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It is well known that the correlation between the Smagorinsky model and the subgrid scale stress is
low, while the model based on the scale similarity assumption has considerably higher correlation.
However, the scale similarity model by itself was found to be insufficiently dissipative. Therefore,
the model is usually used together with the Smagorinsky model. Model coefficients are commonly
computed using the two-parameter dynamic procedure. Nevertheless, the dynamic two-parameter
mixed model still does not work well for wall bounded flows, since the model predicts a high value
of the wall shear stress. In this study, we propose a modification to the two-parameter dynamic
procedure for wall bounded flows, which removes that defect: the Smagorinsky parameter, CS , is
computed exactly the same way as in the dynamic Smagorinsky model, then the other parameter,
CL , is computed dynamically as CS is known. This ensures that the mixed model provides proper
wall shear stress and mean velocity profile. Computational tests are done for turbulent channel flow
where the Reynolds numbers based on the channel half-width and wall friction velocity are 395 and
1400. To remove the ambiguity regarding the accuracy of the finite difference scheme, we use high
~up to 12th! order accurate fully conservative finite difference schemes in a staggered grid system.
© 2001 American Institute of Physics. @DOI: 10.1063/1.1404396#

I. INTRODUCTION

The objective of this study is to present a modification to
the dynamic two-parameter mixed model for large eddy
simulation of wall bounded turbulent flow. It is well known
that the correlation between the Smagorinsky model and the
subgrid scale stress is low, while the model based on the
scale similarity assumption by Bardina et al.1 has consider-
ably higher correlation ~for example see Horiuti!.2 However,
the scale similarity model by itself was found to be insuffi-
ciently dissipative. Therefore, the model is usually used to-
gether with the Smagorinsky model. Model coefficients are
commonly computed using the dynamic procedure ~Zang
et al.,3 Vreman et al.,4 Salvetti and Banerjee,5 Horiuti6!.
Nevertheless, the dynamic two-parameter mixed model still
does not provide proper wall shear stress and mean velocity
profile for wall bounded flows ~Sarghini et al.7!. In this
study, we propose a modification to the two-parameter dy-
namic procedure, which removes this defect.

It is important to note that the defect of the scale simi-
larity model is sometimes concealed when the large eddy
simulation is performed with the standard second order finite
difference scheme. The reliability of the results of large eddy
simulation is strongly affected by both the reliability of the
subgrid scale model and the accuracy of the numerical

method ~Ghosal8!, particularly in the approximation of the
convection term. This means that even if we use the exact
subgrid scale stress, the computed flow field will be contami-
nated by the numerical error. This connection between the
subgrid scale modeling and numerical error has been mostly
overlooked. To remove the ambiguity regarding the accuracy
of the finite difference scheme, we use mixed order fully
conservative finite difference schemes in a staggered grid
system proposed by Morinishi et al.,9 where higher ~up to
12th! order accurate discretization is used in homogeneous
directions and second order accurate discretization with con-
siderably higher resolution than that for the higher order
scheme is used in wall normal direction. Computational tests
are done in the turbulent channel flow and the Reynolds
numbers based on the channel half-width and wall friction
velocity are 395 and 1400.

The present paper is organized as follows. In Sec. II the
basic equations of the large eddy simulation and existing
dynamic subgrid scale models are introduced, and a recom-
mended modification to the dynamic two-parameter mixed
model is presented. In Sec. III the numerical method for the
channel flow simulation is outlined. In Sec. IV computational
results of the revised dynamic two-parameter mixed model
are compared with those of the standard Smagorinsky, the
dynamic Smagorinsky, and the standard dynamic two-
parameter mixed model. The proposed modification to the
dynamic two-parameter mixed model is justified there as
well.

a!Author to whom correspondence should be addressed: electronic mail:
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II. BASIC EQUATIONS FOR THE LARGE EDDY
SIMULATION AND SUBGRID SCALE MODELS

The basic equations for the large eddy simulation of in-
compressible flows are the filtered Navier–Stokes and conti-
nuity equations given by
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Here u i is the velocity component in x i direction (i
51,2,3,),p is the pressure divided by the density, n is the
kinematic viscosity, and t is time. The summation rule is
assumed for repeated indices. The overbar •̄ denotes the fil-
tering operator. ū i and p̄ compose the resolved, grid scale
~GS! flow field. t i j5u iu j2 ū iū j is the subgrid scale ~SGS!
stress which should be modeled.

A. Dynamic Smagorinsky model

In the dynamic subgrid scale model, the identity of Ger-
mano et al.10 between the grid and test fields is used to de-
termine the parameter in the subgrid scale model

Li j5T i j2 t̂ i j , ~3!

where the subtest stress T i j is defined as T i j5u iu j
̂
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and the resolved stress Li j is defined as

Li j5 ū iū ĵ2uC iuC j . ~4!

In the standard dynamic subgrid scale model the Smagorin-
sky eddy viscosity model11 is assumed for both the subgrid
and subtest stresses:
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The superscript ‘‘*’’ denotes the trace free operator (t i j*
[t i j2

1
3d i jtkk). The model parameter CS is computed by

minimizing the square of the error Q5E i jE i j ~Lilly12!,
where the error E i j is given by

E i j5Li j*12~CSD̄ !2M i j , ~7!

M i j5a2uSC uSC i j2uS̄u Ŝ̄ i j , ~8!

and a2
5(DC /D̄)2 is the square value of the test to grid filter

widths ratio. In this study we take a2
552/3;2.92. It corre-

sponds to13 DC 15A5D̄1 ,DC 25D̄2 , and DC 35A5D̄3 . Assuming
CS is a function of x2 and taking the average in the x12x3

plane ~denoted by ^•&! we obtain the following equation for
(CSD̄)2:
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In this paper the dynamic Smagorinsky model given by Eqs.
~5! and ~9! is called DSM. In addition to this, the standard
Smagorinsky model with the wall damping function14 is used
for comparison:

~CSD̄ !5CS0F12expS 2
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where D̄ i5h i ~i51,2,3,h i are grid spacings!, and y1

5uty /n is the wall coordinate ~y is the distance from the
wall!. Note that an alternative wall damping function can be
used.15 The model given by Eqs. ~5! and ~10! with CS0

50.10 is called SM.

B. Dynamic two-parameter mixed model

The dynamic two-parameter mixed model of Salvetti
and Banerjee5 is based on the scale similarity model of Bar-
dina et al.1 and the Smagorinsky eddy viscosity model.11

t i j*5CL~ ū iū j2u% iu% j!*22~CSD̄ !2uS̄uS̄ i j . ~11!

The two parameters, CS and CL , are computed by minimiz-
ing the square of the error QDTM

5E i j
DTME i j

DTM , where the
error E i j

DTM is given by
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Following the standard procedure for the plane channel flow,
the system for the two parameters is expressed as

FA11 A12

A21 A22
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where matrix A that appears in the left-hand side of Eq. ~14!
is given by
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Solving the system Eq. ~14!, we obtain the following rela-
tions for CL and (CSD̄)2:
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~17!

In this study, the dynamic mixed model given by Eq. ~11!

with coefficients CL and (CSD̄)2 determined by Eqs. ~16!
and ~17! is called DTM.

C. Recommended modification to the dynamic two-
parameter mixed model

The system for the least square problem, Eq. ~14!, is
sensitive to the error on the right-hand side vector when the
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condition number ~the square root of the maximum to the
minimum eigenvalues ratio! of matrix A, Eq. ~15!, is large.
As will be shown later, the condition number is very large for
the wall bounded flows and DTM does not provide appropri-
ate wall shear stress. Therefore, DTM does not predict the
mean velocity profile correctly. To remove this problem, we
propose a modification to the dynamic two-parameter mixed
subgrid scale model. A nearly ill-posed least square problem
can be stabilized by introducing an approximation to matrix
A. As it will be shown later, uA21u!uA22u for the wall
bounded flow and, consequently, matrix A can be approxi-
mated by the triangular matrix, which, in turn, leads to the
following system of equations:

FA11 A12

0 A22
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2CS
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2D̄2^Li jM i j&
G . ~18!

The second line of Eq. ~18! gives the Smagorinsky parameter
CS exactly the same way as in DSM @Eq. ~9!#, and the re-
sulting mixed model has enough SGS dissipation for GS
turbulence energy. The other parameter can be stably com-
puted as CS is known:

CL5

^@Li j12~CSD̄ !2M i j#Hi j*&

^Hi j*Hi j*&
. ~19!

Notice that system Eq. ~18! still holds the condition of
]^QDTM&/]CL50. The revised dynamic mixed model given
by Eq. ~11! with Eqs. ~9! and ~19! is called DTMR.

III. NUMERICAL METHOD AND COMPUTATIONAL
CASES

In this study the numerical tests for several subgrid scale
models, described in the previous section, are performed us-
ing fully developed plane channel flow at Reynolds number
of 395 and 1400. The flow field is assumed to be periodic in
the streamwise (x1) and spanwise (x3) directions. The Rey-
nolds number (Ret5utH/n) is based on the channel half-
width H and the wall friction velocity ut . The treatment of
the convection term @the second term on the left-hand side of
Eq. ~1!# is important for unsteady turbulent numerical simu-
lations at high Reynolds number. Fully conservative higher
~2nd, 4th, 8th, and 12th! order accurate finite difference
schemes proposed by Morinishi et al.9 are used for the con-
vection term in the periodic directions. The second order
accurate scheme with a volume weighted interpolation
~Kajishima16! in the wall normal direction (x2) ~combined
properly with higher order discretization in homogeneous di-
rections! is used to remove the ambiguity regarding both the
conservation properties of the nonuniform meshes and the
wall boundary treatment.

The filtering operations in the dynamic subgrid scale
models are done in the periodic directions. The test filtering
with the filter width D̂ i52h i and the additional grid filtering
with the filter width D̄ i5h i in x i , i51,3, direction are done,
respectively, as follows:

f̂ ~x i!5
1
6 @ f ~x i2h i!14 f ~x i!1 f ~x i1h i!# , ~20!

f̄ ~x i!5
1

24 @ f ~x i2h i!122 f ~x i!1 f ~x i1h i!# . ~21!

A semi-implicit time marching method is used. The dif-
fusion term in the wall normal direction is treated implicitly
with the Crank–Nicolson method, and a third order Runge–
Kutta ~RK3! method of Spalart et al.17 is used for all other
terms. The splitting method by Dukowicz and Dvinsky18 is
used to enforce the solenoidal condition. The resulting dis-
crete Poisson equation for the pressure is solved using a dis-
crete Fourier transform in the periodic directions and a tri-
diagonal direct matrix solver in the wall normal direction.
The time increments for the simulation at Ret5395 and 1400
are Dt52.531023 and 5.031024, respectively; these sat-
isfy the stability condition for RK3.

Table I summarizes the grid resolution for all the com-
putational cases in this study. The computational box for all
the cases is 2pH32H32pH/3. Cases 1–4 correspond to
the flow at Ret5395 and different grid resolutions in the
periodic directions. Case 5 corresponds to the flow at higher
Reynolds number Ret51400. The grid spacings in the peri-
odic directions are uniform. The wall normal grid is stretched
using a hyperbolic-tangent function

x2~ j !

H
5

tanh@g~2 j /N221 !#

tanh@g#
, j50,...,N2 ,

where x2( j) is the wall normal grid point for ū2 in the stag-
gered grid system and x2(0) and x2(N2) correspond to the
lower and upper walls, respectively. The stretching param-
eter, g, is taken to be 2.75 and 2.95, respectively, for the flow
at Ret5395 and 1400.

IV. LES RESULTS AND DISCUSSION

A. Dependence of the LES result on the order of
accuracy of the finite difference scheme and on grid
resolution

Figures 1 and 2, respectively, show the effect of the or-
der of the accuracy of finite difference scheme on the profiles

TABLE I. Computational cases.
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of mean streamwise velocity U1 (U15^ū1& t) and stream-
wise grid scale velocity fluctuation u18 (u185A^ū1

2& t2^ū1& t
2)

of the channel flow at Ret5395 ~Case 2! using SM, DSM,
DTMR, and No SGS. The ensemble averaging over the x1

2x3 plane and time is denoted by ^•& t . In the figures, vari-
ables with superscript ‘‘1’’ are normalized by the wall fric-
tion velocity ut and the viscous length scale dn (dn

5n/ut). The simulations without a subgrid scale model are
labeled as No SGS. In these figures the DNS data by Moser
et al.19 are also plotted. The computational results with the
2nd, 4th, 8th, and 12th order accurate finite difference
schemes in periodic directions are denoted, respectively, as
2nd, 4th, 8th, and 12th FDM. The results of a spectral
~Fourier–Chebyshev! simulation corresponding to Case 2
without a subgrid scale model are also plotted in Figs. 1~e!
and 2~e!. Note that in the spectral simulation the wall normal
grid distribution is different from that of Case 2 because the
Gauss–Lobatto points are used. The discretization ~or grid
filtering! effect of the spectral method makes the mean ve-
locity profile and the peak value of the velocity fluctuation
lower than the DNS data, and the results of the higher order
finite difference scheme are closer to the spectral one as
shown in Figs. 1~e! and 2~e!. In addition, the error of the
second order scheme is considerably larger than those of the
higher order schemes and shifts up the mean velocity profile
and the peak value of the velocity fluctuation. This indicates
that the discretization ~grid filtering! effect of the finite dif-
ference scheme by itself makes the mean velocity profile
lower than the DNS data, while the truncation error of the
finite difference scheme acts as an effective subgrid scale
stress and shifts up the mean velocity profile and the peak
value of the velocity fluctuation. With an increase in the
order of accuracy, the results using SM, DSM, DTM, and
DTMR converge as shown in Figs. 1~a!–1~d! and 2~a!–2~d!.
It indicates that the effects of the truncation error are added
to the results of the large eddy simulations. The mean veloc-
ity profile of DTM converges to a lower one than the DNS
data with an increase in the order of accuracy, and the result
of DTM with the second order scheme looks best in Fig.
1~c!. However, the computational results with the second or-

FIG. 1. The effect of the order of accuracy of the finite difference scheme on
the mean streamwise velocity profile for the channel flow at Ret5395 ~Case
2! using SM, DSM, DTM, DTMR, and No SGS.

FIG. 2. The effect of the order of accuracy of the finite difference scheme on
the streamwise grid scale velocity fluctuation profile for the channel flow at
Ret5395 ~Case 2! using SM, DSM, DTM, DTMR, and No SGS.

FIG. 3. The effect of grid resolution on the mean streamwise velocity profile
for the channel flow at Ret5395 using SM, DSM, DTM, DTMR, and No
SGS with the fourth order accurate finite difference scheme.
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der scheme are contaminated by large numerical error, and
therefore, in order to estimate the subgrid scale models with
the scheme, we would require considerably higher resolution
than for higher order schemes.

Figures 3 and 4, respectively, show the effect of grid
resolution on the profiles of the mean streamwise velocity
and streamwise grid scale velocity fluctuation of the channel
flow at Ret5395 using SM, DSM, DTMR, and No SGS with
the fourth order finite difference scheme. The grid resolu-
tions corresponding to Cases 1–4 are shown in Table I. With
an increase in the grid resolution, the results of finite differ-
ence calculations converge. The numerical error of Case 1 is
considerably larger than those of the finer resolution cases

~Cases 2–4!. The mean velocity profiles of SM, DSM, and
DTMR converge to the DNS data with an increase in grid
resolution, while the mean velocity profile of DTM con-
verges to a lower one than the DNS result. This indicates that
models SM, DSM, and DTMR have good asymptotic prop-
erties regarding grid resolution, while DTM does not.

Figure 5 shows the skin friction coefficient, C f

52tw /(rUm
2 ), for the cases which appeared in Fig. 3, where

tw is the wall shear stress, r is the density, and Um

51/(2H)*
2H
1HU1 dx2 is the bulk mean velocity. The C f value

of the DNS data by Moser et al.19 is also plotted. The high
intercept ~constant B! of the log-law @U1

1
5(1/k)ln y1

1B#
for DSM is due to the low value of the skin friction coeffi-
cient, while the low intercept of the log-law for DTM and No
SGS is due to the high value of the skin friction coefficient.

B. Model comparison for Case 2 with the fourth order
scheme

The effect of the subgrid scale model would be better
estimated in numerical simulation with little or no numerical
error. As demonstrated in the previous section, the large nu-
merical error of the second order scheme makes it inappro-
priate for the model estimation. LES is considered to be a
useful prediction tool for unsteady turbulent flow when di-
rect numerical simulations are prohibitively expensive. This
means that LES basically aims at simulations with relatively
coarse grid resolution. Thus in this subsection, the perfor-
mances of the subgrid scale models are checked using fourth
order accurate finite difference scheme on a relatively coarse
grid corresponding to Case 2.

Figure 6 shows the profiles of mean streamwise velocity
using SM, DSM, DTM, DTMR, and No SGS. The difference
between the mean velocity profiles for No SGS and the DNS
results should be properly compensated by a subgrid scale
model. The mean streamwise velocity profiles of the simula-
tions using SM, DSM, and DTMR are shifted up when com-
pared to the result of the simulation without a subgrid scale
model. The profiles using SM and DTMR coincide well with
the DNS data, while the mean velocity with DSM is too
large. On the other hand, the two-parameter dynamic mixed
model ~DTM! does not compensate the difference properly,
since the skin friction coefficient of DTM is almost the same

FIG. 4. The effect of grid resolution on the streamwise grid scale velocity
fluctuation profile for the channel flow at Ret5395 using SM, DSM, DTM,
DTMR, and No SGS with the fourth order accurate finite difference scheme.

FIG. 5. The skin friction coefficient for the channel flow simulation at Ret

5395 using SM, DSM, DTM, DTMR, and No SGS with the fourth order
accurate finite difference scheme.

FIG. 6. The mean streamwise velocity profiles for the channel flow simu-
lation at Ret5395 ~Case 2! using SM, DSM, DTM, DTMR, and No SGS
with the fourth order accurate finite difference scheme.
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as that of No SGS, as shown in Fig. 5. Figure 7 shows the
profiles of grid scale velocity fluctuations ~ua8

5A^ ūa
2 & t2^ ūa& t

2, a51,2,3! and the grid scale Reynolds
shear stress @u18u285^ū1ū2& t2^ū1& t^ū2& t# using SM, DSM,
DTM, DTMR, and No SGS. The peak value of the stream-
wise velocity fluctuation of the simulation without a subgrid
scale model is higher than that of the DNS data. The defect
of the finite difference simulation is not cured completely by
the addition of the Smagorinsky models ~SM and DSM!. The
streamwise velocity fluctuation of the DNS is not computed
from the filtered field, and the rms fluctuations for the large
eddy simulation should be smaller than or equal to the DNS
data. The peak values of the streamwise velocity fluctuation
obtained with the DTM and DTMR models are better than
those obtained with the SM and DSM models.

Remember that the scale similarity model by itself was
found to have insufficient SGS dissipation for GS turbulence
energy, and therefore the model is used together with the
Smagorinsky eddy viscosity model as the mixed model to
remove the defect. Figure 8 shows the SGS dissipation pro-
files using SM, DSM, DTM, and DTMR. The CS and CL

parts of the SGS dissipation are also plotted in the figure.
The SGS dissipation that appears in the transport equation of
GS turbulence energy @kGS5

1
2(^ū iū i& t2^ū i& t^ū i& t)# is given

by «SGS52^t i jS̄ i j& t1^t i j& t^ S̄ i j& t . The different behavior of
the SGS models is also reflected in different energy
interchange mechanisms as was pointed out by Sarghini
et al.7 The bulk mean SGS dissipation, «SGSm

1

51/(2H)*
2H
1H«SGS

1 dx2 , for SM, DSM, DTM, and DTMR
are 3.8731023, 4.5331023, 2.5831023, and 3.8731023,
respectively. The larger value of the bulk mean SGS dissipa-
tion corresponds to the smaller value of the skin friction
coefficient. The DSM model is too dissipative and gives
smaller skin friction and larger mean velocity as shown in
Fig. 6. The DTM model is less dissipative, and yields the
larger skin friction and smaller mean velocity. In particular,
the CL part of the dissipation is negative in the region around
y1;10. The CS part of the dissipation is not enough and the
defect of the scale similarity model is not cured if the model
parameters are estimated through the dynamic procedure of
DTM. The reason the defect is not cured by DTM is ex-
plained as follows: Horiuti6 estimated the correlation coeffi-
cients between the exact subgrid scale stress computed from
a DNS data and those obtained using different subgrid scale
models and found that for the channel flow the correlation
coefficient of DTM is 0.87–0.90, while the correlation coef-
ficient of DSM is 0.03–0.35. This implies that the correlation
of the scale similarity model to the exact subgrid scale stress
is much higher than that of the Smagorinsky model. This
unbalance makes CS smaller if the two parameters are solved
simultaneously. However, the low correlation of the Smago-

FIG. 7. The profiles of grid scale velocity fluctuations for the channel flow
at Ret5395 ~Case 2! using SM, DSM, DTM, DTMR, and No SGS with the
fourth order accurate finite difference scheme.

FIG. 8. The profiles of the SGS dissipation of the GS turbulence energy for
the channel flow simulation at Ret5395 ~Case 2! using SM, DSM, DTM,
and DTMR with the fourth order accurate finite difference scheme.

FIG. 9. The profiles of the model parameter CS for the channel flow simu-
lation at Ret5395 ~Case 2! using SM, DSM, DTM, and DTMR with the
fourth order accurate finite difference scheme.

FIG. 10. The profiles of the model parameter CL for the channel flow
simulation at Ret5395 ~Case 2! using DTM and DTMR with the fourth
order accurate finite difference scheme.
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rinsky model also keeps CL large even if the part of the scale
similarity model is estimated later as in DTMR. The pro-
posed modification makes use of this property.

Figures 9 and 10 show the profiles of the parameters CS

and CL , respectively. The parameter CS is plotted as

sign@(CSD̄)2#A(CSD̄)2/(h1h2h3)2/3. The profile, denoted as
SM, shows the traditional CS value with the wall damping
function defined in Eq. ~10!. The CS profile of DTMR is
almost the same as that of DSM. The CS value of DTM is
much lower than that of DSM, DTMR, and the traditional
value, and this results in smaller GS energy dissipation for
DTM. The CL profile of DTMR is almost the same as that of
DTM, and the merit of the scale similarity model is kept in
DTMR.

Figure 11 shows the profiles of the subgrid scale and the
effective Reynolds shear stresses. The subgrid scale shear
stress (t12

1 ) is denoted as SGS, and the CS parts of the sub-
grid scale stress @the second term on the right hand side of
Eq. ~11!# of DTM and DTMR are also plotted as symbols in
the figure. The effective Reynolds shear stress, i.e., the sum
of the grid and subgrid scale shear stresses (u18u28

1
1t12

1 ), is
labeled as GS1SGS. Note that the order of the mean veloc-
ity profiles shown in Fig. 6 corresponds to the magnitude of
the effective Reynolds shear stress close to the wall and does
not follow the magnitude of the subgrid scale shear stress. It
rather corresponds to the CS part of the subgrid scale stress.

This implies that the skin friction coefficient ~and therefore
the wall shear stress! is sensitive to the model parameter CS ,
while it is passive to the model parameter CL . This point
will be elaborated later.

Figures 12 and 13, respectively, show the condition
number and elements ratios ~uA12 /A11u and uA21 /A22u! for
matrix A, Eq. ~15!. The condition number and the ratios are
estimated by using an instantaneous flow field of DTM with
the plane averaging. The condition number is very large near
the wall, and the magnitude of A22 is considerably larger
than A21 . These results support the basis of the revised pro-
cedure for wall bounded turbulent shear flows. In addition,
the element A12 in Eq. ~18! cannot be neglected with respect
to A11 . Thus matrix A cannot be further approximated by the
diagonal matrix. In the core region, since CS

2}0.01, CL}1,
and uA21 /A22u}0.01, A21 cannot be neglected with respect to
A22 . This may restrict the application of the revised model to
wall bounded turbulent flows.

C. Secondary effect of the Smagorinsky and scale
similarity models

The addition of the subgrid scale stress model should
reduce the mean velocity of the constant mean pressure gra-
dient flow if the model does not act upon the grid scale
fluctuating field. However, the discrete ~or filtering! effect of

FIG. 11. The profiles of the effective Reynolds shear stress for the channel
flow simulation at Ret5395 ~Case 2! using SM, DSM, DTM, and DTMR
with the fourth order accurate finite difference scheme.

FIG. 12. The profiles of the condition number of matrix A, Eq. ~15!, for the
channel flow simulation at Ret5395 using DTM with the fourth order ac-
curate finite difference scheme.

FIG. 13. The profiles of the element ratios uA12 /A11u and uA21 /A22u of
matrix A, Eq. ~15!, for the channel flow simulation at Ret5395 using DTM
with the fourth order accurate finite difference scheme.

FIG. 14. The effect of the parameter CS0 of the Smagorinsky model @Eqs.
~10! and ~5!# on the mean streamwise velocity profile for the channel flow at
Ret5395 ~Case 2! with the fourth order accurate finite difference scheme.
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the finite difference method by itself reduces the mean ve-
locity @for example, Fig. 1~e!#, and the secondary effect of
the model to increase the mean velocity is required for ob-
taining the proper mean velocity profile of the flow.

To illustrate the secondary effect of the Smagorinsky
model, the simulations using Eq. ~10! with different CS0 are
performed. Figures 14, 15, and 16 show profiles of the mean
streamwise velocity, the grid scale velocity fluctuations, and
the effective Reynolds shear stress, respectively, for Case 2
with the fourth order finite difference scheme using Eqs. ~10!
and ~5! with CS050.0 ~No SGS!, 0.05, 0.10, and 0.15. The
mean velocity increases and the spanwise and wall normal
velocity fluctuations decrease with an increase in CS0 . The
peak value of the streamwise velocity fluctuation is larger
than the DNS data even for the case with CS050.15. With an
increase in CS0 the effective Reynolds shear stress decreases,
while the subgrid scale shear stress increases. A decrease in
the effective Reynolds shear stress yields an increase in the
mean velocity. Figure 17 shows the corresponding SGS dis-
sipation profile. The SGS dissipation increases with an in-
crease in CS0 . The bulk mean SGS dissipations, «SGSm

1 , for

cases with CS050.05, 0.10, and 0.15 are 1.2831023, 3.84

31023, and 6.3531023, respectively. An increase in the
mean velocity in Fig. 14 corresponds to an increase in the
bulk mean SGS dissipation.

In order to illustrate the secondary effect of the scale
similarity model, we consider the model in Eq. ~11! with
CS50, i.e., the subgrid scale stress is approximated as

t i j*5CL~ ū iū j2u% iu% j!*. ~22!

Figures 18, 19, and 20, respectively, show the profiles of the
mean streamwise velocity, grid scale velocity fluctuations,
and the effective Reynolds shear stress for Case 2 with the
fourth order finite difference scheme using Eq. ~22! with
CL50.0 ~No SGS!, 1.0, 2.0, and 4.0. The mean velocity
decreases slightly and all velocity fluctuations decrease with
an increase in CL . The subgrid scale stress increases and the
effective Reynolds shear stress increases slightly with an in-
crease in CL . An increase in the effective Reynolds shear
stress yields a decrease in the mean velocity. Figure 21
shows the corresponding SGS dissipation profile. The profile
has positive and negative extrema at y1

55 and y1
510,

respectively, and the absolute values increase with increasing
CL . The bulk mean SGS dissipations, «SGSm

1 , for the cases

of CL51.0, 2.0, and 4.0 are 4.5131024, 6.6031024, and
8.3231024, respectively. These values are much smaller
than that of CS050.10.

FIG. 15. The effect of the parameter CS0 of the Smagorinsky model @Eqs.
~10! and ~5!# on the grid scale velocity fluctuations for the channel flow at
Ret5395 ~Case 2! with the fourth order accurate finite difference scheme.

FIG. 16. The effect of the parameter CS0 of the Smagorinsky model @Eqs.
~10! and ~5!# on the effective Reynolds shear stress for the channel flow at
Ret5395 ~Case 2! with the fourth order accurate finite difference scheme.

FIG. 17. The effect of the parameter CS0 of the Smagorinsky model @Eqs.
~10! and ~5!# on the SGS dissipation of the GS turbulence energy for the
channel flow at Ret5395 ~Case 2! with the fourth order accurate finite
difference scheme.

FIG. 18. The effect of the parameter CL of the scale similarity model @Eq.
~22!# on the mean streamwise velocity profile for the channel flow at Ret

5395 ~Case 2! with the fourth order accurate finite difference scheme.
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Figure 22 shows the effect of the parameters of CS0 and
CL on the skin friction coefficient for the channel flow at
Ret5395 ~Case 2! with the fourth order accurate finite dif-
ference scheme. The C f value of the DNS data by Moser
et al.19 is also plotted. The C f value of the No SGS simula-
tion (CS05CL50) is higher than the reference data, and
yields the low intercept of the log-law ~Figs. 14 and 18!. The
C f value decreases with an increase in CS0 , and reaches the
reference value at CS0;0.12, which is likely the optimal
value of SM for Case 2 with the fourth order accurate finite
difference scheme. On the other hand, the C f value increases
slightly with an increase in CL , and it does not reach the
reference value for CL.0. Therefore the scale similarity
model by itself cannot give the proper skin friction and mean
velocity profile of the flow.

Summarizing the secondary effects of the subgrid scale
models on the flow, the addition of the scale similarity model
decreases slightly the mean velocity while that of the Sma-
gorinsky model increases the mean velocity, and the scale
similarity model is superior to the Smagorinsky model re-
garding the prediction of velocity fluctuations. In addition,
the discrete effect of the finite difference method by itself

reduces the mean velocity, while the truncation error of the
finite difference scheme increases the mean velocity. The
proposed model, DTMR, is a variant of DTM with the Sma-
gorinsky part weighted, and is effective for the large eddy
simulation of wall bounded turbulent flow when the effect of
the truncation error is negligible.

D. The flow at a higher Reynolds number „Re
t
Ä1400,

Case 5…

Figures 23 and 24 show the profiles of mean streamwise
velocity and grid scale velocity fluctuations, respectively, us-
ing SM, DSM, DTM, DTMR, and No SGS at Ret51400
~Case 5!. The grid resolution of the simulation is shown in
Table I and the fourth order finite difference scheme is used.
In these figures the experimental data by Wei and
Willmarth20 are also plotted. The mean streamwise velocity
profiles of the simulations with SM, DSM, and DTMR are
shifted up when compared with the case of no subgrid scale
model. The profiles using DSM and DTMR are closer to the
experimental data. On the other hand, the difference between
the profiles of DTM and No SGS is small, and the defect of
DTM is apparent. The peak value of the computed stream-
wise velocity fluctuation without a subgrid scale model is
higher than that of the experimental data. The defect of the

FIG. 19. The effect of the parameter CL of the scale similarity model @Eq.
~22!# on the grid scale velocity fluctuations for the channel flow at Ret

5395 ~Case 2! with the fourth order accurate finite difference scheme.

FIG. 20. The effect of the parameter CL of the scale similarity model @Eq.
~22!# on the effective Reynolds shear stress for the channel flow at Ret

5395 ~Case 2! with the fourth order accurate finite difference scheme.

FIG. 21. The effect of the parameter CL of the scale similarity model @Eq.
~22!# on the SGS dissipation of the GS turbulence energy for the channel
flow at Ret5395 ~Case 2! with the fourth order accurate finite difference
scheme.

FIG. 22. The effect of the parameter CS0 and CL on the skin friction coef-
ficient for the channel flow at Ret5395 ~Case 2! with the fourth order
accurate finite difference scheme.
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finite difference simulation is not cured completely by the
addition of the Smagorinsky models ~SM and DSM!. The
peak values of the streamwise velocity fluctuation obtained
with the DTM and DTMR models are better than those of the
Smagorinsky models. Figure 25 shows the SGS dissipation
profile using SM, DSM, DTM, and DTMR. The profiles of
Case 5 are similar to those of Case 2 ~Fig. 8!. The bulk mean
SGS dissipation, «SGSm

1 , for SM, DSM, DTM, and DTMR

are 2.0531023, 2.2931023, 1.4831023, and 2.1631023,
respectively. It indicates that the DTM model does not have
enough dissipation. From these results it is apparent that the
revised model keeps the merit of both the eddy viscosity and
the scale similarity subgrid scale models even for the high
Reynolds number flow.

V. CONCLUSIONS

The dynamic two-parameter mixed model was expected
to have the merits of both the Smagorinsky and scale simi-
larity models, since it was constructed as a linear combina-
tion of two of them. The strength of the scale similarity
model is that the correlation of the model to the subgrid scale

stress is much higher than that of the Smagorinsky model.
On the other hand, the secondary effect of the scale similar-
ity model increases the skin friction and reduces the mean
velocity of the turbulent channel flow, while that of the Sma-
gorinsky model reduces the skin friction and increases the
mean velocity. The filtering effect by itself increases the skin
friction and reduces the mean velocity, and the secondary
effect of a subgrid scale model to increase the mean velocity
is required in order to obtain the proper mean velocity profile
for the turbulent shear flow. Therefore, for the wall bounded
flows the secondary effect of the Smagorinsky model im-
proves the prediction of the mean velocity profile, while the
secondary effect of the scale similarity model results in the
deterioration of the mean velocity profile. The defect of the
scale similarity model is emphasized when the two param-
eters are computed simultaneously through the standard dy-
namic procedure. We have proposed a modification to the
two-parameter dynamic procedure for wall bounded turbu-
lent flows, which removes that defect: the Smagorinsky pa-
rameter, CS , is computed exactly the same way as in the
dynamic Smagorinsky model, then the other parameter, CL ,
is computed dynamically as CS is known. This ensures that
the mixed model gives proper skin friction and then yields
reliable mean velocity profiles while keeping the merit of the
scale similarity model. The reliability of the revised mixed
model was confirmed by performing large eddy simulations
of turbulent channel flow at the two Reynolds numbers Ret

5395 and 1400.
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