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Abstract The development of various volume penal-
ization techniques for use in modeling topographical
features in the ocean is the focus of this paper. Due
to the complicated geometry inherent in ocean bound-
aries, the stair-step representation used in the majority
of current global ocean circulation models causes ac-
curacy and numerical stability problems. Brinkman pe-
nalization is the basis for the methods developed here
and is a numerical technique used to enforce no-slip
boundary conditions through the addition of a term to
the governing equations. The second aspect to this pro-
posed approach is that all governing equations are
solved on a nonuniform, adaptive grid through the
use of the adaptive wavelet collocation method. This
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method solves the governing equations on tempo-
rally and spatially varying meshes, which allows higher
effective resolution to be obtained with less compu-
tational cost. When penalization methods are coupled
with the adaptive wavelet collocation method, the flow
near the boundary can be well-resolved. It is espe-
cially useful for simulations of boundary currents and
tsunamis, where flow near the boundary is important.
This paper will give a thorough analysis of these meth-
ods applied to the shallow water equations, as well
as some preliminary work applying these methods to
volume penalization for bathymetry representation for
use in either the nonhydrostatic or hydrostatic primitive
equations.

Keywords Immersed boundary methods ·
Shallow water equations · Adaptive mesh refinement ·
Wavelet collocation · Complex geometry

1 Introduction

In recent years, substantial progress has been made
in the development of numerical methods used in
ocean modeling. The newly developed ocean models
have started incorporating more sophisticated numer-
ical methods, such as finite element methods, spectral
methods and finite volume methods, which are solved
on adaptive and/or unstructured grids (Chen et al. 2003;
Danilov et al. 2004; Fringer et al. 2006; Iskandarani
et al. 2003; Lynch et al. 1996; Marshall et al. 1997;
Herrnstein et al. 2005; Pain et al. 2005; Popinet and
Rickard 2007; White 2007). Structured grid models
have been the mainstay of ocean modeling for over
50 years with compromises for complex bathymetry
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(Adcroft et al. 1997) and unstructured grid models are
beginning to allow for much more complex bathymetry.
However, Brinkman penalization is an approach that
can be used for complex bathymetry regardless of grid
structure, and it can even be used for bathymetry that
evolves in time (e.g., sedimentation, turbines, seafloor
earthquakes). Since the ocean is a strongly coupled
multiscale system, accurate representation of the entire
range of scales calls for state of the art numerical meth-
ods and techniques. In handling this immense range
of spatial and temporal scales, there is a need to dy-
namically resolve significant structures. The proposed
approach not only solves the ocean-governing equa-
tions on an on-the-fly adaptive grid but also provides
a computationally efficient technique for representing
complex boundaries.

The focus of this paper is to present a complete
approach for modeling topographical features in the
ocean using various forms of volume penalization.
Modeling complex boundaries is a pressing issue in
the field of ocean modeling. The majority of current
ocean models use body-fitted meshes, which are ex-
pensive and often have stability issues when repre-
senting boundaries with complicated geometry (Collins
et al. 2006). Immersed boundary methods are well
known for the their efficient implementation of solid
boundaries of arbitrary complexity on fixed nonbody
conformal Cartesian grids (Mittal and Iaccarino 2005;
Peskin 2002). Immersed boundary techniques are rarely
used in ocean modeling (Tseng and Fersiger 2003).
Brinkman penalization, a type of immersed boundary
method, has been used in many engineering problems
to simulate the presence of arbitrarily complex solid ob-
stacles and boundaries (Arquis and Caltagirone 1984).
This volume penalization technique is a way to enforce
boundary conditions to a specified precision without
changing the numerical method or grid used in solving
the equations. Its main idea is to model arbitrarily
complex solid obstacles as porous media with poros-
ity, φ, and permeability approaching zero. The main
advantage of Brinkman penalization, when compared
to other penalization methods, is that the error can be
estimated rigorously and controlled via a penalization
parameter (Angot et al. 1999). This allows for com-
plete control of the accuracy of the boundary condi-
tions. Additionally, it can be shown that the penalized
equations converge to the exact solution in the limit
as the penalization parameter tends to zero (Angot
1999). The work of Adcroft and Marshall (1998) shows
that implementing no-slip boundary conditions can be
error-prone for traditional approaches, while Adcroft
et al. (1997) demonstrate the importance of capturing

topographic features that are not neatly captured by
the edges of finite-volume cells. Brinkman penalization
automatically handles both cases, for arbitrary bottom
slope and shelf orientation.

Immersed boundary methods have been developed
for incompressible flows and more recently have been
extended to compressible flows (Liu and Vasilyev
2007). Both of these formulations have been adapted
to be used on the ocean-governing equations (including
the shallow water equations and the hydrostatic and
nonhydrostatic primitive equations). This paper will be
primarily focusing on the extension of these methods
to the shallow water equations but will present prelim-
inary results of applying Brinkman penalization to the
primitive equations.

In order to model complex geometries, a nonuni-
form, adaptive mesh is ideal. For many adaptive mod-
els, the main challenge is grid generation. Not only is
grid generation difficult, but the process used is often
a trial and error. It is also computationally expensive.
Additionally, many other adaptive grid models require
grid generation at every time step. Ideally, the grid
should follow the structures in the flow, in addition
to adapting to the complicated curves of the bathym-
etry. In this work, this is done by the combination of
two mathematical approaches: Brinkman penalization
(Arquis and Caltagirone 1984) and the adaptive wave-
let collocation method (Vasilyev 2003; Vasilyev and
Bowman 2000; Vasilyev and Kevlahan 2002). The adap-
tive wavelet collocation method efficiently resolves lo-
calized flow structures in complicated geometries, while
the Brinkman penalization efficiently implements arbi-
trarily complex solid boundaries. Brinkman penaliza-
tion is a natural technique to use on problems with
adaptive methods because the adaptive meshes will
ensure adequate resolution at the boundary. This is
especially important for problems where the physics
near the boundaries play a considerable role in the
overall features of the flow.

The hybrid wavelet collocation–Brinkman penaliza-
tion method has been previously investigated for three
cases: incompressible Navier–Stokes equations both in
vorticity (Vasilyev and Kevlahan 2002) and primitive
variable formulations (Kevlahan et al. 2000; Kevlahan
and Vasilyev 2005), and compressible Navier–Stokes
equations in primitive variable formulation (Liu and
Vasilyev 2007). High Reynolds number flows can be
simulated while greatly reducing the number of wave-
number modes and controlling the error. The compu-
tational cost of the wavelet method is independent of
the dimensionality of the problem. It is O(N ), where
N is the total number of wavelets actually used. The
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adaptive wavelet collocation method uses second gen-
eration wavelets, which allows the order of the method
to be variable. Also, the method is easily applied in both
two and three dimensions.

In the following sections, the adaptive wavelet
collocation method will be discussed, followed by an
explanation of the extension of the compressible for-
mulation of Brinkman penalization to be used on the
shallow water equations. It was found that the appli-
cation of the existing Brinkman penalization (devel-
oped for the compressible equations) on the shallow
water equations was not sufficient and therefore several
modifications of the Brinkman penalization method
were made and fully tested. Finally, some preliminary
work is presented on the development of a volume
penalization method to be used on the hydrostatic and
nonhydrostatic primitive equations for both no-slip and
slip boundary conditions.

2 Adaptive wavelet collocation method

The adaptive wavelet collocation method is a general
method for the solution of a large class of linear and
nonlinear partial differential equations (Vasilyev and
Bowman 2000; Vasilyev 2003; Vasilyev and Kevlahan
2005; Regele and Vasilyev 2009). The method has al-
ready been successfully applied in wide range of fluid
mechanics problems, e.g., that of Vasilyev et al. (1997),
Vasilyev and Kevlahan (2002), Kevlahan et al. (2007),
Reckinger et al. (2010), and Schneider and Vasilyev
(2010). In this section, the methodology is briefly re-
viewed.

The benefit of using wavelets is that they are local-
ized in both space and time. They are ideal for use in
complex flows where localized structures exist in the
solution. The wavelet collocation method takes advan-
tage of wavelet compression properties. Functions with

localized structures or regions with sharp transitions
are well compressed using wavelet decomposition. This
compression is achieved by keeping only the wavelets
with coefficients that are greater than an a priori thresh-
old parameter. This allows high resolution computa-
tions to be carried out only in the regions where it
is necessary. It also allows a solution to be obtained
on a near optimal grid for a given accuracy. Figure 1
shows an example of a simulation of the 2010 Chile
tsunami using the adaptive wavelet collocation method
to solve the shallow water equations with real variable
bathymetry. The right side of the figure shows that
the grid is localized near the tsunami and near all the
continental boundaries.

Any function u(x) in an n-dimensional space can be
decomposed as that of Chui (1997), Daubechies (1992),
and Mallat (1998)

u(x) =
∑

k∈K0

c0
kφ

0
k(x) +

+∞∑

j=0

2n−1∑

μ=1

∑

l∈Lμ, j

dμ, j
l ψ

μ, j
l (x), (1)

where φ0
k(x) are scaling functions on the lowest level

of resolution and ψ
μ, j
l (x) are the wavelet basis func-

tions. Also, c0
k and dμ, j

l are the scaling and wavelet
coefficients, respectively. The wavelet coefficients, dμ, j

l ,
are small except near areas with large gradients.
Equation 1 can be decomposed into two terms whose
wavelet coefficients are above and below a chosen
threshold parameter ε,

u(x) = u≥(x) + u<(x), (2)

where

u≥(x) =
∑

k∈K0

c0
kφ

0
k(x)+

+∞∑

j=0

2n−1∑

μ=1

∑

l ∈ Lμ, j

|dμ, j
l | ≥ ε‖u‖

dμ, j
l ψ

μ, j
l (x),

(3)

Fig. 1 Preliminary results
from 2010 Chile tsunami
simulation, with sea surface
height on the left and the
adaptive grid (colored by
level) on the right using the
adaptive wavelet collocation
method
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u<(x) =
+∞∑

j=0

2n−1∑

μ=1

∑

l ∈ Lμ, j

|dμ, j
l | < ε‖u‖

dμ, j
l ψ

μ, j
l (x), (4)

Donoho (1992) was able to show that for a regular
function, the error is bounded as

‖u(x) − u≥(x)‖ ≤ C1ε‖u‖, (5)

which means that the number of grid points needed to
solve a numerical problem can be significantly reduced
while still retaining a prescribed level of accuracy de-
termined by the threshold parameter ε.

In the wavelet collocation method, there is a one-to-
one correspondence between grid points and wavelets.
This makes calculation of nonlinear terms simple and
allows the grid to adapt automatically to the solution at
each time step by adding or removing wavelets. In ad-
dition to the points with significant wavelet coefficients,
several other checks are performed to ensure the reso-
lution is sufficient for the given simulation. The way the
method works is, at the beginning of each time step,
the wavelet coefficients are calculated. Wavelets with
significant coefficients are identified. Next, in order to
account for the evolution of the solution over time, the
nearest neighbor wavelet coefficients in position and
scale are also added (Liandrat and Tchamitchian 1990).
After these significant and adjacent points are kept,
the wavelets that are below the threshold ε and are
not in the adjacent zone are removed. It can be shown

that the L∞ error for this approximation is bounded
by ε. This allows the grid to automatically follow the
evolution of the solution. Then, reconstruction points
are added, which are points needed to compute the
wavelet transforms. Lastly, ghost points are added;
these are points needed to calculate spatial deriva-
tives. The spatial derivatives are calculated using finite
differences. Since this method uses second generation
wavelets (Sweldens 1998), the order of the wavelet (and
also finite difference) can be easily varied.

Figure 2 shows a one-dimensional example of a solu-
tion (top) and its adaptive grid (bottom). The vertical
lines show the magnitude of the wavelet coefficients
at each location in space for each level of resolution.
It is clear that at the location in the center of the x-
axis where the solution has a sharp gradient, there is
localized refinement on the grid.

There are some additional computational costs as-
sociated with the use of the adaptive multiresolution
wavelet method. Currently, the cost per grid point is
approximately three to five times greater than the cost
of a standard nonadaptive method. However, in cases
of large compressions (Kevlahan and Vasilyev 2005)
(up to 103), the compression greatly outweighs this cost.
There is also some memory savings associated with
using adaptive methods, which allows higher resolution
simulations with the same computational resources.

In summary, the dynamically adaptive wavelet col-
location method is an adaptive, variable order method
for solving partial differential equations with localized
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Fig. 2 A one-dimensional example of grid adaptation using the adaptive wavelet collocation method
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structures that change their location and scale in space
and time. Since the computational grid automatically
adapts to the solution (in position and scale), we do
not have to know a priori where the regions of high
gradients or structures exist.

3 Brinkman penalization for shallow water model

The shallow water equations are mathematically similar
to the compressible Euler equations. A compressible
formulation of Brinkman penalization has been devel-
oped by Liu and Vasilyev (2007). This compressible
form is extended to the shallow water equations,

∂η

∂t
= −

[
1 +

(
1

φ
− 1

)
χ

]
∇ · (ηu), (6)

∂u
∂t

+ u · ∇u + 1

Ro
f k̂ × u = − 1

Fr2
∇η − χ

ηpen
u, (7)

where the Rossby number, Ro = U/Lf , the Froude
number, Fr = U/

√
gH, the Brinkman penalization pa-

rameter, ηpen � 1, the porosity parameter, φ � 1, and,

χ(x, t) =
{

1 if x ∈ Oi(x),

0 otherwise,
(8)

which is called a masking function. Oi(x) is any obsta-
cle, or, in the case of shallow water ocean simulations,
is the continental boundaries.

Analysis of the equations and numerical testing show
that there are three main differences between the shal-
low water equations and the compressible equations.
These differences result in a different treatment of
the penalization parameters and the numerical set-up
compared to the compressible form.

The following analysis describes these differences,
while also considering amplitude and phase error analy-
sis for the case of gravity wave propagation in the small
amplitude limit.

3.1 Wave speeds

One of the assumptions that is made when performing
the error analysis for compressible Brinkman penal-
ization is that the speed of sound is the same in the
fluid region and porous media region (Liu and Vasilyev
2007). For the penalized shallow water equations, the
gravity wave speed is different in the fluid versus the
porous media. Consider the one-dimensional shallow
water equations,

∂u
∂t

+ A
∂u
∂x

= 0, (9)

where u = (η, ηu)T is the vector of conservative, dimen-
sional variables, and the Jacobian matrix is

A =

⎡

⎢⎢⎣

0
1

φ

gη − (ηu)2

η2

2(ηu)

η

⎤

⎥⎥⎦ . (10)

Note that when φ = 1, the equations reduce to the
traditional shallow water equations. Therefore, φ = 1
represents the fluid case, while all other cases are for
the porous media. The eigenvalues of A are

λ = u ±
√

u2 − 1

φ
(u2 − gη). (11)

Assuming that u/
√

gH = O(ε) and η/H = 1 + O(ε),
where H is the mean depth of the ocean and ε is some
small perturbation (ε � 1), the eigenvalues become

λ = u ±
√

gH
φ

. (12)

When φ = 1, the eigenvalues are u ± √
gH as expected

for the shallow water gravity wave speed. However,
for any other φ value, the eigenvalues are different.
Inside the porous media, where φ � 1, the gravity wave
speed is much larger than in the fluid region. The
implementation issues related to these difficulties are
discussed in Section 4.2.

3.2 Impedance

Some of the properties associated with the classical the-
ory of acoustics (Blackstock 2000) are used in the devel-
opment of the compressible formulation of Brinkman
penalization (Liu and Vasilyev 2007). Consider the
plane wave reflection and transmission at the inter-
face between two different media. To model the one-
dimensional problem of wave propagation from a fluid
into a porous media, it can be thought of as a sudden
change in cross-sectional area (Liu and Vasilyev 2007).
In acoustics theory, the acoustic impedance at a given
surface is the ratio of the surface-averaged acoustic
pressure to the fluid volume velocity,

Z = ρc
S

, (13)

where ρ is density, c is gravity wave speed in the
fluid (c = √

gH), and S is the cross-sectional area. In
order to have most of the wave reflected, the obsta-
cle’s acoustic impedance needs to be sufficiently large,
which is the basis for the impedance mismatch method
(Chung 1995). For the shallow water equations, since



1206 Ocean Dynamics (2012) 62:1201–1215

the gravity wave speed is also a function of φ, the
impedance becomes

Z = ρc
φ3/2

, (14)

which is a higher impedance than what was found for
the compressible Brinkman penalization formulation,
which was Z = ρc/φ (Liu and Vasilyev 2007). This
allows for a slightly lower range of reasonable φ values
for negligible wave transmission in the shallow water
case compared to the compressible case. This is one ad-
vantage of the shallow water formulation of Brinkman
penalization.

3.3 Analogy to Euler equations

The compressible equations in the isothermal limit
yield similar results as the shallow water equations. The
1-D Euler equations with either isothermal or adiabatic
conditions (i.e., ∂ P/∂x = c2∂ρ/∂x), reduce to

∂ρ

∂t
+ 1

φ

∂ρu
∂x

= 0, (15)

∂ρu
∂t

+ ∂

∂x
(ρuu) + c2 ∂ρ

∂x
= − 1

ηpen
u. (16)

These assumptions eliminate the energy equation. Un-
like the full compressible form of Brinkman penaliza-
tion, this form (like the shallow water equation form)
only has two penalization parameters, φ and ηpen.

Similar analysis as in Section 3.1 yields the following
eigenvalues:

λ = u ± c√
φ

. (17)

This analysis highlights the similarities between the
shallow water and compressible equations. Elimination
of the energy equation effectively removes entropy
waves leaving only two acoustic waves in the equations,
with a subsequent change of wave speed inside the
Brinkman zone.

3.4 Amplitude and phase errors by asymptotic analysis

The use of asymptotic analysis provides a way to esti-
mate the amplitude and phase errors associated with
the penalized shallow water equations. In addition,
by looking at the equations in different asymptotic
limits, information about the behavior of the system
is obtained from a rigorous mathematical viewpoint.
The “ocean region” simply refers to the part of the
numerical domain where the shallow water equations
are being solved. The “continental region” refers to the

part of the numerical domain where the penalized shal-
low water equations are solved. The following analysis
assumes small amplitude waves in the ocean region and
is similar to the analysis performed for the penalized
compressible equations (Liu and Vasilyev 2007).

3.4.1 Asymptotic analysis for the ocean region

The ocean region variables are written as

ηo = 1 + εη′
o, (18)

uo = εu′
o, (19)

where ε � 1, small perturbations from the mean. Sea
surface height is the mean ocean depth plus the sea
surface height perturbations, where the velocity is only
a function of the velocity perturbations. If Eqs. 18
and 19 are substituted into Eqs. 6 and 7 in the limit of
large Rossby and Froude numbers, and only the leading
perturbation terms are retained, the result is a wave
equation,

∂2η′
o

∂t2
= ∂2η′

o

∂x2
, (20)

∂2u′
o

∂t2
= ∂2u′

o

∂x2
. (21)

Thus, in the fluid or ocean region, the equations reduce
to a wave equation.

3.4.2 Asymptotic analysis for continental region

For the continental region, the variables can be written
as follows:

ηc = 1 + εη′
c, (22)

uc = εηpenu′
c. (23)

The leading perturbation terms in this case are different
from the ocean region because of the strong Brinkman
damping term in the momentum equation. If Eqs. 22
and 23 are substituted into Eqs. 6 and 7 and only the
leading order terms are retained, the result is a diffusion
equation,

∂η′
c

∂t
= α

∂2η′
c

∂x2
(24)

∂u′
c

∂t
= α

∂2u′
c

∂x2
, (25)

where α = ηpen/φ. Thus, in the porous media or con-
tinental region, the equations reduce to a diffusion
equation.
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3.4.3 Asymptotic analysis for boundary layer

The asymptotic analysis for the ocean and continental
region is valid only away from the interface because of
the length and magnitude scales of the perturbations
used. Therefore, the boundary layer region needs to be
analyzed separately. The boundary layer variables can
be written as follows:

ηbl = 1 + εη′
bl, (26)

ubl = εηpenu′
bl. (27)

If Eqs. 26 and 27 are substituted into Eqs. 6 and 7 and
only the leading order terms are kept, the result is a
diffusion equation,

∂η′
bl

∂t
= α

∂2η′
bl

∂x2
, (28)

∂u′
bl

∂t
= α

∂2u′
bl

∂x2
. (29)

This is where the penalized shallow water equations
differ greatly from the penalized compressible equa-
tions. For the compressible equations, there is a bound-
ary layer region that provides a natural transition be-
tween the two other asymptotic solutions (Liu and
Vasilyev 2007). That is, in addition to the fluid region
being governed by the acoustic wave equation and the
porous media region being governed by a diffusion
equation, there exists a boundary layer region in be-
tween that which is governed by a diffusive wave equa-
tion. This boundary layer region does not exist in the
penalized shallow water equations. As demonstrated
in the above analysis, the boundary layer region is
the same as the continental region, leaving no natural,
mathematical transition. As a result, in order to en-
sure numerical stability, the shallow water formulation

requires a numerical boundary layer, which needs to be
resolved. This makes it slightly more computationally
expensive compared to the compressible formulation.
Note that the no-slip boundary conditions along the
coastal line are already an approximation, since the
depth of the ocean floor gradually decreases, thus nu-
merically smears no-slip boundary conditions, which
may even result in a more accurate representation of
the coastal boundary conditions.

4 Numerical experiments and validation of method

4.1 Test setup

A one-dimensional test case is used to verify conver-
gence of this new Brinkman penalization technique for
the shallow water equations. A 1-D normal wave is
initialized for the sea surface height. The velocity is
initialized to zero, as shown in Fig. 3. The wave splits
and propagates to the east and west. On the east side, it
hits a Brinkman zone; and on the west side, it hits a con-
ventional boundary wall, where no-penetration bound-
ary conditions are enforced. This allows for comparison
between the two methods. After complete reflection,
the solution is shown in Fig. 4.

4.2 Parameter study

While there are two parameters specific to the com-
pressible Brinkman penalization formulation, φ and
ηpen, there are two additional parameters to consider
with the shallow water formulation. The first additional
parameter is δpen, which controls how sharp the transi-
tion from land to water is at the Brinkman boundary.
This parameter is required in the definition of the
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Fig. 3 Example of initial conditions for a 1-D wave
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Fig. 4 Example of a 1-D wave after complete reflection

masking function, χ , which was stated in general for any
solid boundary in Eq. 8. For a domain with solid straight
boundaries on either side of the horizontal domain,
a hyperbolic tangent function can be used to define
masking function,

χ = 1

4

[
tanh

(
x − xO1

δpen

)
+ tanh

(
x − xO2

δpen

)]2

, (30)

where xO1 and xO2 are the locations of the Brinkman
zone boundaries (or where χ = 1). Therefore, when
xO2 > x > xO1, then χ = 0 and the fluid equations are
solved. When xO1 > x or xO2 < x, then χ = 1 and the
penalized equations are solved. The parameter, δpen,
controls how sharp the transition between 0 and 1 is.

The second additional parameter is the length scale
associated with the initial conditions. This could be
defined in many ways; but for the 1-D normal wave
used for this convergence study, it is simply the thick-
ness of the wave. The initial conditions for this case are
of the form

η(x, 0) = ηamp exp

(
− (x − x0)√

δη

2
)

, (31)

where ηamp is the amplitude of the sea surface height
wave, x0 is the location of the center of the wave, and√

δη is the thickness of the wave (the length scale of
interest). If the wave approaching the Brinkman zone
is smoother or sharper, it is going to affect the length
scale and the error convergence of the problem. If
the thickness of the wave approaching the boundary is
smaller, the error will be bigger. If the thickness of the
wave approaching the boundary is larger, the error will
be smaller.

Both length scales are important to consider when
setting the parameters and reproducing the results

presented here. However, since
√

δη and δpen are both
simply length scales of the problem, it is their ratio that
is important. For all work presented here, these two
parameters will be combined into one, γ = δpen/

√
δη.

This means a sharp wave approaching a smooth bound-
ary has a similar error to a smooth wave approaching
a sharp boundary. For example, in practice, it means
that if the shallow water formulation of Brinkman
penalization is being used for wind-driven gyres in a
basin, there will be a large length scale associated with
that phenomenon. If it were being used to represent
bathymetry in tsunami simulations, the tsunami wave
lengths are a much shorter length scale. Thus, one can
get away with a much smoother mask in a wind-driven
gyre problem to maintain the same error as a tsunami
simulation with a sharper mask.

The parameter relationships are studied in order to
be able to control these new and old parameters for
different cases. To start, the additional shallow water
equation Brinkman parameters (δpen,

√
δη, and the sea

surface height initial conditions) are set to the same val-
ues used in the compressible Brinkman formulations in
order to do a direct comparison. Therefore, Fig. 5 shows
the convergence for exactly the same conditions that
are used in the compressible Brinkman formulation.

Comparing the shallow water formulation to the
compressible formulation from Liu and Vasilyev
(2007), it is clear that the order of convergence is better
for the shallow water case for the more limited range
of parameters. For the compressible formulation, the
order of convergence is O(φ3/4), where for the shallow
water formulation (for the same initial conditions), the
order of convergence is approximately O(φ).

The improved convergence is likely due to the stron-
ger impedance inherent in the shallow water Brinkman
formulation. Since a larger porosity parameter results
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Fig. 5 Plot of max error versus porosity parameter, φ, which
demonstrates convergence of approximately O(φ) (dotted line
shows O(φ) convergence). This convergence uses the same sea
surface height incoming wave as that in Liu and Vasilyev (2007)

in more reflection and less wave transmission, the shal-
low water formulation converges faster than the com-
pressible formulation. The larger porosity requirement
is due to the wave speed change inside the Brinkman
region. Smaller values of porosity depend strongly on
the resolution and on the thickness of the transition be-
tween the fluid and the solid, namely δpen. When poros-
ity becomes too small, the increase and jump in the
wave speed at the Brinkman boundary cause numerical
instabilities and stiffness.

Figure 6 shows the reflected wave with various
porosity parameters after complete reflection for the
compressible formulation comparison case. Figure 4
shows the sea surface height and velocity solutions after
complete reflection for the entire domain, including
the Brinkman region. This not only demonstrates how
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Fig. 6 Plot of sea surface height for various porosity parameters

the no-penetration boundary conditions are satisfied in
the Brinkman zone but also shows the exponentially
decaying solution for the sea surface height in the
Brinkman zone. The small amount of wave transmis-
sion is negligible because it is actually multiplied by φ

in the solution. These results match the compressible
Brinkman formulation results.

In addition to a direct comparison with the com-
pressible Brinkman tests, the following tests are con-
ducted to further understand the influence of the pa-
rameters, especially with the γ parameter. For these
tests, δpen = 1 × 10−4, 5 × 10−4, and 1 × 10−3, ηamp =
2.5 × 10−4, and δη = 5.0 × 10−4. This is equivalent to
γ = 4.46 × 10−3, 2.23 × 10−2, and 4.46 × 10−2. These
parameter values are chosen to give a large range of
feasible φ values to test. However, even the largest δpen

parameter tested is smaller than what would be used for
practical applications for the current state of the code.
Figure 7 shows convergence results for α = ηpen/φ =
10−2.

It is clear from this convergence study that, given
a γ ratio, as the porosity parameter decreases, the
error eventually levels off and no longer continues to
decrease. The point where the error starts to level off
decreases as γ decreases. This gives an overall rela-
tionship between the three parameters that need to be
chosen using the shallow water Brinkman penalization
method.

It is important to note that these results are for a
fixed ratio of φ and ηpen (α = ηpen/φ = 10−2). It was
found in Liu and Vasilyev (2007) that φ > ηpen resulted
in the best convergence because the φ parameter is
more forgiving and results in smaller associated errors
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than with the ηpen parameter. For comparison, several
cases were tested with α = 1 and for γ = 4.46 × 10−4.
These results are shown in Fig. 8. This shows that the
error convergence is not as strong when the φ and ηpen

are equal.

4.3 Practical implementation

To set the Brinkman penalization parameters for the
shallow water formulation, the procedure is as follows.
First, set the sharpness of the Brinkman mask, i.e., the
numerical thickness of the smoothed coastal bound-

ary. Ensure that the maximum allowable resolution is
sufficient to resolve it. For the adaptive wavelet colloca-
tion method, five to ten points is enough to resolve δpen.
Assuming the sea surface height initial conditions are
known, and therefore, the length scale of the problem
is known, γ = δpen/

√
δη can be calculated. Using Fig. 7

as a guideline, the optimal φ can be estimated. To get
ηpen, maintaining the ratio, α = ηpen/φ = 10−2, is best
for minimizing error (not to mention, this ratio has
been tested extensively). However, ηpen < φ will give
excellent Brinkman results. Although there are various
ways to set up these parameters, this procedure serves
as a general guideline to pick parameters in a way that
will minimize errors.

4.4 Cost of Brinkman penalization

There is added cost associated with the implementation
of Brinkman penalization. Depending on the δpen used,
the computational cost to resolve the Brinkman bound-
ary may be higher than a conventional boundary wall.
This is unavoidable but does contribute to improving
the accuracy at the boundaries, so in many cases it is
well worth it. The other aspect of Brinkman penaliza-
tion is the additional domain space. Adding a Brinkman
zone means the computational domain needs to be
larger, which also increases the computational cost.
However, this can easily be minimized by making the
zone as small as possible. It is not cost-effective to use
Brinkman penalization to define straight boundaries. It
is a technique to accurately represent complex, variable
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Fig. 10 2-D convergence study showing max error versus poros-
ity parameter for 2-D wind-driven single gyre in a square basin.
The dotted line shows O(φ) convergence, for comparison

geometry boundaries, in which case the added compu-
tational cost should be expected.

4.5 Two dimensional wind-driven double gyre
with Brinkman penalization

Various two dimensional studies have verified the new
formulation of Brinkman penalization. The first case is
a 2-D wind-driven double gyre test case in a rectangular
domain. This test case was solved using the adaptive
wavelet collocation method with the Brinkman penal-
ization method used for flat-bottom rectangular do-
main. The results using Brinkman were compared to
the same test case solved using the adaptive wavelet
collocation method but applying conventional no-slip

boundary conditions on the side walls. Although no-slip
boundary conditions are not always used in Munk gyre
problems, it has been done extensively (Fox-Kemper
and Pedlosky 2004; Fox-Kemper 2004). It is well known
that at higher Reynolds number, subtle variations in
viscous treatments near the boundaries can strongly
affect the basin-wide flow (Fox-Kemper and Pedlosky
2004; Fox-Kemper 2004). Direct comparison to the
quasigeostrophic simulations in those papers with the
Brinkman method is underway. Lastly, analytic solu-
tions similar to this test case are given in Pedlosky
(1996); however, those solutions are linear and quasi-
geostrophic, not the nonlinear shallow water solution
presented here. Therefore, comparison to numerical
boundary conditions is simpler. These two results show
qualitative agreement, as can be seen in Fig. 9.

A complete two dimensional convergence study is
not necessary, since a thorough 1-D convergence study
has been completed. However, to verify that 2-D con-
vergence is similar, a small range of parameters are
tested using a 2-D wind-driven single gyre test case.
Figure 10 shows that the convergence is slightly less
than O(φ).

Studies of variable bathymetry cannot be compared
to conventional boundary conditions but can verify the
robustness of the method. There is a short transient
time for this steady state solution to adjust to the
Brinkman penalization. This is the case for a rectangu-
lar domain, as well. It takes the solution slightly longer
to adjust for a nonrectangular domain but still on a time
scale much shorter than the time scale of the problem.
With better initial conditions, this can be even further
avoided. For boundary currents, it is the steady state
solution that is of interest, so it is even less of an issue.
Figure 11 shows the solution and grid for a wind-driven
gyre in a nonrectangular domain. The grid shows that
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Fig. 12 Demonstration of no-slip boundary conditions with and
without Brinkman penalization. The test case shown here is
a constant horizontal wind force on the top surface (decaying

exponentially downward) with no-slip boundary conditions on
the sidewalls, which creates an x–z circulation pattern convenient
for testing bottom boundary conditions

the method is not only adapting the boundary region
but is also adapting to the dominating circulating gyre
structure.

5 Volume penalization for modeling bathymetry

The ocean bathymetry is a highly varying, intricate, and
complex surface. Using current techniques for repre-
sentation of this bottom boundary results in a surface
that is either too crude (stair-step representation) or
too expensive (body-fitted meshes). The incompress-
ible formulation of Brinkman penalization (Arquis and
Caltagirone 1984) is implemented by adding the term,
−(χ/ηpen)u, to the momentum equations. When ap-
plied to the hydrostatic primitive equations, the follow-
ing equations result:

∂η

∂t
+

(
uh

∣∣∣∣
z=zmax

)
· ∇hη =

(
w

∣∣∣∣
z=zmax

)
, (32)

∂uh

∂t
+u · ∇uh+ 1

Ro
f k̂ × uh =−∇h P+ 1

Re
∇2uh− χ

ηpen
u,

(33)

∂w

∂z
= −∇huh,

(
w

∣∣∣∣
z=zbottom

= 0

)
, (34)

∂ P
∂z

= − 1

Fr2
,

(
P

∣∣∣∣
z=zmax

= η

Fr2

)
. (35)

The added Brinkman term forces the velocity to be
zero in the Brinkman zone. As a first attempt to utilize
volume penalization to represent ocean boundaries,
Brinkman penalization for no-slip boundary conditions

is used as a benchmark case. Results are shown in
Fig. 12 compared against no-slip wall conditions di-
rectly applied to the boundaries.

In addition, the convergence of the no-slip Brinkman
penalization is verified. Figure 13 shows the strong error
convergence with decreasing penalization parameter.

Comparison of the solution profiles demonstrates
accurate representation of no-slip conditions using this
method. However, for the large scale ocean modeling
of interest, no-slip boundary conditions are not neces-
sary or realistic. To avoid resolving the boundary layer
associated with no-slip conditions, it is convenient to
extend this methodology to slip conditions, ∂u/∂z =
κu. This boundary condition is somewhat more general
than a strict slip boundary condition of ∂u/∂z = 0.
However, the latter would require us to impose an
additional boundary layer drag parameterization such
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Fig. 13 A plot of error convergence for decreasing penalization
parameter for no-slip conditions
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Fig. 14 Demonstration of slip boundary conditions with and without Brinkman penalization for κ = 1

as Ekman layer drag (see, e.g., Pedlosky 1987, chap. 4.5)
or quadratic drag (e.g., Arbic and Scott 2008); the form
used here is a simple step in that direction. The idea
behind this method is very similar to the no-slip case.
The term added has a time scale much smaller than the
time scale of the problem, so the boundary conditions
are applied on this small time scale, ηpen.

Two different volume penalization methods are de-
veloped and tested. The full set of penalized governing
equations are

∂η

∂t
+

(
uh

∣∣∣∣
z=zmax

)
· ∇hη =

(
w

∣∣∣∣
z=zmax

)
, (36)

(a)
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+ u · ∇uh + 1
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Re
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(
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∂z2
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∂w

∂z
= −∇huh,
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)
= 0, (39)

∂ P
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= − 1

Fr2
,

(
P

∣∣∣∣
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= η

Fr2

)
, (40)

where (a) and (b) are two different volume penalization
options.

For the flat-bottom test problem, both methods con-
verge equally well. The test used is a wind-forced cir-
culation in the zonal and depth direction. The wind
forces only the top surface, but there is a smooth tran-
sition to zero through the top half of the domain to
avoid numerical instability. This case demonstrates the
advantage of slip conditions, while also showing what
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Fig. 15 Demonstration of slip boundary conditions with and without Brinkman penalization for κ = 10



1214 Ocean Dynamics (2012) 62:1201–1215

slip conditions look like at the boundary for a simple
circulation problem. The velocity profile is extremely
sensitive to the value of κ . Figures 14 and 15 show plots
of velocity and the adaptive grid for both κ = 1 and
κ = 10. Additionally, as a result of the steeper slope
in a higher κ value, there is a finer resolution near the
penalization zone.

This new volume penalization formulation enforces
slip boundary conditions. The advantage of such a
formulation is the computational savings associated
with not needing to resolve the boundary layer at the
boundaries, which is necessary with the conventional
Brinkman penalization no-slip formulation. This same
volume penalization has also been applied to the non-
hydrostatic equations and initial testing has indicated
that it performs similarly.

6 Concluding remarks

Various formulations of Brinkman penalization has
been developed and tested, all solved using the adap-
tive wavelet collocation method. The shallow water
formulation of Brinkman penalization has been thor-
oughly discussed such that applying it to new and
different ocean problems using any numerical method
can be done. The key to successfully using this penaliza-
tion is to carefully and intentionally choose all numeri-
cal parameters, as discussed in this paper. Even though
Brinkman penalization can be used in combination
with any numerical methodology, the use of adaptive
mesh refinement techniques such as the wavelet collo-
cation method considerably improves its versatility and
robustness, mainly due to the completely automated
definition and adequate resolution of complex geom-
etry. Lastly, one particular advantage of Brinkman pe-
nalization is the ability to represent not only complex
but also evolving bathymetry.

The preliminary work on volume penalization for
applying slip conditions at the bottom bathymetry
boundary for use in the nonhydrostatic and hydro-
static primitive equations was also presented. Further
work includes generalizing this to a normal derivative
condition rather than a vertical derivative condition, as
well as testing in three dimensions.
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