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A new general framework for an Adaptive-Anisotropic Wavelet Collocation Method 
(A-AWCM) for the solution of partial differential equations is developed. This proposed 
framework addresses two major shortcomings of existing wavelet-based adaptive numerical 
methodologies, namely the reliance on a rectangular domain and the “curse of anisotropy”, 
i.e. drastic over-resolution of sheet- and filament-like features arising from the inability of 
the wavelet refinement mechanism to distinguish highly correlated directional information 
in the solution. The A-AWCM addresses both of these challenges by incorporating 
coordinate transforms into the Adaptive Wavelet Collocation Method for the solution of 
PDEs. The resulting integrated framework leverages the advantages of both the curvilinear 
anisotropic meshes and wavelet-based adaptive refinement in a complimentary fashion, 
resulting in greatly reduced cost of resolution for anisotropic features. The proposed 
Adaptive-Anisotropic Wavelet Collocation Method retains the a priori error control of the 
solution and fully automated mesh refinement, while offering new abilities through the 
flexible mesh geometry, including body-fitting. The new A-AWCM is demonstrated for a 
variety of cases, including parabolic diffusion, acoustic scattering, and unsteady external 
flow.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The adaptive wavelet collocation method (AWCM) [1] is a powerful tool for computational solutions of parabolic [2], 
elliptic [3], and hyperbolic [4] partial differential equations, as it allows highly efficient use of memory resources and 
rigorous control of discretization error. It dynamically adapts the grid using a wavelet basis decomposition to track local-
ized structures in the solution, exploiting spatio-temporal intermittency to optimize the total grid point count. As a result, 
AWCM has been used to effectively analyze many physical problems, including turbulence [5–7], reacting flows [8,9], and 
geophysics [10].

There are two major deficiencies inherent to AWCM, however, that have limited its application: 1) the “curse of 
anisotropy,” whereby isotropic wavelet refinement is unable to introduce a spatially varying aspect ratio of the mesh el-
ements and 2) the reliance on a rectangular domain [11]. The first limitation is related to the adaptive mechanism used by 
AWCM to analyze and refine the mesh, which is isotropic in nature. It is unable to distinguish and exploit highly correlated 
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Fig. 1. The adaptive mesh for the unsteady flow around a cylinder imposed by volume penalization. Isotropic refinement via AWCM has created a very large 
number of points around the immersed surface and boundary layer.

directions in a variable field where the solution is changing less rapidly than in other directions. Such features, like flame 
sheets or interfaces, have anisotropic resolution requirements which permit coarser tangential discretization. Wavelet-based 
adaptation is unable to efficiently exploit these highly correlated and oriented structures. With the associated isotropic adap-
tation mechanism, increased refinement for gradients in a single direction triggers refinement in all directions irrespective 
of the need. These filament- and sheet-like structures consequentially become over-resolved, severely degrading the benefits 
of dynamic adaptivity.

The second limitation is that the use of efficient tensorial wavelets, such as a second generation wavelet basis [12], 
imposes the requirement for a rectilinear grid. This impedes the efficient application of AWCM towards problems involving 
complex geometries. In these cases, volume penalization methods have been employed to impose arbitrarily-shaped bound-
aries [13–16]. They are simulated through additional forcing terms on the continuous governing equations in nonphysical 
regions of the computational domain. While this approach circumvents the limitation of the grid topology, it comes with 
severe drawbacks, among which the most serious are a) approximate nature of boundary conditions, even with guaranteed a 
priori prescribed accuracy convergence, b) higher surface-normal resolution requirements, c) increased computational stiff-
ness related to penalization terms, and d) additional computational cost associated with the penalization points within the 
nonphysical volume.

While alternative immersed boundary methods might bypass some of the difficulties associated with volume penaliza-
tion, all of these approaches ultimately introduce surfaces into the AWCM domain, and therefore suffer from the previously 
mentioned costs associated with isotropic refinement. Fig. 1 shows a cross-section from the unsteady flow around a cylinder 
modeled with the characteristic-based volume penalization method [15]. Due to the solid interface and the high velocity 
gradient in the boundary layer, the mesh has adapted to the highest permitted level. While the resolution is appropriate 
in the wall-normal direction, it is excessive in the tangential. Refinement in this manner means that the number of points 
required to capture surface effects increases with the inverse square of the characteristic normal lengthscale, δN (the vis-
cous boundary layer thickness) and the surface area S , resulting in the computational cost scaling as O  

(
S/δ2

N

)
in three 

dimensions. This quickly becomes prohibitive in many applications, such as high Reynolds number wall-resolved turbulent 
regimes or geometries with a large surface area.

Structured curvilinear meshes reconcile this need for anisotropic refinement with the topological limitations of adaptive 
wavelet grids. A flexible physical space mesh can be mapped to a regular rectilinear geometry in a computational space 
where AWCM can be implemented. For the purposes of this paper, the mesh is defined as the geometry of the physical-space 
discretization, while the grid is the structured, rectilinear assembly of collocation points defining the discrete topology and 
the computational space.

The use of curvilinear coordinate systems to leverage more optimal discretization is a well established approach for 
solving PDEs [e.g., 17,18] on nonadaptive grids. Features that are stationary and spatially straightforward to predict, such 
as boundary layers, benefit from the flexibility of curvilinear mappings to locally and anisotropically control resolution. 
Additionally, enabling body fitted meshes obviates the need for immersed boundary approaches in many cases.

While it may seem that the use of static anisotropic structured meshes is antithetical to the automated refinement of 
AWCM, their hybrid implementation is complimentary. Curvilinear meshes provide a continuous mapping that defines local 
anisotropy and yields a more optimal discretization. On the other hand, a rectangular computational space permits the na-
tive implementation of AWCM, which locally refines the grid based on structures in the transformed solution, guaranteeing 
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the accuracy of the solution and quality of the computational grid automatically and a priori. This property of solution as-
surance, irrespective of mesh geometry, is a distinguishing feature of A-AWCM. The coordinate transform then benefits the 
discretization by reducing the computational cost. Well constructed curvilinear mappings normalize anisotropy in the trans-
formed field variables, permitting more efficient wavelet-based compression into a sparse data representation. The mapping 
fields themselves are maintained on the grid as additional variables so that AWCM ensures sufficient support to maintain 
transform operations at a consistent accuracy and, thus, the mesh quality.

In this paper, the general framework for an integrated Adaptive-Anisotropic Wavelet Collocation Method (A-AWCM) is 
described using curvilinear coordinates. Advantages over isotropic and static mesh optimization are demonstrated by imple-
menting structured curvilinear meshes based on explicit analytic mappings. This approach, however, is presented as a fully 
general framework that can be implemented with a variety of meshing approaches, including the use of automated elliptic 
mesh generation [e.g., 17,19–22] as well as spatio-temporally evolving geometries [e.g., 23]. Assurance of consistent global 
accuracy through the dynamic local refinement of AWCM permits especially flexible use of redistribution and mapping 
algorithms. Even though the proposed framework is general and highly flexible, the development of automated meshing 
and anisotropic refinement based on the solution, statistical quantities of interest, and/or for geometries with moving and 
deformable boundaries is outside of the scope of this paper and left as the subject of future research.

2. Adaptive wavelet collocation mesh refinement

The adaptive wavelet collocation method is a generalized approach for compressing discrete data fields into sparse grid 
representations. It uses multiresolution analysis to dynamically adapt and refine local resolution to form grids that are 
suitable for the time-accurate solutions of PDEs.

A spatially dependent field, u(x), is discretized onto a set of dyadic, nested grids and decomposed as

u(x) =
∑
l∈L0

c0
l φ

0
l (x) +

jmax∑
j=1

2n−1∑
μ=1

∑
k∈K

dμ, j
k ψ

μ, j
k (x), (1)

where c0
l and dμ, j

k are the respective coefficients on scaling functions φ0
l (x) and wavelet basis function, ψμ, j

k (x). Multidi-
mensional wavelet families, μ, arise from the tensorial product of one-dimensional wavelet and scaling functions, as defined 
on alternating grid points in each axis-major direction [1]. The resolution levels are identified by level j, where the higher 
are more refined. Each wavelet has localized wavenumber and spatial support. It is uniquely identified and corresponds 
one-to-one with the grid points given by k and l.

The sparse grid is created by filtering out collocation points whose wavelet coefficient falls below a prescribed threshold. 
The coefficients are effectively set to zero, and the corresponding points are discarded. The resulting approximation, denoted 
u(x)≥ , is given by a subset of the original wavelet basis,

u(x)≥ =
∑
l∈L0

c0
l φ

0
l (x) +

jmax∑
j=1

2n−1∑
μ=1

∑
k∈K∣∣∣dμ, j

k

∣∣∣≥ε‖u‖

dμ, j
k ψ

μ, j
k (x), (2)

consisting of the dominant information containing modes. Typically, a relative filter threshold ε is used together with the 
absolute thresholding scale ‖u‖. This characteristic amplitude scale is often taken as either the L2- or L∞-norm of the field 
u or a derived quantity of interest, such as the Reynolds averaged fluctuating component, u − u, for turbulent flows. The 
reconstruction error incurred through the wavelet filtering operation can be shown to be [24]∥∥u≥ − u

∥∥ ≤ O (ε ‖u‖). (3)

For a sparse dataset, often a weighted norm of u(x) is taken as the characteristic variational scale, since a strict L2 norm 
across discrete sample points can become locally biased by local grid refinement and therefore unrepresentative. In cases 
where multiple variable fields are adapted upon, u(x) = {u1(x), u2(x), . . .}, the grid is taken as the union of the grids filtered 
for each component where the wavelet thresholds, ε = {ε1(x), ε2(x), . . .}, can be prescribed independently for each variable 
of interest.

As the solution evolves, it is necessary to account for wavelets that might become significant in the next iteration or 
time step. Therefore, the filtered grid is augmented by nearest neighbors to every active point on the current, next higher 
and next coarser resolution levels. This is justified by the finite propagation rate of information across the grid, which 
is determined by the type of PDE and iterative or time integration method. Successively filtering and augmenting steps 
adaptively refine upon and dynamically track local structures in the signal.

The interpolating-lifted wavelet transform at the core of AWCM is recursively computed for one dimension by

d j
k = 1

2

(
c j+1

2k+1 − P j
k

)
, (4)

c j = c j+1 + P̃ j+1
, (5)
k 2k k
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where c j+1
2k+1 is a discrete sample of u(x) at the j + 1 (next finer) resolution level, d j

k are the details at j level of resolution, 
P j

k is the corresponding interpolant taken from coarser nodes on the j level, and P̃ j
k is the interpolant from the details on 

the finer j + 1 level of resolution. Lagrange polynomial interpolants with finite stencils are used to calculate P j
k and P̃ j

k . For 
many implementations it is common to omit the update step (5), especially for distributed memory solvers [25]. The inverse 
transform is computed simply by applying the algebraic inverse of (4)–(5), starting from the coarsest resolution level. As 
new nodes are added during mesh adaptation, the solution is interpolated to them by explicitly including those collocation 
points with coefficient dμ, j

k = 0 and performing the inverse transform operation. Finite differencing is used to calculate 
derivative approximations, for which wavelet interpolation provides stencil support for collocation points not included in 
the sparse, filtered grid in (2).

Multidimensional wavelets are the tensorial product of their 1D counterparts, therefore the multidimensional transform 
is taken by consecutive application of (4)–(5) across every direction, and recursively for each resolution level. While the 
wavelet basis functions for some multidimensional families, μ, are anisotropic in a strict sense, they cannot be exploited for 
anisotropic refinement as they result from the lifting transform itself. The families are a direct consequence of the discrete 
location on the collocation grid; furthermore, the shapes align with the rectilinear axes. Since AWCM tightly integrates mesh 
adaptation, interpolation, and the computational environment, attempting to impose an artificial anisotropic refinement 
method externally would introduce excessive artifacts by violating the consistency of the wavelet-space representation. 
Restricting refinement is equivalent to discarding significant information-carrying modes from the perspective of the wavelet 
filter, (2). This discrete damping is unlike the action of the filter thresholding in that its effects are unbounded. In such a 
case, summation across the wavelet basis would no longer form a valid approximation for the original signal u(x) at the 
a priori threshold level. Even if such additional processing of the grid were tenable, the geometry only permits anisotropic 
control in the major axis directions.

Despite this shortcoming, tensorial lifted-interpolated wavelets are highly desirable for the solution of PDEs due to their 
simplicity and computational efficiency, as the transform (4)–(5) can be accomplished in O (N) operations.

3. Adaptive-Anisotropic Wavelet Collocation Method framework for curvilinear meshes

The Adaptive-Anisotropic Wavelet Collocation Method circumvents the shortcomings of the wavelet transform by employ-
ing the general framework for a harmonic mesh map [e.g., 26], which maps the physical domain �p(x) to the computational 
domain �c(ξ) (both assumed to be Riemannian manifolds):

ξ(x) : �p → �c, ξ = (ξ1, ξ2, ξ3),x = (x1, x2, x3). (6)

This allows for flexibility of the mesh geometry and more optimal point distribution by partially decoupling the physical 
mesh from the natural coordinate system implied by the rectilinear computational grid. Spatially varying cell aspect ratios 
and orientation, including body fitting, can then be prescribed within the physical domain, �p , based on the problem being 
solved. This mesh is mapped back onto a rectilinear grid, which is suitable for the discrete operators, including the wavelet 
transform and derivative approximations.

Assuming that the final mesh is well conditioned and of sufficient quality to support the discrete PDE solution, this 
approach is agnostic to the methods that are used to construct it. Explicit, analytic curvilinear mappings are sufficient for 
the theoretical consideration of this general framework, though their use is limited for applied problems of engineering 
interest. In such cases, more advanced mappings and automated generation methods, either continuous or discrete, would 
prove more useful.

Transform between the Cartesian physical space basis, {e1,e2,e3}, and the computational curvilinear basis, {b1,b2,b3}, 
proceeds as

Ji jei = b j, (7)

where J is the Jacobian matrix,

Ji j = ∂xi

∂ξ j
, (8)

and summation is implied across indices.
Given that the computational grid is rectilinear, the unmodified AWCM approach is directly implemented, where it adapts 

and refines the grid upon the transformed solution fields u(ξ ). The inverse coordinate mappings x(ξ), which define the 
physical mesh geometry and support the discrete version of (7), are likewise tracked. The Jacobian matrix Ji j is therefore 
readily computed from these mappings using the integrated finite difference framework. For the construction of PDE terms, 
which are naturally prescribed in physical space, computational derivative approximations are calculated as

∂

∂x j
= J −1

ji

∂

∂ξi
, (9)

where J −1 is the inverse Jacobian matrix.
ji
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Adapting upon the coordinate mappings, x(ξ ), with a low, independent wavelet threshold, εx , ensures consistent accuracy 
of transformation operations, and automatically controls the quality of the sparse representation of the mesh. Spurious 
artifacts can otherwise arise if the local accuracy of the discrete Jacobian matrix approximation (8) deteriorates as a result 
of grid coarsening.

On the transformed solution, u(ξ ), the wavelet filter maintains a priori accuracy of the L2- and L∞-norm in the usual 
manner following (3). Given that the transform of u is purely spatial, the corresponding L∞-norms are equal,∥∥u(ξ) − u(ξ)≥

∥∥∞ = ∥∥u(x) − u(x)≥
∥∥∞ . (10)

Furthermore, the L2-norms can be shown to be equivalent, as 
∫
�p

f (x)dx = ∫
�c

f (x(ξ ))J (ξ)dξ . Therefore, error convergence 
of the physical space solution, u(x), which is of primary interest, is likewise guaranteed by (3).

Local anisotropic refinement and unidirectional stretching of the physical space mesh is introduced by adjusting the 
location and distribution of points through the definition of the coordinate mappings, x(ξ ). This compliments wavelet-based 
adaptation, which adjusts the local mesh point density but preserves the underlying geometry and local aspect ratio of the 
physical mesh. With properly constructed meshes, highly correlated gradients in physical space become normalized once 
transformed to computational space. This results in more efficient isotropic refinement through AWCM, a smaller memory 
footprint, and a more optimal use of computational resources. However, since accuracy convergence through AWCM is 
unified in both spaces, �p and �c , the solution fidelity is independent of the anisotropic refinement. With this general 
decoupling of the accuracy from the mesh geometry, A-AWCM is more robust and flexible than nonadaptive structured 
meshes. Note that this property is contingent upon a well conditioned geometry that is capable of numerically supporting 
the transform operations. High skewness, degenerate Jacobian matrix (J → 0), and non-smooth mesh lines can cause a 
degradation of the transform operations (7) that can not be compensated for by wavelet grid refinement. One consequence 
of solution/geometry independence is that it essentially eliminates the need for traditional a posteriori mesh convergence 
studies to guarantee the solution quality. Furthermore, it provides enormous robustness and flexibility for moving mesh 
[e.g., 23] and mesh redistribution [e.g., 27] methods for time-marching integration schemes, as AWCM will preserve the 
solution if the mesh geometry becomes temporarily sub-optimal.

In general, well constructed mapping fields, x(ξ ), can be provided by a variety of means. In the simplest configura-
tions and with a priori understanding of the solution field, explicit algebraic functions can impose body fitting and provide 
some anisotropic benefit to the computational cost. More complex problem geometry and more optimal mesh distribu-
tion are typically achieved through automated methods, including the solution of elliptic or hyperbolic PDEs [17,21,22]. 
Many approaches involve dynamic redistribution and moving meshes [23], either as a cost optimization or to capture mov-
ing/deformable geometry. Development of automatic meshing, mesh redistribution, and anisotropic refinement methods that 
exploit the particular computational environment and take advantage of A-AWCM are a topic of future research.

Each time the grid is dynamically refined through the wavelet mechanism, the mesh must be updated with the phys-
ical space positions of the new points in the discrete mapping. Added nodes are treated in one of two ways, depending 
on how the mesh is explicitly defined. For meshes that are exactly defined at every potential grid point, either through 
the deterministic solution of an equation (e.g. algebraic or PDE) or some other procedural method, the mapping must be 
consistently prescribed for every point that is introduced. Fully discrete maps must have some mechanism for updating grid 
points, such as a multiresolution nested definition or the ability to be refined at will. For some methods, this can involve a 
potentially expensive global/iterative solution that can add substantial cost to the refinement. Alternatively, the mesh can be 
strictly defined by the continuous, static wavelet representation x0,≥ of any arbitrary mapping, x0, filtered to a fixed subset 
of nonzero wavelet basis functions K0 ⊂ K. From this, the value of the map (and thus the physical coordinate) of a new 
points at any location in �p is interpolated from x0,≥ using the wavelet transform. The subset, K0, of wavelet functions 
at grid points and the coefficient values are determined by an initial mesh generation step, and retained throughout the 
course of solution. For static geometries, this has the ability to amortize the cost of highly sophisticated generation methods 
and to ensure that grid refinement will maintain a piecewise-smooth mesh suitable for the polynomial-based numerical 
framework. It should be noted that the adaptive wavelet filter is not positive preserving, so care must be taken to ensure 
that the continuous field x≥ is monotonic to within a tolerance specified by the finest mesh resolution. This can be enforced 
by AWCM in the usual manner.

4. Numerical results

The A-AWCM framework is fully general for the solution of elliptic, parabolic and hyperbolic PDEs. In order to demon-
strate the central principles of the method, it has been applied and examined here for parabolic and hyperbolically dominant 
cases. Corresponding mesh geometry includes body fitting and the introduction of local anisotropy to match general trends 
in the solution. This is shown to optimize dynamically adaptive meshes while retaining the fidelity control and error con-
vergence inherent to AWCM.

While sophisticated meshing techniques can be employed, analytic mappings are used in these cases for simplicity and 
to highlight the general framework and demonstrate the concepts of A-AWCM, namely the implementation of spatially inho-
mogeneous anisotropic meshes, h-refinement in arbitrary geometries, and rigorous error control. Development of automated 
meshing techniques that exploit this framework is left as a topic for future research.
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The cases considered here are parabolic diffusion, acoustic scattering, and unsteady external compressible viscous flow. 
While AWCM, and by extension A-AWCM, can be implemented with arbitrary order wavelets and finite-differences [3], all 
of the results shown here use 4-th order for both.

4.1. Parabolic diffusion

Time-accurate parabolic diffusion is examined on a 2D rectangular domain, defined by the physical bounds x ∈ [0, π ] ×
[0, π ]. A nonhomogeneous profile of the diffusive scalar, u, is imposed along one edge, generating a steep initial gradient 
that drives diffusion into the domain.

The parabolic diffusion equation is defined in physical space as

∂u

∂t
= ∂

∂x j

(
κ

∂u

∂x j

)
, (11)

where the diffusion coefficient used here is constant, κ = 1. In order to be solved, it is transformed into the computational 
coordinates as

∂u

∂t
= J −1

ji

∂

∂ξi

(
κJ−1

ji

∂u

∂ξi

)
. (12)

It should be noted that this transform is fully procedural and can be easily abstracted, minimizing the cost of implementa-
tion in existing codebases.

The boundary conditions are given as

∂u

∂x

∣∣∣∣
x=0,π

= 0, (13)

u|y=0 = 0, (14)

u|y=π = f (x), (15)

where the Cartesian coordinates x = (x, y) will be used interchangeably with x = (x1, x2) for simplicity of the discussion. 
This convention is used hereafter.

A fifth order polynomial is specified for f (x). The initial condition is defined by the series

u|t=0 =
∑

m

[
Am

sinh (my)

sinh (mπ)
+

∑
n

Cm,n sin (ny)

]
cos (mx) , (16)

where the expansion coefficients Am , and Cm,n are computed to match the boundary conditions, (13)–(15), and an initial 
steep exponential decay in the y direction. This provides a smooth approximation of an impulsive perturbation at the y = π
edge, generating a steep gradient in the transported scalar.

The grid is given by a base mesh of N = [5 × 5] points, with jmax = 10 levels of resolution, yielding equivalent, non-
adaptive resolution of Nmax = [2049 × 2049]. The physical mesh is intentionally non-tensorial and introduces skewness to 
demonstrate the generality of the method. An algebraic curvilinear, two-dimensional coordinate mapping, x = {x, y}, define 
the mesh across the computational domain ξ = {ξ, η} ∈ [0, π ] × [0, π ] as

x = φ

[−1.9

π2
ξ3 + 2.85

π
ξ2 − 0.95ξ

]
+ (1 − φ) ξ, (17)

y = −0.65

π2
η3 + 0.45

π
η2 + 1.1η, (18)

where a blending function controls the local expression of x-direction anisotropic stretching,

φ = −2

π3
η3 + 3

π2
η2. (19)

The full grid at the j = 3 resolution level is illustrated in Fig. 2. This mesh has been stretched in the y-direction to more 
efficiently resolve the steep initial gradient that is formed on the y = π edge at early timesteps. The mild stretching in the 
x-direction near the perturbed edge captures some of the variability in the boundary profile, f (x). In comparison, a standard 
isotropic wavelet grid in Fig. 3 shows increased refinement in the corners resulting from the initial temperature field and 
the one-sided interpolating stencils near the grid edges.

It should be noted that this particular mesh has been generated to approximate general trends in the solution, but 
has not been intentionally or optimally constructed to capture the functional form of the initial conditions, as wavelet 
refinement provides any additional refinement and automatically filters out over-resolved regions.

The error convergence at t = 0.05 is shown in Fig. 4. As with the standard rectilinear implementation, both the physical 
space L2- and L∞-norm are well controlled and scale with the adaptive wavelet threshold parameter as O (ε). Furthermore, 
for standard rectilinear AWCM the total number of grid points, N , scales with the wavelet threshold as O (N−p/n), where 
p is the order of the wavelets and spatial derivative operator and n is dimensionality of the problem [3].
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Fig. 2. The non-adapted mesh at the j = 3 resolution level used to solve a parabolic diffusion equation across a square plate. Anisotropic refinement is 
prescribed on the top boundary to account for steep gradients at early timesteps.

Fig. 3. The mesh as adapted upon the initial conditions of u with a steep decay from a quintic polynomial BC. Using the same wavelet threshold, ε = 10−3, 
the fully rectilinear mesh (a) uses both a greater number of total points and a higher resolution level than the more optimal curvilinear mesh geometry (b). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Both L2- and L∞-norm errors of the physical-space numerical solution converge linearly with the wavelet threshold parameter, ε. As shown by 
Vasilyev and Kevlahan [3] for 4-th order wavelets and finite differences, the error and threshold ε scale with the total number of grid points as O (N−2).
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4.2. Acoustic scattering

For an examination of hyperbolically-dominant PDEs, consider the acoustic scattering problem of Tam and Hardin [28]. 
A low amplitude pulse reflects off of the surface of a cylinder, and is scattered into the far field. Here the cylinder is modeled 
using a body-fitted O-type mesh with appropriate BCs, obviating an immersed boundary approach.

The fully compressible Navier–Stokes equations

∂ρ

∂t
= −∂ρu j

∂x j
, (20)

∂ρui

∂t
= − ∂

∂x j

(
ρuiu j + Pδi j − τ i j

)
, (21)

∂ρe

∂t
= − ∂

∂x j

(
ρu j(e + P ) − uiτ i j + q j

)
(22)

are transformed and solved in the curvilinear coordinates in a rectangular computational space, �c , as before.
The energy for the acoustic signal is provided by a small, Gaussian perturbation in the initial condition,

u′ = p′ = 10−3 × 2− (x−c)2+y2

0.04 , (23)

superimposed on a quiescent field, centered at c = 4. Nonreflective boundary conditions in the far field are simulated by 
a characteristic-based buffer region [29], where convective forcing is aligned with the radial direction for computational 
efficiency.

A high acoustic Reynolds number of Rea = 105, based on the cylinder diameter and far field fluid properties, is used to 
approximate the Euler equations and match the analytic solution given for an inviscid fluid [28]. Given the finite Reynolds 
number, the BCs on the cylinder are prescribed to be no-slip and isothermal, resulting in a minute boundary layer forming 
during the transient interaction between the acoustic pulse and the solid surface. Correspondingly, the mesh is anisotropi-
cally refined in the radial direction by the function

r = 1 +
tanh

(
3
2

(
ξ−ξmin

ξmax−ξmin
− 1

))
tanh

(
3
2

) (24)

in order to efficiently resolve the steep gradient that will be generated in the wall normal direction. At the cylinder surface, 
the mesh takes upon a high aspect ratio of A ≈ 4 : 1 in physical space, with the first gridpoint at a distance of r/D ≈ 0.00014
at the highest resolution level. Mesh lines are evenly spaced in the azimuthal direction. The computational grid at maximum 
resolution is equivalent to Nmax = [3073 × 5632], and utilizes a limit of 10 levels of adaptive refinement, sufficient to fully 
resolve all simulations without artificial truncation. Fig. 5 shows the mesh at the j = 3 level of resolution. As with the 
previous problem, only very general and conservative considerations have been taken in construction of this mesh. The 
use of AWCM ensures that regions of over- or under-resolution will be refined accordingly to optimize the grid for the 
underlying geometry.

The reflection of the acoustic pulse is shown in Fig. 6 for a threshold of ε = 5 × 10−3. In the locations of high strain 
rate at the cylinder surface, the mesh has refined to a high level, while remaining coarser at other surface regions. As an 
explicit Runge–Kutta method is used for time integration, the small resolved spatial scales severely, though temporarily, 
restrict the computational timestep, �t , in order to maintain stability in accordance with the CFL condition. This is limited 
to a relatively concise window in time when the acoustic pulse interacts with the cylinder.

The structure of the acoustic wave spans a large portion of the domain. In the far field, a greater number of levels 
of refinement are used to resolve the wave structure. Typically, structured O-type meshes yield non-uniform fidelity, as 
the mesh becomes stretched and enlarged as the radius increases, degrading the resolution power and spatial accuracy of 
derivative approximations. With A-AWCM, however, a uniform accuracy specified by the wavelet threshold, ε, is maintained 
at all radial locations, provided that there are sufficient adaptive levels, jmax, to support the necessary refinement. Fig. 6b 
shows an approximation of the local element size across the physical domain. Consistent physical resolution is provided 
for the wave structure that spans the entire radial distance. The physical mesh geometry, therefore, does not degrade the 
solution quality. This ability to maintain consistent spatial representation, and therefore globally constant fidelity, is unique 
to A-AWCM.

Furthermore, A-AWCM is able to exploit transients in the solution. Before and after the period where the main acoustic 
waves are actively interacting with the solid surface, the strain rate at the surface is negligible, and the mesh is refined 
only to a coarse level as shown in Fig. 7. The resulting timestep is then much larger, and only limited by the mesh spacing 
required to resolve the pulse in the far field.

The pressure at point x = (
√

2, 
√

2) is shown in Fig. 8. Both the initial wave and its reflections from the cylinder are 
visible. As the wavelet threshold is decreased, the error and spurious artifacts in the transient solution can be clearly seen 
to converge towards the analytic inviscid solution.
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Fig. 5. An O-type mesh is used to simulate acoustic scattering off of a solid cylinder. The mesh is shown with all gridlines at the j = 3 resolution level 
displayed. Stretching in the radial direction introduces anisotropy in the mesh at the surface of the cylinder in order to more efficiently resolve the boundary 
layer.

Fig. 6. The pressure field at ta/D = 4, when the acoustic wave is passing and reflecting off of the surface of the cylinder. The minuscule boundary layer is 
causing the grid to adapt to the j = 9 level with ε = 5 × 10−3. Examination of the approximate element area shows that uniform resolution is maintained 
through wavelet-based adaptation across the acoustic pulse, which spans from the cylinder to the far field, regardless of local stretching in the mesh 
geometry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. External flow

For unsteady, 2-D flow around a cylinder, the compressible Navier–Stokes equations (20)–(22) are solved for Re = 250
at subsonic Mach number Ma = 0.1, where the Reynolds number is based on the inflow velocity, cylinder diameter, and 
far-field fluid properties. In this configuration, the governing system of PDEs demonstrates both strong parabolic, hyperbolic, 
and convective effects. While the flow is still laminar at this Reynolds number, a well structured von-Kármán vortex street 
forms in the cylinder wake.

The computational grid has an equivalent finest resolution of Nmax = [640 × 384], employing 7 adaptive levels. In phys-
ical space, an O-type mesh is used, with azimuthal and radial distribution of mesh points following that of Beaudan and 
Moin [30]. A more conservative estimation of the wake region is prescribed to ensure that the vortex street is fully resolved. 
Wavelet-based adaptation compensates for the overly dense mesh geometry. The boundary layer is anisotropically refined 
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Fig. 7. The pressure field and adaptive mesh at ta/D = 3 (a) and ta/D = 5 (b). When the main pulse is not directly interacting with the cylinder, the grid 
locally coarsens, thereby relaxing the explicit time step through the CFL condition. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 8. Acoustic scattering measured at point x = (
√

2, 
√

2). The error and numerical artifacts in the reflected wave can clearly be seen to converge as ε
decreases. Correspondingly, the percentage of the total nodes retained in the adaptive grid at t = 4.0 is R = 0.9% and 1.3% for ε = 10−1, and 5 × 10−2, 
respectively, which were resolved using 8 resolution levels. Since the case where ε = 10−3, required 10 levels to be fully resolved, a direct comparison of 
the compression ratios is not possible.

using geometric cell growth starting from an aspect ratio of approximately 2.5 : 1 in the radial direction, with the first 
point from the surface placed at r/D ≈ 0.0032. The non-adaptive mesh at the j = 4 level is shown in Fig. 9. In order to 
capture important physical behavior in the solution, the wavelet filter is set to adapt upon momentum, vorticity and the 
magnitude of the strain rate tensor. Three simulations were run with the normalized wavelet threshold filter set to ranges 
across 10−3 ≤ ε ≤ 10−1.

Time-accurate lift and drag coefficients are shown in Fig. 10, and the statistical results are summarized in Table 1. For 
the most well refined case, where ε = 10−3, the average drag coefficient (C D ), RMS of the lift coefficient (CL,RM S ), and 
Strouhal number (St) for the shedding frequency agree well with established results [31,32]. At the higher threshold value 
of ε = 10−2, indicating discretization error of O (1%), these low-order statistics are reasonably approximated using only 5.1%
of the total grid points. At the highest threshold value, the solution is only very roughly approximated on the nearly coarse 
grid.

From Fig. 11b, the advantage of a body fitted mesh with A-AWCM is clearly visible. The resolution is not uniform along 
the surface, but rather tracks unsteadiness within the boundary layer and optimizing the number of points to resolve 
separately the stagnation and separation points, and near-wake bubble. There are only very limited regions where the 
highest resolution level has been reached, indicating that the solution is indeed captured at a numerical accuracy O (10−3)

without effects from the finite available resolution levels. Furthermore, AWCM exploits the near-surface intermittency of 
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Fig. 9. An O-type mesh following the distribution method of Beaudan and Moin [30] is used to resolve the unsteady wake and boundary layer for external 
flow past a cylinder. It is shown here with all gridlines at the j = 4 resolution level.

Fig. 10. Lift and drag forces calculated on the cylinder (ε = 10−3).

Table 1
Computed drag (C D ) and lift (CL,RM S ) statistics, Strouhal number (St) and percentage of adaptive points retained 
(R) for pseudo-incompressible flow around a cylinder at Re = 250 at various values of the wavelet threshold. The 
values were computed for 15 shedding cycles once the solution had reached statistically steady state.

ε C D CL,RM S St R
10−1 1.026 0.312 0.195 3.6%
10−2 1.265 0.495 0.201 5.1%
10−3 1.273 0.507 0.204 19.5%

the oscillating shear layer resulting from boundary layer separation. The anisotropically stretched elements on the surface 
reduce the number of refinement levels that are used to resolve much of the boundary layer.

As vortical structures are convected into the far-wake, increasingly higher resolution levels again compensate for the 
larger cells inherent to O-meshes, maintaining highly accurate spatial resolution. While the smallest physical lengthscales 
are typically found at the surface and in the near-wake, the curvilinear transformation effectively regularizes the regional 
scales in addition to providing anisotropy for the boundary layer. This allows AWCM to compensate for the underlying 
stretching and coarsening that occurs in the far-field of O-type meshes without the compounding costs of over-resolving 
the near region.
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Fig. 11. Vorticity field and the adaptive mesh for external flow. Dissipation of vortices in the wake causes decreased grid density farther from the cylinder. 
To maintain the accuracy of the transform operations, adaptation occurs upon the mesh mappings x(ξ), and is clearly seen in (a).

5. Conclusions

The general framework for A-AWCM leverages the advantages of both curvilinear mesh geometries and wavelet-based 
adaptive refinement. The use of a transformed coordinate system allows the simultaneous use of complex geometry 
meshes as well as efficient wavelet algorithms for the solution of parabolic, elliptic, and hyperbolic PDEs. Spatially vary-
ing anisotropic and complex geometries can therefore be introduced to more optimally discretize the domain for a given 
problem, thereby circumventing the deficiencies that accompany the isotropic refinement mechanism of AWCM. This per-
mits greatly reduced computational resources, especially with solutions that contain filament- and sheet-like structures that 
are often prohibitively expensive for isotropic refinement approaches. Furthermore, this enables AWCM to be used in a 
body-fitted context for solving applied problems.

Within this framework, many of the most attractive properties of AWCM have been preserved. The grid adapts to track 
structures in the solution and thereby exploits intermittency to greatly reduce the memory footprint. Fidelity of the physical 
space solution is rigorously controlled a priori through the wavelet threshold, ε, and error convergence is demonstrated 
for both the L2 and L∞ norms. Furthermore, the accuracy is maintained globally. The adaptive wavelet transform yields 
uniform spatial discretization in physical space regardless of the underlying mesh geometry, provided that the local mesh 
structure is well conditioned for transformation operations. This is a unique property of A-AWCM, and largely decouples the 
mesh geometry from the quality of the solution. The mesh therefore generally implicates only the computational cost and 
efficiency of the discretization.

While this method has been demonstrated on a series of problems with analytically created meshes, the framework 
itself is agnostic to the particular generation method. It allows for the use of more sophisticated and automated meshing 
and mesh redistribution approaches. A high degree of flexibility can be exercised with these methods since a consistent 
solution fidelity can be guaranteed through the adaptive wavelet mechanism. This implies an optimization of the grid for 
a given geometry by removing excess grid points in over-resolved regions. Advanced meshing methods that exploit the 
particularities of the integrated A-AWCM environment are topics of ongoing research.
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