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The development of an efficient computational methodology for transient heat and mass

transfer applications is challenging. When a solution is localized on the fraction of a com-

putational domain, an appropriate adaptive mesh method could minimize computational

work. In this article, we propose a novel adaptive-mesh multiresolution algorithm for the

transient momentum and energy equations. The nonlinear dynamics between the velocity

and temperature fields are modeled by solving the coupled system of equations simul-

taneously, where the rate of convergence has been optimized so that computational cost

remains proportional to the number of grid points. Numerical experiments have exhibited

good agreements with benchmark simulation data.

1. INTRODUCTION

Transient simulations of heat transfer problems are often used to advance
scientific knowledge in a wide variety of applications such as the design of thermal
systems [1–3], material processing [4–6], biomedical studies [7], fire protection [8],
porous media [9], and weather forecasting [10]; see [11] for a comprehensive survey
of recently published works. In this direction, recent interests include the develop-
ment of powerful numerical methods [12–15] so that the accuracy of a numerical
model is greatly improved without overburdening the computational cost [16–18].
More specifically, the natural-convection and the shear-driven circulation in a
bounded domain appear frequently in many complex industrial applications such
as nuclear reactor insulation, ventilation of rooms, solar energy collection, etc.
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[e.g., see 19]. The numerical investigation of such convective circulations often
requires high spatial and temporal resolution because the solution contains localized
or intermittent structures, or sharp local variations, in which locations of these struc-
tures may also vary with time. For such a transient flow simulation, using modern
high-performance computing (HPC) facilities, one may be able to employ a mesh
with extremely high resolution, and there exist a number of commercial or freely
available computational fluid dynamics (CFD) software packages that may be used
for this purpose. Alternatively, using an ad hoc error indicator, an adaptive mesh
refinement (AMR) approach was introduced in [20–22], which can be used to
improve the accuracy of a transient simulation. In [23], such an adaptive mesh
method was studied for transient heat transfer applications. In [24], the use of an
interpolating wavelet transform was studied so that a spatial mesh can be refined
locally at each time step without using any ad hoc error indicator.

There are two principal drawbacks. First, for a d-dimensional nonadaptive
mesh, if the resolution increases by a factor of 2 in each direction, the total number
of grid points N increases by a factor of 2d if the mesh is refined uniformly. Clearly,
this approach increases drastically both the CPU time and the memory requirement.
Second, using a locally refined high-resolution adaptive mesh, one may be able to
optimize the number of grid points N on an adaptive mesh such that N�N. How-
ever, this approach would require an extremely small time step for using an explicit
time integration scheme because of the Courant–Friedrichs–Lewy (CFL) criterion
[23]. Moreover, a fully implicit method for both the linear and the nonlinear terms

NOMENCLATURE

f source term for a PDE

f a nonlinear algebraic system

g accelaration due to gravity

Gj a grid at level j

J Jacobian of a nonlinear system

Km Krylov space of dimension m

L length scale

L nonlinear system of equations

m dimension of a Krylov space

N number of nonadaptive grid points

N number of adaptive grid points

P pressure

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

t dimensionless time

TR temperature scale

u dimensionless velocity vector

(u, v) velocity components

U velocity scale

x vector form x¼ (x, y)

(x, y) coordinates

X length of the domain in the x

direction

Y length of the domain in the y

direction

ak step length for the relaxation

scheme

b thermal expansion coefficient

Dt time step

e tolerance

h temperature

h0 reference temperature

j thermal diffusivity

n kinematic viscosity

q density

r reference to a wavelet family

Superscripts

j level of resolution

k local iteration

n discrete time level, nDt
nþ 1 discrete time level, (nþ 1)Dt

Subscripts

2 vector norm

k¼ (k1,k2) index for a wavelet location

max maximum norm
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of momentum and energy equations requires matrix-vector multiplications at each
time step, due to linearization of the nonlinear system, which has a computational
cost that is proportional to O(N 2) (e.g., see [25]). Therefore, the development of a
more powerful numerical method is essential for optimal use of adaptive mesh
methods for transient simulations of heat transfer applications. Reference [18] used
a nonadaptive mesh to study other aspects of cost effectiveness, such as the
pressure-based discretization, for heat and mass transfer applications. Generally
speaking, the nonlinear dynamics of CFD or heat transfer problems is an everlasting
computational challenge, and advanced methodologies such as adaptive mesh and
multiscale solvers can be used to improve the performance of a CFD model for heat
transfer applications.

In this research, we study the development of a novel approach—the adaptive
multiresolution methodology (AMR)—for the solution of nonlinear, advection-
dominated, thermally or shear-driven transient flow problems. We aim to put
together benefits of three powerful techniques that have evolved independently to
the field of CFD. First, to model intermittent spatial features efficiently, an adaptive
mesh is constructed from the second-generation wavelet transform of a transient
variable, where the spatial discretization is computed with an adaptive wavelet col-
location method (AWCM) [26, 27]. Second, to adapt in space and time, and to
remove the CFL restriction on time steps, a second-order, fully implicit, fractional
time integration scheme has been studied, where ideas from the full-approximation
scheme (FAS) are used for solving the simultaneous system of equations iteratively
at each time step [28]. Third, some benefits of the Jacobian-free Newton-Krylov
method (JFNK) are useful to ensure that the computational complexity remains
O(N ), where N is the number of points on the adaptive mesh. Note that we have
used N for the number of points on a nonadaptive mesh, and N for that on an
adaptive mesh, where usually N�N. We want to develop an adaptive mesh algor-
ithm for simulating a transient problem such that the computational cost increases
with N only linearly if the mesh is refined locally, where the desired accuracy will
be achieved according to a given a priori error tolerance. Moreover, we want that
N does not increase linearly if the tolerance for the accuracy measure is reduced;
i.e., the accuracy is improved. In such an adaptive computational model, the number
of grid points on the adapted mesh indicates the saving of CPU time with respect to
calculations on a nonadaptive mesh when the CPU time is linearly proportional to
the number of points N . To achieve this goal, instead of combining three powerful
methods, e.g., AWCM, FAS, and JFNK, directly, we have considered only some
benefits of each of these methods to develop a new algorithm—AMR—for heat
and mass transfer applications. This article presents key ingredients of this AMR
approach, and verifies its performance with transient numerical simulations in com-
parison with data available from previously published articles.

The set of equations and temporal integration scheme are presented in Section 2.
In Section 3, we outline the basic concepts of wavelet-based numerical approxi-
mation. The proposed MRA methodology is presented in Section 4. Numerical
experiments are summarized in Section 5, where we verify that the CPU time
increases approximately linearly with the number of grid points N for all examples.
Moreover, we have found that N�N in comparision with benchmark data for all
numerical experiments. Finally, we summarize the main results in Section 6.
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2. MATHEMATICAL FORMULATION AND TEMPORAL INTEGRATION

2.1. Governing Equations

The flow under investigation in this study is governed by the Navier–Stokes
equation, and its thermodynamic state is described by q¼ q(p, h), where the thermo-
dynamic variables are density (q), pressure (p), and temperature (h). The Boussinesq
assumption has been adopted. First, the dependence of density (q) on pressure (p)
has been neglected; i.e., q 6¼ q(p). Second, the dependence of density on temperature
has been approximated by

qðhÞ ¼ qðh0Þ½1� bðh� h0Þ�

where b is the coefficient of thermal expansion. The governing system of equations in
dimensionless variables includes the following PDEs:

$ � u ¼ 0 ð1Þ

@u

@t
þ u � $u ¼ �$Pþ

ffiffiffiffiffiffiffi
Pr

Ra

r
r2uþ chk̂k ð2Þ

@h
@t

þ u � $h ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr Ra

p r2h ð3Þ

In the above system, characteristic scales for length, velocity, and temperature
are L, U, and TR, respectively. The dimensionless number c¼ 0 corresponds to a
shear-driven flow, and c¼ 1 corresponds to a thermally driven flow, where
U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLTR

p
. The Prandtl and Rayleigh numbers are, respectively, defined by

Pr ¼ n
j

and Ra ¼ gbL3TR

nj

which gives a Reynolds number

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbL3TR

p
n

¼ UL

n
with Re2 ¼ Ra=Pr

Scientific journals have published a number of articles based on the system (1)–
(3), which is a fundamental mathematical model for heat and mass transfer applica-
tions. The proposed methodology is thus tested by solving these equations.

Let us now present necessary initial and boundary conditions for simulating a
shear-driven as well as a thermally driven circulation in a bounded domain.

2.1.1. Conditions and Parameters for a Shear-Driven Flow. The set
of equations (1)–(2) with c¼ 0 governs a shear-driven, incompressible flow in
X ¼ X [ @X, where the temperature equation (3) is excluded from the numerical
solution procedure. Here, @X is the boundary of the two-dimensional cavity
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X¼ (0, X )� (0, Y). The initial and boundary conditions are given by

ðinitial conditionÞ
ðu; vÞ ¼ ð0; 0Þ 8ðx; yÞ 2 ð0;XÞ � ð0;YÞ at t ¼ 0

ðboundary conditionsÞ
ðu; vÞ ¼ ðV ; 0Þ 8x 2 ½0;X�; y ¼ Y; at t � 0 ðtop wallÞ
ðu; vÞ ¼ ð0; 0Þ 8x 2 ½0;X�; y ¼ 0; at t � 0 ðbottom wallÞ
ðu; vÞ ¼ ð0; 0Þ 8y 2 ½0;Y�; x ¼ 0; x ¼ X ; at t � 0 ðside wallsÞ

9>>>>>>=
>>>>>>;

ð4Þ

These conditions are used in [29] with X ¼ 1¼Y and V¼ 1, which serves as the
reference model in Section 5.2. Since the temperature equation is excluded from the
system, we use the relationship Re2¼Ra=Pr, and hence, Re is the only dimensionless
parameter that governs the flow.

2.1.2. Conditions and Parameters for a Thermally Driven Flow. The set
of equations (1)–(3) with c¼ 1 governs a thermally driven, two-dimensional,
natural-convection flow in a cavity: X ¼ X [ @X. The initial and boundary con-
ditions for the velocity are given by (4) with V¼ 0, and those for the temperature
field are given by

ðinitial conditionÞ
h ¼ 0 8ðx; yÞ 2 ð0;XÞ � ð0;YÞ att ¼ 0
ðboundary conditionsÞ
h ¼ h0 8y 2 ½0;Y�; x ¼ 0; at t � 0 ðleft wallÞ
h ¼ h1 8y 2 ½0;Y�; x ¼ X ; at t � 0 ðright wallÞ
@h
@y ¼ 0 8x 2 ½0;X�; y ¼ 0; y ¼ Y; at t � 0 ðtop & bottom wallsÞ

9>>>>>>=
>>>>>>;
ð5Þ

These conditions are used in [30] with h0¼ 0.5, h1¼�0.5, Pr¼ 0.71, and
103�Ra� 105.

2.2. Temporal Integration

A fractional-step-time marching method—also known as the projection
method—was proposed in [31] for solving Eqs. (1)–(2), where at each time step an
auxiliary or intermediate velocity is obtained from (2) and is updated such that
Eq. (1) is satisfied. In [31], the projection method was implemented on a collocated
or regular grid. Alternatively, the method of Harlow and Welch (1965) [32]—also
known as the MAC method—is a commonly used algorithm in CFD applications
that employs a staggered grid. Using Chorin’s projection method (CPM) [31], a fully
implicit, second-order time integration scheme for (1)–(3) takes the following form:

$ � unþ1 ¼ 0 ð6Þ
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unþ1 � un

Dt
þ 1

2
ðunþ1 � $ � unþ1 þ un � $ � unÞ

¼ �$Pnþ1 þ
ffiffiffiffiffiffiffiffiffiffiffi
Pr

4 Ra

r
r2ðunþ1 þ unÞ þ cûu

2
ðhnþ1 þ hnÞ

ð7Þ

hnþ1 � hn

Dt
þ 1

2
ðunþ1 � rhnþ1 þ un � rhnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4Ra Pr

r
r2ðhnþ1 þ hnÞ ð8Þ

In this formulation, the nonlinear dynamics between the velocity u and the
temperature h are calculated simultaneously, which requires an efficient iterative
method. The most common practice would solve (6)–(7), in the first stage, for unþ1

using either a Newton-or Picard-type iteration, and then (8), in the second stage,
for hnþ1, which becomes a linear system. The present solution method is now
outlined.

In the first of the fractional time steps, the simultaneous system of PDEs is
written, using the symbol u¼ [u, h]T, as

�Ar2uþ u � $uþ 2

Dt
u ¼ Ar2un � un � $un þ 2

Dt
un ð9Þ

where

A ¼

ffiffiffiffiffi
Pr
Ra

q
0

0
ffiffiffiffiffiffiffiffiffi

1
Pr Ra

q
2
4

3
5

u¼ [u, h]T represents the solution at a fractional time step, and un¼ [un, hn]T

represents the solution at the previous time step. The coupled nonlinear system (9)
takes the following general form:

LðuÞ ¼ f ð10Þ

where the nonlinear operator L and the function f represent the left-hand and
right-hand sides of (9) respectively. The system (10) retains the simultaneous non-
linear dependence of the velocity and temperature within a fractional time step. In
[24], a similar fractional time stepping was used, where the velocity unþ1 was
obtained with a Picard type linearization, and the temperature was solved after
the velocity had been computed, thereby ignoring the nonlinearly coupled dynamics.
In contrast, the present development proposes a fast numerical methodology for
solving the simultaneous system of equations (10).

The time evolution of the temperature field hnþ1¼ h is obtained from (10).
However, doing the same for the velocity field requires an additional step,
unþ1¼ u�DtrPnþ1, such that $�unþ1¼ 0. This step accounts for the effect of the
pressure gradient force such that Eq. (1) is satisfied at each time step, thereby requir-
ing the solution of a Poisson equation,

r2Pnþ1 ¼ 1

Dt
$ � u ð11Þ
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In the present implementation of the CPM algorithm, the nonlinear system (10)
of Helmholtz equations and the elliptic Poisson equation (11) are solved at each time
step, where the boundary conditions for (11) are Neumann type, $Pnþ1 � n̂n ¼ u � n̂n,
and those for (10) are Dirichlet type. In order to optimize the rate of convergence
and the computational cost, we have developed a multiresolution methodology that
is now outlined briefly.

3. A WAVELET-BASED NUMERICAL METHODOLOGY

Recently, wavelet-based methods have appeared in a number of research areas
as a dynamically adaptive numerical method [24, 33–37]. Wavelets can be classified
into two categories. The first-generation wavelets have difficulties in dealing with
nonperiodic boundary conditions [e.g., see 38]. However, this limitation has been
resolved with the introduction of the second-generation wavelet theory in [39].
The recent developments of wavelet methods for CFD applications have been
reviewed in [26]. A second-generation adaptive wavelet collocation method (AWCM)
for time-dependent PDEs was proposed in [40], which was extended to solve two-
and three-dimensional elliptic problems [27]. In [33, 41, 42], the 2-D vorticity equa-
tion was solved in the simultaneous space-time domain, considering the time variable
as if it were another spatial direction, using the second-generation AWCM. To the
best of the present authors’ knowledge, the benefits of wavelet-based numerical
methods have not been fully realized in the area of heat and mass transfer appli-
cation. In [24, 43–45], the incompressible Navier–Stokes equations and the tempera-
ture equations were solved using an interpolating wavelet method, where the
temperature field and the velocity field were computed in two steps using a
Bi-Conjugate Gradient STABilized (BiCGSTAB) algorithm. This algorithm requires
the linearization of the nonlinear system, and does not take full advantage of the
multilevel properties of wavelets. In the following section, the wavelet method for
approximating a given function is presented.

3.1. The Wavelet Collocation Method

In the present development, second-generation wavelets are constructed on a
d-dimensional grid

Gj ¼ fxjk 2 X : k 2 Kj; j 2 J; xj�1
2k ¼ xjkg

using the lifting scheme [e.g., see 27, 46] for details. Here, a function u(x) is approxi-
mated by

ujEðxÞ ¼
X
k2Kj0

c
j0
ku

j0
k ðxÞ þ

Xj�1

l¼j0

X2d�1

l¼1

X
k2Kll

dl;l
k wl;l

k ðxÞ; jdl;l
k j

k ujE k2
�2 ð12Þ

where Gj0 is an arbitrary coarse grid, Gj is the desired fine grid, Kj0 and Kl, j are sets of
indices associated with the grid Gj, and d ¼ ½cj0k ; d

l;l
k �ðj0 � l � j � 1; 1 � l � 2d � 1Þ

denotes the wavelet coefficients at level j [27, 38].
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Let c ¼ ½cjk� denote the numerical values of the function u(x) on a grid Gj. In the
lifting scheme, c is separated into an even or coarse datum associated on the grid
Gj�1 and an odd or detail datum on those grid points of Gj which do not belong
to Gj�1. Odd values are then predicted from even values, and even values are updated
using predicted odd values. This is done recursively, starting from a fine grid Gj until
a coarse grid Gj0 is reached. The process transforms a given function evaluation c into
its wavelet transform d. Symbolically, we write d ¼ Wc and c ¼ W�1d, where W and
W�1 are forward and inverse wavelet transform operators. Neither W nor W�1

is formed explicitly, but these transforms are computing using only O(N)
operations—thanks to the lifting scheme.

When Gj is a uniformly refined dyadic grid, there are a total of N¼ (2jþ 1)d

collocation points. However, only a fraction of these points are associated with
the largest N wavelet coefficients, jdl;j

k j � EjjujEE jj2, where Eq. (12) provides the best
N -term approximation ujEðxÞ. Such an approximation does not oscillate at a fre-
quency or wave-number that is larger than 2j [34]. In other words, the maximum
wave number for the approximation (12) is 2j, which is same as the maximum wave
number for a Fourier spectral collocation method on the grid Gj. Hence, the adaptive
wavelet approximation (12) retains the same wave number truncation as what a
Fourier spectral method would do on the grid Gj. If u(x) represents a property of
a fluid motion that has localized spatial structures, we can have N�N, which is
one well-known advantage of wavelet-based methods over spectral methods. The
computational complexity of the present wavelet method, using lifted interpolating
bi-orthogonal wavelets, is O(N ), which was verified previously [e.g., see 27].

All spatial derivatives in Eqs. (10) and (11) are calculated using a weighted
residual collocation method such that

Z
RðxÞdðx� xjkÞ dx ¼ 0

where the residual is defined by RðxÞ :¼ LuðxÞ � LujEðxÞ, and d(x) is the Dirac delta
function [e.g., see 41]. Then, following [41], we have LuðxjkÞ ¼ DW�1d, where D is
the resulting differentiation matrix. First, d is obtained by taking the forward wave-
let transform of a given c, and then the inverse wavelet transform of d at each level j
recursively results in a polynomial representation of ujE, which is differentiated to find
derivatives. The computational cost of this approach is approximately equal to that
of calculating the wavelet coefficients, where neither D nor W�1 is explicitly formed,
due to the lifting scheme. It can also be shown that the maximum error of calculating
qth-order derivative of u(x) is O(E1�q=p), where p is the order of the polynomial that is
used in computing the wavelet transform [e.g., see 27, 41].

In the present work, an adaptive mesh is constructed recursively, starting from
the coarsest grid Gj0, and extending it to the desired finest level j such that only those
grid points that are necessary to evaluate the approximation (12) are used for a simu-
lation. Details of the mesh-generation process are described in [27]. The system of
nonlinear equations (10) and elliptic equation (11) are discretized on the adaptive
mesh using a method that has been summarized above, without theoretical details,
and readers are referred to [27, 41]. In this research, a multiresolution algorithm
has been proposed for solving (10) and (11).
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4. A MULTIRESOLUTION METHOD FOR NONLINEAR SYSTEMS

A multiresolution or multigrid solution method transfers the solution from a
fine to a coarse resolution, and vice versa. The present method employs an adaptive
mesh, and the grid transfer process is based on the wavelet transform coefficients d.

4.1. Grid Transfer Operations

Using a wavelet transform dj on a grid Gj, the fine-to-coarse grid transfer Rj is
denoted by

uj�1 ¼ Rj�1uj ð13Þ

and defined by

uj�1ðxÞ ¼
X
k2Kj0

c
j0
ku

j0
k ðxÞ þ

Xj�2

l¼j0

X2d�1

l¼1

X
k2Kl;l

dl;l
k wl;l

k ðxÞ; jdl;l
k j � EjjujEjj2 ð14Þ

which is obtained by discarding the coefficients d
l;j�1
k , k 2 Kl, j�1, l¼ 1, . . ., 2d� 1

from Eq. (12). Similarly, the coarse-to-fine grid wavelet projection Rj is denoted by

uj ¼ Rjuj�1 ð15Þ

which is the exact inverse of (13) in the way that the discarded wavelets are now
included to obtain (15). These discarded wavelets may not be available in practice,
and following [38, chap. 7], we will use the predicted wavelets to define the coarse-to-
fine grid transfer process (15) approximately by

ujðxÞ ¼
X
k2Kj0

c
j0
ku

j0
k ðxÞ þ

Xj�2

l¼j0

X2d�1

l¼1

X
k2Kl;l

dl;l
k wl;l

k ðxÞ þ
X2d�1

l¼1

X
k2Kl;j�1

~dd
l;j�1

k wl;j�1
k ðxÞ ð16Þ

where ~dd
l;j�1

k are approximations to discarded wavelet coefficients.
Note that the classical multigrid algorithm for a linear elliptic PDE employs

either a trivial restriction or a weighted restriction on a uniformly refined grid. A
trivial restriction implies that ½Rj�1uj�j�1

2k ¼ ujk because the multilevel grids are nested
Gj�1�Gj such that xj�1

2k ¼ xjk. A weighted mean of neighboring values is used to con-
struct a weighted restriction, where the choice of weights is open, but one may con-
sider that the restriction is an adjoint mapping of the prolongation [e.g., see, 47]. It is
a common practice in multigrid theory that weighted means are used to construct
restriction and prolongation operators, but their construction needs special treat-
ment if an adaptive mesh is used.

The present development differs from a classical multigrid algorithm, and
implements the grid transfer operations on an adaptive mesh, using lifted interpolat-
ing wavelet transforms, where interpolating polynomials of order ~pp and those of
order p are used for coarse-to-fine and fine-to-coarse transfers, respectively. In all
numerical verifications, we have used p ¼ ~pp ¼ 6. According to the approximation
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theory, the wavelet transform provides an accurate representation of a function at
coarse or fine resolution, which provides a more appropriate construction for these
grid transfer operations than using an ad hoc weighted mean that is commonly used
in multigrid theory.

4.2. A Multiresolution Algorithm

Let L(uj) denote the approximation of L(u) on the grid Gj, where L is a non-
linear advection-diffusion operator—such as the left-hand side of Eq. (10)—and
let us write the discrete form

LðujÞ ¼ f j ð17Þ

where fj is an approximation to the right-hand side of Eq. (10). An easier problem,

Lðuj�1Þ ¼ gj�1 ð18Þ

at a coarser resolution, i.e., on the grid Gj�1, is now solved with appropriate defi-
nition of gj�1. The current fine-resolution approximation uk, j is updated by

ukþ1;j ¼ uk;j þ R j ðuj�1 � Rj�1 uk;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
error

where the error is calculated at the coarser resolution and is transferred to the
fine-resolution. Note that the calculation of error at a coarser resolution is a key
point in saving CPU time. The process is continued until the residual,

rj ¼ f j � Ljðuk;jÞ ð19Þ

is minimized by a given tolerance. The right-hand side of Eq. (18), gj�1, can be
formed by transferring the current residual, rj, and the approximate solution, uk, j,
to the coarser resolution according to

gj�1 ¼ Rj�1rj þ LðRj�1uk;jÞ

If gj�1 is formed this way, a uniformly refined grid is used, and weighted means
are used to construct Rj, this multiresolution algorithm (MRA) takes a form similar
to that of a multigrid full-approximation scheme, as described in [48]. However, such
a classical multigrid full-approximation scheme is not optimal for solving the
advection-diffusion problem (17), because a substantial amount of computational
work is needed to improve the rate of congvergence, e.g., using anisotropic coarsen-
ing and refinement. In the present development, the adaptive mesh and wavelet
transform as well as the following development are the novel contributions of this
MRA with respect to multigrid theory, and anisotropic coarening=refinement has
not been used.

In order to improve the rate of convergence for the above MRA, a process
known as relaxation or smoothing can be employed to improve the approximation
uk, j before transferring to the coarser resolution, as well as to improve ukþ1, j. A
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relaxation method aims to remove high-frequency oscillation of the error from an
approximate solution. A goal of the present work is the development of an efficient
relaxation method for heat and mass transfer applications, where a nonlinear
advection-diffusion problem is solved. The rate of convergence of the present
MRA solver also depends on the relaxation method that solves Eq. (17) approxi-
mately [e.g., 28].

To see how a relaxation method for a nonlinear problem introduces a high
computational overhead, we can rewrite Eq. (17) in the following compact form:

f jðuÞ ¼ 0 ð20Þ

Since this is a nonlinear system, an improved approximate solution uk, jþ sk is
obtained by solving the linear problem J (uk, j)sk¼� fj(uk, j) approximately, where J
is the Jacobian of the nonlinear system (20) and sk is the N � 1 error vector, which
can be thought of as a search direction. In addition to the construction of J , a
numerical construction of J (uk, j)sk is a matrix-vector product, which has a compu-
tational cost that scales like O(N 2), where N is the number of grid points. Clearly,
the computational overhead is extreme even with an adaptive mesh technique. The
solution procedure will be benefited greatly if one computes J (uk, j)sk using O(N )
complexity as well as finds a search direction sk such that the residual (19) is reduced
by a significant amount.

In order to reduce the O(N 2) complexity to O(N ), let us consider the Frechet
derivative of fj(u), which is a fundamental applied mathematics technique. According
to the mathematical definition of the Frechet derivative, we can approximate the
action of the Jacobian J along the search direction sk in the form of a matrix-vector
product, such that

J ðuk;jÞsk 	 f jðuk;j þ gskÞ � f jðuk;jÞ
g

ð21Þ

for some small real number g [25]. Clearly, the right-hand side of (21) can be evaluated
with O(N ) complexity when the cost of computing fj scales like O(N ). Hence, in the
above development, the problem is linearized approximately with O(N ) complexity.

Let us now develop a line search method to relax (17), i.e., to reduce non-
smooth error from a given approximate solution uk, j such that kfj(uk, j)k2 is mini-
mized by some factor. Most line search algorithms require one to find the search
direction sk to be a descent direction, satisfying

kf jðuk;j þ akskÞk2 < kf jðuk;jÞk2

where the positive scalar ak is the step length. In the present development, the vector
sk is computed from the linear combination of m independent vectors, and hence,
without loss of generality, we can normalize the step length ak¼ 1. Here, sk can be
determined, using a Krylov subspace, Km[J , fj(uk, j)], such that

min
sk2Km

kJ ðuk;jÞsk þ fðuk;jÞk;
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where m is the dimension of the Krylov subspace Km. For interested readers, see [48,
chap. 7.3] for a detailed mathematical analysis of this Krylov method.

In the JFNK solver [e.g., see 25], Eq. (21) optimizes the computational com-
plexity, and normally, a nonadaptive mesh is used. Moreover, m will be as large
as N unless an appropriate problem-dependent preconditioning matrix is found,
which is a major drawback for the JFNK method. In our development, m is small,
usually has a value from 3 to 5, because the above Krylov method is used only in the
relaxation sweep of the proposed multiresolution algorithm.

4.3. Implementation on an Adaptive Mesh

According to Eq. (12), if an intermittent function u(x) is sampled on a grid Gj,
we can represent this function using only a fraction of the wavelet coefficients dj. In
practice, solving a transient problem on the grid Gj and using the wavelet transform
of this solution does not bring any advantage to simulating a flow. Instead, we need
to develop an algorithm that finds the fraction of the coefficients, i.e., the fraction of
the grid Gj, without calculating the flow on the entire grid. For this reason, one
cannot apply the wavelet method directly to simulate a fluid flow.

Let us now summarize the implementation of the proposed MRA on an adapt-
ive mesh that is obtained recursively starting from a given coarse grid Gj0, and updat-
ing it dynamically as the flow exhibits localized features.

1. Start with uk, j for the solution of (17) on the present level j, and check whether
jjrjjj2� tolerance. (Here, uk, j may be the initial guess at the beginning of the pro-
cess.) If the tolerance is satisfied, we have a solution, and continue to step 3
to test whether the mesh is sufficient.

2. Perform c steps of MRA iterations on the current level. The choice of the para-
meter c¼ 1 results in a V-cycle, and c¼ 2 results in a W-cycle iteration
(e.g., see, [28] for a details of multigrid V- and W-cycle iterations), and go to
step 1.

3. Perform a wavelet transform and analyze the one-to-one mapping between the
wavelet coefficients d ¼ ½dj

k� and the grid points x ¼ ½xjk�. All grid points that
are associated with large wavelet coefficients, i.e., jdj

kj=kujk2 � e, are marked
for mesh refinement as active points at the present level. Mark all other
grid points for deletion or coarsening.

4. If there are no points for refinement, we have a mesh and a solution. Remove all
refinement=coarsening flags and stop iteration; otherwise, continue to the next step.

5. Refine and coarsen the mesh, and construct the next-level grid, considering only
those collocation points that belong to suitably defined neighbors of the
active grid points at the present level [40].

6. The set of active points and neighbors constitutes the next-level
mesh. Ensure that all active points on the present level and the points on the
boundary are included in the next-level approximate mesh. This criterion is neces-
sary to ensure that adaptive grids are also nested, so that wavelet decomposition
and reconstruction are stable.

7. Use the grid transfer operation (16) to obtain an approximate solution on the
next-level mesh. Go to step 2.
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In the following section, the proposed method is verified by numerical
examples.

5. NUMERICAL EXPERIMENTS

5.1. Verification for Error and Rate of Convergence

In order to demonstrate the accuracy and flexibility of the proposed method,
we first consider the numerical solution of the Poisson–Boltzmann equation,

�r2uþ a sinhðbuÞ ¼ f ð22Þ

where a and b are constants. The right-hand function f and Dirichlet boundary con-
ditions are chosen such that the solution of (22) is given by

uðx; yÞ ¼ a1 exp½�ðx2 þ y2Þ=ð2l0Þ� � 0:5 sinðpxÞ sinðpyÞ

where a1¼ 1.0, a¼ 1.0, b¼ 1.0, and l0¼ 10�3 have been used. The problem can be
considered as a toy model for the purpose of numerical verification. Figure 1a pre-
sents the solution of (22) at various resolutions, 17� 17, 33� 33, 65� 65, 257� 257,
513� 513, and 1,025� 1,025, showing that the solution is converged iteratively if the
resolution increases. Figure 1b presents the corresponding adapted grids, verifying
that grid points are concentrated near the point (0, 0), where the solution has a sharp
gradient. These plots in Figures 1a and 1b demonstrate clearly that the approxi-
mation error is reduced, and the mesh is refined only locally if the resolution
increases.

For this simulation, the resolution of a uniform grid Gj is given by
(mx2

j�1þ 1)� (my2
j�1þ 1), where, using mx¼my¼ 2, the coarsest grid G1 has a res-

olution of 3� 3 or 9 grid points, the finest grid G10 has a resolution of 1,025� 1,025
or 1,050,625 grid points, and a tolerance e¼ 10�4 is used to obtain the finest grid G10

according to the algorithm presented in Section 4.3. Here only 12,473 points of the
uniform grid G10 are used for the simulation. The number of points in the adapted
grid G10 is 12,473, which is about 84 times less than the 1,025� 1,025 or 1,050,625
points in the nonadapted grid. Moreover, the number of points 12,473 is equivalent
to a resolution of 112� 112, which means that the resolution has been increased by
about a factor of 8 or 9 in this case without increasing the global number of grid
points. This experiment exhibits clearly the advantage of adaptive mesh refinement
approach.

As summarized in Table 1, numerical experiments with increasing the resol-
ution each time by a factor of 2, where the multilevel grids vary from a 17� 17
resolution to 1,025� 1,025 resolution, indicate that the rate of convergence is inde-
pendent of the resolution. Using numerical experiments for 10�1� E �10�6, we have
calculated the error jjuðx; yÞ � ujEðx; yÞjj2 and the number of points N , where u(x, y)
stands for the exact solution and ujEðx; yÞ stands for the numerical solution for each
value of E. Figure 2a shows that the error is O(E), and Figure 2b shows that the error
is O(N�3). In other words, the tolerance E controls the error linearly, and a 50%
reduction of the error increases N by only about 25%. In Figure 2c the CPU time
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is plotted against N , which verifies O(N ) complexity such that the computational
cost scales linearly with the number of computational degrees of freedom N .

The above numerical test verifies the performance of the proposed algorithm.

Figure 1. A sequence of approximate solutions of (22) at various resolutions: 17� 17, 33� 33, 65� 65,

257� 257, 513� 513, and 1,025� 1,025. (a) We see clearly that the error decreases if the resolution

increases. (b) Adapted grids corresponding to the solutions in (a). All points at the resolution 17� 17

are used, but the mesh is refined locally so that only a fraction of the higher-resolution grids is used to

minimized the error. The solutions as well as the adapted grids at resolutions 513� 513 and

1,025� 1,025 are almost identical (color figure available online).
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5.2. Numerical Simulation of a Shear-Driven Flow

A shear-driven cavity flow, where one wall of the cavity moves at a constant
velocity on its own plane, exhibits a boundary layer of thickness d/Re�1=2, and
is a classical test problem for the assessment of CFD codes. In order to verify the
accuracy of the present model, where a fine mesh is used only in the region of the
boundary layer, comparison results are summarized in this section. The initial and
boundary conditions corresponding to a shear-driven 2-D flow in a cavity, X ¼
X [ @X, are given by (4).

5.2.1. Comparison with Reference Solutions. In Figure 3, the simulated
velocity u(0.5, y) is compared with data presented in [29, 49], showing good agree-
ment between the present and reference solutions. Note that [49] used a Chebyshev
collocation method, employing 25,600 grid points at Re¼ 1,000, and [29] used a mul-
tigrid method on uniformly refined multilevel meshes, employing 65,536 grid points
at Re¼ 1,000 (as well as various other values of Re). Using a tolerance e¼ 10�3, the
present model requires only 3,416 grid points, which is about 13% or 5% of the grid
points required by [29, 49] respectively, but retains an accuracy that is comparable to

Figure 2. (a) The error remains roughly proportional to e; o �numerical data, - - - logarithmic slope for

O(E). (b) Error as a function of the number of adapted grid points N ; o�, numerical result; - - -, logarith-

mic slope for O(N�3) (c) The CPU time [s] is approximately proportional to N ; o�, numerical result; - - -,

logarithmic slope for O(N ).

Table 1 Rate of convergence of MRA solver tested by solving (22)a

Grid No. of MRA iterations Residual

17� 17 19 8.06� 10�9

33� 33 23 1.66� 10�8

65� 65 23 1.27� 10�8

129� 129 22 6.66� 10�9

257� 257 22 6.32� 10�9

513� 513 22 6.24� 10�9

10,25� 10,25 22 6.08� 10�9

aThe algorithm takes about the same number of iterations to reduce the

residual norm by the same factor, which is independent of the resolution.
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these reference simulations. For the present simulation, the number of grid points
also increases to 10,275 and 25,434 if the tolerance is decreased to E¼ 10�4 and
10�6, respectively, where the latter is about the same as that of [49]. Figure 4a com-
pares velocity u(0.5, y) for a range of tolerance values 10�2� E �10�6, which shows
that a tolerance between 10�2 and 10�3 is sufficient. This numerical experiment exhi-
bits that the proposed model reduces the computational work units by reducing dras-
tically the number of grid points without introducing significant error in comparison
with numerical data from [29, 49].

A principal objective of the present study includes a space and time adaptivity
such that the time step Dt is not restricted by the CFL condition. In order to assess

Figure 3. The velocity, u(0.5, y), along a line, x¼ 0.5, at Re¼1,000 is compared with the data presented in

[29] and [49]. Despite that the present model uses only a fraction of the grid points compared to the ref-

erence models, good agreement in this plot confirms the accuracy of the present model.

Figure 4. The effects of varying the tolerance, E, as well as varying the CFL number for computing the

velocity, u(0.5, y), at Re¼ 1,000 are presented, where u(0.5, y) is compared for (a) 10�2� E �10�6 and

for (b) 1�CFL � 6. Visual comparision of Figures 3 and 4 confirms that a tolerance as large as 10�2

or a CFL number as large as 6 can be used without losing accuracy significantly.
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the cost and error of the time integration scheme in such an adaptive mesh CFD
model, let us define a CFL number by

CFLmax ¼
maxðkukÞmaxðDtÞ

minðDxÞ

where CFLmax¼ 1 means that max (Dt)¼min (Dx) because max (kuk)¼ 1 for this
simulation. Since an explicit time integration scheme requires CFLmax� 1, the time
step, Dt�min (Dx), will be extremely small if the mesh is refined locally in the region
of sharp change of the solution. Here, Dt is adapted dynamically so that a given
CFLmax is satisfied. The experiment with various CFLmax values between 1 and 6,
as presented in Figure 4b, shows that the time step Dt can be adjusted according
to a desired accuracy without being restricted by the CFL number, which is a distinct
feature of the proposed model with respect to classical CFD techniques. Figure 4b
shows clearly that a 6-times-larger CFL number retains the accuracy within the tol-
erance limit, which is clear from a visual comparison of computed u(0.5, y) between
Figures 3 and 4.

These comparison tests reveal good agreement with reference solutions as well
as confirm the accuracy of the present solution even though a sparse grid is used with
a large Dt and a large CFL number.

5.3. Flow in a Differentially Heated Cavity

We have simulated a flow in a differentially heated cavity for two main reasons.
First, this is a prototypical problem for verifying a CFD algorithm, which is relevant
to many industrial applications. Second, the flow includes the gravitational effects,
where density variation occurs in the vertical direction due to thermal effects. This
flow is either driven by only a thermal gradient—known as natural convection—
or driven by both a shear and a thermal gradient—known as mixed convection.
Results for a natural-convection flow are presented. The characteristic dimensionless
parameter is the Rayleigh number, Ra, where the flow remains steady or laminar if
Ra�Racritical, but transitions to turbulence occur otherwise. This characteristics of
the flow makes it a benchmark candidate for understanding the convergence of a
new numerical algorithm.

The set of equations (1)–(3) with c¼ 1 governs a thermally driven, two-
dimensional natural convection flow in a cavity: X ¼ X [ @X. The initial and
boundary conditions for the velocity are given by (4) with V¼ 0, and those for the
temperature field are given by (5). A series of numerical simulations have been per-
formed for 103�Ra� 109 using the same initial and boundary conditions. These
numerical simulations agree with the data available from [30].

5.3.1. Results. The temperature distributions for 103�Ra� 109 are pre-
sented in Figure 5, where we see that the region of hot or cold fluid is concentrated
near the walls as Ra increases. In other words, a strong temperature gradient
occurs near the walls at high Ra. This development of the thermal boundary layer
makes the computation of such a flow a challenging task. As described in [30], a
uniform mesh that is sufficient to calculate the flow at Ra¼ 103 will become
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insufficient if Ra increases, because the narrow boundary layer at high Ra requires
a fine mesh. Looking at the temperature distribution at Ra¼ 109 in Figure 5, one
sees clearly that the mesh needs to be refined locally only near all four walls of the
cavity, and is not necessary away from the walls. According to Eq. (12) and the
algorithm as described in Section 4.3, the present MRA identifies the region dyna-
mically, where a large gradient or boundary layer occurs, and determines the
numerical resolution that is necessary to resolve such a boundary layer. Our
numerical experiments with a tolerance E¼ 5� 10�3 show that the maximum neces-
sary resolution is 128� 128 for 103�Ra� 107, 256� 256 for Ra¼ 108, and
515� 512 for Ra¼ 109. However, at Ra¼ 109, the present simulation uses only
11,308 points, which is about 4% compared to the uniform mesh at the resolution
512� 512.

To see the growth of the boundary layer near the side walls, the velocity v(x,
0.5) and the temperature h(x, 0.5) are presented in Figures 6a and 6b, respectively
for increasing values of Ra. These results are compared with the data presented in
[30, e.g., Figure 3], and we see very good qualitative agreement. The scaling for
the velocity field for the present model differs from that for the model of [30]. Hence,
a rescaling of the model output shows that the velocity profiles in Figure 6a have
good quantitative agreement with those presented in [30].

Figure 5. The temperature distributions for various values of the Rayleigh number, Ra¼ 103, 104, 105, 106,

107, and 109, at a fixed dimensionless time T, when the flow has reached approximately a steady state. The

initial temperature at t¼ 0 is the same for each case (not shown in the figure). Clearly, a thermal boundary

layer is developed as Ra increases. (The plot for Ra¼ 108 is not shown, to optimize the space.) (color figure

available online).
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5.4. Heat Island Circulation

A heat island circulation is a typical horizontal convection driven by the differ-
ential surface heating in the atmosphere. In order to include the stratification effect,
the temperature field in Eq. (3) is decomposed into hðx; y; tÞ ¼ h0 þ hðyÞ þ h0ðx; y; tÞ,
where gravitational force acts along the y direction. This decomposition is equivalent
to adding the term �ð1=Fr2Þv on the right-hand side of Eq. (3) [10], where the
Froude number is defined by

Fr ¼ U

L
ffiffiffiffiffiffiffiffi
g
h0

@h
@y

q

Hence, choosing Fr ¼ 1 keeps Eq. (3) in its original form, and choosing Fr¼ 1
makes it equivalent to the model that was presented in [10]. Using this modification
to the governing equations, an idealized heat island circulation in a vertical plane has
been simulated, where the initial localized heat source at t¼ 0 is on the bottom hori-
zontal wall as shown in Figure 7a.

The time evolutions at t¼ 60 of the initial temperature h(x, y, 0) for Ra¼ 103,
104, and 105 are presented in Figures 7b–d. The pattern of the rising plume indicate
that the vertical propagation of the plume is reduced if Ra is increased, but the plume
remains symmetric with respect to the horizontal distance x measured from the cen-
ter of the heat source. This pattern is a typical characteristic of horizontal convec-
tion, which means that the numerical model has simulated a flow that has good
qualitative agreement with an actual heat island circulation. In Figure 8a, we present
the temperature profile h(x, 0.5, 60) out of three temperature data presented in
Figures 7b–d, which shows that the maximum temperature along the line y¼ 0.5 is
reduced when Ra is increased. The vertical temperature profiles h(0.5, y, 60) in
Figure 8b show that the temperature decays rapidly to zero along the vertical line
x¼ 0, where (0, 0) is the center of the heat source, and the rate of this decay is faster
with higher values of Ra. This decay is associated with the stratification. To see this

Figure 6. The development of thermal boundary layers corresponding to temperature distributions in Figure

5 at various values of the Rayleigh number, 103�Ra� 108. (a) Simulated temperature profiles, h(x, 0.5),
along a fixed line, y¼ 0.5 are presented. Only a portion x2 [0, 0.2], is shown. Clearly, if Ra increases, the

width of the boundary layer decreases. (b) Simulated velocity profiles, v(x, 0.5), also exhibit a similar pattern.
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let us assume that the temperature field is spatially homogeneous, which simplifies
the temperature equation (3) to the form

@h
@t

¼ � 1

Fr2
v

Clearly, the effect of the stratification term is to decay the temperature h in the
region of positive vertical velocity, v. The horizontal profile of the vertical velocity
v(x, 0.5, 60) in Figure 8c shows that the vertical convection is increasingly localized
above the heat source with increasing Ra. The narrow region of positive v is
accompanied by narrow regions of negative v, which means that the region where
the temperature decays is also accompanied by regions of temperature increase. This
explains the wiggly profile for Ra¼ 105 in Figure 8a,b.

5.4.1. Comparison with Reference Results. In [10], an idealized heat island
circulation was investigated numerically, where a fluid that was confined in a 2-D
region was heated with a localized heat source on the bottom boundary. The numeri-
cal simulation in [10] required an extended domain in order to accommodate the

Figure 7. Time evolutions of an initially localized heat source at Fr¼ 1 and Ra¼ 103, 104, and 105 are pre-

sented, where the effect of increasing Ra on the pattern of the rising plume is exhibited. The darkest area

represents a dimensionless temperature, h¼ 1, and the lightest area represents h¼ 0.
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horizontally convective circulation. In contrast, the present simulation used a rela-
tively small domain, where horizontal convection is modeled numerically using a
Neumann-type boundary conditions. When Figures 8a–8c of the present simulation
are compared visually with Figures 10a, 9a, and 10b, ‘‘respectively, from [10],’’ one
finds good agreement despite that the simulations are done in different computa-
tional domains with different boundary conditions and different numerical techni-
ques. This comparison verifies that our numerical model simulates a heat island
circulation as accurately as the data presented in [10].

6. SUMMARY

This article has explored the development of an efficient CFD model for tran-
sient heat and mass transfer applications using an adaptive mesh approach. A multi-
resolution algorithm has been proposed that explores some of the recent discoveries
on advanced computational algorithms. Comprehensive numerical experiments have
been conducted for the verification of the algorithm’s performance. The numerical

Figure 8. Temperature profiles and velocity profiles corresponding to Figure 7 for 103�Ra� 105 are pre-

sented in this figure. (a) Temperature profiles, h(x, 0.5, 60), along a line y¼ 0.5 at t¼ 60, show that rising of

hot fluid has been suppressed with increasing Ra. (b) Temperature profiles, h(0, y, 60), along the line x¼ 0

shows that the decay of h in y is faster if Ra increases. (c) Velocity profile v(x, 0.5, 60) along y¼ 0.5 shows

that the maximum of v occurs at x¼ 0, which decreases if Ra increases. These plots are in good agreement

with similar plots presented in [10].
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accuracy has been verified in two stages. First, a nonlinear mathematical problem has
been solved for which the exact solution is known. This verifies the rate of conver-
gence for the iterative method, accuracy of the global numerical solution, and the
computational time needed for a high-resolution simulation. Second, transient simu-
lations of a shear-driven flow, a natural convection, and a heat island circulation have
been compared with previously published numerical data. Good quantitative agree-
ments with these data confirm the performance of this novel computational approach.

The proposed MRA algorithm shares the benefits of some advanced techniques
that are known to the applied mathematics and computational physics research com-
munity. For example, wavelet-based techniques provide an efficient method—known
as nonlinear approximation—so that the most significant proportion of the energy
under a localized function can be computed using only a small number of grid points
without losing accuracy. To the CFD research community, the need for anisotropic
coarsening and refinement has discouraged the use of the full-approximation
scheme. To the computational physics research community, the Jacobian-free
Newton–Krylov methodology is a powerful algorithm for simulating multiphysics
problems, where a problem-specific preconditioner matrix must be designed for each
simulation. Instead of using the FAS and JFNK solver directly, the concepts from
these algorithms are taken so that a new algorithm can be designed.

The development throughout this research brings novel ideas to scientists
whose research interests lie in the numerical simulation of heat and mass transfer
problems. Potential future development includes extension to three-dimensional
transient problems, for which a parallel version of this code must be developed. This
work is currently underway.
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