
Journal of Computational Physics 298 (2015) 237–253
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Parallel adaptive wavelet collocation method for PDEs

Alireza Nejadmalayeri a, Alexei Vezolainen b, Eric Brown-Dymkoski b,
Oleg V. Vasilyev b,∗
a FortiVenti Inc., Suite 404, 999 Canada Place, Vancouver, BC, V6C 3E2, Canada
b Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, Boulder, CO 80309, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 September 2013
Received in revised form 19 May 2015
Accepted 21 May 2015
Available online 4 June 2015

Keywords:
Parallel algorithm
Parallel computing
Domain decomposition
Dynamic load balancing
Wavelets
Lifting scheme
Second generation wavelets
Adaptive grid
Multiresolution
Multilevel method
Multigrid method
Numerical method
Partial differential equations
Elliptic problem

A parallel adaptive wavelet collocation method for solving a large class of Partial
Differential Equations is presented. The parallelization is achieved by developing an
asynchronous parallel wavelet transform, which allows one to perform parallel wavelet
transform and derivative calculations with only one data synchronization at the highest
level of resolution. The data are stored using tree-like structure with tree roots starting
at a priori defined level of resolution. Both static and dynamic domain partitioning
approaches are developed. For the dynamic domain partitioning, trees are considered to
be the minimum quanta of data to be migrated between the processes. This allows fully
automated and efficient handling of non-simply connected partitioning of a computational
domain. Dynamic load balancing is achieved via domain repartitioning during the grid
adaptation step and reassigning trees to the appropriate processes to ensure approximately
the same number of grid points on each process. The parallel efficiency of the approach
is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of
homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to
20483 using as many as 2048 CPU cores.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The quest for highly scalable adaptive numerical methods is still ongoing despite more than three decades of extraor-
dinary developments in supercomputing. Many attractive mathematical properties of the wavelet multi-resolution analysis
such as compression, denoising, and multi-scale decomposition have made it a very promising tool in the challenging search
for robust and computationally efficient multi-scale computational approach for modeling and simulation. Adaptive Wavelet
Collocation Method (AWCM) is such a technique, which has been developed and thoroughly investigated for parabolic [1,2],
hyperbolic [3], and elliptic [4] partial differential equations. It was successfully applied to a wide spectrum of problems
including incompressible [5], compressible subsonic [6] and supersonic [3] flows, wavelet-based Adaptive Large Eddy Simu-
lation [7–13], thermoacoustic wave propagation [14], Rayleigh–Taylor instability [15], ocean modeling [16], combustion [17],
fluid–structure interactions [18,19], viscoelastic and poro-viscoelastic flows [20–22].

* Corresponding author.
E-mail addresses: Alireza.Nejadmalayeri@gmail.com (A. Nejadmalayeri), Alexei.Vezolainen@Colorado.edu (A. Vezolainen),

Eric.Browndymkoski@Colorado.edu (E. Brown-Dymkoski), Oleg.Vasilyev@Colorado.edu (O.V. Vasilyev).
http://dx.doi.org/10.1016/j.jcp.2015.05.028
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.05.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:Alireza.Nejadmalayeri@gmail.com
mailto:Alexei.Vezolainen@Colorado.edu
mailto:Eric.Browndymkoski@Colorado.edu
mailto:Oleg.Vasilyev@Colorado.edu
http://dx.doi.org/10.1016/j.jcp.2015.05.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.05.028&domain=pdf

238 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Adaptive Wavelet Collocation Method [1–4] is based on the “second generation wavelets” [23,24]. In AWCM, the partial
differential equations are solved in physical space on an adaptive nested (dyadic) computational grid. This prevents the
major difficulties associated with adaptive wavelet Galerkin methods: challenging treatment of nonlinearities and general
boundary conditions. The evaluation of the nonlinear terms in adaptive wavelet collocation methods is performed in a
physical domain similar to pseudo-spectral methods. The grid adaptation in wavelet collocation methods is done similarly
to other wavelet-based methods and is based on analyzing the wavelet coefficients. Despite enormous compression achieved
by wavelets, e.g. 99%, very large-scale simulations cannot yet fit onto a single process and require highly scalable parallel
algorithms.

Despite almost 30 year history of wavelets since their introduction by Grossmann and Morlet [25] and wide use in
science and engineering, very little attention was paid to parallel adaptive wavelet methodologies. Until recently, most
of the efforts were put into the development of parallelization strategies for non-adaptive wavelet algorithms, e.g., a
communication-free parallel discrete wavelet transform [26], a communication efficient fast wavelet transform without dis-
tributed matrix transpose [27], a distributed parallel biorthogonal lifted wavelet transform [28], a parallel wavelet transform
for distributed and shared memory architectures [29], and parallel GPU based discrete wavelet transforms [30–33]. The
only noticeable attempts to develop parallel adaptive wavelet-based methods are multi-block adaptive wavelet method by
Rossinelli et al. [34] and Adaptive Wavelet Multiresolution Representation (AWMR) method by Paolucci et al. [35], with the
latter published while the manuscript was under review. Thus, the main objective of this paper is to present the extension
of the AWCM [1–4] for massively parallel computers.1

The paper is organized as follows. The one- and multi-dimensional second generation wavelet transforms are reviewed
thoroughly in Section 2. The challenges associated with the parallelization of the update-stage of the second generation
wavelet transform are explained in Section 3, and a parallel asynchronous second generation wavelet transform is then
introduced. The robust tree structure database utilized in this study is discussed in Section 4. The grid adaptation strat-
egy based on wavelet-thresholding is reviewed in Section 5, where the concepts of reconstruction-check, safety/adjacent
zone along with significant/adjacent masks are introduced. The finite difference based derivative algorithm for the adaptive
wavelet collocation method and the use of ghost points are discussed in Section 6. After a short discussion of data migra-
tion in Section 7, the four different static and dynamic domain partitioning methods utilized in this study are explained in
Section 8. The algorithm of the resulting parallel adaptive wavelet collocation method (PAWCM), based on the aforemen-
tioned components, is illustrated in Section 9. This versatile general parallel dynamically adaptive PDE solver is then used to
perform a comprehensive strong-scalability study of the PAWCM for the velocity-based Coherent Vortex Simulations (CVS)
of linearly forced homogeneous turbulence, Section 10. The challenges associated with the buffer zone size, the speedup
slope and saturation are analyzed in detail and the numerical results are compared with an asymptotic parallel efficiency,
which is derived. Finally, conclusions are given in Section 11.

2. Wavelet transform

In this section we briefly discuss the key aspects of the second generation wavelet construction, which are essen-
tial for understanding of the Parallel Adaptive Wavelet Collocation method. For more details we refer the reader to
Refs. [1,2,4,23,24].

The one-dimensional second generation wavelets are constructed on an interval � with arbitrary distribution of grid
(collocation) points. The construction is performed on an arbitrary set of interpolating points, {x j

k ∈ �}, which are used to
form a set of nested grids

G j =
{

x j
k ∈ � : x j

k = x j+1
2k , k ∈ K j

}
, (1)

where x j
k are the grid points of the j level of resolution.

The restriction x j
k = x j+1

2k guarantees the nestedness of the grids, i.e. G j ⊂ G j+1. Following the construction of second
generation wavelets described in [23,24], one-dimensional scaling functions φ j

k (x) (k ∈K j) and wavelets ψ j
l (x) (l ∈ L j) are

constructed such that a function u(x) can be decomposed as

u(x) =
∑

k∈K0

c0
kφ0

k (x) +
+∞∑
j=0

∑
l∈L j

d j
l ψ

j
l (x), (2)

where K j and L j are some index sets associated respectively with scaling functions and wavelets on level j. One may think
of a wavelet decomposition as a multilevel or multiresolution representation of a function, where each level of resolution
j (except the coarsest one) consists of wavelets ψ j

l having the same scale but located at different positions. Note that
scaling function coefficients represent smoothed version of the function at the current scale, while the wavelet coefficients
represent the details of the function between the current scale and the next finest scale. An important property and strength

1 PAWCM was first reported in Ref. [36].

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 239
of the wavelet transform is that wavelet coefficients can be obtained using a recursive application of a single level wavelet
transform. Assuming that the scaling function coefficients c j+1

k at level j + 1 are known, the wavelet coefficients d j
l and

scaling function coefficients c j
k at level j can be found using the following two-stage second generation wavelet transform

Predict Stage: d j
k = 1

2

(
c j+1

2k+1 −
∑

l

w j
k,lc

j+1
2k+2l

)
, (3)

Update Stage: c j
k = c j+1

2k +
∑

l

w̃ j
k,ld

j
k+l. (4)

The corresponding one-dimensional inverse second generation wavelet transform is given by

Inverse Update Stage: c j+1
2k = c j

k−
∑

l

w̃ j
k,ld

j
k+l, (5)

Inverse Predict Stage: c j+1
2k+1 = 2d j

k +
∑

l

w j
k,lc

j+1
2k+2l, (6)

where w j
k,l and w̃ j

k,l are coefficients associated with two stages of wavelet transform. Note, that the coloring of terms in
Eqs. (4) and (5) is relevant to parallel implementation of the algorithm and is discussed in Section 3.

The first stage of forward transform is called a predict stage, since the wavelet coefficients are calculated by predicting
the function value using the interpolated points on the next coarser level. The predict stage of the forward 1D second
generation wavelet transform is illustrated in Fig. 1(a). The c j

k-values that get carried down to the next lower level of
resolution are then updated using the wavelet coefficients that were calculated during the predict stage. The update stage,
Fig. 1(b), guarantees that the wavelet interpolating functions have zero mean. In fact, the interpolating wavelets of order
N when using the update stage have N vanishing moments. For the inverse wavelet transform, the order of operations is
reversed and the inverse wavelet transform is performed from low to high levels of resolution as opposed to from high to
low for the forward wavelet transform.

The block diagram for one step wavelet transform is shown in Fig. 2, where S and S−1 denote respectively the delay and
advance operators, i.e. Sf k = fk−1 and S−1 fk = fk+1, (↓ 2) denotes the downsampling (decimation) operator which removes
odd-numbered components from the signal, while U j and P j denote respectively lifting and dual lifting operators (P stands
for predict and U stands for update).

The second generation scaling function φ j
m can be formally defined by setting c j

k = δk,m ∀k ∈ K j and d j′
l = 0 ∀l ∈ L j′ ,

∀ j′ ≥ j, and then recursively performing the inverse wavelet transform up to an arbitrary high level of resolution Jmax. This
procedure results in a scaling function φ j

m sampled at the locations x Jmax
k . Analogously, second generation wavelet ψ j

l can
be formally defined by assuming d j′

m = δ j′, jδl,m ∀l ∈ L j, ∀ j′ ≥ j and c j
k = 0 ∀k ∈ K j , and then recursively performing the

inverse wavelet transform up to an arbitrary highest level of resolution Jmax. Now using the linear superposition it is easy
to show that on each level of resolution J a function u(x) can be approximated as

u J (x) =
∑

k∈K0

c0
kφ0

k (x) +
J−1∑
j=0

∑
l∈L j

d j
l ψ

j
l (x). (7)

The described wavelet construction can be easily extended to multiple dimensions using tensor product construction,
e.g., the three-dimensional wavelets are given by

ψ
μ, j
i,k,l(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
j

i (x1) φ
j

k (x2) φ
j

l (x3) μ = 1

ψ
j

i (x1) φ
j

k (x2) ψ
j

l (x3) μ = 2

ψ
j

i (x1) ψ
j

k (x2) φ
j

l (x3) μ = 3

φ
j
i (x1) φ

j
k (x2) ψ

j
l (x3) μ = 5

φ
j
i (x1) ψ

j
k (x2) φ

j
l (x3) μ = 6

φ
j
i (x1) ψ

j
k (x2) ψ

j
l (x3) μ = 4

ψ
j

i (x1) ψ
j

k (x2) ψ
j

l (x3) μ = 7

(8)

with three-dimensional scaling function φ
j
i,k,l(x) = φ

j
i (x1) φ

j
k (x2) φ

j
l (x3), where ψ

j
i (x1), ψ

j
k (x2), ψ

j
l (x3), φ

j
i (x1), φ

j
k (x2),

φ
j

l (x3) correspond to arbitrary one-dimensional wavelets and scaling functions and x = (x1, x2, x3).
The n-dimensional tensor product second generation wavelets [2,24] are constructed analogously on a set of nested grids

G j =
{

x j
k ∈ � : k ∈ K j

}
, (9)

240 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Fig. 1. Illustration of predict and update stages of the forward wavelet transform. (a) Predict stage dependency; (b) Update stage dependency; (c) Predict
stages at levels j + 1 and j; (d) Update stage at levels j and j − 1. Figure is partially contributed by Scott Reckinger [37].

Fig. 2. Block diagram of the second generation wavelet transform. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 241
where K j is some index set associated with scaling functions of level j, k = (k1, . . . ,kn), and the grid points x j
k =

(x j
1,k1

, . . . , x j
n,kn

) are formed by a tensor product of one-dimensional nested grids [2]. Since each individual set of one-

dimensional grids is nested (x j
m,kl

= x j+1
m,2kl

, m = 1, . . . , n) the resulting set of n-dimensional grids is also nested, i.e.
G j ⊂ G j+1. The main difference for multi-dimensional wavelet construction is that in n dimensions there are 2n − 1
distinctive wavelet families. In addition one step of forward wavelet transform consists of the sequential application of
one-dimensional wavelet transform starting from x1 direction, while the one step of inverse wavelet transform consists of
the sequential application of one-dimensional inverse wavelet transform in reverse order starting from xn direction.

Similarly to one-dimensional case, a function u(x) can be decomposed as

u(x) =
∑

k∈K0

c0
kφ0

k(x) +
+∞∑
j=0

2n−1∑
μ=1

∑
l∈Lμ, j

dμ, j
l ψ

μ, j
l (x), (10)

where φ j
k(x) (k ∈ K j) and ψμ, j

l (x) (l ∈ Lμ, j) are respectively n-dimensional tensor product scaling functions and wavelets
of different families, Lμ, j is some index set associated with wavelets of family μ and level j.

3. Asynchronous parallel second-generation wavelet transform

Due to odd–even decoupling of update and predict stages of second generation wavelet transform, the non-adaptive
wavelet transform is intrinsically parallel algorithm. A number of the implementations for discrete wavelet transform for
both shared memory computers and GPU have been developed and discussed [30,31,33,38–40]. The parallel implementation
of non-adaptive wavelet transform for parallel computers with distributed architectures have been developed as well, e.g.,
[26–29]. Comparing the parallel efficiency of different implementations of parallel non-adaptive discrete wavelet transform
algorithms, it was identified that parallel algorithms based on Lifting Scheme (LS) are more efficient than parallel discrete
wavelet transform implementations based on Filter Bank (FB) approach, while FB schemes outperform LS algorithms for
GPU implementations.

The situation drastically changes for adaptive wavelet transform discussed in Section 5. The main challenge is the load
balancing for highly inhomogeneous problems with spatially non-uniform distribution of grid points at each level of res-
olution, since the algorithms developed for non-adaptive wavelet transform fail, mainly because the parallel non-adaptive
algorithms require synchronization of each stage of wavelet transform on each level of resolution, which is very impractical
from either data locality or load balancing standpoint. Thus, the efficient parallel adaptive wavelet transform necessitates
the development of asynchronous wavelet transform, where the data are communicated only once at the beginning of the
wavelet transform.

As explained in the previous section and illustrated in Fig. 1(b), the update stage at each level of resolution for both
forward and inverse wavelet-transform necessitates the inclusion of grid points at the higher level of resolution. In order
to predict wavelet coefficients at these added points at the higher level of resolution more points on the lower level of
resolution need to be included. Figs. 1(c)–(d) show a series of predict, update, and corresponding required extra stages on
an adaptive grid to complete forward wavelet transform. Fig. 1(c) is the schematics of predict stages at levels j + 1 and
j separately, while the update stages at levels j and j − 1 are shown by Fig. 1(d). The sequence illustrated by these four
diagrams starts with predicting a point on level j + 1 belonging to a target process (process red), Fig. 1(c). This predict
stage requires four points at level j with one of them belonging to the immediate neighboring process on the right (process
blue). Besides, one of the three required points from process red itself belongs to the lower level j − 1.2 Since j − 1 is the
lowest level of resolution in this illustration, this point (marked green) needs to be updated as shown in the right diagram of
Fig. 1(c). As a result, in order to predict one point on level j +1 from process red, four points from process blue are required.

This procedure becomes extremely complicated for the update stage as demonstrated in Fig. 1(d), which shows that
“two extra predict stages at level j + 1 on process blue” are required for “updating four points at level j on process red”.
By descending the level of resolution, the number of extra stages required for update grows fast: for updating three points
at level j − 1 on process red, two extra predict as well as four extra update steps are necessary at level j. This recursive
nature rapidly thickens the set of points required to perform one predict-update sequence.

For problems of arbitrary dimension (greater than one), the wavelet transform is performed by transforming each di-
mension independently. As the levels of resolution are descended (or ascended in the inverse wavelet transform) in one
dimension, the transform is completed over the entire domain at that level of resolution. In order to completely and accu-
rately perform the update stage of the wavelet transform (obtaining the correct c j

k-values at each level of resolution), the
points must be synchronized across subdomain boundaries. The points lying outside of the boundaries of each process are
buffer zones added for proper interpolation. These points, which are required to be synchronized, are shown in Figs. 1(c)–(d)
by the blue and green markers. As seen in this illustration, the entire set of blue and green points must be communicated
to process red in order to perform one complete forward wavelet transform (including both predict and update stages) on
an adaptive grid with only one point at the highest level of resolution.

2 On these diagrams, at each level of resolution, points belonging to the level itself and all levels below are shown.

242 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Fig. 3. Possible links from a tree root node for n = 2 dimensions. Each level goes to 2n − 1 nodes of the next level + itself: totally 2n . Tree-root is marked
by filled black circle. Black links show the first hierarchy (j = J root + 1). Blue (j = J root + 2) and green (j = J root + 3) links show the second and third
hierarchical links respectively. The right and top edges belong to the neighboring trees. (a) Empty tree, j = J root; (b) All possible links to completely fill
level j = J root + 1; (c) All possible links to completely fill level j = J root + 2; (d) All possible links to completely fill a tree with J root = Jmax − 3: a full
non-adaptive grid; (e) Only links required for the illustrated adaptive grid of a tree with J root = Jmax − 3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Therefore, for asynchronous wavelet transform, i.e. with only one synchronization of the buffer-zone, the wavelet coef-
ficients at the lower level of resolution in the buffer-zone need to be calculated, necessitating the inclusion of grid points
at higher level of resolution required for the update stage, which results in synchronization of the entire domain on all
processes to complete the update stage. This is impractical because neighboring points on different levels of resolution
could end up being on different processes, which drastically complicates the logic of the parallel algorithm plus loses the
efficiency. Thus, asynchronous wavelet transform with update stage is impractical for parallel implementation, alternatively,
one can perform synchronization at every level of resolution after each update stage and/or predict stage depending on
the algorithm as well as for every dimension. Note that the more synchronization stages are implemented, the smaller the
size of the buffer zone, where wavelet coefficients need to be synchronized. Therefore, for an n-dimensional problem with
Jmax levels of resolution, (2)n Jmax communication stages are required to simply perform one forward wavelet transform,
where 2 is put in parenthesis depending if synchronization is done for both predict and update stages or just once after
update. The inverse wavelet transform requires the same amount of stages resulting in doubling synchronization stages for
one time-step while using the AWCM. It is expected that the cost of so much communication could be a bottleneck, not
mentioning the difficulties of load balancing at each level of resolution.

Five different parallel extensions have been investigated with the idea that the performance of these different methods
would shed light on how to modify the wavelet transform so that its parallel implementation is fully optimized. These
extensions include synchronization at each update and predict stages, only at predict stages, as well as modifying wavelet
transform so that the wavelets close to the inter-process boundaries do not need to be updated, and finally, skipping the
update stage in the entire domain.

It was found that the most efficient solution is to skip the update stage over the entire computational domain. This
allows the development of an asynchronous wavelet-transform, i.e. synchronizing the data in the buffer-zone only at the
beginning of the transform and performing wavelet transform inside and in the buffer-zone. The ability to perform the
wavelet transform in the buffer-zone is guaranteed by the reconstruction check procedure discussed in Section 5. In addition,
due to the lack of the update stage, the computational time is also cut down since the algorithm takes half as many steps.
Note that the omission of the update stage does not change the convergence properties of adaptive wavelet transform
(see Refs. [1,2]), since the order of polynomial interpolation and accuracy of the method is controlled by the predict stage
only. The main drawback of not including update stage of wavelet transform is the loss of zero-mean properties of the
interpolating wavelet.

To easily/visually address the difference between the serial and the no-update algorithm, the parts that are not carried
out in the parallel algorithm are colored blue (gray in print version) in Equations (3)–(6). In the block diagram of the 1D
one-step second generation wavelet transform (Fig. 2) also, the part that is not carried out in the parallel algorithm is colored
blue (gray in print version).

4. Data structure

A dynamic, arbitrary dimension tree structure database is used in the algorithm presented in this paper: binary in 1D,
quad-tree in 2D, and octree in 3D, Fig. 3. This tree data structure has been implemented for wavelet coefficient storage
and retrieval. Trees are organized as forward link-list with a deterministic path determined by the global non-adaptive
coordinates starting from the root of the tree. Roots of the tree are specified on a given resolution and trees can be empty.
For parallel implementation, the trees are the smallest quanta of data (block of data) for the data migration. In other words,
each individual tree cannot be broken between processes and only entire blocks of data belonging to the same trees can be
moved between processes during domain repartitioning stage.

In order to decrease the number of cache-misses during tree traverse, nodes of each two levels are stored together,
starting from the finest level of resolution. To summarize:

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 243
1. Nodes are arranged by levels (to simplify access during wavelet transforms) and in a cache friendly manner (to speed
up the access),

2. In a tree of dimension n, a node of level j has 2n − 1 links to the nodes of higher level j + 1,
3. Each node of level j is also considered as a node of level j + 1, j + 2, · · · , Jmax.

For indirect data access based on coordinates, the length of the path to a data point at a level J root + j is j. The cost of
data access to all points at a level J root + j is (2n − 1)2(j−1)nŊroot(j + 1), where Ŋroot is the number of points on the tree
root level, J root, i.e. Ŋroot = M2 J root−1. The base grid size of M = [m1 . . . , mn] and tree root level of J root are user defined
input parameters. In the limit when j is large, it can be seen that for non-adaptive case Ŋ ∼= Ŋroot2 jn , which implies that
j ∼= 1

n log2
Ŋ

Ŋroot
. Therefore, the overall cost of indirect data access to the tree is O (Ŋ logŊ).

In addition, for faster access, the pointers to the data are stored in an orthogonal list based on wavelet family, loca-
tion relative to the rectangular computational domain (internal, face, edge, corner), level of resolution, level of derivative
calculation. This makes the cost of direct access to the data O (Ŋ).

Trees and the corresponding data are orthogonally distributed among processes; however, in order to facilitate the
wavelet-transform and the derivative calculations, each process has an identical matrix of tree-roots that are marked by
the process-rank where the actual data are stored on. Note that since the choice of the tree-root level affects the size of the
tree-root matrix, the length of the tree traversing path, the number of trees and their size for data migration, the optimal
value of J root is problem dependent and can be chosen to optimize the computational performance.

All the trees that belong to process itself hereafter are called internal-zone trees and their corresponding points are
called internal-zone points. All the trees that do not belong to the process itself hereafter are called buffer-zone trees and
the points belonging to these buffer-zone trees are called buffer-zone points. To distinguish these points, it is convenient
to define, for each process p ∈ {0, · · · , np − 1}, a mask Mp,r , r ∈ {0, · · · , np − 1}, that consists of points on process p that
belong to process r, i.e. the set Mp,p consists of internal-zone points of the process p and the sets Mp,r �=p are the
masks of buffer zone points on the process p. It should be noted that the buffer-zone points are always a subset of the
points on the corresponding process, i.e. Mp,r ⊂ Mr,r , and consist of the points that are necessary for the asynchronous
wavelet-transform that is discussed in Section 3. Each process should have at least one tree with the possibility of some of
them being empty. Each tree-root also has descriptor indicating to which process it belongs.

5. Grid adaptation

The major strength of wavelet decomposition (10) is the ability to compress functions. For functions that contain isolated
small scales on a large-scale background (i.e. intermittent functions), most wavelet coefficients are small. Thus, a good
approximation can be retained even after discarding a large number of wavelets with small coefficients. Intuitively, the
coefficient dμ, j

l is small unless the u(x) has variation on the scale of j in the immediate vicinity of wavelet ψμ, j
l (x). More

precisely, if we rewrite (10) as the sum of two terms composed of wavelets whose amplitudes are respectively above and
below some prescribed non-dimensional (relative) threshold parameter, ε ,

u(x) = u≥(x) + u<(x), (11)

where

u≥(x) =
∑

k∈K0

c0
kφ0

k(x) +
+∞∑
j=0

2n−1∑
μ=1

∑
l∈Lμ, j

|dμ, j
l |≥ε‖u‖

dμ, j
l ψ

μ, j
l (x), (12)

u<(x) =
+∞∑
j=0

2n−1∑
μ=1

∑
l∈Lμ, j

|dμ, j
l |<ε‖u‖

dμ, j
l ψ

μ, j
l (x), (13)

‖ · ‖ is the norm that provides the (absolute) dimensional scaling for the filtered variable u, then, following Donoho [41], it
can be shown that for a sufficiently smooth function u(x)∥∥u(x) − u≥(x)

∥∥
2 ≤ Cε‖u(x)‖, (14)

with C of order unity, which can be utilized to actively control the accuracy of the approximation.
Grid adaptation occurs naturally in wavelet methods, e.g. [42,43]. To illustrate the algorithm, let us consider a function

u(x), defined on a closed n-dimensional rectangular domain �. Relation (14) provides the framework for representing a
function with significantly fewer degrees of freedom, while still retaining a good approximation. However, in order to realize
all the benefits of the wavelet compression, a function u≥(x) needs to be reconstructable from the subset of ŊS significant

grid points, hereafter denoted by mask MS . We recall that every scaling function φ j
k(x), k ∈K j , is uniquely associated with

a grid point x j , while each wavelet ψμ, j
(x), l ∈Lμ, j is uniquely associated with a corresponding collocation point. Once the
k l

244 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Fig. 4. Ancestry points at the coarser level j (marked) and finer level j + 1 (marked) where c j+1
k are needed for calculation of the wavelet coefficient

dμ, j
l , μ = 1, 3 (marked) for two-dimensional fourth-order (N = 4) wavelet transform.

wavelet decomposition is performed, each grid point is uniquely associated either with the wavelet or the scaling function
at the coarsest level of resolution. Consequently, the collocation point should be omitted from the computational grid if the
associated wavelet is omitted from the approximation. Note that for the stability of the reconstruction algorithm all the grid
points associated with the scaling function at the coarsest level of resolution need to be kept, and, thus, are included in
mask MS .

For the asynchronous parallel wavelet transform discussed in Sections 3, following the notation for internal-zone and
buffer-zone points, Mp,r , introduced in Section 4, the set MS

p,p will denote all the significant grid points on the process
p ∈ {0, · · · , np − 1}. Note that all the sets of significant buffer-zone points are empty, i.e., MS

p,r �=p ≡ ∅. Also note that
MS ≡ ⋃

p∈{0,···,np−1}
MS

p,p .

When solving evolution or elliptic problems one should add an additional criterion for grid adaptation, which ensures
that the wavelet basis or computational mesh is sufficient to approximate the solution throughout the time integration
step for an evolution problem or at the next iteration in the elliptic case. In particular, as suggested by Liandrat and
Tchamitchian [42], the computational grid should consist of grid points associated with wavelets whose coefficients are or
can possibly become significant during the period of time or iteration when the grid remains unchanged. In actual imple-
mentation the adjacent zone includes neighboring wavelets at the same, one above (children), and one below (ancestors)
levels of resolution. In other words, at any instant in time or iteration, the computational grid should include points as-
sociated with wavelets belonging to an adjacent zone of significant wavelets MS . For convenience of the discussion the
combined set of significant and adjacent points is denoted by mask MS+A . Note that the set MS ⊂MS+A .

For parallel wavelet transform one needs to introduce the combined set of significant and adjacent points for each
process p, MS+A

p,r . Note that in contrast to the significant buffer-zone set MS
p,r �=p , which is empty, the set MS+A

p,r �=p is
not empty and consists of buffer-zone points of process p that include wavelets on process r belonging to an adjacent
zone of significant internal-zone wavelets MS+A

p,p . Also note that MS+A ≡ ⋃
p∈{0,···,np−1}

MS+A
p,p and MS+A

p,r ⊂ MS+A
r,r for any

p, r ∈ {0, · · · , np − 1}.
In order to be able to perform wavelet transforms on an adaptive grid, an additional step, hereafter called reconstruction

step procedure, needs to be performed to ensure that all ancestry grid points required for the recursive computation of the
wavelet coefficients dμ, j

l belonging to the set MS+A are also available. Due to the recursive nature of the wavelet transform,
the points added as a result of reconstruction step procedure are also included into the combined significant and adjacent
set MS+A . To illustrate the reconstruction step procedure, let us consider one step of n-dimensional wavelet transform. As
discussed earlier, the n-dimensional wavelet transform consists of the sequential application of n one-dimensional wavelet
transforms in xi , i = 1, . . . , n, directions. Hence, in order to find the ancestry grid points necessary for the calculation of the
wavelet coefficient dμ, j

l , we start with the collocation point associated with dμ, j
l and recursively, i = n, . . . , 1, add points

that are needed to perform one step of the one-dimensional wavelet transform in the xi direction at the locations that
are added to perform the one-dimensional wavelet transforms in xl , l = i + 1, . . . , n, directions. At the end of this recursive
procedure, we will have a minimal set of grid points that are necessary for calculation of wavelet coefficient dμ, j

l provided
that wavelet coefficients at other locations are either zero or negligible (below an a priori prescribed threshold). Fig. 4
illustrates the minimal set of grid points in two dimensions that are necessary for calculation of wavelet coefficient dμ, j

l
belonging to three different families of wavelets, i.e. μ = 1, 3. The perfect reconstruction check procedure guarantees that
all wavelet coefficients obtained by performing the wavelet transform on the adapted grid are the same as those found by
performing the wavelet transform of u≥(x) on the complete grid.

In order to be able to perform asynchronous parallel wavelet transform, all the data at the ancestry points for the
wavelet-transform at the internal-zone points MS+A

p,p of the process p ∈ {0, · · · , np − 1} are required, including points that
are stored on different processes. The reconstruction check procedure on MS+A

p,p is performed on each process, as it is a
serial algorithm, to construct the set of buffer-zone MS+A

p,r �=p . After the reconstruction procedure, the data at the buffer-zone
points MS+A need to be synchronized among processes to ensure that all ancestry and adjacent buffer-zone points are
p,r �=p

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 245
Fig. 5. Parallel Wavelet Transform. Green: one process (MS+A
p,p), Red: nodes used in communication (to be synchronized, MS+A

p,r �=p), Blue: rest of processes,
i.e., ⋃

q �=p
MS+A

q,q −MS+A
p,r �=p . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Algorithm 1 Reconstruction Check Procedure (RCP) for the parallel wavelet transform: MS+A
p,p

RCP−−−→MS+A
p,r .

for ∀p = 0 : 1 : np − 1
set MS+A

p,r �=p =∅ at j = Jmax

for all levels j = Jmax − 1 : −1 : 1
extend mask MS+A

p,r to include the ancestry points at level j
end

end

communicated to the internal-zone points MS+A
p,p , which ensures that MS+A

p,r ⊂MS+A
r,r . Once sets MS+A

p,r are synchronized,
the wavelet-transform on each process can be performed as a regular serial algorithm. These masks, MS+A

p,p and MS+A
p,r �=p , are

illustrated in Fig. 5, where they are shown as a subset of an entire mesh
⋃

p∈{0,···,np−1}
MS+A

p,p . Note that for some process r,
MS+A

p,r �=p could be an empty set.

The pseudocode for the parallel perfect reconstruction check procedure is shown in Algorithm 1. At the end of this
procedure the masks MS+A

p,r are constructed. These masks can be used to construct for each process p ∈ {0, · · · , np − 1} a

set of nested adaptive computational grids G j
p≥ =

{
x j

k ∈ � : k ∈K j,x j
k ∈ ⋃

r∈{0,···,np−1}
MS+A

p,r

}
such that G j

p≥ ⊂ G j+1
p≥ for any

j < Jmax − 1, where Jmax is the finest level of resolution present in the approximation (12). Note that grids G j
p≥ are local

on each process.

6. Calculation of derivatives on the adapted grid

The differentiation procedure for obtaining derivatives of a function from its values at collocation points is based on the
interpolating properties of second generation wavelets. It is recalled that wavelet coefficients dμ, j

l measure the difference
between the approximation of the function at the j + 1 level of resolution and its representation at the j level of resolution.
Thus, if there are no points in the immediate vicinity of a grid point x j

k , i.e. |dμ, j
m | < ε for all the neighboring points, and

points x j+1
(2k1±1,...,2kd±1)

are not present in G j+1
≥ , then there exists some neighborhood of x j

k , � j
k , where the actual function

is well approximated by a wavelet interpolant based on c j
m (m ∈K j), i.e.∣∣∣∣∣∣u(x) −

∑
j

c j
mφ

j
m(x)

∣∣∣∣∣∣ ≤ C̃ε‖u‖, x ∈ �
j
k. (15)
m∈K

246 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Fig. 6. Illustration of Zones and Masks (includes nodes required for wavelet transform and derivatives) in parallel. Red: wavelet above the thresh-
old (MS+A

0,0), Orange: nearest neighbors to capture evolving solution (reconstruction masks MS+A
0,0 and MS+A

0,1), Violet: nodes required for derivatives
(Ghost masks MG

0,0 and MG
0,1). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Let us denote by D j
p a collection of such points at each level of resolution for each process p ∈ {0, · · · , np − 1}. In other

words D j
p is the subset of the mask MS+A

p,p where the differentiation is taken at level j, i.e.

D j
p =

{
x j

k ∈ � : x j
k ∈ MS+A

p,p , differentiation taken at level j
}

. (16)

Note that D j
p is an orthogonal set,

Jmax⊕
j=1

D j
p = MS+A

p,p . The differentiation of the interpolant (15) results in the value of

the derivative of the function at the x j
k location. Rewriting this interpolant as local Lagrange polynomial of order N , i.e.

the same order as the wavelet, differentiating the polynomial, and evaluating it at x j
k location would result in local finite

difference operator that uses the neighboring points of the interpolant on level j with some of these points, hereafter called
ghost points, not being present in the union mask

⋃
r∈{0,···,np−1}

MS+A
p,r . If MS+A+G

p,r , r ∈ {0, · · · , np − 1} are sets of points used

for calculation of the derivatives at internal-zone points of process p, then in order to evaluate finite difference operators
defined by local interpolants one would need to interpolate the function to the ghost points defined by the combined mask ⋃
r∈{0,···,np−1}

MS+A+G
p,r . The pseudocode for the evaluation of derivatives at all grid points is given in Algorithm 2. At the end

of this procedure, the derivatives of the function at all grid points are found. The computational cost of calculating spatial
derivatives is roughly the same as the cost of forward and inverse wavelet transforms. For the details on the accuracy of
this differentiation procedure, the readers are referred to [1,2].

Algorithm 2 Calculation of derivatives on the adapted grid.
for ∀p = 0 : 1 : np − 1

perform forward wavelet transform for each component of um
k on MS+A

p,r
for all levels j = 1 : 1 : Jmax − 1

perform one step of inverse wavelet transform for level j on MS+A+G
p,r

find derivatives at grid points that belong to D j
p

end
end

The internal- and buffer-zone masks for significant, adjacent and ghost points are illustrated in Fig. 6, where red-points
are MS+A

0,0 ; all the orange-points on the green-background belong to mask MS+A
0,0 , while all the orange-points on the blue-

background belong to the set MS+A
0,1 ; all the violet-points on the green-background are MG

0,0, while all the violet-points on
the blue-background represent MG

0,1.

7. Data migration

The mask of points MS+A
p,r �=p for either transform or derivative-calculation are constructed separately and then communi-

cated by means of either all-to-all or one-to-one communication techniques.

8. Domain partitioning and dynamic load balancing

Several partitioning approaches with different user controls are implemented, Fig. 7. More advanced Zoltan [44–49] li-
brary based partitions provide nearly optimal load balancing, thanks to the asynchronous wavelet transform resulting in
linear dependence of computational cost on the number of grid points per process. A summary of the approaches is as
follows: For the geometric prime-number partitioning, all spatial directions of the domain are dissected based on prime-
number factorization of tree-roots assuming nearly equal distribution of grid points among trees. The major deficiency of
this approach is its static nature and poor load balancing for a non-uniform wavelet distribution. For the geometric sequen-
tial partitioning, the domain is subdivided by planes normal to an axis on rounded to the nearest integer n

√
np sub-domains,

where n is the problem dimension and np is the total number of processes. The available np processes are distributed

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 247
Fig. 7. Domain partitionings: (a) geometric prime-number, (b) geometric sequential, (c) Zoltan geometric, (d) Zoltan hypergraph.

Fig. 8. Coherent Vortex Simulation of linearly forced incompressible homogeneous turbulence at Reλ = 320 using PAWCM at effective non-adaptive resolu-
tion of Nmax = 20483: (a) volume rendered vorticity magnitude, (b) the adaptive computational mesh colored by the level of resolution with compression
ratio N /Nmax = 2.1 × 10−4, (c) domain partitioning for Dynamic Load Balancing using Zoltan hypergraph repartitioning for 192 processes.

among these sub-domain according to the number of active wavelets inside each of the sub-domains. This recursion step
is repeated n times to get the final partitioning. The load balancing might not quite be optimal, though it may be more
usable for uni-directional wavelet distributions across the domain. For significantly non-uniform wavelet distribution, the
domain is partitioned using Zoltan partitioning library [44–49] by Sandia National Laboratories. Zoltan geometric (Recursive
Coordinate Bisection) (Fig. 7(c)) and Zoltan hypergraph (Fig. 7(d)) parallel partitioning algorithms were used. In both cases,
the Zoltan library is supplied with the matrix of computational weights based on the number of grid points in each tree
and the communication weights based on the number of grid points on the interface between neighboring trees.

Dynamic load balancing (DLB) is implemented via domain repartitioning during the grid adaptation step and reassign-
ing tree data structure nodes to the appropriate processes. The user provides an imbalance tolerance vector to trigger the
repartitioning if necessary. Depending on the imbalance of wavelet distribution, a different kind of repartitioning is per-
formed. Highly imbalanced data are partitioned without considering initial decomposition, moderately imbalanced data are
repartitioned while trying to stay close to the current decomposition, and nearly balanced data are refined by small changes
only. Figs. 8 and 9 present three dimensional examples of domain partitioning for PAWCM and corresponding flow fields
with adaptive computational meshes for Coherent Vortex Simulation [50,51] of linearly forced homogeneous turbulence
at effective non-adaptive resolution of Nmax = 20483 as well as adaptive wavelet-based Direct Numerical Simulation of
compressible flow past sphere at Re = 1000 and Ma = 0.7 at effective non-adaptive resolution of 3713 × 2305 × 2305.

9. Parallel AWCM

Algorithm 3 illustrates major components of both serial and parallel AWCM. In Algorithm 3, the operations that are only
carried out in the parallel algorithm are colored in blue (gray in print version). The operator A−→ is the adjacent (safety) zone
inclusion that extends the significant mask on each rank MS

p,p to its corresponding significant + adjacent mask MS+A
p,r ,

which may belong to any rank r = 0, · · · , np − 1. Similarly, the operator RCP−−−→ is the reconstruction check procedure on
MS+A

p,p to extend it to MS+A
p,r .

10. Scalability studies

All parallel scalability studies were performed on the U.S. Air Force Research Laboratory’s Spirit SGI ICE X system. Each
node consists of a 16-core Intel Xeon E5 Sandy Bridge processor with 32 GB RAM, and the cluster utilizes an FDR 14x
Infiniband interconnect. For all results, a single process is run on each processor core. All results presented in this section
have been obtained using a linearized Crank–Nicolson time integration method (for details see Ref. [19]). The sustained
parallel performance of the code was assessed for 40 time integration/grid adaptation cycles.

248 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Fig. 9. Adaptive Wavelet-based Direct Numerical Simulation of compressible flow past sphere at Re = 1000 and Ma = 0.7 using PAWCM with characteristic-
based volume penalization [52] at effective non-adaptive resolution of 3713 × 2305 × 2305: (a) main vortical structures in the near wake identified by
the iso-surfaces of Q = 0.25 colored by the magnitude of vorticity, (b) a slice of wavelet collocation points at higher levels of resolution (4 ≤ j ≤ 8) su-
perimposed by iso-surfaces of main vortical structures, (c) domain partitioning for Dynamic Load Balancing using Zoltan hypergraph repartitioning for 200
processes superimposed by iso-surfaces of main vortical structures. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Strong scalability studies for PAWCM have been performed for velocity-based Coherent Vortex Simulations (CVS) [50,
51] of linearly forced incompressible homogeneous turbulence [53,54] at Taylor micro-scale Reynolds number of Reλ =
320. The simulations with constant wavelet threshold ε = 0.1 were performed on dynamically adaptive computational grid
corresponding to effective non-adaptive resolution of 20483. The coefficient C f = 6.6̄ for turbulent forcing was used. The
time interval is chosen to be smaller than eddy turnover time to ensure that the number of localized vortical structures
remain unchanged and the variation of the total number of grid points is small. For the details of the problem formulation
and the description of the model parameters, the reader is referred to Ref. [55]. An example of the turbulent flow field,
the corresponding adaptive computational mesh and domain partitioning are given in Fig. 8. Strong scalability studies were
performed for both geometric prime-number and dynamic Zoltan hypergraph partitionings. Due to high spatial intermittency
of turbulent flows, the geometric prime-number partitioning was very imbalanced and is not reported in this paper. The
parallel speedup results are shown in Fig. 10 for dynamic Zoltan hypergraph partitioning for both all-to-all and one-to-one

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 249
Algorithm 3 Parallel Adaptive Wavelet Collocation Method (PAWCM).
for ∀p = 0 : 1 : np − 1

initial guess (m = 0): um
k and Gm≥

end

while m = 0 or

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
m � 1 and

{[
Gm≥ �= Gm−1≥ or ‖um

k − um−1
k ‖∞ > δε

]
︸ ︷︷ ︸

only for Elliptic problem

or [tm < tend]︸ ︷︷ ︸
only for

time evolution
problem

}
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

request MS+A
p,r �=p for migration

perform forward wavelet transform for each component of um
k

for ∀p = 0 : 1 : np − 1
for all levels j = Jmax : −1 : 1

create a mask MS
p,p for |dμ, j

l | ≥ ε

end
MS

p,p
A−→ MS+A

p,r , r = 0, · · · ,np − 1

synchronize mask: MS+A
p,r �=p send to r process: MS+A

r,r =
np−1⋃
p=0

MS+A
p,r

perform the reconstruction check procedure: MS+A
p,p

RCP−−−→ MS+A
p,r

add ghost mask: MS+A
p,p

Jmax⊕
j=1

D j
p

−−−−−→ MS+A+G
p,r . MS

p,r ⊂ MS+A
p,r ⊂ MS+A+G

p,r
end
if imbalanced

domain-repartitioning and migration of trees
clean MS+A

p,r �=p = ∅ and MS
p,r �=p = ∅

perform the reconstruction check procedure: MS+A
p,p

RCP−−−→ MS+A
p,r

end if
for ∀p = 0 : 1 : np − 1

construct Gm+1≥
if Gm+1≥ �= Gm≥

interpolate um
k to Gm+1≥

end if
end
Either Solve the Elliptic problem (using Local Multilevel Elliptic Solver)
or Advance in Time (using Krylov/RK Time-Integration)
m = m + 1

end

Fig. 10. Parallel Speedup for PAWCM of CVS at Reλ = 320 on dynamically adaptive computational grid at effective resolution of 20483 using dynamic Zoltan
hypergraph partitioning with both all-to-all and one-to-one communication methods. Green marker: All-to-all communication. Red marker: One-to-one
communication. The base simulation with 128 CPU cores is assumed to perform with the ideal linear speedup. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

communication methods. The results demonstrate the linear scalability up to 512 processes with subsequent noticeable slow
down for higher number of processes. Multiple mechanisms could contribute to such slow down, with the most significant
being large load imbalance among processes, interprocess communication, and increase of computational cost due to use of
buffer-zones in the asynchronous wavelet transform.

In order to assess the effect of interprocess communication on the parallel efficiency of the method, two different mech-
anisms are implemented: all-to-all and one-to-one MPI communications. It is well known that for all-to-all communication

250 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
cost increases significantly with the increase of the buffer size and total number of ranks. The fact that the parallel speedup
curves for both all-to-all and one-to-one communication mechanisms are almost identical indicates that the deterioration
in the performance of the solver compared to the ideal linear speedup cannot be solely attributed to the communication
problems, at least for the number of processes studied.

The next possible mechanism responsible for the deterioration of parallel scalability is the load imbalance, which can be
understood by studying the distribution of the grid points among processes, namely the mean, the minimum and maximum
bounds, the standard deviation, and the standard deviation bound of the number of active wavelets, ŊSAI , ŊSAB , and ŊSAT ,
where the subscript SA stands for significant and adjacent points, while subscripts I, B, T respectively denote internal,
buffer-zone, and total (internal and buffer zone) points. The statistical data for ŊSAI and ŊSAT grid points, averaged between
processes and over 40 time steps, are given in Fig. 11.

All four measures for internal-zone points, ŊSAI , are decreasing with the increase in number of processes, while the
relative load imbalance measured by the ratio max(ŊSAI)/〈ŊSAI 〉 does not change much with the increase of the number of
processes. It should be noted, that the relatively constant load imbalance demonstrates that load balancing procedure works
and the relative load imbalance actively controlled by the imbalance tolerance discussed in Section 8, which was kept at
for all scalability studies. Thus, there is an additional mechanism of deterioration of parallel scalability. As mentioned in
Section 5, the requirement of having an asynchronous wavelet transform results in additional operations for significant and
adjacent buffer-zone points, effectively increasing the cost of wavelet transform. When the asynchronous wavelet transform
is performed, the cumulative computational cost scales as the total number of SA points, np〈ŊSAT 〉 = np

(〈ŊSAI 〉 + 〈ŊSAB 〉
)
,

where operator 〈·〉 denotes averaging across all processes. In the serial case, there is no buffer-zone wavelets, thus, the
cost of wavelet transform scales as ŊSAIserial

∼= np〈ŊSAI 〉. For well balanced partitioning, the parallel efficiency of the wavelet
transform can be defined as the ratio of total number of serial and parallel points, ŊSAIserial

/
(
np〈ŊSAT 〉

) = 〈ŊSAI 〉/〈ŊSAT 〉. In
actual calculation, the process with the maximum number ŊSAT points determines the speed of the calculation. Thus, the
average efficiency of the parallel wavelet transform over a time interval can be measured as

ηWT
p

∼= 〈ŊSAI〉
max

(
ŊSAT

) , (17)

where operator (·) denotes time-averaged value.
It should be noted, that while the number of active wavelets represents the cost of the wavelet-transform, the number

of SAG (significant + adjacent + ghost) points, which are used for derivatives calculations, is a better measure of the overall
computational time, since, as mentioned in Algorithm 3, the number of SAG points is generally greater than the number
of active wavelets: MS

p,r ⊂ MS+A
p,r ⊂ MS+A+G

p,r . Thus, a more accurate measure of parallel efficiency of the PAWCM can be
written as

ηp
∼= 〈ŊSAGI〉

max
(
ŊSAGT

) . (18)

The statistical data for ŊSAGI and ŊSAGT grid points, averaged between processors and time, are given in Fig. 12. Using
these actual data, the theoretical parallel speedup is given by S = npηp . The theoretical speedup curve is shown in Fig. 13.
Assuming that the base simulation with 128 CPU cores performs at theoretical efficiency, the parallel speedup curves for
all-to-all and one-to-one communication showing in Fig. 10 are rescaled and plotted in Fig. 13. This rescaled plot clearly
indicates that PAWCM performs at maximum theoretical efficiency up to 512 processes, with slight deterioration of perfor-
mance for larger number of processes. It is worth pointing out that in the reported theoretical efficiency, the cost associated
with parallel communication is not taken into account, i.e. ηp assumes zero wall-time for parallel communication. The in-
crease of the number of the buffer-zone points relative to the number of internal-zone points also has an effect on the total
size of the send-receive buffers that need to be communicated between processes. As it was discussed in Sections 5 and
6, in order to perform parallel wavelet transform in asynchronous manner, the data at the SA points in the buffer-zone of
each process need to be synchronized. The results presented in Fig. 11 demonstrate that with the increase of the number
of processes the ratio 〈ŊSAB 〉/〈ŊSAI 〉 increases as number of processes increase, which indicates an increase in the total size
of all send-receive buffers, which in turn decreases the communication efficiency.

In the current implementation of the asynchronous wavelet-transform algorithm, all ranks have to wait until the com-
munication is complete among all processes. This is true regardless of all-to-all or one-to-one communication algorithm, i.e.
even in one-to-one case, there is barrier at the end of communication. Since the size of the buffer-zone and resulting very
large send-receive buffers cannot be reduced, even more efficient one-to-one communication mechanisms will not be able to
drastically reduce the communication wall-time to have the algorithm performed without deterioration of parallel efficiency.
One possible way to further improve the scalability of the PAWCM and to make it work at the theoretical parallel efficiency
is to remove the communication barrier by changing the way wavelet transform is performed. In the current asynchronous
algorithm, all ranks should wait for the communication until each rank can start the wavelet transform on its corresponding
mask MS+A

p,r ; however, while the communication is executing each rank indeed can perform the wavelet transform on a
subset of points MS+A

p,p that does not require points form MS+A
p,r �=p . Furthermore, the data communication can be done in

multiple stages starting from buffer-zone data on the highest level of resolution for the process required for the one stage

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 251
Fig. 11. Statistics of min(ŊSAI), max(ŊSAI), 〈ŊSAI 〉 and min(ŊSAT), max(ŊSAT), 〈ŊSAT 〉 for PAWCM of CVS at Reλ = 320 and 20483 effective resolution using
dynamic Zoltan hypergraph partitioning. Vertical lines indicate the range encompassing ±1 standard deviations.

Fig. 12. Statistics of min(ŊSAGI), max(ŊSAGI), 〈ŊSAGI 〉 and min(ŊSAT), max(ŊSAGT), 〈ŊSAGT 〉 for PAWCM of CVS at Reλ = 320 and 20483 effective resolution
using dynamic Zoltan hypergraph partitioning. Vertical lines indicate the range encompassing ±1 standard deviations.

of wavelet transform in one dimension, recursively send and receive data for each direction and level of resolution, while
performing wavelet transform on the subset of internal-zone and/or buffer-zone points that either do not require the use
of buffer-zone points, which are not received yet. The use of such multi-stage scheduling algorithms removes or postpones
the effect of the communication barrier on the wavelet transform, while migration is occurring and would ensure that the
wavelet transform engine is not idle during the migration. Different scheduling strategies are currently under investigation
and will be discussed elsewhere.

11. Conclusions

A parallel adaptive wavelet-based method for simulation of partial differential equations on arbitrary physical space
bounded within a rectangular computational domain without limitation on simply-connected partitioning is presented. The
method is a parallel extension of adaptive wavelet collocation method with no update stage. The data are stored in tree
like structure, which provides a robust data management. An efficient parallel implementation is achieved by developing
an asynchronous parallel wavelet transform, which allows one to perform wavelet transform and derivative calculations
on each process with only one data synchronization at the highest level of resolution. Both static and dynamic domain
partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum
quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply

252 A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253
Fig. 13. Comparison of theoretical and actual parallel speedup for PAWCM of CVS at Reλ = 320 on dynamically adaptive computational grid at effective
resolution of 20483 using dynamic Zoltan hypergraph partitioning with both all-to-all and one-to-one communication methods. The base simulation with
128 CPU cores is assumed to perform at theoretical efficiency. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during grid
adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of nodes on
each process. The detailed strong scalability study is reported for PAWCM of Coherent Vortex Simulations of homogeneous
turbulence with linear forcing at Taylor micro-scale Reynolds number of Reλ = 320 on dynamically adaptive computational
grid at effective resolution of 20483 using as many as 2048 CPU cores. Two main mechanisms for saturation of strong
scalability are identified: the increase of the total number of buffer-zone points and parallel communication. The theoretical
limit of parallel efficiency due to additional operations performed in buffer-zone required for asynchronous parallel wavelet
transform is identified. Possible future improvements of the algorithm that will minimize the communication cost and
eliminate or postpone saturation are discussed.

The successful outcome of a longtime effort to develop a novel parallel adaptive wavelet collocation method for numerical
solution of PDEs has been completed during the course of the current work. Even though the currently developed parallel
algorithm is capable of performing very large scale simulations, we envision that further improvements in the parallel
wavelet-transform algorithm as well as the buffer-zone communication and scheduling strategies can further improve the
efficiency of the method.

Acknowledgements

This work was supported by NSF under grants Nos. CBET-0756046 and CBET-1236505. This support is gratefully acknowl-
edged. EBD and OVV also acknowledge partial support from ONR under grant No. N00014-11-1-069. Authors thankfully
acknowledge the use of TeraGrid, XSEDE, sharcnet, and AFRL DSRC computational resources. This work also utilized ex-
tensively the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794)
and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the
University of Colorado Denver and the National Center for Atmospheric Research. Authors acknowledge the initial efforts of
Scott Reckinger in studying different possibilities for the efficient asynchronous parallel extension of the second generation
wavelet transform.

References

[1] O.V. Vasilyev, C. Bowman, Second generation wavelet collocation method for the solution of partial differential equations, J. Comput. Phys. 165 (2000)
660–693.

[2] O.V. Vasilyev, Solving multi-dimensional evolution problems with localized structures using second generation wavelets, Int. J. Comput. Fluid Dyn.:
Special issue on High-Resolution Methods in Computational Fluid Dynamics 17 (2003) 151–168.

[3] J.D. Regele, O.V. Vasilyev, An adaptive wavelet-collocation method for shock computations, Int. J. Comput. Fluid Dyn. 23 (2009) 503–518.
[4] O.V. Vasilyev, N.K.-R. Kevlahan, An adaptive multilevel wavelet collocation method for elliptic problems, J. Comput. Phys. 206 (2005) 412–431.
[5] N.K.R. Kevlahan, J.M. Alam, O.V. Vasilyev, Scaling of space–time modes with Reynolds number in two-dimensional turbulence, J. Fluid Mech. 570 (2007)

217–226.
[6] Q. Liu, O.V. Vasilyev, A Brinkman penalization method for compressible flows in complex geometries, J. Comput. Phys. 227 (2007) 946–966.
[7] D.E. Goldstein, O.V. Vasilyev, N.K.R. Kevlahan, CVS and SCALES simulation of 3D isotropic turbulences, J. Turbul. 6 (2005) 1–20.
[8] O.V. Vasilyev, G. De Stefano, D.E. Goldstein, N.K.R. Kevlahan, Lagrangian dynamic SGS model for stochastic coherent adaptive large eddy simulation,

J. Turbul. 9 (2008) 1–14.
[9] G. De Stefano, O.V. Vasilyev, D.E. Goldstein, Localized dynamic kinetic energy-based models for stochastic coherent adaptive large eddy simulation,

Phys. Fluids 20 (2008) 045102.1–045102.14.
[10] G. De Stefano, O.V. Vasilyev, Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence, J. Fluid Mech. 646 (2010) 453–470.
[11] G. De Stefano, O.V. Vasilyev, A fully adaptive wavelet-based approach to homogeneous turbulence simulation, J. Fluid Mech. 695 (2012) 149–172.

http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4A43505F32303030s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4A43505F32303030s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib494A4346445F32303033s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib494A4346445F32303033s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib726567656C652D766173696C7965763A32303039s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4A43505F32303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6B65766C6168616E2D616C616D2D766173696C7965763A32303037s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6B65766C6168616E2D616C616D2D766173696C7965763A32303037s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6C69752D766173696C7965763A32303037s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib676F6C64737465696E2D766173696C7965762D6B65766C6168616E3A32303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D646573746566616E6F2D676F6C64737465696E2D6B65766C6168616E3A32303038s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D646573746566616E6F2D676F6C64737465696E2D6B65766C6168616E3A32303038s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib646573746566616E6F2D766173696C7965762D676F6C64737465696E3A32303038s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib646573746566616E6F2D766173696C7965762D676F6C64737465696E3A32303038s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib646573746566616E6F2D766173696C7965763A32303130s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib646573746566616E6F2D766173696C7965763A32303132s1

A. Nejadmalayeri et al. / Journal of Computational Physics 298 (2015) 237–253 253
[12] A. Nejadmalayeri, A. Vezolainen, O. Vasilyev, Reynolds number scaling of coherent vortex simulation and stochastic coherent adaptive large eddy
simulation, Phys. Fluids 25 (2013) 110823.

[13] A. Nejadmalayeri, A. Vezolainen, G. De Stefano, O.V. Vasilyev, Fully adaptive turbulence simulations based on lagrangian spatio-temporally varying
wavelet thresholding, J. Fluid Mech. 749 (2014) 794–817.

[14] O.V. Vasilyev, S. Paolucci, A fast adaptive wavelet collocation algorithm for multi-dimensional PDEs, J. Comput. Phys. 125 (1997) 16–56.
[15] S.J. Reckinger, D. Livescu, O.V. Vasilyev, Adaptive wavelet collocation method simulations of Rayleigh–Taylor instability, Phys. Scr. T142 (2010) 1–6.
[16] S. Reckinger, O. Vasilyev, B. Fox-Kemper, Adaptive volume penalization for ocean modeling, Ocean Dyn. 62 (2012) 1201–1215.
[17] J. Regele, D.R. Kassoy, O.V. Vasilyev, Effects of high activation energies on acoustic timescale detonation initiation, Combust. Theory Model. 16 (2012)

650–678.
[18] O.V. Vasilyev, N.K.R. Kevlahan, Hybrid wavelet collocation – Brinkman penalization method for complex geometry flows, Int. J. Numer. Methods Fluids

40 (2002) 531–538.
[19] N.K.R. Kevlahan, O.V. Vasilyev, An adaptive wavelet collocation method for fluid–structure interaction at high Reynolds numbers, SIAM J. Sci. Comput.

26 (2005) 1894–1915.
[20] O.V. Vasilyev, D.A. Yuen, S. Paolucci, The solution of PDEs using wavelets, Comput. Phys. 11 (1997) 429–435.
[21] O.V. Vasilyev, Y.Y. Podladchikov, D.A. Yuen, Modeling of viscoelastic plume–lithosphere interaction using adaptive multilevel wavelet collocation

method, Geophys. J. Int. 147 (2001) 579–589.
[22] O.V. Vasilyev, Y.Y. Podladchikov, D.A. Yuen, Modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method,

Geophys. Res. Lett. 25 (1998) 3239–3242.
[23] W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3 (1996) 186–200.
[24] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29 (1998) 511–546.
[25] A. Grossmann, J. Morlet, Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984) 723–736.
[26] F. Marino, V. Piuri, E. Swartzlander, A parallel implementation of the 2-d discrete wavelet transform without interprocessor communications, IEEE

Trans. Signal Process. 47 (1999) 3179–3184.
[27] O. Nielsen, M. Hegland, Parallel performance of fast wavelet transforms, Int. J. High Speed Comput. 11 (2000) 55–74.
[28] P. Gonzalez, J. Cabaleiro, T. Pena, Parallel computation of wavelet transforms using the lifting scheme, J. Supercomput. 18 (2001) 141–152.
[29] R. Kutil, A. Uhl, Parallel adaptive wavelet analysis, Future Gener. Comput. Syst. 18 (2001) 97–106.
[30] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, F. Tirado, Parallel implementation of the 2d discrete wavelet transform on graphics processing units: filter

bank versus lifting, IEEE Trans. Parallel Distrib. Syst. 19 (2008) 299–310.
[31] A. Garcia, H. Shen, GPU-based 3d wavelet reconstruction with tileboarding, in: 13th Pacific Conference on Computer Graphics and Applications, Macao,

Peoples Republic of China, Oct. 12–14, 2005, Vis. Comput. 21 (2005) 755–763.
[32] M. Strengert, M. Magallon, D. Weiskopf, S. Guthe, T. Ertl, Large volume visualization of compressed time-dependent datasets on GPU clusters, in:

Symposium on Parallel Graphics and Visualization, Grenoble, France, Jun. 2004, Parallel Comput. 31 (2005) 205–219.
[33] V. Galiano, O. Lopez, M.P. Malumbres, H. Migallon, Parallel strategies for 2d discrete wavelet transform in shared memory systems and GPUs, J. Super-

comput. 64 (2013) 4–16.
[34] D. Rossinelli, B. Hejazialhosseini, D.G. Spampinato, P. Koumoutsakos, Multicore/multi-GPU accelerated simulations of multiphase compressible flows

using wavelet adapted grids, SIAM J. Sci. Comput. 33 (2011) 512–540.
[35] S. Paolucci, Z.J. Zikoski, T. Grenga, WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part II. The parallel algorithm,

J. Comput. Phys. 272 (2014) 842–864.
[36] A. Nejadmalayeri, Hierarchical multiscale adaptive variable fidelity wavelet-based turbulence modeling with Lagrangian spatially variable thresholding,

Ph.D. thesis, University of Colorado Boulder, Boulder, CO, 2012.
[37] S. Reckinger, Personal communication, 2012.
[38] W.J. van der Laan, A.C. Jalba, J.B.T.M. Roerdink, Accelerating wavelet lifting on graphics hardware using cuda, IEEE Trans. Parallel Distrib. Syst. 22 (2011)

132–146.
[39] V. Galiano, O. Lopez-Granado, M.P. Malumbres, L.A. Drummond, H. Migallon, GPU-based 3d lower tree wavelet video encoder, EURASIP J. Adv. Signal

Process. (2013).
[40] J. Franco, G. Bernabe, J. Fernandez, M. Ujaldon, The 2d wavelet transform on emerging architectures: GPUs and multicores, J. Real-Time Image Process.

7 (2012) 145–152.
[41] D.L. Donoho, Interpolating wavelet transforms, Technical Report 408, Department of Statistics, Stanford University, 1992.
[42] J. Liandrat, P. Tchamitchian, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, Technical report, NASA Contractor

Report 187480, ICASE Report 90-83, NASA Langley Research Center, Hampton, VA 23665-5225, 1990.
[43] A. Harten, Adaptive multiresolution schemes for shock computations, J. Comput. Phys. 115 (1994) 319–338.
[44] E. Boman, K. Devine, L.A. Fisk, R. Heaphy, B. Hendrickson, V. Leung, C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, Zoltan home page, http://www.

cs.sandia.gov/Zoltan, 1999.
[45] E. Boman, K. Devine, L.A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, J. Teresco, Zoltan 3.0: parallel partitioning,

load-balancing, and data management services; Developer’s guide, Tech. Report SAND2007-4749W, Sandia National Laboratories, Albuquerque, NM,
2007, http://www.cs.sandia.gov/Zoltan/dev_html/dev.html.

[46] E. Boman, K. Devine, L.A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, J. Teresco, Zoltan 3.0: parallel partitioning,
load-balancing, and data management services; User’s guide, Tech. Report SAND2007-4748W, Sandia National Laboratories, Albuquerque, NM, 2007,
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html.

[47] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, L. Riesen, Hypergraph-based dynamic load balancing for adaptive scientific computations, in:
Proc. of 21st International Parallel and Distributed Processing Symposium, IPDPS’07, IEEE, 2007, Best Algorithms Paper Award.

[48] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4
(2002) 90–97.

[49] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, U.V. Catalyurek, Parallel Hypergraph Partitioning for Scientific Computing, IEEE, 2006.
[50] M. Farge, K. Schneider, N.K.-R. Kevlahan, Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal

wavelet basis, Phys. Fluids 11 (1999) 2187–2201.
[51] D.E. Goldstein, O.V. Vasilyev, Stochastic coherent adaptive large eddy simulation method, Phys. Fluids 16 (2004) 2497–2513.
[52] E. Brown-Dymkoski, N. Kasimov, O.V. Vasilyev, A characteristic based volume penalization method for general evolution problems applied to compress-

ible viscous flows, J. Comput. Phys. 262 (2014) 344–357.
[53] T. Lundgren, Linearly forced isotropic turbulence, in: Annual Research Briefs, 2003, pp. 461–473.
[54] C. Rosales, C. Meneveau, Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties,

Phys. Fluids 17 (2005) 1–8.
[55] G. De Stefano, O.V. Vasilyev, Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence, J. Fluid Mech. 646 (2010) 453–470.

http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6E656A61646D616C61796572692D6574616C3A3230313362s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6E656A61646D616C61796572692D6574616C3A3230313362s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6E656A61646D616C61796572692D6574616C3A32303134s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6E656A61646D616C61796572692D6574616C3A32303134s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D70616F6C756363693A31393937s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib7265636B696E6765722D6C6976657363752D766173696C7965763A32303130s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib7265636B696E6765722D766173696C7965762D666F782D6B656D7065723A32303132s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib726567656C652D6B6173736F792D766173696C7965763A32303132s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib726567656C652D6B6173736F792D766173696C7965763A32303132s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D6B65766C6168616E3A32303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D6B65766C6168616E3A32303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6B65766C6168616E2D766173696C7965763A32303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6B65766C6168616E2D766173696C7965763A32303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D7975656E2D70616F6C756363693A31393937s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D706F646C61646368696B6F762D7975656E3A32303031s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D706F646C61646368696B6F762D7975656E3A32303031s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D706F646C61646368696B6F762D7975656E3A31393938s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib766173696C7965762D706F646C61646368696B6F762D7975656E3A31393938s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5377656C64656E735F31393936s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5377656C64656E735F31393938s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib474D3834s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030303833323137353030303333s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030303833323137353030303333s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030313635393834343030303034s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030313636393430303030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030313731313234373030303130s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323532353533303030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323532353533303030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323331383537343030303238s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323331383537343030303238s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323239353631333030303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323239353631333030303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030333136343038353030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030333136343038353030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323839393733353030303033s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323839393733353030303033s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib70616F6C756363692D6574616C3A3230313462s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib70616F6C756363692D6574616C3A3230313462s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6E656A61646D616C61796572693A32303132s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6E656A61646D616C61796572693A32303132s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323834343233393030303133s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030323834343233393030303133s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030333136343637313030303031s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030333136343637313030303031s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030333037353339313030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4953493A303030333037353339313030303032s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib646F6E6F686F3A31393932s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6C69616E647261742D746368616D6974636869616E3A31393930s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6C69616E647261742D746368616D6974636869616E3A31393930s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib68617274656E3A31393934s1
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan/dev_html/dev.html
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5A6F6C74616E5061724879705265706172743037s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5A6F6C74616E5061724879705265706172743037s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5A6F6C74616E4F7665727669657741727469636C65s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5A6F6C74616E4F7665727669657741727469636C65s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib5A6F6C74616E4879706572677261706849504450533036s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4356535F504F465F31393939s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4356535F504F465F31393939s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib504F465F32303034s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib62726F776E2D64796D6B6F736B692D6574616C3A32303134s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib62726F776E2D64796D6B6F736B692D6574616C3A32303134s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib6C756E646772656E3A32303033s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib726F73616C65732D6D656E65766561753A32303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib726F73616C65732D6D656E65766561753A32303035s1
http://refhub.elsevier.com/S0021-9991(15)00362-9/bib4A464D5F32303130s1

	Parallel adaptive wavelet collocation method for PDEs
	1 Introduction
	2 Wavelet transform
	3 Asynchronous parallel second-generation wavelet transform
	4 Data structure
	5 Grid adaptation
	6 Calculation of derivatives on the adapted grid
	7 Data migration
	8 Domain partitioning and dynamic load balancing
	9 Parallel AWCM
	10 Scalability studies
	11 Conclusions
	Acknowledgements
	References

