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The most commonly used dynamic subgrid scale model is based on the Smagorinsky eddy viscosity
model with the model coefficient computed dynamically through the tensor level identity by
Germano et al. However, the tensor level identity does not explicitly account for the effect of the
discretization of the governing equations, and thus the computational results strongly depend on grid
resolution, especially in a simulation with poor resolution. In this paper, we propose a new dynamic
procedure with the vector level identity, which takes the effect of grid resolution into consideration.
The new procedure is tested for the dynamic Smagorinsky eddy viscosity model with the vector
level identity. All computational tests were done on turbulent channel flow. The numerical results
confirm that the mean velocity profile computed using the new subgrid scale model does not depend
on the grid resolution. © 2002 American Institute of Physics. @DOI: 10.1063/1.1504450#

I. INTRODUCTION

The objective of this study is to develop a dynamic sub-
grid scale model for large eddy simulation of turbulent flows,
for which computational results are independent of grid reso-
lution. The most commonly used dynamic subgrid scale
model is based on the Smagorinsky eddy viscosity model1

with the model coefficient computed dynamically through
the tensor level identity by Germano et al.2 However, the
tensor level identity does not explicitly account for the effect
of the discretization of the equations governing the evolution
of the large-scale turbulent velocity field, and thus the com-
putational results strongly depend on grid resolution, espe-
cially in simulations with poor resolution. In this paper we
will present a new dynamic procedure with the vector level
identity, which takes the discretization effect into consider-
ation. The original idea was first introduced by Morinishi and
Vasilyev,3 and in this paper we present a more detailed analy-
sis. This new dynamic procedure is tested for the Smagorin-
sky eddy viscosity model with the vector level identity. Com-
putational tests are done on turbulent channel flow with
Reynolds numbers based on the channel half-width and wall
friction velocity of 180, 395, and 590.

The present paper is organized as follows. In Sec. II the
dynamic procedure for subgrid scale modeling with the vec-
tor level identity is proposed. The standard dynamic proce-
dure with the tensor level identity ~Germano identity! is also
introduced for a comparison. In Sec. III the large eddy simu-
lations of plane channel flow are performed and the compu-

tational results are compared with those of the standard dy-
namic Smagorinsky model. The effects of grid resolution and
the Reynolds number on the computational results are dis-
cussed. Section IV contains conclusions of this study.

II. TENSOR AND VECTOR LEVEL IDENTITIES FOR
THE DYNAMIC SUBGRID SCALE MODELING

A. Filtered Navier–Stokes and continuity equations

The governing equations for incompressible flows are
the Navier–Stokes and continuity equations, given by
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Here u i is the velocity component in the x i direction (i
51,2,3), p is the pressure divided by the density, n is the
kinematic viscosity, and t is time.

In large eddy simulation with dynamic subgrid scale
modeling, two different filters, i.e., the grid filter Ḡ(x) and
the test filter Ĝ(x), are introduced:

f̄~x,t !5E Ḡ~x2x8!f~x8,t !d3x8, ~3!

f̂~x,t !5E Ĝ~x2x8!f~x8,t !d3x8. ~4!

Applying the grid filter ~3! to Eqs. ~1! and ~2!, we get the
following governing equations for the grid filtered flow field
( ū i , p̄):
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The commutability between the differentiation and filtering
operations is usually assumed and the filtered convection
term is treated as
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where t i j is the subgrid scale stress which should be mod-
eled.

In large eddy simulation with the dynamic subgrid scale
model, the governing equations for the test filtered flow field
(uC i ,pC ) are obtained by applying the test filter ~4! to Eqs. ~5!
and ~6!:
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The commutability is assumed once again and the filtered
convection term is given by
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where T i j is called the subtest scale stress.

B. Dynamic subgrid scale modeling with tensor level
identity „standard dynamic modeling…

In the standard dynamic subgrid scale modeling, the ten-
sor level identity of Germano et al.2 between the subgrid and
subtest scale stresses is used to determine the parameter in
the subgrid scale model,

Li j5T i j2 t̂ i j , ~13!

where the resolved stress Li j is defined as

Li j5 ū iū ĵ2uC iuC j . ~14!

In the standard dynamic SGS model the Smagorinsky eddy
viscosity model is assumed for both the subgrid and subtest
scale stresses:
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The superscript ‘‘*’’ denotes the trace-free operator (t i j*
[t i j2

1
3d i jtkk). Following Lilly,4 the model parameter CS is

computed by minimizing the square of the error QT

5E i jE i j :

E i j5Li j*12~CSD̄ !2M i j , M i j5a2uSC uSC i j2uS̄u Ŝ̄ i j . ~17!

Here a2
5(DC /D̄)2 is the square value of the test to grid filter

widths ratio. In this study we take a2
552/3;2.92. It corre-

sponds to5 DC 15A5D̄1 , DC 25D̄2 , and DC 35A5D̄3 . Assuming
CS is a function of x2 and taking the average in the x12x3

plane ~denoted by ^•&!, we obtain the following equation for
(CSD̄)2:
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In this paper the dynamic Smagorinsky model given by Eqs.
~15! and ~18! is called DSM.

C. Dynamic subgrid scale modeling with vector level
identity

In practical LES applications the finite difference
method is usually used and the first term on the right-hand
side of Eq. ~7! is approximated by

d ū iū j

dx j
;

] ū iū j

]x j
1O~hn!,

where du iu j /dx j denotes the nth-order accurate finite differ-
ence approximation to ]u iu j /]x j and O(hn) is the truncation
error. This means that the filtered convection term, Eq. ~7!,
suffers from the discretization effect, even if we know the
exact subgrid stress. That is why the development of high-
order numerical methods has been considered as one of the
important areas of LES research.6

In this study, we propose an alternative approach to im-
prove the reliability of the computational results of LES. The
filtered convection term in the grid field is modeled as
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where the numerical error is treated as a part of the subgrid
scale stress ~exactly, subgrid scale vector!, and the rest is
modeled with t i j . The filtered convective term in the test
field is assumed as follows:
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The model parameter in the dynamic subgrid scale model is
determined through the following vector level identity:

Ci5
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where the resolved convection term, Ci , is defined as
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If the parameter in the dynamic subgrid scale model is esti-
mated through the vector level identity given by Eq. ~21!,
then the discretization effect on the convection term explic-
itly influences the model parameter. Substituting Eqs. ~15!
and ~16! into Eq. ~21!, we obtain the following error E i and
its square value:

QV
5E iE i , E i5Ci*12M i~CSD̄ !2

12M i j

]~CSD̄ !2

]x j
,

~23!

where

Ci*5Ci2
1

3
d i jCkk

i , M i5
]M i j

]x j
.

Note that in contrast to the tensor level identity, the error
term QV depends not only on the values of (CSD̄)2 but also
on its derivatives. As a consequence, the minimization pro-
cedure is no longer local and we need to use the variational
principal to determine (CSD̄)2. In this study, (CSD̄)2 is es-
timated by minimizing the following weighted integral:

E E E w~x2!QV~x1 ,x2 ,x3!dx1dx2dx3 . ~24!

Following the general variational principle it can be shown
that if the function f(y) provides the minimum for the
weighted integral,

E w~y !S A1B•f1C
df

dy D 2

dy ,

then it should also satisfy the following differential equation:

w~y !S A1B•f1C
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dy DB2

d

dy Fw~y !S A1B•f1C
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dy DCG
50.

Assuming that CS is a function of x2 and taking the average
in the periodic directions, the (CSD̄)2 value, which mini-
mizes the weighted integral ~24!, is obtained through the
variational principal, which leads to the following differen-
tial equation:
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where

R~x2!52

1

2
w~x2!^C i*M i&1

1

2

d@w~x2!^C i*M i2&#

dx2
.

Equation ~25! is discretized using the second-order finite dif-
ference method and is solved using the direct tridiagonal
solver. In this study the weight is selected as w(x2)
51/h2(x2), where h2(x2) is the grid spacing in x2 . As will

be shown in Sec. III A, the value of (CSD̄)2 determined by
Eq. ~25! can become negative very close to the wall. Nega-
tive values of (CSD̄)2 can lead to numerical instabilities.
One way to deal with this issue is to introduce simple nega-
tive clipping, which will result in a discontinuous CS profile.
An alternative procedure to deal with this issue will be dis-
cussed in Sec. III A. For the clarity of discussion, the dy-
namic Smagorinsky model given by Eq. ~15! with (CSD̄)2

determined by Eq. ~25! will be referred to as VDSMwc,
where the last two letters stand for ‘‘without clipping.’’

Note that the dynamic procedure assumes the model
similarity for both grid and test filters ~see Meneveau and
Katz8!. However, the test filter size is bigger. Thus, in order
to achieve complete model similarity at test and grid levels,
the truncation error should be proportionally greater. This
can only be achieved for the second-order method, and will
never be true for higher-order schemes. However, for higher-
order schemes and filters with a nonvanishing second mo-
ment the truncation error is considerably lower than commu-
tation error. Thus, complete proportionality of the truncation
error is not crucial. We also note that the subgrid scale model
with the vector level identity does not assume the commut-
ability between the differentiation and filtering operation:

]u iu j

]x j
5

]u iu j

]x j
.

III. LES RESULTS AND DISCUSSION

In this study the numerical tests for subgrid scale models
with both the tensor and vector level identities are performed
using fully developed plane channel flow at a Reynolds num-
ber of 180, 395, and 590. The flow field is assumed to be
periodic in the streamwise (x1) and spanwise (x3) directions.
The Reynolds number (Ret5utH/n) is based on the channel
half-width H and the wall friction velocity ut . The filtering
operations in the dynamic subgrid scale models are per-
formed only in the periodic directions. The test filtering with
the filter width D̂ i52h i in x i , i51,3, directions is done as
follows:

f̂ ~x i!5
1
6@ f ~x i2h i!14 f ~x i!1 f ~x i1h i!# . ~26!

Table I summarizes the grid resolution for all computational
cases in this study. The computational box for all cases is
2pH32H32pH/3. Cases B–F correspond to the flow at
Ret5395 and different grid resolutions in the periodic direc-
tions. Case A corresponds to the flow at lower Reynolds
number Ret5180. Case G corresponds to the flow at higher
Reynolds number Ret5590. The grid spacings in the peri-
odic directions are uniform. The wall normal grid is stretched
using a hyperbolic-tangent function. The mixed order fully
conservative finite difference scheme in a staggered grid sys-
tem is used, where the fourth-order accurate discretization
proposed by Morinishi et al.7 is used in homogeneous direc-
tions and the second-order one is used in the wall normal
direction. The computational method is the same as that in
Morinishi and Vasilyev.9 In this study we shall compare the
dynamic vector model with the dynamic tensor one with re-
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spect to the grid resolution only, since the dependence of the
LES result on the order of accuracy and on grid resolution
with some existing subgrid scale models has been discussed
by Morinishi and Vasilyev.9 The computational cases, cases
C–F, correspond to cases 1–4 of Ref. 9.

A. Model comparison for case D and negative
clipping

Figure 1 shows the profiles of mean streamwise velocity
U1 (U15^ū1& t) of the channel flow at Ret5395 ~case D!
using VDSMwc, DSM, and No SGS. The ensemble averag-
ing over the x12x3 plane and time is denoted by ^•& t . In this
paper, variables with superscript ‘‘1’’ are normalized by the
wall friction velocity ut and the viscous length scale d

v

(d
v
5n/ut). The simulations without a subgrid scale model

are labeled as No SGS. In the figure the corresponding DNS
data by Moser et al.10 are also plotted. Note that for visual
clarity only one-third of the DNS data points are plotted. The
difference between the mean velocity profiles for No SGS
and the DNS results should be properly compensated by a
subgrid scale model, as discussed in Morinishi and Vasilyev.9

The profile using VDSMwc coincides well with the DNS
data, while the mean velocity with DSM is too large.

Figure 2 shows the profiles of the grid scale velocity
fluctuations (ua85A^ūa

2 & t2^ūa& t
2,a51,2,3) and the grid

scale Reynolds shear stress (u18u285^ū1ū2& t2^ū1& t^ū2& t) us-
ing VDSMwc, DSM, and No SGS. The peak value of the
streamwise velocity fluctuation of the simulation without a
subgrid scale model is higher than that of the DNS data. The
defect is not cured in the results of VDSMwc and DSM. This
defect is caused by the finite difference simulation and it is

not cured completely by the addition of the dynamic Smago-
rinsky model.9 We believe that the addition of a scale simi-
larity model11–16,9 should improve the profile. However, we
leave it for future investigation.

Figure 3 shows the profiles of the parameter CS near the
wall. The parameter CS is plotted as

sign@(CSD̄)2#Au(CSD̄)2u/(h1h2h3)2/3. The CS value of
VDSMwc is negative very close to the wall, even if we in-
troduce the plane averaging as in Eq. ~25!. Basically we do
not want CS to be negative by reason of the numerical sta-
bility problem. However, the simple negative clipping causes
a discontinuous CS profile. To overcome this difficulty we
modify the minimization procedure. In particular, we will
minimize the following integral:

EEE $w~x2!QV~x1 ,x2 ,x3!2F~x2!~CSD̄ !2%dx1dx2dx3 ,

~27!

where F(x2) is a non-negative function to be determined
later. The motivation for this procedure is based on the
simple observation that for positive F(x2) and negative val-
ues of (CSD̄)2 the addition of the extra term to Eq. ~27!
increases the value of the integral. Applying the variational
principal to Eq. ~27! we obtain the following differential
equation for the function minimizing the integral:

FIG. 1. The mean streamwise velocity profiles for the channel flow simu-
lation at Ret5395 ~case D! using VDSMwc, DSM, No SGS, and VDSM.

FIG. 2. The profiles of grid scale velocity fluctuations for the channel flow
at Ret5395 ~case D! using VDSMwc, DSM, No SGS, and VDSM.

TABLE I. Computational cases.

Case Ret L1 L2 L3 N1 N2 N3 h1
1 h2

1 h3
1

Case A 180 2pH 2H 2pH/3 32 64 32 35.3 0.6–12.9 11.8
Case B 395 2pH 2H 2pH/3 16 64 16 155.1 0.6–34.1 51.7
Case C 395 2pH 2H 2pH/3 24 64 24 103.4 0.6–34.1 34.5
Case D 395 2pH 2H 2pH/3 32 64 32 77.6 0.6–34.1 25.9
Case E 395 2pH 2H 2pH/3 48 64 48 51.7 0.6–34.1 17.2
Case F 395 2pH 2H 2pH/3 64 64 64 38.8 0.6–34.1 12.9
Case G 590 2pH 2H 2pH/3 32 64 32 115.8 0.6–55.4 38.6

3619Phys. Fluids, Vol. 14, No. 10, October 2002 Vector level identity for dynamic subgrid scale modeling



w~x2!F ^M iM i&~CSD̄ !2
1^M i2M i&
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dx2
Fw~x2!S 1^M iM i2&~CSD̄ !2
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The term ^M iM i& (CSD̄)2 is the most dominant term in Eq.
~25!, thus the negative values of (CSD̄)2 could occur when
R(x2) is negative. To eliminate this problem we set F(x2) to
be exactly zero where R(x2) is positive and F(x2)
52R(x2) in the regions where R(x2) is negative. This
simple procedure is effectively equivalent to the clipping of
the source term to Eq. ~25! as

w~x2!S ^M iM i&~CSD̄ !2
1^M i2M i&

d~CSD̄ !2

dx2
D

2

d

dx2
Fw~x2!S 1^M iM i2&~CSD̄ !2

1^M i2M i2&
d~CSD̄ !2

dx2
D G5MAX@R~x2!,0# , ~29!

where the function MAX@a ,b# extracts the larger one. The
small diamond ~L! symbols in Figs. 1–3 are the results of
VDSM with the clipping @using Eq. ~29!#. The negative CS

value very close to the wall disappears and a smooth CS

profile is obtained by the source term clipping, as shown in
Fig. 3. The effect of the clipping on the mean velocity and
the fluctuation velocity profiles is negligible, as shown in
Figs. 1 and 2. Hereafter, the dynamic Smagorinsky model
given by Eq. ~15! with (CSD̄)2 determined by Eq. ~29! is
called VDSM.

In order to understand the importance of the last term in
Eq. ~23!, we consider a simplified dynamic procedure for the
vector level identity proposed by Sagaut et al.17 The simpli-
fication is achieved by removing the last term in Eq. ~23! and
applying the least square minimization:

~CSD̄ !2
52

1

2

^C i*M i&

^M iM i&
. ~30!

This simplified procedure was used in freely decaying turbu-
lence and the results were better than that for the standard
dynamic procedure.18 The CS value computed by Eq. ~30!
using the flow field of VDSMwc is also plotted in Fig. 3. The
negative region of CS given by Eq. ~30! near the wall is
wider, and the difference of the CS value between Eqs. ~25!
and ~30! is not negligible. This indicates the importance of
the last term in Eq. ~23! for wall bounded flows.

To clarify the reason why the negative CS region appears
very close to the wall for the eddy viscosity model with the
vector level identity, a spectral DNS of the plane channel
flow (Ret : 150, box: 4pH32H34pH/3, grid: 1283129
3128) was performed and the exact SGS force, F i

SGS

5^]t i2* /]x2&, was compared with the one modeled by the
standard Smagorinsky model with the van Driest wall damp-
ing function with CS50.1 ~SM!. Figure 4 shows the result of
an a priori test for the SGS force. The grid scale velocity
field is extracted from the DNS data using the plane filtering
~Gaussian, D̄1

1
558.9, D̄3

1
519.6). A large difference be-

tween the exact and the modeled forces appears in the wall

FIG. 3. The profiles of the model parameter CS for the channel flow simu-
lation at Ret5395 ~case D! using VDSMwc, DSM, and VDSM. The CS

value computed by Eq. ~30! is also plotted.

FIG. 4. The profiles of the exact SGS force and one modeled by SM. The
data are extracted from a spectral DNS data of plane channel flow at Ret

5150.

FIG. 5. The effect of grid resolution on the mean streamwise velocity profile
for the channel flow at Ret5395 using DSM, VDSM, and No SGS.
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normal component close to the wall. This difference is
caused by the isotropic representation of t i j , while in reality
^t22* &Þ0. Thus, the negative CS value of VDSMwc close to
the wall is the result of this defect.

B. Dependence of the LES result on grid resolution

Figure 5 shows the effect of the grid resolution on the
profile of the mean streamwise velocity of the channel flow
at Ret5395 using VDSM, DSM, and No SGS. The grid reso-
lutions corresponding to cases B–F are shown in Table I.
With an increase in the grid resolution, the results of finite
difference calculations converge. The numerical error of case
B is considerably larger than those of the finer resolution
cases ~cases C–F!. The mean velocity profiles of VDSM and
DSM converge to the DNS data with an increase in grid
resolution. However, DSM requires excessive grid resolution
to reach the converged profile. On the other hand, the results
of VDSM coincide well with the DNS data, except for a case
with very poor grid resolution ~case B!.

Figure 6 shows the skin friction coefficient, C f

52tw /(rUm
2 ), for the cases that appeared in Fig. 5, where tw

is the wall shear stress, r is the density, and Um

51/(2H)*
2H
1HU1dx2 is the bulk mean velocity. The C f value

of the DNS data by Moser et al.10 is also plotted. The high
intercept ~constant B! of the log law @U1

1
5(1/k)ln y1

1B#
for DSM is due to the low value of the skin friction coeffi-
cient, while the low intercept of the log law of No SGS for
cases C–F is due to the high value of the skin friction coef-
ficient. The VDSM model produces a reliable skin friction
coefficient for a wide range of grid resolution. For case B,
the C f value of No SGS is lower than the DNS data. The
addition of the Smagorinsky-type eddy viscosity model de-
creases the C f value.9 As a consequence, in order to get a
reliable mean velocity profile, a grid resolution should be
chosen so that the same resolution numerical simulation with
no SGS model would result in a C f that is higher than the
DNS value. This is true, even for VDSM. Notice that this is
the limitation of Smagorinsky-type models and is not of the
vector level identity. The vector procedure with a different
type of subgrid scale model would remove the limitation.

Figure 7 shows the effect of grid resolution on the profile
of streamwise grid scale velocity fluctuation of the channel
flow at Ret5395 using VDSM, DSM, and No SGS. The
peak value of the velocity fluctuation of VDSM, DSM, and
No SGS for case B is much higher than the DNS data, and it
improves by increasing the grid resolution. No apparent dif-
ference between the tensor and vector models is confirmed
on the velocity fluctuation.

Figures 8 and 9 show the profiles of the parameter CS

FIG. 6. The skin friction coefficient for the channel flow simulation at Ret

5395 using DSM, VDSM, and No SGS.

FIG. 7. The effect of grid resolution on the streamwise grid scale velocity
fluctuation profile for the channel flow at Ret5395 using DSM, VDSM, and
No SGS.

FIG. 8. The effect of grid resolution on CS for the channel flow at Ret

5395 using DSM.

FIG. 9. The effect of grid resolution on the SGS dissipation of the GS
turbulence energy for the channel flow at Ret5395 using DSM.
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and the SGS dissipation profiles using DSM. The SGS dis-
sipation that appears in the transport equation of grid scale
~GS! turbulence energy (kGS5

1
2(^ū iū i& t2^ū i& t^ū i& t)) is

given by eSGS52^t i jS̄ i j& t1^t i j& t^S̄ i j& t . The peak value of
CS increases and its location moves away from the wall with
decreasing the grid resolution as shown in Fig. 8. This pro-
duces an excessive SGS dissipation for the cases with poor
grid resolution, as shown in Fig. 9, and results in the higher
mean velocity ~Fig. 5!.

Figures 10 and 11 show the profiles of the parameter CS

and the SGS dissipation profiles using VDSM. The CS and
the dissipation values of VDSM decrease with decreasing the
grid resolution. This behavior is expected and match well the
mean velocity prediction, since the finite difference simula-
tion with lower grid resolution requires lower subgrid scale
contribution, as shown in Fig. 5~c!. This indicates that the
proposed procedure gives the proper model parameter that
corresponds to the grid resolution.

C. Dependence of the LES result on Reynolds
number

To confirm the dependence of the LES results on Rey-
nolds number, further LES simulations are performed at
three Reynolds numbers Ret5180, 395, and 590 that corre-
spond to cases A, D, and G, respectively. The three cases
have the same box size and grid number, as shown in Table
I. Therefore the difference of the Reynolds number corre-

sponds to the difference of the grid resolution in wall units.
That is, the grid resolution of case A is relatively high while
that of case G is relatively low.

Figures 12 and 13, respectively, show the effect of the
Reynolds number on the profiles of mean streamwise veloc-
ity U1 and streamwise grid scale velocity fluctuation u18 of
the channel flow using VDSM, DSM, and No SGS. In these
figures the DNS data of the corresponding Reynolds num-
bers by Moser et al.10 are also plotted. The mean velocity
profile with No SGS is lower for cases A and D, and slightly
lower for case G than the corresponding DNS data. The pro-
file with DSM is higher than the corresponding DNS data
except for case A for which relatively high grid resolution is
used. The VDSM model compensates the difference between
the No SGS and DNS data properly for all the Reynolds
number cases. The peak value of the streamwise velocity
fluctuation increases with an increase of the Reynolds num-
ber, and no apparent difference between the models is con-

FIG. 10. The effect of grid resolution on CS for the channel flow at Ret

5395 using VDSM.

FIG. 11. The effect of grid resolution on the SGS dissipation of the GS
turbulence energy for the channel flow at Ret5395 using VDSM.

FIG. 12. The effect of Reynolds number on the mean streamwise velocity
profile for the channel flow using VDSM, DSM, and No SGS.

FIG. 13. The effect of Reynolds number on the streamwise grid scale ve-
locity fluctuation profile for the channel flow using VDSM, DSM, and No
SGS.
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firmed. This trend simply reflects the dependence of the fluc-
tuation profile on the grid resolution for a Smagorinsky-type
subgrid scale model.

IV. CONCLUSIONS

A new dynamic procedure with the vector level identity
for subgrid scale modeling was proposed and tested for the
Smagorinsky eddy viscosity model. The differential equation
for the model coefficient for the vector model is obtained
using the variational principal. To avoid negative values for
the model coefficient, the source term clipping procedure is
introduced. All computational tests were done on turbulent
channel flow, and the Reynolds numbers based on the chan-
nel half-width and wall friction velocity are 180, 395, and
590. Results of numerical simulations confirm that the mean
velocity profile computed using the new dynamic subgrid
scale model is less dependent on the grid resolution and the
Reynolds number.
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