the minimum size of eddies that need to be
solved varies throughout the flow. Thus, the filter width should also vary accordingly. Giv
these challenges, the objective of this work is to develop a general theory for construc
discrete variable-width commutative filters for LES on unstructured meshes.

Variable-width filters and their commuting properties have been the focus of seve
recent works. A general discussion of filtering and commutation error as applied to LES
presented by Geurts and Leonard [10]. In that work, the authors stress that the commutz
error in LES should be the subject of further study in order to apply LES to comple
geometries. In addition, Van der Ven [5] constructed a family of continuous filters whic
commute with differentiation up to arbitrary order in the filter width. However, this set c
filters applies only to an infinite domain without addressing the practical issue of bound
conditions in a finite domain. A class of discrete commutative filters was developed
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Vasilyev et al. [19] for use on nonuniform structured meshes. Their formulation uses
mapping function to perform the filtering in the computational domain. While this type «
mapping may not be possible for the unstructured case, the theory developed in [19]
used as a starting point for the present work.

In this paper we present a theory for constructing discrete commutative filters for t
structured meshes in two and three dimensions. In addition to commutation, other is:
such as control of filter width and filter profile in wavenumber space are also considet
In particular, we wish to specify a desired filter width at each point in space and obtai
discrete filter which satisfies this requirement regardless of the choice of the computatic
mesh.

2. COMMUTATION ERROR OF FILTERING AND DIFFERENTIATION
OPERATIONS IN PHYSICAL SPACE

Recently Vasilyeet al.[19] developed a general theory of discrete filtering in arbitrarily
complex geometries. With the use of a mapping function, the filtering was done in |
computational domain. Here, we extend the theory of commutative filters developed in [
to the physical domain. We begin by discussing filtering in one-dimensional space and t
extend it to three spatial dimensions.

2.1. Commutation Error in One Spatial Dimension

In this section, we follow the development in [19]; however, we begin with the definitic
of the filtering operator in physical space, and we do not transform to the mapped sp
An operator to measure commutation error is defined as follows. Given a furotion
the commutation error is

d¢] _dg do
== _ 7 1
[dx] dx dx @

where the overbar denotes the filtered quantity. The continuous filtering operation is defi
by

— 1 [° [(x—y
¢(X)=m./a G<A(X)»X>¢(Y)d3ﬂ (2

whereA(x) is the filter width andG(n, X) is the location-dependent filter function. With

the change of variables= %, Eg. (2) can be written as

L X—a
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Taking the Taylor series expansiongdfx — A(X)n) in powers ofA(X) gives
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whereDy = d/dx is the derivative operator. This series was proven to be convergent
[19] for the case of uniformnA by assuming that the Fourier spectrum did not include
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wavenumbers higher than some finite cutoff wavenunkhgy. The proof is analogous to
the case of varying\(x) and, using the same assumptions, the radius of convergence
considered to be infinite. Substituting (4) into (3) and changing the order of summation ¢
integration, we have

+o0

700 = > S Al oogl 0 / 7 G, %) dn. )

1=0 ’ A(x)

Defining the filter moment as

x—a

A(X)
M) = [ n'G.x)dy (6)
A

and substituting (6) into (5) we obtain

0 = S D oD
$00 = — A OM 0D (0. (7

1=0

In the same manner as in [19] we let

MI(X):{cl): :ztl),...,n—l. (®)
With this definition we have
¢ =p(X) + fj AlooM ') Dy (x). ©)
The filtered derivative of the function is
d—¢’< X) = d¢ f K COM' 0D (). (10)
The derivative of the filtered quantity is
d—¢( 0=04 § CU9 (M1 ooM 00DLe00). (11)

Applying the chain rule to (11) and subtracting (11) from (10), we obtain an expression |
the commutation error:

dp] =(-D'[d | |
[dx]—g T {dX(A (x)M(x))}DX¢<x>. (12)
Using the properties in (8) it follows that

%(A'(X)M'(x))zo forl =0,..., n—1. (13)
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As a result, the local commutation error is
B

dx
provided thatl A /dx = O(A), which is true if the filter width varies smoothly. For rapidly

changing filter widthdA /dx is O(AY), y < 1, which results in lowering the order of the
commutation error t@ (A7 1),

] O(A"(x)), (14)

2.2. Extension to Three Dimensions

The extension to three dimensions is quite straightforward. Let us consider a thr
dimensional fieldp (x) (x = (X1, X2, X3)7), defined in a three-dimensional dom&in The
filtering operation in three-dimensional space is defined by

/ <X1—y1 X2 — Y2 X3—
A1(X)A2(X)A3(X) Jo A1(X) " Ax(x) As(X)

Thetransformation; = (X — Yi)/Ai (X) maps the domaige to domaind. With this change
of variable, Eq. (15) can be rewritten as

p(X) =

>¢<y> &y, (15)

600 =~ | G1.2090x ~ 8 00m) . (16)
v
Taking the Taylor series expansiongpfis in the one-dimensional case, we have
+00

|
1 |
¢ 00 = A10071, X — Do), X3 = As(X)1g) = Y~ D (Z Am<x>anxm> ¢ (),

=0

a7
which can alternatively be written as
PO — A () n) = Z Z .JkA (X) AL 00 A5 nynbnsD} DI, DE ¢ (),
=0 i+j+k=l !
(18)

whereozi'jk are coefficients of the polynomial expansion
(a+b+c)l = Z Oliljkaibjck
i+j+k=l

Substituting (18) into (16) and changing the order of summation and integration we obt

$(x) = Z Z o ,»kA‘1<x)A£<x>A§(x)
1=0 i+j+k=l
x [D}, DY, DY ¢ (0] / nyninsG(n, x) dn. (19)

Defining the filter moment as before we have

Mk — / HbnkG . x) dn. (20)
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Then, substituting (20) into (19) gives
P(x) = Z Z ”kA ()AL A50M Ik 0Dl DL DK p(x).  (21)

1=0 i+j+k=l

As in the one-dimensional case, we let

MK (x) = {1’ k=0 (22)
0, O<i+j+k<n

Using the properties given in (22), Eq. (21) becomes
$(X) = p(X) + Z Z .,kA1<x)A2(x>A3<x> MK ) D}, D), D ¢ (). (23)
I=n i+j+k=l !
Without loss of generality let us consider the commutation error between differentiation

the x; direction and filtering,d¢/9x1]. The filtered value of the derivative is

a |
S _ 29 Z > &y 1) ol AL 0 AL 0 A5 MK ) DIFD) DK 9 (%), (24)

Xy X T ni+j+k=l

and the derivative of the filtered function is

¢ 9 1 9
L2 Z > &7 ) .',k{ (AL (0 AL 0 A50M (%)) D), DL DK ¢ (%)

It X T =n i+]+k=l
+ AL AL) A M () DD DX ¢ (x) } (25)

We now have an expression for the commutation error in three dimensions with a varia
filter width,

<1> [ Aol i |
[8XJ Z ) .,k[axl(Al<x>Aé<x>A§<x>Mnk(x))}DxlDizDzmx),

I=n i+j+k=I
(26)

from which it easily follows that for a smoothly varying filter width, the local commutatior
error in three dimensions is given by

[gﬂ O(ALAL)ASMX), i+ ]+k=n, (27)

so that commutation is achieved to a desired order.

3. CONSTRUCTION OF DISCRETE COMMUTATIVE FILTERS

The filters developed by Vasilyeat al.[19] were constructed by applying the necessary
number of constraints to the filter weights to achieve both commutation and an accept:
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filter shape in wavenumber space. The constraints imposed on the filter weights wer
follows. The zeroth moment should be 1, a specified number (order of commutation er|
of higher moments should be 0, and other constraints were added for defining the f
shape.

These ideas were used as a starting point for developing filters for the unstructured c
However, in the unstructured mesh formulation it is impossible to use the same disci
filter at all points on the mesh as was done in [19]. Instead, filter weights must be compt
at each mesh point and stored in a table. This restriction means that the algorithm must
a way to assess the filter shape at each point since the user cannot manually adjust the
constraints at each mesh point.

An initial formulation for filter construction on an unstructured mesh used the ide
presented in [19] generalized to physical space. Given a point where a filtered value
needed, a set of neighboring points was chosen to construct the filter. Then, constr:
were applied directly on the filter moments and shape to determine the filter weigt
This procedure followed directly from [19]. Two problems arose in implementing th
method. First, it was found that in the case of a nonuniform point distribution such
an unstructured mesh, the shapes of the resulting filters were highly unpredictable
overcome this problem, the filter construction algorithm would have to choose the m
appropriate constraints to apply based on some filter shape criterion. Second, the n:
of unstructured meshes is such that a point may have any number of neighboring po
The algorithm would, therefore, have to decide which points to include and possibly ap
different constraints at each mesh point, leading to inconsistencies in the filters from:
part of the mesh to another.

Greater predictability and ease of implementation can be gained by using interpolati
based filters to achieve commutation rather than directly implementing constraints as
cussed above. The construction of discrete filters on unstructured meshes is motivate
work on interpolating wavelets [6] and the theory of second generation wavelets [2, 17, !
To illustrate the idea of construction of discrete filters based on polynomial interpolatic
we consider a one-dimensional example. Suppose we have al¢etradvenly spaced grid
pointsx; (i = 1,2, ..., N) and the values of the functiofy are known at these points.
Suppose we desire a filtered value at an arbitrary pajntVe can uniquely define the
N — 1 order polynomiaPy_1(x) that passes through the data. Polynomial coefficients a
uniquely determined by locations and valuesf;. Evaluating this polynomial at the point
Xp and substituting the values of the polynomial coefficients expressed in terms of the val
fi, we easily find thaPy_1(Xg) = Z,'(“zl w; fi. If we use these weights;y;, as the weights
of the corresponding discrete filter, then this filter will have the unique property that wh
applied to a polynomial of degree less thdn- 1 it will not change the polynomial. Then
the discrete filter moments defined by

N
M = Z wk(Xk — Xo)' (28)
k=1

automatically satisfy the conditions (8), sinGe— xo)' is exactly 0 atx = xo for | =

1,...,N—1 and 1 forl = 0. Consequently the discrete filters based on polynomic
construction automatically guaranteelth-order commutation error. To control the shape
and other properties of the discrete filters, we can construct a filter as a linear comb
tion of as many polynomial based filters as we like, while preserving the commutati
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properties of the filter. The same idea can be easily extendaddimensions using an
n-dimensional polynomial. This simple idea gives us all the flexibility we need to constru
filters with the desired shape and properties in any dimension, yet it is very straightforw
to implement.

In general, with arNth-order numerical scheme, the filtering operation must commu
to orderN. Reducing error further has no significant impact on overall accuracy becat
the discretization error is also of ordl. As in the case of a structured mesh, the filters
developed here must hale — 1 zero moments to commute to orddr In developing
filters for an unstructured mesh we will begin by assuming a second-order finite differel
scheme. However, as discussed above, the extension to a higher order method is stre
forward. With this second-order scheme in mind, we proceed with the goal of develop
filters which ensure a second-order commutation error. A two-dimensional discrete fil
based on first-order polynomial interpolation can be constructed using a triangle of th
points surrounding the poiliko, Yo) where we want the filtered value. A triangle is chosen
because in two dimensions three points are needed for exact reconstruction of a first-c
polynomial. Weights are calculated by fitting a polynomial to the vertices of the triang
and then used to find a weighted average at the central peing,). With this method, the
same number of points are used in the filter for any point on the mesh.

Because every filter using this method is a triangle, the shape of the resulting filtet
wavenumber space is very well defined. The transfer function of an equilateral triangle fi
has a symmetric, low-pass-filter shape with a well-defined peak. Since any triangle cal
obtained from an equilateral triangle by a linear transformation, we are guaranteed that
triangular filter will retain these desirable characteristics.

The method for finding the filter weights using a triangle in two dimensions is present
here but it will be extended to three dimensions in Section 4.3. Details on choice of fil
points are discussed in Sections 4.1 and 4.3.

The vector of interpolating weightsy, is calculated as follows. L&y, y1), (X2, ¥2),
and(xs, y3) be coordinates of the points where the function is given angkietyp) be the
coordinates of the point to interpolate to. Let

P(X, y) = ago + a10(X — Xo) + ao1(y — Yo) (29)

be a first-order polynomial interpolant. Requiring that the interpolant (29) goes through
data pointsf; (i = 1, 2, 3) leads to a set of linear equations for the coeffici@gisao, ao:.
Note that interpolant (29) is chosen such tatis the value of interpolant at poig, Yo).
This value is also the weighted sum of the functional values given by

P(Xo, Yo) = w1 f1 + wofo + wafs, (30)

wherew; are the filter weights.
The weights can be simply calculated from the equatian= b, where

1 X1—X Y1—Yo
A=11 Xo—X Y2—Yo (31)
1 X3—X Y3—Yo

and

b=(100. (32)
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From the above, we have weights making up a two-dimensional discrete filter which ¢
isfies commutation to second order. The three-dimensional equivalent is straightforw
and requires four points instead of three to satisfy commutation. The extension to tf
dimensions is discussed in Section 4.3.

For this linear case, the weights can be found analytically by inverting the rdatReal-
istically, we have no need to extend this method to higher order before further developn
of higher order nummerical schemes for unstructured meshes. However, for complete
we stress that for higher order Vandermonde matrices, it is well known that the condit
number can grow exponentially with the order of the matrix [8]. There are two numeric
packages available which deal with multivariate interpolation and could be adapted for
with higher order filters. A nice overview of polynomial interpolation is given in [7] with
some discussion of these routines. Further details can be found in [4] and [3].

4. IMPLEMENTATION OF COMMUTATIVE FILTERS

4.1. Two-Dimensional Filters

In Section 3 we constructed discrete two-dimensional filters with second-order co
mutation error using polynomial interpolation. The result was a set of discrete triangu
filters with weights assigned to each vertex. Using these triangular filters as a basis, we
construct commutative filters that combine multiple triangles into one filter and allow for
variable filter width.

Although a single triangular filter satisfies the commutation property, it is undesiral
because it offers no flexibility in filter width or shape. In Section 3 we showed that triangul
filters have the desired low-pass-filter shape because they are simply linear transforma
of an equilateral triangle. To take advantage of this property while adding flexibility
filter width, it is possible to use a linear combination of multiple triangular filters. Thi
method offers the advantage of a desirable transfer function shape while ensuring tha
resulting filter will satisfy commutation to the same order as the basis triangles. Beca
of the predictable transfer function shape, we are also guaranteed that the filter prope
will be smoothly varying in space.

Figure 1 shows an example of a 2-D filter constructed from three triangles. The col
sponding transfer function,

N
é(kx, ky) = Z w, ei[kx(x|f><o)+ky(y|fyo)]’ (33)
=1

is shown in Fig. 2 and has the desired low pass characteristics. To achieve flexibility in fi
width, each triangle as well as the central point is assigned a weight which applies equ
to all vertices of the triangle. We will refer to the weights on triangles; ashereas the filter
weights on individual vertices calculated in Section 3w@areThe value of; can be varied
from 0 to 1 as long as the sum total is 1. The optimum valyg fofr the central point is A2
because this results in a transfer function with a well-defined peak and low-pass-filter sh

4.2. Implementation in Two Dimensions

We now discuss details of filter construction in two dimensions. The first task for the filt
construction algorithm is to choose the set of points to include in the filter. Each incluc
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FIG. 1. Example of filter constructed with triangles on an unstructured grid.

point is part of a triangle which will later be linearly combined with other triangles to forr
the total filter as discussed in Section 4.1. The number of triangles included in each fi
may be specified by the user. However, the minimum number of triangles needed fc
symmetric low-pass-filter shape on a regular 2-D unstructured mesh is three. Becaus
this property, choosing filters with three triangles also ensures that the filter width will va
smoothly. We will therefore use three triangles for the present work.

After the set of points is chosen, the next step is to calculate the weights associated
each mesh point included in the filter. From these, we calculate the transfer fuGciod

Gky, ky)

FIG. 2. Transfer function corresponding to filter in Fig. 1.
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FIG. 3. Example of mesh used for filter development.

apply the filter to the discrete data. Figure 3 shows an example of an unstructured n
used in testing the algorithm that chooses filter points.

Given a point to filter about, surrounding points are searched in groups of three until a
of triangles to use in the filter is arrived at. It is obviously undesirable to search points on
entire mesh because of computational cost. Because of this, the first step in the algor
is to come up with a set of neighboring points to include in the search. This is done
using the tree structure of the mesh connectivity to obtain a set of surrounding points
two dimensions, three levels of the tree are sufficient.

Having found a group of surrounding mesh points, we calculate the distance to e
point in the group as well as the angle from thaxis. The points are then sorted according
to angle into three zones of 12@ach. The zones are created to ensure that the chos
points have a near symmetric distribution of angles about the central point. Figure 4 sh
these three zones. Within each zone, the points are sorted by their distances from the ce
point.

Triangles are systematically formed by taking a point from each zone, starting with 1
closest point in each, and then testing if the chosen triangle meets the criteria for be
included in the filter. For each triangle formed, we must determine whether to use it in-
filter or continue the search by trying the next combination of three points. When thi
triangles have been found, the choice of points for the filter is complete.

Triangles must satisfy two criteria to be selected for use in the filter. First, the cent
point must be inside the triangle, and second, the central point must be as close tc
centroid of the triangle as possible. Both criteria involve drawing lines from the cent
point to each vertex of the triangle to form three subtriangles. If the summed area of
subtriangles exceeds that of the larger triangle, the central point is outside. If the area of
of the subtriangles is a large percentage of the total area of the triangle, the central poi
too close to the side of the triangle. The allowable percentage is a user-specified paran
If one of these checks is true, the triangle is rejected and we advance to the next row o
table, continuing until the desired number of triangles has been found.
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FIG. 4. Mesh nodes sorted by angle.

This procedure has one drawback. When the best choice of triangle has two point
the same region, usually very close to the region boundaries, it is never considered
possibility for the filter. As a solution to this problem, the next step in the algorithm |
to rotate the zone boundaries as shown in Fig. 5 and the procedure of choosing trian
is performed again, returning a new set of triangles. The set of triangles whose collec
weight is closest to one third is then chosen to make up the final filter.

We now have a set of three triangles to make up the filter which can be linearly combir
to create a complete filter as described in Section 4.1. Flexibility is gained by applyi
the same filter again with different triangle weighgs, to achieve a desirable transfer
function shape. In addition, by applying the same filter more than once, it is possil
to increase the filter width until the desired value is reached. With this method it al
becomes possible to exactly specify the filter ratio for use in the dynamic subgrid sc
model.

4.3. Three-Dimensional Filters: An Extension

The extension of the filtering procedure outlined in Section 4.2 to three dimensions
quite straightforward. While three points are required in two dimensions for commutatic
four points are required in three dimensions as shown by the following. For reconstruct
of a first-order polynomial we have four coefficients:

f = agoo + a1ooX + &o10y + 0012 (34)

The base filter shape now becomes a tetrahedron instead of a triangle, but the f
construction algorithm is completely analogous to the two-dimensional method preser
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FIG.5. Mesh nodes sorted by angle, rotated from Fig. 4.

in Section 4.2. Four zones are created in three dimensions, and points in each zone a
dered by their distances from the central point. Tetrahedrons are systematically forme
taking a point from each zone starting with the closest point in each. To determine whef
a given tetrahedron meets the criterion for use in the filter, we determine if the central pc
is inside the tetrahedron and if it lies far enough away from the sides. Analogous to
two-dimensional case, a line is drawn from the central point to each vertex to create f
smaller tetrahedrons. If the point is inside, the volume of these tetrahedrons will equal
volume of the larger tetrahedron. Once this condition is met, the next check is that n
of the smaller tetrahedrons have a volume which is too great a percentage of the la
tetrahedron.

Once the desired number of tetrahedrons has been reached, a rotation is performex
a new set is found as in the two-dimensional case. The set of tetrahedrons whose colle
weight is closest to one-fourth is then chosen to make up the final filter.

5. PRESCRIBING THE FILTER WIDTH

The main advantage of the filtering method presented is that the filter width can
prescribed by the user a priori. For example, in a boundary layer it is desirable to use
exponentially increasing filter width since the scale of eddies increases with distance a
from the wall. In two dimensions, the filter width can be defined as the ratlio$ an
equivalent circular top-hat filter. The corresponding second moriventan be defined by
the integral

21 A 1
M2=/ / r’cos6——rdrdo, (35)
0 0 7TA2
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wherer andé are polar coordinates centered at the filter point. Evaluating this integral v
have a relation between the second moment and the filter width:

A = \/4Ms. (36)

Given a target value for the filter width, which is specified by the user, the above relati
can be used to prescribe target values for the second moment. This second moment t
value can in turn be used to find the valuesgoivhich will approximately result in the
desired value ofA. The values of8 are chosen by solving the following set of equations
using the least squares method with constraints on the valygsuth that

Bo=1/2 (37)
Bi+ B2+ Bs=1, (38)

wherefy is the value assigned to the central point #ads,, B3 are assigned to the three
triangles in the filter.
The target second moment valuexiry, andxy are M, M?°, andM*! respectively,

M% = mi?B; + m3?Bz + m3?Bs
M?® = mi%1 + m°B; + m3°ps (39)

11 11 11 11
M™" = m;~B1 + My B2 + Mz~ B3,

wherem?2, m2°, andm{* are the moments of the individual triangles.

For higher order filters, the definition of the filter width cannot be based on the secc
moment, since it is zero by definition. However, we can use the more general definit
given by Lund in [14] where the filter width is based on the second moment of the trans
function.

6. DEMONSTRATING COMMUTATION

To validate that the filters developed commute to the desired order, a series of numel
tests were performed. Since each filter can be constructed as a linear combination of se
triangle filters, it is sufficient to demonstrate commutation for single triangle filters. Me
suring the commutation properties of the directional derivatives was found not to be a g«
test, since the accuracy of derivative calculations strongly depends on the orientation o
mesh element, and as a consequence the resulting truncation error is very nonuniforr
more directionally symmetric operation to perform on an unstructured mesh is to calcul
the curl at each mesh point. In recently developed conservative schemes for incompr
ible flows on unstructured meshes, the nonlinear terms are written in the rotational fo
involving the curl of the velocity vector [15]. Itis relatively straightforward to demonstrat
that the commutative properties of the filtering and curl operators are the same as tt
discussed in Section 2.

Using the curl operator and the notation of Section 2.1, the commutation error is defir

by

[Vxul=VxU—-Vxu, (40)
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whereuis the prescribed vector field. The trivial case of the linear functieaax + by + ¢
was used to verify that the filtering operation does not change this function within mach
zero. With this check complete, the commutation and truncation errors were calcule
on a series of consecutively finer meshes, using the velocity field describing a vorte:
a box,

U = —CosB1X + ¢1) SiN(B2Y + ¢2) (41)
v = SiN(B1X + ¢1) COI B2y + ¢2). (42)

A plot of velocity vectors of these equations for the cse= B, =27, g1 =¢o =0 is
shown in Fig. 6. The truncation error for the above function is the difference between
exact value of the curl,

Cexact= (B1 + B2)[COS(B1X + ¢1) COS B2y + ¢2)], (43)

and the numerically calculated value.

The procedure for calculating the commutation error at each mesh element center u
the curl operator is as follows. First, the functional values are calculated at the cell ¢
ters. These values are filtered discretely at the cell centers using the method describ
Section 4.2 and then the curl of the filtered value is found numerically using surround
filtered values. This gives the first term in Eq. (40). The second term in (40) is found
first taking the curl of the functional values at all cell centers and then filtering these valt
using the values of the curl which were found at adjacent mesh elements. The commute
error can then be compared to the truncation error at each mesh element center.

The curl is found by dividing the circulation by the cell area. Both high- and low-orde
integration schemes were used to calculate the circulation. Filters with one triangle
sufficient to demonstrate commutation.
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FIG. 6. Velocity vectors for vortices in a box.
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FIG. 7. NormalizedL ., commutation and truncation errors of curl, using the low-order integration methoc
—, truncation error>, commutation error.

Using the low-order integration method, the circulation is computed by interpolatir
values from the cell centers to the midpoints of the edges to find the velocity tangen
the side of the element and then integrating over the three triangle edges. The curl is
obtained by dividing by the cell area. Overall the error in the entire operation is first-ord
Using this method, it was found that the resulting commutation and truncation errors t
first-order convergence. Thus, the second-order accuracy of the filtering method had |
reduced when integration was performed. A plot of the commutation and truncation err
using the curl operation is shown in Fig. 7. All error plots arelthgerror vs square root
of the number of mesh points, and all use the same series of increasingly finer me:
to demonstrate convergence. Plotted in this way, the slope of the curve is equal to
order of accuracy. All errors have been normalized with the maximum value of the curl.
high-order integration method was developed for a uniform symmetric unstructured me
The integration method first requires interpolating to the vertices from 12 surrounding c
centers, using weights/9 for the nearest six cells andl/18 for neighboring cells. The
routine then interpolates to the edges using the two vertices and two cell centers whicl
on the line connecting the edge midpoint and the vertices of the neighboring points us
the weightg—1/16, 9/16, 9/16, —1/16). Finally, integration can be carried out along each
edge of the cell using the value at the edge midpoint and the values at the two vertices u
the weights(1/6, 2/3, 1/6). The truncation and commutation errors using the high-orde
integration method are shown in Fig. 8. Second-order convergence of both commuta
and truncation errors are obtained. In addition, the magnitude of the commutation el
is consistently less than the truncation error. However, the convergence of the trunca
error is second order, not third order. This confirms that the curl operator is second or
regardless of integration scheme due to the division by area.
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FIG. 8. NormalizedL ., commutation and truncation errors of curl, using the high-order integration metho
—, truncation errorD, commutation error.

To confirm that the commutation and truncation errors are in fact independent, we in
duce the discrete values of circulation that correspond to each mesh element. We
therefore compute the commutation error using values of circulation. In this way, \
can clearly demonstrate that the truncation error will be higher order, and the comr
tation properties of the filter will become apparent. The exact value of circulation must
found for each mesh element to compute the truncation error. This is done by integra
the function exactly along the sides of each mesh element.

The commutation error using the circulation was analyzed using the low-order meth
and results are shown in Fig. 9. These plots also show a first-order convergence in w
the commutation error was contaminated due to the truncation error.

The high-order method applied with the circulation shows a third-order converger
in the truncation error and a second-order convergence in the commutation error. In
case, the order of integration is high enough that the commutation error is not affec
and we can confirm that it has second-order convergence. The results for this case
shown in Fig. 10 and they confirm that the filtering method has the desired converge
properties. Comparing the cases with the high-order method using both curl and circulat
we confirm that the division by area in the curl operation reduces the truncation er
convergence to second-order. Using the low-order integration scheme, with both the
and circulation, the commutation error is contaminated by the truncation error due to hi
frequency components. Figure 11 shows the truncation error and the filtered trunca
error and proves that without these high-frequency components, the truncation errc
decreased a full order of magnitude. In the figurg,, refers to circulation found with
the low-order integration method, afigig, refers to circulation found with the high-order
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FIG. 9. NormalizedL,, commutation and truncation errors of circulation, using the low-order integratiot
method. —, truncation errof), commutation error.

10

FIG. 10. NormalizedL ., commutation and truncation errors of circulation, using the high-order integratio|
method. —, truncation errof), commutation error.
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integration method. The overbar indicates the filtering operation. These results exp
why the commutation error is contaminated and the values of the commutation error
truncation error using the low-order scheme are nearly identical, as seen in Fig. 7 an
These tests confirm that the filtering method has a second-order commutation erro
predicted in Section 3. Multiple triangle filters are guaranteed to share this converge
property because they are simply a linear combination of single triangle filters. Usi
multiple triangle filters has the advantage of giving the user control over the filter width.
addition, even though it was necessary to use a uniform unstructured mesh for the nume
tests, we fully expect that the filtering method used will have similar convergence proper
for any unstructured mesh since the filter varies from point to point by definition.

7. CONCLUSIONS

A method of constructing commutative filters for unstructured LES has been develoj
and validated. The method is intended for use in unstructured mesh flow solvers u:
the large eddy simulation technique. The convergence tests performed confirm that
filtering method leads to a second-order commutation error, and it can therefore be use
conjunction with a second-order-accurate numerical scheme.

Oneimportant feature of the method of filter construction presented hereis thatit place
requirements on the type of mesh used. Because the filter can be constructed simply fr
set of points in two- or three-dimensional space, there are no constraints on the shape of
elements or the connectivity. It is possible to use connectivity to improve the efficiency
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the algorithm, but the method remains general for any mesh. In addition, the filters presel
have a low-pass-filter shape and flexible filter width. This allows the filter width ratio to &
exactly specified for use in the dynamic model.

It would be relatively straightforward to extend the filter construction procedure d
veloped here for use in conjunction with higher order schemes. For example, if a thi
order finite difference scheme is to be used, the polynomial interpolant would have
be second-order, requiring six neighboring points in two dimensions. We should str
that the filtering mehtod can be extended to arbitarily high, but finite, order. Howev
there is nothing to be gained by extending the order beyond that of the numeri
scheme.
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