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The ability of wavelet multi-resolution analysis to detect and track the energy-
containing motions that govern the dynamics of a fluid flow offers a unique
hierarchical framework for modelling and simulating turbulence. In this paper, the
role of the wavelet thresholding level in wavelet-based modelling and simulation of
turbulent flows is systematically examined. The thresholding level controls the relative
importance of resolved energetic structures and residual unresolved background flow
and, thus, the achieved turbulence resolution. A fully adaptive eddy capturing
approach is developed that allows variable-fidelity numerical simulations of turbulence
to be performed. The new method is based on wavelet filtering with time-varying
thresholding. The thresholding level automatically adapts to the desired turbulence
resolution during the simulation. The filtered governing equations supplemented
by a localized dynamic energy-based closure model are solved numerically using
the adaptive wavelet collocation method. The approach is successfully tested in
the numerical simulation of both linearly forced and freely decaying homogeneous
turbulence.
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1. Introduction
Recent advances in wavelet-based numerical methodologies for the solution of

partial differential equations, combined with the unique properties of wavelet analysis
to identify and isolate localized dynamically dominant flow structures unambiguously,
and to track them on adaptive computational meshes, make it feasible to develop
intelligent methods for turbulent flow simulation that tightly integrate numerics-
and physics-based modelling (Schneider & Vasilyev 2010). The centrepiece of this
approach is the existence of energetic coherent structures that govern the turbulent
flow dynamics across the full spectral range (Vincent & Meneguzzi 1991). The
integration of turbulence modelling with adaptive wavelet methods results in a
hierarchical approach in which coherent eddies are either totally or partially resolved
on self-adaptive computational grids, while possibly modelling the effect of unresolved
motions. The separation between resolved (more energetic) eddies and residual (less
energetic) flow is achieved by means of a nonlinear wavelet thresholding filter.
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The value of wavelet threshold controls the relative importance of resolved field
and residual background flow and, thus, the required turbulence resolution length scale
(Pope 2004).

By varying the thresholding level, a unified hierarchy of wavelet-based turbulence
models of different fidelity is obtained. The choice of a sufficiently small threshold for
wavelet filtering eliminates the need to do any modelling because the flow field that is
filtered out is not significant for the flow dynamics (Sagaut, Deck & Terracol 2006).
The resulting approach can be referred to as wavelet-based direct numerical simulation
(WDNS). When the threshold is based on the Donoho’s denoising procedure (Donoho
& Johnstone 1994), the resolved field can be interpreted as the coherent part of the
flow, where the residual field is presumed to be Gaussian white noise whose effect
was shown to be dynamically insignificant (Goldstein & Vasilyev 2004; Goldstein,
Vasilyev & Kevlahan 2005). The corresponding approach has come to be known as
coherent vortex simulation (CVS) (Farge, Schneider & Kevlahan 1999). Finally, for
higher filtering thresholds, the influence of the residual field on the evolution of the
resolved flow cannot be ignored and must be modelled, resulting in the stochastic
coherent adaptive large eddy simulation (SCALES) approach (Goldstein & Vasilyev
2004). A number of wavelet-based subgrid-scale (SGS) models for SCALES have
recently been introduced, for instance, in De Stefano, Vasilyev & Goldstein (2008) and
Vasilyev et al. (2008).

The SCALES method is ideal for the simulation of complex turbulent flows since
it includes adaptive gridding that allows the energy-containing motions to be resolved,
regardless of their position and size, so that the great part of the turbulence energy
is captured throughout the physical domain. However, for very complex flows, the
dominant scales of motion vary significantly from region to region as well as in
time. For this reason, in order to fully exploit the dynamically adaptive nature
of wavelet-based methods, the basic idea behind SCALES can be taken one step
further by applying a time-dependent wavelet thresholding strategy. In this study, a
new wavelet-based approach with time-varying thresholding filter is introduced, while
the development of a spatially varying thresholding methodology is the subject of
ongoing research. The thresholding level automatically adapts to the desired turbulence
resolution following the temporal evolution of the dominant flow structures. In this
way, a fully adaptive approach to the numerical simulation of homogeneous turbulent
flows is obtained.

The rest of the paper is organized as follows. After recalling the basic concept of
wavelet threshold filtering in § 2, the general features of the wavelet-based approach to
turbulence simulation are briefly reviewed in § 3, with the emphasis on the role played
by the wavelet thresholding level. The new time-dependent wavelet thresholding
strategy is introduced in § 4. The results of the numerical experiments conducted for
both constant and time-varying thresholding are presented in § 5. Finally, conclusions
are given in § 6.

2. Wavelet-filtered velocity
In the wavelet-based approach to the numerical simulation of turbulence, the

separation between resolved energetic structures and unresolved residual flow is
obtained through nonlinear multi-resolution wavelet threshold filtering (WTF). The
filtering operator is implicitly defined by applying the wavelet transform to the
unfiltered turbulent field, zeroing the wavelet coefficients below a given threshold,
say ε, and transforming back to the physical space (e.g. Farge et al. 1999; Goldstein
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& Vasilyev 2004). When applied to the velocity field, the WTF procedure results in its
decomposition into two different parts: a coherent more energetic velocity field, and a
residual less energetic coherent/incoherent one, i.e. ui = u>εi + u′i, where u>εi stands for
the wavelet-filtered velocity at level ε.

Formally, the wavelet-filtered velocity field, u>εi (x), is defined by expressing the
instantaneous velocity field in terms of wavelet basis functions,

ui(x)=
∑
l∈L 0

c0
l φ

0
l (x)+

+∞∑
j=0

2n−1∑
µ=1

∑
k∈K µ,j

dµ,jk ψ
µ,j
k (x), (2.1)

and retaining only wavelets with significant ‘strength’:

u>εi (x)=
∑
l∈L 0

c0
l φ

0
l (x)+

+∞∑
j=0

2n−1∑
µ=1

∑
k∈K µ,j

|dµ,jk |>ε‖ui ‖WTF

dµ,jk ψ
µ,j
k (x). (2.2)

In the above decomposition, bold subscripts denote n-dimensional indices, while L 0

and K µ,j are n-dimensional index sets associated with scaling functions at zero level
of resolution (φ0

l ) and wavelets of family µ and level j (ψµ,j
k ), respectively. Each

level of resolution j consists of a family of wavelets ψ
µ,j
k having the same scale

but located at different grid positions. In practice, a wavelet ψµ,j
k whose coefficient

is below the given threshold is discarded when the turbulent velocity field has
no significant variation at the jth level of resolution in the immediate vicinity of
the corresponding wavelet collocation point. In a real calculation, the maximum
value for j (which corresponds to the highest level of resolution) is dictated by
the acceptable computational cost. Depending on the choice of the WTF level ε,
only a relatively small number of wavelets are actually retained in representing
the filtered field u>εi , which leads to the characteristic compression property of
wavelet-based methods. In this study, the L2 norm is assumed as WTF norm and,
dealing with homogeneous turbulence, the same scaling is used in all directions,
i.e. ‖ui ‖WTF

∼= ‖u>εi ‖WTF
= (2Kres)

1/2, where Kres = 〈(1/2)u>εj u>εj 〉 stands for the
volume-averaged resolved kinetic energy.

The key role in the wavelet-filter definition is clearly played by the non-dimensional
relative thresholding level ε that explicitly defines the relative energy level of the
eddies that are resolved and, consequently, controls the importance of the influence of
the residual field on the dynamics of the resolved motions. It is worth stressing that
the dimensional absolute thresholding scale, which is evaluated as ε‖u>εi ‖WTF

, actually
varies in time following the evolution of the turbulent velocity field.

The high compression property of the wavelet-based decomposition is illustrated in
table 1, where the percentage of active wavelets and retained energy/enstrophy are
reported as a function of the WTF level for a given instantaneous turbulent velocity
field. The field considered is a realization of a statistically stationary turbulent flow
at Reλ = 72 (λ being the Taylor microscale) as provided by a pseudo-spectral direct
numerical simulation (DNS) solution (De Stefano, Goldstein & Vasilyev 2005). For
instance, by retaining less than 0.5 % of the available 2563 wavelets, more than 98 %
of the energy and 77 % of the DNS enstrophy are captured (as happens for ε = 0.40).
Also, the use of a very low but non-zero threshold allows practically the entire
energy/enstrophy content of the flow to be retained (as happens for ε = 0.05).
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Energy spectra for
wavelet-filtered instantaneous velocity with different thresholding levels (ε = 0.15, 0.40 and
0.55), along with the unfiltered solution.

Level ε Wavelets ( %) Energy ( %) Enstrophy ( %)

0.55 0.15 95.08 60.06
0.40 0.46 98.11 77.08
0.15 5.07 99.88 97.53
0.05 12.50 99.99 99.98

TABLE 1. Percentage of active wavelets and captured energy/enstrophy for different
thresholding levels.

Another important feature of wavelet filtering is the ability to capture coherent
energetic eddies of any size so that the small-scale turbulence can be represented,
at least partially, by the wavelet-filtered field. This is illustrated in figure 1, where
the energy spectrum of the filtered velocity field is reported for different filtering
levels. This property is distinctively different from typical filtering adopted in classical
non-adaptive large eddy simulation (LES), where the small dissipative scales are not
resolved at all.

3. Adaptive wavelet-based simulation
The space–time evolution of the wavelet-filtered turbulent velocity is simulated by

numerically solving the wavelet-filtered Navier–Stokes equations, possibly supplied
with a suitable closure model. In this section, the conceptual steps that form the
adaptive wavelet-based methodology are briefly reviewed. The details of the SCALES
procedure can be found, for example, in Goldstein & Vasilyev (2004).
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3.1. Wavelet-filtered Navier–Stokes equations

The governing equations for wavelet-based adaptive simulation of incompressible
turbulent flows are formally obtained by applying the WTF operator, implicitly given
by (2.1) and (2.2), to the Navier–Stokes equations, followed by the divergence-free
projection. For forced turbulence, the equations are written as

∂u>εi

∂xi
= 0, (3.1)

∂u>εi

∂t
+ u>εj

∂u>εi

∂xj
=− 1

ρ

∂p>ε

∂xi
+ ν ∂

2u>εi

∂xj∂xj
− ∂τij

∂xj
+ f

>ε

i , (3.2)

where ρ and ν are the constant density and kinematic viscosity of the fluid, while
fi stands for the unfiltered forcing field. Note that the bar symbol in the notation
of the pressure variable, p>ε , does not imply the application of the WTF operator,
but is used for consistency with the other terms. Actually, the pressure term in the
filtered momentum equation must be viewed as a Lagrange multiplier enforcing the
incompressibility constraint.

The application of the WTF operator to the Navier–Stokes equations also results in
the appearance of the unresolved quantities

τij = uiu
>ε
j − u>εi u>εj , (3.3)

commonly referred to as SGS stresses. The residual SGS stresses can be thought
of as representing the effect of unresolved less energetic background flow on the
dynamics of the resolved energetic eddies. In order to close the equations, an SGS
model is required to express the unknown stresses (3.3) as a given function of
the resolved velocity field u>εi . In practice, the isotropic part of the SGS stress
tensor being incorporated by a modified filtered pressure variable, only the deviatoric
part, hereafter denoted with a star, τ ∗ij = τij − (1/3)τkkδij, is actually modelled in
incompressible SCALES. When dealing with forced turbulence, the SGS model is
mainly required to provide the right amount of energy dissipation that – once added
to the resolved viscous dissipation – allows the energy content of the flow to be
maintained statistically constant in time. The importance of the local SGS dissipation,
which is defined as Πsgs = −τ ∗ij S>εij , where S

>ε

ij = (1/2)(∂u>εi /∂xj + ∂u>εj /∂xi) is the
resolved filtered rate-of-strain tensor, is expected to increase with the thresholding
level ε.

From the mathematical point of view, once a model for the SGS stress tensor is
given and suitable initial conditions are provided, the SCALES governing equations
can be solved using any numerical method. In practice, (3.2) is solved using the
dynamically adaptive wavelet collocation method (AWCM), where the same wavelet-
filtering procedure with the same wavelet threshold is exploited to automatically
adapt the computational grid to the numerical solution, in both location and scale
(e.g. Vasilyev & Bowman 2000; Vasilyev 2003). Owing to the existing one-to-one
correspondence between wavelet coefficients and grid points that is induced by the
discretization of the physical domain, the thresholding level ε also controls the
dynamic mesh adaptation and, thus, the numerical accuracy of the solution. Regarding
the time-integration procedure, a multi-step pressure correction method is employed
for the integration of (3.2) with the continuity constraint (3.1) (Kevlahan & Vasilyev
2005). The resulting Poisson equation is solved using the AWCM elliptic solver
developed in Vasilyev & Kevlahan (2005).
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Additionally, it should be mentioned that, as in LES with non-uniform filter width
(Vasilyev, Lund & Moin 1998; Marsden, Vasilyev & Moin 2002; Haselbacher &
Vasilyev 2003), there is a commutation error between WTF and differential operators,
the effect of which is not considered in this work. However, since the grid adaption
makes use of an adjacent zone, which also includes wavelets with smaller coefficients
that can possibly become significant during the single time step (e.g. Schneider &
Vasilyev 2010), the commutation error is significantly reduced.

3.2. Wavelet-based SGS model
In this work, the unknown SGS stresses are approximated by means of the localized
dynamic kinetic-energy-based model (LDKM) recently developed for SCALES. The
main steps of the modelling procedure are briefly outlined in this section, while
the details can be found in De Stefano et al. (2008). The filtered momentum
equation (3.2) is closed using the classical eddy-viscosity assumption, with the
turbulent viscosity expressed in terms of the SGS kinetic energy ksgs and the wavelet-
filter characteristic width ∆, that is

τ ∗ij ∼=−2Cν∆k1/2
sgs S

>ε

ij . (3.4)

In the above equation, the dimensionless model coefficient Cν(x, t) is dynamically
evaluated during the calculation following a Germano-like approach. The non-uniform
time-dependent filter width ∆(x, t) is determined from knowledge of the actual wavelet
mask used in the simulation. This parameter, which closely reflects the prescribed
thresholding level, actually stands for the turbulence resolution length scale in the
SCALES approach.

The space–time evolution of the SGS energy ksgs(x, t) = (1/2)(uiu>εi − u>εi u>εi ) is
simulated by solving the following additional model equation, as proposed in Ghosal
et al. (1995),

∂ksgs
∂t
+ u>εj

∂ksgs
∂xj
= ν ∂

2ksgs
∂xj∂xj

− εsgs +Πsgs. (3.5)

This equation accounts for the energy transfer back and forth between resolved and
unresolved eddies, as well as for the viscous dissipation of SGS energy,

εsgs = ν
(
∂ui

∂xj

∂ui

∂xj

>ε

− ∂ui
>ε

∂xj

∂ui
>ε

∂xj

)
, (3.6)

which is approximated following a Bardina-like approach.
The wavelet-filtered Navier–Stokes equations (3.2) and the SGS kinetic energy

equation (3.5) stand for a set of coupled equations that is solved with the AWCM
approach mentioned in § 3.1. Note that the cost associated with the use of an
additional equation is minimal due to the vectorized form of the wavelet transform
and differential operators utilized by the solver. Furthermore, it is practically negligible
compared to the computational cost of solving the elliptic problem for the pressure
correction.

According to model (3.4), the SGS dissipation is approximated as

Πsgs
∼= Cν1k1/2

sgs |S>ε|
2
, (3.7)

where |S>ε| = (2S
>ε

ij S
>ε

ij )
1/2

is the characteristic filtered rate of strain. The magnitude
of the SGS energy and, thus, the importance of the modelled dissipation increase with
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the wavelet-filtering threshold ε. This is confirmed by the results shown in § 5. It is
worth noting that the above wavelet-based SGS model inherently acts as a multiscale
dynamic model since, by definition, each wavelet level in WTF decomposition (2.2)
corresponds to a broad range in wavenumber space.

4. Time-varying thresholding method
Prior to this work, all SCALES simulations (e.g. Goldstein & Vasilyev 2004;

De Stefano & Vasilyev 2010) were conducted with a priori fixed level of threshold
parameter, resulting in a subjective separation of resolved and unresolved flow
structures. However, when dealing with complex turbulent flows, the energy content
of the dominant flow structures can significantly vary in time, so that the desired level
of turbulence resolution cannot be maintained with constant thresholding level. In fact,
the level ε at which decomposition (2.2) is truncated should be consistent with the
actual flow conditions and, thus, variable.

In order to develop a fully adaptive approach, in this work, the basic idea behind
SCALES is taken one step further by applying a time-dependent wavelet thresholding
method. With this new strategy, the wavelet filtering threshold ε is not prescribed but
is determined on the fly, as a time-dependent function, for a given desired level of
turbulence resolution.

The latter can be measured, for instance, by the ratio between the modelled
dissipation and the sum of resolved and modelled dissipations, i.e.

R(t)= Dsgs

Dres +Dsgs
, (4.1)

where Dsgs = 〈Cν∆k1/2
sgs |S>ε|2〉 stands for the volume-averaged modelled SGS

dissipation, while Dres = 〈ν|S>ε|2〉 represents the volume-averaged resolved viscous
dissipation.

The definition (4.1), which corresponds to the ‘subgrid activity’ parameter
introduced in Geurts & Fröhlich (2002), provides an objective measure that can be
used to classify and compare LES solutions. This parameter has been extensively used
to analyse and develop SGS modelling procedures (e.g. Meyers & Sagaut 2006). Since
the net energy transfer is from resolved to unresolved motions, it holds that 0<R < 1.
Along this line of argument, prescribing the desired turbulence resolution is equivalent
to assigning a goal value for the ratio (4.1). For statistically steady turbulence, the total
dissipation Dres + Dsgs can be assumed given and known, so that the magnitude of R
directly links to that of Dsgs and, thus, to the wavelet thresholding level, which can be
viewed as the control parameter for the turbulence resolution. The smaller the value of
ε, the smaller the fraction of energy dissipation that is modelled and, thus, the smaller
the value of R.

Hence, the thresholding level ε(t) can be evolved in time according to the simple
feedback control equation

dε
dt
=−(R −R0)

ε

τε
, (4.2)

where R0 is the goal value corresponding to the desired level of resolution and τε is a
suitable relaxation time parameter. In practice, when the grid is too coarse, i.e. when
the SGS dissipation provided by the model is higher than the goal (R > R0), the
threshold value decreases, which automatically results in increasing the grid resolution
and, thus, reducing the SGS dissipation level. On the contrary, when the turbulence
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is over-resolved, i.e. the SGS dissipation is too low (R < R0), the threshold value
increases, resulting in the mesh coarsening that leads to higher SGS dissipation.

Equation (4.2) is explicitly discretized and solved step by step in time along with
the filtered governing equations (3.2) and (3.5), starting from a given initial value
ε(0) = ε0. The relaxation time constant τε must be linked to some characteristic
time scale of the turbulent flow under simulation. For example, this parameter
can be chosen as a given fraction of the characteristic eddy turnover time of the
turbulence, when it is known. In this work, another possibility is successfully tested by
considering the time scale associated with the volume-averaged characteristic filtered
rate of strain,

1
τε
=
〈∣∣∣S>ε∣∣∣〉 . (4.3)

In this way, the relaxation parameter by itself dynamically adapts to the instantaneous
flow conditions. Note that, in the homogeneous turbulence case, the proposed feedback
mechanism (4.2) effectively controls the level of SGS dissipation. A similar approach
can be utilized to control any other suitable error measure that can be used for more
complex flows (e.g. Terracol, Sagaut & Basdevant 2003).

As an alternative to definition (4.1), while using the SGS energy-based model
presented in § 3.2, the turbulence resolution could also be measured by the ratio
of SGS to resolved kinetic energy, i.e. Ksgs/Kres, where Ksgs = 〈ksgs〉 stands for
the volume-averaged SGS energy. Consequently, the desired resolution would be
prescribed by assigning a goal value for this ratio. However, since not all SCALES
models exploit the SGS kinetic energy definition, this choice appears less robust.
Moreover, it could be not well founded and is somewhat subjective because the
variable ksgs mostly acts as a feedback parameter, whose level might differ from the
true energy of the SGS eddies. For these reasons, this possibility is not explored in the
following experiments.

It is worth stressing that the dynamically adaptive nature of wavelet methods is
fully exploited by adopting the present time-dependent wavelet-filtering thresholding
strategy. Following Pope (2004), the corresponding methodology can be referred
to as a ‘complete’ large eddy simulation approach to the numerical simulation of
homogeneous turbulent flows.

5. Numerical experiments
In order to carry out some numerical experiments, the simulation of forced

incompressible homogeneous turbulence is considered. Following the linear forcing
scheme of Lundgren (2003), the forcing term in (3.2) is assumed proportional to the
velocity field, f

>ε

i = Qu>εi , where Q stands for a constant parameter. In fact, fixing this
parameter is equivalent to prescribing the eddy turnover time of the turbulence, since,
for statistically steady turbulent flows,

τeddy = u′2

〈ε〉 =
1

3Q
, (5.1)

where u′ = (2Kres/3)
1/2 stands for the root mean square velocity and 〈ε〉 is the volume-

averaged turbulent dissipation (Rosales & Meneveau 2005). In this study, in order
to make a useful comparison, the same linear forcing coefficient Q = 5.2 adopted in
De Stefano & Vasilyev (2010) is considered.
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All the simulations presented in the following sections start from the same initial
velocity field. The latter is a realization of a statistically steady linearly forced
flow at Reλ = 60 (λ being the Taylor microscale) that is provided by a fully de-
aliased pseudo-spectral 1923 DNS solution for the unfiltered Navier–Stokes equations
(De Stefano et al. 2005). The corresponding pseudo-spectral code with the same
Fourier grid is used to produce a reference DNS solution (hereafter denoted as SDNS)
for the present experiments.

Owing to the finite-difference nature of the AWCM solver, in order to have a
meaningful comparison, the grid resolution is increased with respect to the spectral
case. Wavelet-based numerical solutions are obtained using a maximum resolution
corresponding to 2563 wavelet collocation points. In fact, the actual number of
wavelets used in the simulation is very low with respect to the maximum value,
thanks to the high compression property of the wavelet-based methods.

It should be noted that the time histories of the forcing term for SCALES, CVS,
WDNS and SDNS are not exactly the same. This fact unavoidably leads to some
discrepancies in the solutions. The possibility of addressing the issue by applying
the linear force in Fourier space for a given shell of small wavenumbers, as done,
for instance, in Machiels (1997), is not considered here, owing to the use of an
adaptive computational mesh by the finite-difference-based wavelet solver. However,
DNS remains the natural reference solution for the present calculations, as happens
for classical non-adaptive LES, even when the turbulence is forced in the entire
wavenumber domain (e.g. Rosales & Meneveau 2005). Furthermore, since wavelet-
based solutions capture most of the energy and enstrophy spectra (Goldstein &
Vasilyev 2004; Goldstein et al. 2005), the difference in forcing is considerably smaller
than for non-adaptive LES.

5.1. Constant thresholding
As discussed in the previous sections, wavelet-based approaches with different fidelity
are obtained by choosing different thresholding levels in WTF definition (2.2). In order
to address the effect of such a choice systematically, the results of simulations with
different constant thresholding levels are presented. The tested levels are also chosen
by comparison with previous studies carried out for decaying homogeneous turbulence
(e.g. De Stefano et al. 2008). This a posteriori study is the natural continuation of
the a priori analysis conducted in § 2, where the effect of wavelet filtering upon the
instantaneous velocity field is considered. The simulation of steady forced turbulence
allows the robustness of wavelet decomposition to be examined in terms of the long-
term evolution of the filtered Navier–Stokes equations.

When the thresholding level is too high, like for ε = 0.55, a poor solution to
the filtered governing equations is obtained because the dynamically dominant flow
structures are not fully resolved. Besides the fact that the velocity field is strongly
distorted by wavelet threshold filtering, the numerical accuracy of the AWCM solution
by itself is affected by the inadequate resolution. Moreover, asking the model to
provide a great part of energy dissipation that is not resolved is unrealistic. On the
other hand, when the threshold is too low, like for ε = 0.15, the filtered-velocity field
appears over-resolved, a great number of wavelets being retained in the calculation,
and the computational cost is comparable to DNS. In this case, the high potential of
the dynamic model is under-exploited. A typical SCALES solution is finally obtained
for ε = 0.40, which represents a good compromise between acceptable numerical
accuracy and affordable computing cost, the model providing about 35 % of the total
dissipation on average.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2012.6
https:/www.cambridge.org/core


158 G. De Stefano and O. V. Vasilyev

0.5

1.0

1.5

5 10 15

E
ne

rg
y

0

2.0

Time
20

SDNS
SCALES (0.15)
SCALES (0.40)
SCALES (0.55)
CVS (0.15)
WDNS (0.05)

FIGURE 2. (Colour online) Resolved energy for SCALES with different constant
thresholding levels (ε = 0.15, 0.40 and 0.55), along with the no-model CVS (ε = 0.15)
and WDNS (ε = 0.05) solutions. The reference SDNS solution is shown for comparison.
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FIGURE 3. (Colour online) Modelled/total dissipation for SCALES with different constant
thresholding levels (ε = 0.15, 0.40 and 0.55), along with the no-model CVS (ε = 0.15) and
WDNS (ε = 0.05) solutions. The reference SDNS solution is shown for comparison.

The above discussion is corroborated by the inspection of time histories of energy
and energy dissipation reported in figures 2 and 3, respectively, for the different
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FIGURE 4. (Colour online) Percentage of active wavelets (in logarithmic scale) for SCALES
with different constant thresholding levels (ε = 0.15, 0.40 and 0.55), along with the no-model
CVS (ε = 0.15) and WDNS (ε = 0.05) solutions.

thresholding levels. The time variable is non-dimensionalized by the theoretical eddy
turnover time (5.1), while the dependent variables are non-dimensionalized by the
corresponding time-averaged reference SDNS data. The analysis is conducted for a
time interval corresponding to 20 eddy turnover times. As shown in the figures, when
the threshold value is adequate, the adaptive solution is able to follow – at least
partially – the physical time evolution of the DNS solution. The results confirm
that the contribution of the modelled dissipation grows with increase of ε. Also,
the lower level of SGS dissipation is associated with the larger fraction of resolved
viscous dissipation as well as increased grid resolution. That is clear by looking at
the grid compression illustrated in figure 4, where the percentage of retained wavelets
is reported in logarithmic scale. A typical SCALES solution involves less than 1 %
of the 2563 available wavelet collocation points, as happens for ε = 0.40. As to the
spectral distribution of resolved energy, in figure 5 the time-averaged energy spectra
are depicted, demonstrating how the capability of the SCALES method in representing
small-scale turbulence is maintained during the simulation. Once again, the deficiency
of high thresholding levels such as ε = 0.55 is clearly demonstrated.

It is illustrative to consider SCALES simulations with relatively low value of
threshold parameter, i.e. ε = 0.15. This threshold was empirically chosen in Goldstein
et al. (2005) to conduct CVS of freely decaying isotropic turbulence at Reλ = 72. In
order to make an interesting comparison with modelled solutions, a simulation with
this threshold without any modelling is performed in the linearly forced case. As
shown in figures 2, 3 and 5, the results agree well with reference SDNS, even though
this no-model solution cannot be strictly considered as CVS. This case demonstrates
how the lack (or the inadequacy) of SGS modelling is automatically compensated by
locally increasing the resolution and, consequently, the number of grid points used in
the simulation, as illustrated in figure 4.
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FIGURE 5. (Colour online) Time-averaged energy spectra for SCALES with different
constant thresholding levels (ε = 0.15, 0.40 and 0.55), along with the no-model CVS solution
(ε = 0.15). The reference SDNS spectrum is shown for comparison.

For very low threshold values, the direct numerical solution of (3.2) without any
model can be thought of as WDNS. In this work, the thresholding level ε = 0.05 is
assumed to be sufficiently low for direct numerical simulations. Owing to its high
computational cost, WDNS is performed for only eight non-dimensional time units.
In fact, as illustrated in figure 4, on average about 40 % of the available wavelets
are used in this case. The agreement between WDNS and reference SDNS is almost
perfect, as demonstrated, for instance, by examining the resolved energy and viscous
dissipation depicted in figures 2 and 3, respectively. Even more meaningfully, the
agreement holds in the entire wavenumber range, that is, at all flow scales. This is
demonstrated, for instance, by inspection of the instantaneous energy spectra at two
different (non-dimensional) time instants, which are t = 4.7 and t = 7.8, reported in
figure 6.

5.2. Time-varying thresholding
In this section, the practical implementation of the method introduced in § 4 is
illustrated, by presenting the results of numerical experiments carried out with time-
varying thresholding. The efficiency of the method is first demonstrated by performing
SCALES with two very different initial thresholding levels, ε0 = 0.60 and 0.20,
respectively, while prescribing the same goal value R0 = 0.40 for the ratio of modelled
to total dissipation (4.1). When starting with a very high threshold like ε0 = 0.60,
the resolution is initially too low and the SGS dissipation provided by the model is
too high (R >R0), so that, according to (4.2), the threshold tends to decrease. The
solution with a very low initial threshold like ε0 = 0.20 shows the opposite behaviour
because the initial resolution is too high with respect to the goal. In figure 7 the
evolution of the wavelet thresholding level is reported for both solutions for a time
corresponding to just two non-dimensional time units to make it possible to examine
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FIGURE 6. (Colour online) Instantaneous energy spectra at two different time instants
(t = 4.7 and 7.8) for WDNS (ε = 0.05) compared to reference SDNS.
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FIGURE 7. (Colour online) Time history of thresholding level and SGS dissipation fraction
for SCALES with time-varying thresholding and two different initial conditions (ε0 = 0.20
and 0.60).

the short initial transient in detail. By looking at the time history of the SGS to total
dissipation ratio, which is depicted in the same figure, the SCALES solution tends to
achieve the prescribed resolution, regardless of the initial thresholding level. For both
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FIGURE 8. (Colour online) Time evolution of energy spectra for SCALES with time-varying
thresholding and initial threshold ε0 = 0.60. The reference SDNS time-averaged energy
spectrum is shown for comparison.

initial conditions, the transient time is very short, less than half the eddy turnover time
of the turbulence. Furthermore, the change from one state to another is faster for the
solution with higher initial resolution, since the achievement of the desired goal is
easier starting from a finer wavelet collocation grid.

The transition from the initial resolution towards the desired one is well represented
by the corresponding evolution of the energy spectra, shown in figures 8 and 9, for
the two different initial levels, respectively, along with the reference SDNS time-
averaged energy spectrum, which is reported for comparison. For ε0 = 0.60, where the
turbulence resolution is initially insufficient, smaller scales are automatically created
in the simulation as time passes, while the energy spectrum adjusts to the expected
shape for linearly forced turbulence (Rosales & Meneveau 2005). Note that, when
there are no retained wavelets at the finest levels of resolution, the energy spectra
are truncated at wavenumber 32. In contrast, for ε0 = 0.20, where the turbulence is
initially over-resolved, the energy associated with the smallest scales reduces as the
calculation goes on. Note that the energy spectra after three time units are practically
the same for the two different solutions, which can be thought of – from this time
forwards – as two different realizations of the same numerical solution with the
prescribed resolution. In fact, the two solutions show practically the same behaviour
over long-time integration, as demonstrated, for instance, by looking at the energy
dissipation reported in figure 10. The constraint R0 = 0.40 is evidently obeyed while
constantly using less than 0.5% of the wavelet collocation points.

The time-varying thresholding strategy is further analysed by performing different
simulations for different prescribed ratios of modelled to total dissipation, ranging
from R0 = 0.20 to 0.50, while starting with the same initial thresholding level,
ε0 = 0.20. The time evolution of resolved energy and time-averaged energy spectra are
depicted for the different solutions in figures 11 and 12, respectively. Consistently with
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FIGURE 9. (Colour online) Time evolution of energy spectra for SCALES with time-varying
thresholding and initial threshold ε0 = 0.20. The reference SDNS time-averaged energy
spectrum is shown for comparison.
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FIGURE 10. (Colour online) Modelled/total dissipation for SCALES with time-varying
thresholding and two different initial conditions (ε0 = 0.20 and 0.60). The reference SDNS
dissipation is shown for comparison.

the discussion in the previous section, when the prescribed resolution is too coarse,
like for R0 = 0.50, the turbulence appears under-resolved, as is clearly apparent, for
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FIGURE 11. (Colour online) Time history of resolved energy for SCALES with time-varying
thresholding and different prescribed resolutions (R0 = 0.20, 0.30, 0.40 and 0.50). The
reference SDNS solution is shown for comparison.
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FIGURE 12. (Colour online) Time-averaged energy spectra for SCALES with time-varying
thresholding and different prescribed resolutions (R0 = 0.20, 0.30, 0.40 and 0.50). The
reference SDNS solution is shown for comparison.

instance, by looking at the energy spectral distribution at large scales. For this reason,
this poor solution is not reported in the following figures.
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FIGURE 13. (Colour online) Modelled/total dissipation for SCALES with time-varying
thresholding and different prescribed resolutions (R0 = 0.20, 0.30 and 0.40). The reference
SDNS solution is shown for comparison.

The time history of modelled and total dissipation for different prescribed
resolutions is shown in figure 13, while the time-averaged spectral distribution of
resolved viscous dissipation is illustrated in figure 14. It is worth noting that the
average level of total dissipation is the same for the different solutions, regardless
of the different contributions provided by the model. Furthermore, when looking at
the different contributions to total dissipation for a given prescribed goal R0, it
is interesting to observe that the relative importance of the different parts remains
constant, while both resolved and SGS dissipation continue to increase or decrease,
following the physical time oscillations of the DNS solution.

Even starting from the same threshold ε0, the different SCALES solutions are able
to adjust automatically and converge towards a certain thresholding level that increases
with R0, while the grid compression increases as the number of active wavelets
decreases. The time evolution of thresholding level ε for the different goal values is
depicted in figure 15. With the increase of resolution, the SGS contribution to total
dissipation decreases, corresponding to the decrease of the magnitude of the SGS
kinetic energy (3.4). The one-to-one correspondence between prescribed resolution
and SGS to resolved energy ratio is demonstrated by the plots shown in figure 16,
confirming how this quantity could be assumed as an alternative turbulence resolution
parameter, as discussed in § 4. Finally, as an example of high-order statistics, the
skewness of a velocity derivative is depicted for the different SCALES solutions with
time-varying thresholding in figure 17. The good performance of the self-adaptive
method is maintained, regardless of the prescribed accuracy.

The results obtained for SCALES with different prescribed resolutions are
summarized in table 2, by reporting some interesting time-averaged quantities. As
expected, for increasing resolution, the time-averaged thresholding level decreases and
the number of retained wavelets increases. As usual, the percentage of active wavelets
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FIGURE 14. (Colour online) Time-averaged resolved dissipation spectra for SCALES with
time-varying thresholding and different prescribed resolutions (R0 = 0.20, 0.30 and 0.40).
The reference SDNS solution is shown for comparison.

R0 ε % wavelets Ksgs/Kres

0.20 0.21 2.68 0.037
0.30 0.33 0.86 0.053
0.40 0.44 0.37 0.078
0.50 0.49 0.20 0.124

TABLE 2. Time-averaged thresholding level, percentage of active wavelets, and SGS to
resolved energy ratio for SCALES with different prescribed resolutions.

is suitably evaluated with respect to the maximum available number of wavelets (or,
equivalently, grid points), that is, 2563. When making a useful comparison with the
reference SDNS grid that consists of 1923 computational modes, the percentage of
wavelets increases by a factor of 2.37, so that, for instance, it becomes 0.90 % for
R0 = 0.40. The grid compression, however, remains very high, as usually happens for
wavelet-based numerical methods (e.g. De Stefano et al. 2008).

To test the robustness and stability of the time-varying thresholding strategy, the
following experiment is performed. Once a given resolution has been achieved, the
goal value for R is changed to assess whether the solution automatically adjusts to
the new level of prescribed resolution and (if it does) how long it takes. Two different
experiments are conducted by altering the goal value from R0 = 0.20 to 0.40 and
vice versa at a given non-dimensional time instant, t ∼= 10. As illustrated in figure 18,
the SCALES simulation with a threshold that is variable in time is able to react to
the sudden modification by tending towards a new steady solution that corresponds
to a different thresholding level. In both cases, a new balance between resolved and
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FIGURE 15. (Colour online) Time history of thresholding level for SCALES with
time-varying thresholding and different prescribed resolutions (R0 = 0.20, 0.30 and 0.40).
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FIGURE 16. (Colour online) Time history of SGS to resolved energy ratio for SCALES with
time-varying thresholding and different prescribed resolutions (R0 = 0.20, 0.30 and 0.40).

modelled dissipation is achieved, corresponding to the new prescribed goal, as clearly
illustrated in figure 19.
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FIGURE 17. (Colour online) Resolved velocity derivative skewness for SCALES with time-
varying thresholding and different prescribed resolutions (R0 = 0.20, 0.30 and 0.40). The
reference SDNS solution is shown for comparison.
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FIGURE 18. (Colour online) Time history of thresholding level for SCALES with time-
varying thresholding and different prescribed resolutions modified at t ∼= 10 (from R0 = 0.20
to 0.40, and vice versa).

It is worth noting that the transition between the two different steady conditions
is very sharp in either case of coarsened or refined wavelet collocation grid. The
characteristic time scale of the readjustment is much shorter than the eddy turnover
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FIGURE 19. (Colour online) Modelled/total dissipation for SCALES with time-varying
thresholding and different prescribed resolutions modified at t ∼= 10 (from R0 = 0.20 to 0.40,
and vice versa).

time of the turbulence, which confirms the validity of definition (4.3) for the relaxation
parameter in the control equation (4.2). Owing to this fact, the present method can be
reasonably applied to simulate statistically non-stationary turbulent flows.

Thus, in order to completely demonstrate the robustness of the proposed time-
varying thresholding strategy, freely decaying turbulence is simulated by setting to zero
the forcing term in the filtered momentum equation (3.2). The numerical experiments
are conducted starting with the same initial condition as in the forced case, until the
energy content of the flow becomes about one-tenth of the initial value. Two different
resolutions are prescribed corresponding to the goal values R0 = 0.20 and 0.30, while
starting with initial thresholding levels that ensure the desired resolution for the initial
velocity field. Even in this case, a fully de-aliased pseudo-spectral 1923 DNS solution
is carried out as reference (SDNS).

When showing the results for decaying turbulence, the time variable is
adimensionalized by the initial eddy turnover time corresponding to the reference
SDNS solution. As illustrated in figure 20, the method is able to automatically adjust
the thresholding parameter during the simulations while maintaining the desired values
of turbulence resolution. For a given accuracy, as expected, the level of thresholding
tends to increase as the turbulence decays. Both resolved and modelled dissipation
decrease in time, while the total dissipation resembles the viscous dissipation of the
reference SDNS. That is clearly shown in figure 21, where the different contributions
to total dissipation, non-dimensionalized by the initial SDNS dissipation, are presented.

6. Concluding remarks
The actual value of wavelet thresholding level in wavelet-based numerical simulation

of turbulence directly controls the relative importance of SGS modelling as well as
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FIGURE 20. (Colour online) Time history of thresholding level and SGS dissipation
fraction for SCALES with time-varying thresholding and two different prescribed resolutions
(R0 = 0.20 and 0.30) in the decaying case.
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FIGURE 21. (Colour online) Modelled/total dissipation for SCALES with time-varying
thresholding and prescribed resolution (R0 = 0.20) in the decaying case.

computational cost. The systematic study of the effect of varying this fundamental
parameter has been conducted, while unequivocally defining the range of thresholds
that allow for effective and efficient adaptive large eddy simulation.
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A time-varying thresholding strategy, completely integrated with the localized
dynamic energy-based model, has been introduced. In contrast to previous wavelet-
based approaches, the present methodology does not presume any subjective choice
for the wavelet thresholding level. The main outcome is in the possibility to perform
adaptive variable-fidelity simulations of turbulent flows by simply prescribing the
desired turbulence resolution, which can be expressed, for instance, in terms of the
ratio of modelled to total dissipation.

The present work must be considered as the decisive step towards the development
of a fully adaptive LES approach to the numerical simulation of steady/unsteady
homogeneous turbulent flows. In this study, a number of numerical experiments have
been successfully conducted for both linearly forced and freely decaying homogeneous
turbulence at moderate Reynolds number. For unsteady turbulence, the thresholding
level properly varies following the decaying nature of the flow, while maintaining
the given level of turbulence resolution. The advantage of using a time-varying
thresholding strategy is expected to be even more important when dealing with flows
at realistic Reynolds numbers, where the energy-containing range is well separated
from the dissipation range.

Finally, this study helps to address the complicated interconnections that exist in
wavelet-based methods between filtering, closure modelling and numerics. In particular,
it enhances the knowledge about the strong interaction between wavelet compression
and modelled turbulent dissipation in wavelet-based simulations of turbulent flows.
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