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In this paper, after a brief review of curvelets and their relation to classical wavelet transform,
multiscale geometric analysis is systematically applied to turbulent flows in two and three
dimensions. The analysis is based on the constrained minimization of a total variation functional
representing the difference between the data and its representation in the curvelet space. Constrained
multiscale minimization results in a minimum loss of the geometric flow features and the extraction
of the coherent structures with their edges and geometry properly preserved, which is significant for
turbulence modeling. The effectiveness of curvelet analysis compared to the wavelet transform is
demonstrated for both two- and three-dimensional turbulent flows. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3177355�

I. INTRODUCTION

The objective of organizing, representing, and manipu-
lating high-dimensional data with a view to detect significant
features that occupy lower-dimensional subsets �curves,
sheets, etc.� has been pursued independently by mathemati-
cal and statistical analysts and computer vision and image
scientists. Recently, there has been an attempt to bring to-
gether these theories and tools, which are closely related and
application driven, into an emerging area called multiscale
geometric analysis �MGA�. MGA techniques have the poten-
tial to make considerable advances in science and engineer-
ing areas where multiscale phenomena are of critical interest.

Turbulence has been a source of fascination for centuries
because most fluid flows occurring in nature, as well as in
engineering applications, are turbulent. Fluid turbulence is a
paradigm of multiscale phenomena, where the coherent
structures evolve in an incoherent random background. From
a mathematical point of view, the geometrical representation
of flow structures might seem restricted to a well-defined set
of curves along which the data are singular. As a conse-
quence, the efficient compression of a flow field with mini-
mum loss of the geometric flow structures is a crucial prob-
lem in the simulation of turbulence. Multiscale geometric
techniques addressed in this paper are beginning to influence
the field of turbulence and have the potential to upstage the
wavelet representation of turbulent flows.

Despite tremendous progress in the area of scientific
computing, the direct numerical simulation �DNS� of turbu-
lent flows using first principles is prohibitively expensive, if
not impossible, even on petascale platforms. Approaches
such as large-eddy simulation �LES�1–3 and multiscale
modeling4–6 have recently become popular for the computa-
tion of complex turbulent flows. These methods use either
filtering or a projection operator to separate resolved �large/
coherent/energetic� and unresolved �small/incoherent/low en-
ergy� modes. The motivation is based on the observed fact
that the large scale or energy containing motions often domi-

nate mixing, heat transfer, and other quantities of engineer-
ing interest, while the small scale or low energy eddies are
only of interest because of how they affect the resolved
modes. Therefore, the extraction and separation of coherent
�dynamically dominant� and incoherent �dynamically insig-
nificant� structures from turbulent flow fields is critical if one
needs to capture the “important” flow physics, improve the
fidelity of the approach, simplify the complexity of the sub-
grid scale �SGS� models, and reduce computational cost.

The multiscale separation concepts based on nonlinear
wavelet denoising were proposed by Farge and co-workers
�see, e.g., Refs. 7–10�. Specifically, they proposed a wavelet-
based coherent vortex simulation �CVS� approach based on
thresholding of orthogonal wavelet decompositions. They
observed that the coherent flow component is highly concen-
trated in wavelet space, which contains most of the total
energy and enstrophy of the original flow. In the original
formulation, the CVS decomposes the turbulent vorticity
field into resolved coherent eddies and the residual field that
is close to incoherent Gaussian noise. The evolution of the
coherent field is then computed deterministically while ne-
glecting or modeling the effect of the incoherent noise. The
original formulation was extended to wavelet packets,10,11

biorthogonal wavelets,12 and second-generation wavelets.13

Recently, the CVS approach was further generalized into the
stochastic coherent adaptive LES �SCALES�5,13 methodol-
ogy that “tracks” on a space-time adaptive mesh the most
energetic �dynamically dominant� coherent structures while
modeling the influence of the unresolved motions.

Although applications of wavelets to turbulent flows
have become increasingly popular, traditional wavelets per-
form well only at representing point singularities since they
ignore the geometric properties of structures and do not ex-
ploit the regularity of edges. Therefore, wavelet-based com-
pression and structure extraction becomes computationally
inefficient for geometric features with line and surface sin-
gularities. Discrete wavelet thresholding could lead to oscil-
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lations along the edges of coherent eddies and, consequently,
to the deterioration of the vortex tube structures, which, in
turn, can lead to an unphysical leak of energy into neighbor-
ing scales producing an artificial “cascade” of energy.14

A multiresolution geometric analysis, named curvelet
transform, was first proposed by Candès and Donoho15 based
on block ridgelets, and then the second generation was con-
structed based on the frequency partition in Refs. 16 and 17.
In two dimensions, the curvelet transform allows an optimal
sparse representation of objects with C2-singularities. For a
smooth object f with discontinuities along C2-continuous

curves, the best m-term approximation f̃m by curvelet thresh-

olding obeys �f − f̃m�2
2�Cm−2�log m�3, while for wavelets the

decay rate is only m−1. Surprising performance has been
shown in the field of image processing �see, e.g., Refs.
18–22�. Recently, the three-dimensional �3D� curvelet trans-
form was presented by Candès and co-workers.17,23 Unlike
the isotropic elements of wavelets, the needle-shaped ele-
ments of this transform possess very high directional sensi-
tivity and anisotropy �see Fig. 1 for the two-dimensional
�2D� case�. Such an element is very efficient in representing
vortex edges.

Very recently, the curvelet transform has been indepen-
dently applied to the analysis of 3D turbulence by Ma and
Hussaini24 and Bermejo-Moreno and Pullin.25 A multiscale
methodology for the study of the nonlocal geometry of eddy
structures in turbulence was developed. The multiscale prop-
erty, implemented by means of curvelets, provides the frame-
work for studying the evolution of the structures associated
with the main ranges of scales defined in Fourier space while
keeping the localization in physical space that enables a geo-
metrical study of such structures. Such a geometrical charac-
terization could provide improved understanding of cascade
mechanics and dissipation-range dynamics, contributing po-
tentially to the development of structure-based models of

turbulence fine scales, SGS models for LES, and simulation
methods based on priori wavelet transforms.

The main difference between the results reported in
Refs. 24 and 25 is that the main focus of Ma and Hussaini24

is the extraction of coherent vortices out of 3D turbulent
flows by curvelet shrinkage with the objective to propose an
alternative method to the existing wavelet methods of coher-
ent vortex analysis, while the main focus of the methodology
presented in Ref. 25 is the analysis of nonlocal geometrical
structures by combining the curvelets with statistical and
clustering techniques. The methodology reported in Ref. 25
involves three steps: extraction, characterization, and classi-
fication of structures from a given 3D turbulent field. The
extraction step consists of two stages: multiscale decompo-
sition and isocontouring of each component at different
scales. The curvelet transform was used in the first stage that
decomposes the fields into multiscale and multiorientation
components. The motivation of Bermejo-Moreno and
Pullin25 is to develop a methodology that can compensate for
the computational bottleneck of DNS computing for turbu-
lent flows and to provide a mathematical framework for non-
local characterization of the flow structures based on the ex-
isting data sets.

This paper is an extension of Ref. 24. We investigate
systematically the applications of curvelets for the extraction
of coherent vortices from 2D to 3D turbulent flows. More
details and results are provided. Besides the extension, we
propose a new scheme of curvelet shrinkage for the extrac-
tion by using the second-generation discrete curvelet trans-
form �DCuT� combined with a total variation �TV� minimi-
zation. This TV-synthesis curvelet shrinkage can reduce
pseudo-Gibbs and elementlike artifacts while preserving the
geometric structures in extracted fields, in comparison with
classical hard-thresholding or soft-thresholding methods. The
aim of this paper is to propose an updated multiscale geo-
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FIG. 1. The elements of wavelets �left� and curvelets on various scales, directions, and translations in the spatial domain �right�. Note that the tensor-product
2D wavelets are not strictly isotropic but have directional selectivity.
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metric analysis tool for the existing wavelet methods in the
fluid mechanics community. We focus on comparisons of the
proposed curvelet method and the popular wavelet transform
from two dimensions to three dimensions.

In Sec. II a review of classical and geometric wavelets is
given. The theory of 2D and 3D curvelet transforms is pre-
sented in Secs. III and IV, respectively. The application of
curvelet shrinkage for the extraction of the coherent vortex
out of turbulent flow is discussed in Sec. V. A uniform frame-
work of TV minimization both for 2D and 3D curvelet trans-
forms is given in Sec. VI. Experiments are shown from 2D to
3D turbulence in Sec. VII. Finally, conclusions are drawn in
Sec. VIII.

II. CLASSICAL TO GEOMETRIC WAVELETS

Although the discrete wavelet transform �DWT� has es-
tablished an impressive reputation as a tool for mathematical
analysis and signal processing, it has the disadvantage of
poor directionality, which has undermined its usage in many
applications. Significant progress in the development of di-
rectional wavelets has been made in recent years. The com-
plex wavelet transform �CWT� is one way to improve direc-
tional selectivity and only requires O�N� computational cost.
However, the CWT has not been widely used in the past due
to the difficulty in designing complex wavelets with perfect
reconstruction properties and good filter characteristics.26,27

One popular technique is the dual-tree CWT proposed by
Kingsbury,28,29 which added perfect reconstruction to the
other attractive properties of complex wavelets, including
approximate shift invariance, six directional selectivities,
limited redundancy, and efficient O�N� computation.

The 2D complex wavelets are essentially still con-
structed by using tensor-product one-dimensional �1D�
wavelets. The directional selectivity �six directions� is much
better than classical DWT �three directions� but is still
limited.

In 1999, an anisotropic geometric wavelet, named ridge-
let, was proposed by Candès and co-worker.30,31 The ridgelet
transform is optimal at representing straight-line singulari-
ties. The transform with arbitrary directional selectivity pro-
vides a key to the analysis of higher-dimensional singulari-
ties. The main drawback of the ridgelet transform is the
limitation of its applicability to objects with global straight-
line singularities, which is rarely the case in real applications
of image processing in industry.32 In order to analyze local
line or curve singularities, a natural idea is to apply a parti-
tion to the images and then apply the ridgelet transform to
the partitioned subimages. This block ridgelet based trans-
form, which is named curvelet transform, was first proposed
by Candès and Donoho in 2000. Apart from the blocking
effects, however, the application of the so-called first-
generation curvelet transform is limited because the geom-
etry of ridgelets is itself unclear, as they are not true ridge
functions in digital images. In 2004, a considerably simpler
second-generation curvelet transform based on a frequency
partition technique was proposed by the same authors.

It should be noted that several other geometric
multiresolution bases, such as wedgelets,33 beamlets,34

bandlets,35,36 contourlets,37 shearlets,38 platelets,39 and
surfacelets,40 have been proposed independently to identify
and restore geometric features. The geometric wavelets are
also called X-lets. From a mathematical point of view, the
main strength of curvelets is their ability to formulate strong
theorems in approximation and operator theory. On the other
hand, curvelet-based multiscale geometric analysis has been
contended by anisotropic diffusion filtering,41 which is also
related to MGA.

III. 2D CURVELET TRANSFORM

In this section, we give an outline for the second-
generation DCuT,16,17 which is considerably simpler to use
than the original formulation.15–17

Let V�t� and W�r� be a pair of smooth, non-negative
real-valued window functions, such that V is supported on
�−1,1� and W on � 1

2 ,2�. The windows need to satisfy the
admissibility conditions

�
l=−�

�

V2�t − l� = 1, t � R ,

�
j=−�

�

W2�2−jr� = 1, r � 0.

These conditions are satisfied by taking, e.g., the scaled
Meyer windows �see Ref. 42, p. 137�

V�t� = �
1, �t� � 1/3,

cos	�

2
��3�t� − 1�
 , 1/3 � �t� � 2/3,

0 else,
�

W�r� =�
1, 5/6 � r � 4/3,

cos	�

2
��5 − 6r�
 , 2/3 � r � 5/6,

cos	�

2
��3r − 4�
 , 4/3 � r � 5/3,

0 else,

�
where � is a smooth function satisfying

��x� = �0, x � 0,

1, x � 1,
 ��x� + ��1 − x� = 1, x � R .

Let the Fourier transform of f �L2�R2� be defined by

f̂���ª1 /2��R2f�x�e−i�x,��dx. Now, for j�0 let the window
Uj���, �= ��1 ,�2��R2 in frequency domain be given by

Uj��� = 2−3j/4W�2−j����V�2�j/2���, � � R2,

where ���� ,�� denotes the polar coordinates corresponding to
�. The support of Uj is a polar wedge determined by
supp W�2−j·�= �2 j−1 ,2 j+1� and supp V�2�j/2�·�= �−2−�j/2� ,2−�j/2��
�see Fig. 2 for an example of the window U0 and its
support19�.

The system of curvelets is now indexed by three
parameters: a scale 2−j, j�N0; an equispaced sequence of
rotation angles � j,l=2�l ·2−�j/2�, 0� l�2�j/2�−1; and a posi-
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tion xk
�j,l�=R�j,l

−1 �k12−j ,k22−�j/2��T, �k1 ,k2��Z2, where R�j,l
de-

notes the rotation matrix with angle � j,l. The curvelets are
defined by

	 j,l,k�x� ª 	 j�R�j,l
�x − xk

�j,l���, x = �x1,x2� � R2,

where 	̂ j���ªUj���, i.e., Uj is the Fourier transform of 	 j.
Observe that in the spatial domain 	 j,l,k rapidly decays out-
side a 2−j by 2−j/2 rectangle with center xk

�j,l� and orientation
� j,l with respect to the vertical axis. Further, we introduce the
real-valued, non-negative low-pass window W0 by

W0�r�2 + �
j�0

W�2−jr�2 = 1,

with the coarse scale nondirectional curvelet given by

	−1,0,k�x� ª 	−1�x − k�, 	̂−1��� ª W0����� .

For simplification, let �= �j , l ,k� be the collection of the
triple index. The system of curvelets �	�� forms a tight
frame in L2�R2�, i.e., each function f �L2�R2� can be repre-
sented by

f = �
�

c��f�	�.

Using Parseval’s identity, the curvelet coefficients are given
by

c��f� ª �f ,	�� = �
R2

f̂���	̂����d�

= �
R2

f̂���Uj�R�j,l
��ei�xk

�j,l�,��d� . �1�

In practical implementations, one would like to have Carte-
sian arrays instead of the polar tiling of the frequency plane.
Cartesian coronas are based on concentric squares �instead of
circles� and shears �see Fig. 3�. Candès et al.17 applied a
pseudopolar grid by replacing the window Wj���ªW�2−j��
by a window of the form

W̃j��� = 
�0,����1���2�2−j−1�1� − �2�2−j�1�, j � 0,

where the 1D window � satisfies 0���1,
supp �� �−2,2�, and ��r�=1 for r� �−1 /2,1 /2�. �Here,

�0,����1� denotes the characteristic function of �0,��.� As
before, � can be taken to be a scaled Meyer window.

With Vj���ªV�2�j/2��2 /�1� the Cartesian window,

Ũj��� ª 2−3j/4W̃j���Vj���

can be determined, being analogous to Uj and determining
the frequencies near the wedge
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FIG. 2. Window U0��� �left� and its support �right�.

FIG. 3. Discrete curvelet tiling with parabolic pseudopolar support in the
frequency plane.
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���1,�2�:2 j � �1 � 2 j+1,− 2�j/2� � �2/�1 � 2�j/2�� .

An example of Ũ0 is given in Fig. 4. Let tan � j,lª l2−�j/2�,
l=−2�j/2� , . . . ,2�j/2�−1 be the set of equispaced slopes and let

	̃��x� = 	̃ j,l,k�x� ª 	̃ j�S�j,l

T �x − x̃k
�j,l���, x = �x1,x2� � R2,

	̂̃ j��� ª Ũj��� ,

be the Cartesian counterpart of 	 j,l,k, where
x̃k

�j,l�
ªS�j,l

−T �k12−j ,k22−�j/2��¬S�j,l

−T kj, and with the shear matrix

S� = � 1 0

− tan � 1
� .

Observe that the angles � j,l, which range between −� /4
and � /4, are not equispaced here, while the slopes are. The
set of curvelets 	̃� needs to be completed by symmetry and
by rotation by �� /2 rad in order to obtain the whole family.
We find the Cartesian counterpart of the coefficients in Eq.
�1� by

c̃�f� = �f ,	̃� = �
R2

f̂���Ũj�S�j,l

−1 ��ei�x̃k
�j,l�,��d�

= �
R2

f̂�S�j,l
��Ũj���ei�kj,��d� . �2�

The forward �see Algorithm 1� and inverse DCuTs have
the same computational cost of O�N2 log N� for an �N�N�
image. The redundancy of the curvelet transform is about 2.8
when wavelets are chosen at the finest scale and 7.2 other-
wise �see, e.g., Ref. 17�.

Algorithm 1. Two-dimensional discrete curvelet trans-
form.

1. Apply 2D FFT to compute the Fourier coefficients
dm�f� of f .

2. For all m with S�j,l

T m�supp Ũj compute the product

dm�f�Ũj�2� /NS�j,l

T m�.

3. Apply the inverse 2D FFT to obtain the discrete coef-
ficients c̃�

D�f�.

IV. 3D CURVELET TRANSFORM

Real turbulence data are always 3D, which necessitates
the use of 3D multiscale geometric methods. 3D curvelets
have been recently proposed by Ying et al.23 and Candès
et al.17 A fast application of the curvelet transform to 3D
turbulent flows has been proposed by Ma and Hussaini.24 In
this paper, the TV-synthesis curvelet transform that combines
the 3D curvelet transform with TV minimization is
presented.

Similar to 2D problems, we also define V�t� and W�r� to
be a pair of smooth, non-negative real-valued window func-
tions, which are called the angular window and the radial
window, respectively. V is supported on �−1,1� and W on
� 1

2 ,2�. The windows satisfy the admissibility conditions.
Without loss of generation, we introduce the low-pass win-
dow W0 for the coarsest scale, which satisfies the condition

W0�r�2 + �
j�0

W�2−jr�2 = 1.

These conditions are satisfied by taking, for example, the
scaled Meyer windows again.19 For each j�0, the radial
window W�2−jr� smoothly extracts the frequency content in-
side the dyadic corona 2 j−1�r�2 j+1. The angular windows
partition R3 into trapezoidal regions, obeying frequency
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FIG. 4. Window Ũ0��� �left� and its support �right�.

075104-5 Multiscale geometric analysis of turbulence Phys. Fluids 21, 075104 �2009�

Downloaded 20 Nov 2009 to 198.11.27.61. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



parabolic scaling. For j�0, define the window Uj���,
�= ��1 ,�2 ,�3��R3 in the frequency domain as

Uj��� = 2−3j/4W�2−j����V�2�j/2���, � � R3,

where ���� ,�� denotes the polar coordinates corresponding to
�. The support of Uj is a 3D polar wedge shape, i.e., a half
circular cone �refer to Fig. 3 in Ref. 23�.

The system of curvelets is now indexed by three param-
eters �j , l ,k�, where j denotes scale, l denotes orientation,
and k= �k1 ,k2 ,k3� denotes spatial location. Define the curve-
lets as

	 j,l,k�x� ª 	 j�R�j,l
�x − xk

�j,l���, x = �x1,x2,x3� � R3,

where 	̂ j���ªUj���, i.e., Uj is the Fourier transform of 	 j,
R�j,l

denotes the rotation matrix with angle � j,l. Figure 5
shows the elements of 3D curvelets. Observe that in the spa-
tial domain, 	 j,l,k is of platelike shape, which rapidly decays
away from a 2−j by 2−j/2 cross-sectional rectangle with center
xk

�j,l� and orientation � j,l with respect to the vertical axis in x.
The element is smooth within the plate but exhibits oscillat-
ing decay in the normal direction to the plate. It obeys a

parabolic scaling law between the thickness and the
length �thickness� length2� and directional sensitivity
�orientations=1 /�scale�. Figure 5 �right column� shows their
support in frequency domain, i.e., the support of 3D fre-
quency window Uj �Fourier transform of the plate-shape el-
ements 	 j,l,k�. Similar to the 2D case shown in Figs. 3 and 4,
the 3D frequency window Uj is supported by a 3D trapezoid
in 3D polar corona grids, where its thickness and length
obeys a parabolic scaling law. The directional space-
frequency localization of curvelets can be seen clear in Fig.
5. A curvelet element at coarse scale �upper row� has low-
frequency content, i.e., the frequency support in Fig. 5�c�
close to the center of cube �center point denotes zero fre-
quency�, whereas at fine scale �lower row�, the elements
have high-frequency content, i.e., its frequency support in
Fig. 5�f� is away from the center. The fine scale is better in
capturing the high-frequency components. Besides the mul-
tiscale properties, the anisotropic properties are also obvious
from their directional support in the space and frequency
domains.

Let �= �j , l ,k� be the collection of the triple index again.
The curvelet coefficients are given by

(b)(a) (c)

(d) (f)(e)

FIG. 5. �Color online� An element of 3D curvelets at a coarse scale �upper row� and fine scale �lower row� is shown in three cross sections �left column� and
isosurface �middle column�. The right column shows their frequency support. It can be seen that the element with high resolution in the space domain has low
resolution in the frequency domain.
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c��f� ª �f ,	�� = �
R3

f̂���	̂����d�

= �
R3

f̂���Uj�R�j,l
��ei�xk

�j,l�,��d� . �3�

In order to have Cartesian coronas, which is based on con-
centric cubes instead of spheres, Candès and co-workers17,23

applied a pseudopolar grid by a modified window of the
form

W̃0��� = �0���, W̃j��� = �� j+1
2 ��� − � j

2���, j � 0,

where � j��1 ,�2 ,�3�=��2−j�1���2−j�2���2−j�3�, and the 1D
window � satisfies 0���1, supp �� �−2,2�, and ��r�=1
for r� �−1 /2,1 /2�. As before, � can be taken to be a scaled
Meyer window. Redefine the angular window for the lth
wedge

Ṽj,l��� = V�2 j/2�2 − �l · �1

�1
�V�2 j/2�3 − �l · �1

�1
� .

Here �1,�l ,�l� is the direction of the centerline of the wedge.
Every Cartesian corona has six components. The windows in
the other five components have similar definitions.

Now we define the modified frequency window Ũ as

Ũ0,0��� = W̃0���, j = 0,

Ũj,l��� = W̃j���Ṽj,l���, 0 � j � j f ,

and at the finest scale j f, the waveletlike isotropic element is

defined by the frequency window Ũjf,0
���=W̃jf

���. It is clear

that Ũj,l �0� j� j f� isolates frequencies near the wedge

��1,�2,�3�:2 j−1 � �1 � 2 j+1, − 2−j/2 � �2/�1 − �l � 2−j/2,

− 2−j/2 � �3/�1 − �l � 2−j/2.

Assuming that Lp,j,l�p=1,2 ,3� are three positive integers
satisfying Eq. �1�, one cannot find � and �� such that
�p−�p� are multiples of Lp,j,l; and in Eq. �2� the volume
� j,l=L1,j,l ·L2,j,l ·L3,j,l is minimal. The two conditions guaran-
tee that the data do not overlap with itself during the wrap-

ping process below. Obviously, Ũj,l is supported now in a 3D
rectangular box of integer size L1,j,l�L2,j,l�L3,j,l.

The discrete curvelets are given by their Fourier forma-
tion

	̂
D��� = Ũj,l���exp�− 2�i �

p=1,2,3

kp�p

Lp,j,l
���� j,l

for 0�kp�Lp,j,l , p=1,2 ,3.
Analogously, the transform at the coarsest level is de-

fined as

	̂0,0,k
D ��� = Ũ0,0���exp�− 2�i �

p=1,2,3

kp�p

Lp,0
����0,

and a similar formula can be obtained at the finest scale by
replacing the scale 0 with j f and making Lp,j f

=n.

Now we can find the Cartesian counterpart of the coef-
ficients in Eq. �3� by

c̃�
D�f� = �f ,	�

D� = �
R3

W�Ũj,l��� f̂����ei�kj,��d� . �4�

The details of 3D DCuT are given in Algorithm 2. The com-
putational complexity of the DCuT is O�n3 log n� flops for
n�n�n data.17

Algorithm 2. Three-dimensional discrete curvelet trans-
form.

1. Apply the 3D FFT and obtain Fourier samples f̂��� ,
−n /2���n /2, �= ��1 ,�2 ,�3�.

2. Multiply the frequency window Ũj,l��� f̂��� for each
scale j and angle l.

3. Wrap around the origin and obtain W�Ũj,l f̂����, where
the range for �p is −Lp,j,l /2��p�L1,j,l /2, j= �0, j f�.
No wrapping at scales 0 and j f.

4. Apply 3D inverse FFT to each W�Ũj,l f̂� to obtain the
discrete coefficients c

D.

V. CURVELET SHRINKAGE FOR TURBULENCE

The characterization of turbulent flow structures still re-
mains an open question mostly because our present concep-
tual and technical tools are inadequate. As discussed in Ref.
43, Hamiltonian mechanics describes equilibrium states of
conservative systems, but turbulent flows are nonstationary
and dissipative. Classical dynamics only solves systems with
a few degrees of freedom, while turbulent flows have a very
large, perhaps even infinite number of degrees of freedom.
The main factor limiting our understanding of turbulent
flows is that we have not yet unambiguously identified the
structures responsible for their chaotic and unpredictable be-
havior. Despite the fact that everyone agrees that coherent
vortices are elementary objects in the analysis and simulation
of turbulence, there is no universal definition of the coherent
structures that everyone agrees on.7,44,45

On the other hand, the eddy capturing approaches, such
as LES, CVS, and SCALES, are formally derived by apply-
ing a filter or nonlinear projection operator to the Navier–
Stokes equations. The resulting equations have the same for-
mulation as the original equations but with additional terms,
named SGS stresses. The success of the eddy capturing ap-
proaches clearly depends on the ability of the SGS model to
capture the energy and enstrophy transfer mechanism be-
tween resolved and unresolved motions. However the
definitions/separations of unresolved SGS and resolved co-
herent scale are strongly related to the applied filter
shape.46–49 In this paper we will demonstrate that in addition
to wavelet denoising, curvelets are an appropriate tool for
identifying and separating coherent structures while preserv-
ing the geometric information of turbulent flows.

Curvelet shrinkage can be formulated as

uc = �
�

��c̃�
D�f��	�, �5�

in which ��x� could be a hard thresholding,
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��x� ª �x , �x� � �

0, �x� � � .


Applying the method to the vorticity field �, we have

� = �c + �I = �
��

c̃��

D ���	��
+ �

��

c̃��

D ���	��
. �6�

Here �� is an index set for the significant coefficients,
whose modulus is larger than or equal to the given threshold
value �, and the index �� stands for the removed insignifi-
cant coefficients whose moduli are smaller than �. This de-
composition splits the total vorticity into the resolved coher-
ent field, e.g., �c�x� and the residual incoherent field �I�x�
regardless of the dimensionality of the field. Note that the
corresponding coherent velocity Vc and incoherent velocity
VI constitute V=�� ��−2��. Therefore, the coherent-
incoherent decomposition can be summarized in the follow-
ing three steps:

�1� Perform DCuT decomposition to obtain the coefficients
c̃

D.
�2� Threshold the curvelet coefficients c̃

D by a given thresh-
old value and rule to separate the significant coefficients
and insignificant coefficients.

�3� Reconstruct the thresholded curvelet coefficients using
inverse DCuT to obtain the separation fields.

One of the key issues for coherent vortex extraction
�e.g., CVS� is how to identify the optimal thresholding value
�. One way is to set the threshold value � to the variance of
the incoherent field, which would result in an iterative
procedure.50 This idea is motivated by Donoho and
Johnstone’s VisuShrink method51 in denoising, i.e., using the
universal threshold �=�n

�2 log M, which results in an esti-
mated asymptotically optimal solution in the minimax sense
�minimizing the maximum error over all possible M-sample
signals�. This criterion is based on the a priori assumption
that the separated incoherent field is a Gaussian white noise
component. Analogous to wavelet-based coherent field ex-
traction, the curvelet method uses empirical scale/direction-
dependent threshold values17 � j,l=��n�c̃j,l�2 /N, where � is a
constant, N=N1N2 denotes a product of size of subband c̃j,l

in two dimensions and �n is the estimated variance of the
noise or incoherent random field. Furthermore, the TV-
minimization shrinkage addressed in the section below is
proposed to eliminate the artifacts arising from conventional
hard thresholding. Selection of an optimal threshold for the
curvelet-based coherent field extraction is still an open issue.

VI. TV-SYNTHESIS CURVELET SHRINKAGE

Tools from computational harmonic analysis suffer from
the famous pseudo-Gibbs phenomena, i.e., oscillation arti-
facts near the discontinuities, although curvelets have much
improved the problem in comparison with traditional wave-
lets. Following the previous work,20,32,52,53 a TV minimiza-
tion is combined with the synthesis of curvelet shrinkage to
reduce the pseudo-Gibbs and elementlike artifacts in ex-
tracted fields. Another motivation to use the TV is that TV-

based curvelet shrinkage is an ease of extracting incoherent
fields when applying the method to CVS or SCALES of
turbulence.

For a function u with ��u��L1���, the TV functional is
defined54 as

TV�u� = �
�

��u�x��dx .

To circumvent computational difficulties arising from the
nondifferentiation of the modulus at zero, the TV functional
is often replaced by

TV�u� = �
�

���u�x��2 + �2dx ,

with a small parameter ��0. In the following description,
we mainly restrict our attention to the 3D problem. For the
2D problem, we refer readers to Refs. 20 and 32, where the
authors combined TV minimization with the ridgelet and
curvelet transform for image processing. The discrete version
of the TV functional for uª �u�,�,�,���,�,���In

3 is given by

TV�u� = �
�,�,�

����1u��,�,��2 + ���2u��,�,��2 + ���3u��,�,��2 + �2dx ,

where ��1u��,�,�=u�+1,�,�−u�,�,�, ��2u��,�,�=u�,�+1,�−u�,�,�, and
��3u��,�,�=u�,�,�+1−u�,�,�. More precisely, for a given u let

U ª �u ª �u�,�,����,�,���In
3:c��

D = c�
D, ∀ � � �� .

Then we are looking for the solution of the constrained mini-
mization problem

min
u�U

TV�u� .

If the linear subspace V consists of functions on In
3 given by

V ª �� ª ���,�,����,�,���In
3:c�

D = 0, ∀ � � �� ,

the idea of TV minimization is to remove the pseudo-Gibbs
oscillations by minimizing the functional

F�u� = �
�

�u − u0�2dx + �TV�u� �7�

for u� �uc+v ,v�V�, where u0 is an original flow, uc is a
reconstructed flow after curvelet hard thresholding, and V is
a linear subspace of functions consisting of the components
removed by thresholding. It should be noted that because of
the constraint on the subspace V, Eq. �7� is not the usual
Rudin–Osher–Fatemi TV model as in Ref. 54 but instead is a
variant of the TV problem, which was originally inspired by
Durand et al.52 for wavelets and extended by Ma et al.20,32,53

Using uc as an initial guess, the constrained TV minimi-
zation can be computed by a projected subgradient descent
scheme52

ul+1 = ul − tlPV�gTV�ul�� . �8�

Here gTV�u� denotes the subgradient of TV at u. The step
size tl can be taken appropriately to ensure convergence.
PV�u� denotes a projection of u on the constrained subspace
V. This means that only the coefficients with absolute value
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smaller than a given threshold � will be changed by the
minimization process. Let T be the curvelet transform and
T−1 be its inverse, then we have PV�u�=T−1�−1T�u� where
�−1 denotes the so-called inverse thresholding function,

�−1�x� ª �0, �x� � � ,

x , �x� � � .


A crucial step is to compute the gradient of TV, i.e., gTV�u�
or �uTV�u�. For 2D problems, we have32

�uTV�u� ª �2u�,� − u�,�+1 − u�+1,��

���u�,�+1 − u�,��2 + �u�+1,� − u�,��2 + �2�−1/2

+ �u�,� − u�−1,����u�−1,�+1 − u�−1,��2

+ �u�−1,� − u�,��2 + �2�−1/2 + �u�,� − u�,�−1�

���u�+1,�−1 − u�,�−1�2

+ �u�,� − u�,�−1�2 + �2�−1/2 �9�

for the inner points �� ,��� In
2 and corresponding modifica-

tion at the boundary �In
2.

For 3D problems, there is a little complex representation.
Figure 6 illustrates the 3D grids for computation of
�uTV�u�. The four points denoted by red arrows are points
that are related to the derivation of the sum with respect to
u�,�,�. The arrow head indicates the direction of the Euler
forward difference scheme. The derivation of the TV at lo-
cation u�,�,� is given by

�uTV�u� ª �3u�,�,� − u�+1,�,� − u�,�,�+1 − u�,�+1,��A−1/2

+ �u�,�,� − u�,�−1,��B−1/2 + �u�,�,� − u�,�,�−1�C−1/2

+ �u�,�,� − u�−1,�,��D−1/2 �10�

for the inner points �� ,��� In
3 and corresponding modifica-

tion at the boundary �In
3. Here

A = �u�+1,�,� − u�,�,��2 + �u�,�,�+1 − u�,�,��2

+ �u�,�+1,� − u�,�,��2,

B = �u�+1,�−1,� − u�,�−1,��2 + �u�,�−1,�+1 − u�,�−1,��2

+ �u�,�,� − u�,�−1,��2,

C = �u�+1,�,�−1 − u�,�,�−1�2 + �u�,�+1,�−1 − u�,�,�−1�2

+ �u�,�,� − u�,�,�−1�2,

D = �u�,�,� − u�−1,�,��2 + �u�−1,�,�+1 − u�−1,�,��2

+ �u�−1,�+1,� − u�−1,�,��2.

Essentially, TV minimization does not set the insignificant
coefficients to zero as conventional shrinkage does but typi-
cally removes optimally small values to eliminate the arti-
facts.

It should be noted that Schneider et al.50 proposed an
iterative wavelet shrinkage to extract coherent vortices out of
turbulent flows. Using iterative thresholding, the incoherent
background shows a tendency toward enstrophy equiparti-
tion, thus one can split each flow realization into coherent
vortices and incoherent quasi-Gaussian white noise better
than using conventional one-step hard thresholding. The
close relationship between wavelet/curvelet shrinkage and
nonlinear diffusion has been explored recently �see, e.g.,
Refs. 19 and 55�. A comparison of the performances of our
proposed TV-curvelet shrinkage with Schneider’s iterative
scheme for coherent vortex extraction will be addressed in a
forthcoming paper.

VII. EXPERIMENTS

In contrast to LES, where a low-pass filter with grid
truncation can be defined either explicitly or implicitly by the
numerical method, a coherent/incoherent decomposition of
turbulent flow fields should be performed explicitly for each
flow realization. In addition, to materialize the full potential
of coherent/incoherent decomposition, the number of the co-
herent modes should be considerably smaller than the num-
ber of incoherent modes. It was clearly shown in Refs. 5 and
8 that Fourier filters are not suitable for extraction of coher-
ent vortices mainly because they oversmooth the filtered
structures resulting in a non-Gaussian partially coherent re-
sidual field. In addition, Fourier low-pass filtering introduces
spurious oscillations. Wavelet filters work well for coherent
vortex extraction, yet due to the homogenous nature of
wavelet decomposition, they do not consider the shape and
geometry of the vortices. The proposed curvelet-based filter
addresses this deficiency and improves wavelet-based coher-
ent feature extraction characteristics both in terms of sparse
representation and edge preserving characteristics.

A. 2D turbulent flows

1. Power spectra analysis of curvelets

The almost perfect representation of both energy and
enstrophy spectra by the coherent field is essential to the
success of both CVS and SCALES approaches. The good
spectra properties of wavelet-based coherent vortex extrac-
tion of turbulent fields have been documented by numerous
authors �e.g., Refs. 5 and 8�. In order to verify the feasibility

FIG. 6. �Color online� Diagram of 3D coordinate grid for computation of
�uTV�u�. The four points with arrows are points related to the derivation of
the sum with respect to u�,�,�. The arrow head indicates the Euler forward
difference scheme.
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of curvelet filters for coherent/incoherent turbulent field de-
composition, the spectral properties of curvelet decomposi-
tion are compared to wavelet transforms.

In order to highlight the superior spectral properties of
curvelet-based decomposition, let us consider a 2D unit im-
pulse, i.e., unity at the center and zeros elsewhere. Figure 7
shows the Fourier energy spectra at different scales using the
curvelet transform, Selesnick’s wavelet transform,56 and
Daubechies’ DB6 wavelet transform,42 respectively. It should
be noted that 1D Fourier spectra are displayed for all tests
�the fields have been averaged in another dimension�. The
solid line denotes the full field, while various broken lines
denote individual levels/scales of resolution. The different
frequency bands are computed by four steps: �1� decompose
the 2D test field into curvelet domain; �2� filter in each sub-
band, i.e., keep coefficients in this scale unchanged and set
coefficients as zeros in others scales; �3� inverse transform
the filtered subband to the physical domain; and �4� compute
the Fourier transform for the reconstructed subbands to get
different frequency bands. The Fourier spectra represent a
repartition of frequency from the signal. It describes how a
signal is distributed along frequency. Daubechies’s DB6
wavelet leads to artifacts in frequency decomposition to
some extent. In the following experiments, Selesnick’s wave-
let transform is used as a comparison of the curvelet trans-
form. The curvelets demonstrate their ability to have sharper
spectral bounds and have less overlap in the spectral content
of neighboring levels of resolution. These indicate that the
curvelet transform owns high-resolution frequency parti-
tions, which is useful for the analysis of multiscale structures
of turbulence.

2. Sparse partial reconstruction

Compression properties of the curvelet transform in the
context of coherent/incoherent turbulent field decomposition
are examined next using a vorticity field extracted from 2D
DNS. The original field �shown in Fig. 8� is an isotropic
decaying turbulence started from the random noise. The Rey-
nolds number of this flow is 4000. Figure 9 shows the high
compressive rate of turbulent flows while preserving the ge-
ometry in the base of the curvelet transform. The partial
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FIG. 8. �Color online� Total vorticity of a turbulence flow on size 512�512
with Reynolds number of 4000.
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FIG. 7. �Color online� Fourier energy
spectra of a unit impulse field at dif-
ferent scales from coarse to fine by �a�
curvelet transform, �b� Selesnick’s
wavelet transform, and �c�
Daubechies’ DB6 wavelet transform.
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reconstruction using the wavelet transform �as shown in the
left column� and curvelet transform �as shown in the right
column� are given. Partially reconstructed results obtained
using the largest 512, 1024, and 2048 coefficients are, re-
spectively, shown in the rows from top to bottom. Although
the curvelet transform is redundant, the reconstructed results
show better edge preservation than wavelets even using the
same numbers of coefficients. This is because curvelets are

optimally sparse at representing the edges of the vortical
structures. Wavelet-based filtered fields display strong oscil-
lations along the edges obviously due to the poor ability of
wavelets at representing line singularities. The edges and
structures of the vortex are distorted by these artifacts, which
could lead to computational errors when the filtering method
is applied in the context of both CVS and SCALES. In con-
trast, curvelet-based decomposition resulted in vortices that
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FIG. 9. �Color online� The reconstructed vorticity by wavelets �left� and curvelets �right�. The numbers of coefficients from the first row to third row are
largest 512, 1024, and 2048.
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are well preserved mostly due to the ability of the curvelet
transform to represent edges much more sparsely than by
using wavelets.

The superior reconstruction properties of the curvelet
transform in comparison to the wavelet transform are dem-
onstrated in Fig. 10, where the percentage of the retained
enstrophy and signal-to-noise ratio �SNR� are shown as func-
tion of the number of reconstructed coefficients for both
wavelets and curvelets. If one uses a small number of coef-
ficients, one can achieve better approximate reconstruction
using curvelets. However, after a critical number, the wavelet
transform achieves a high value because there are too many
insignificant coefficients �close to zero� using the redundant
curvelet transform. If one keeps the 1% largest coefficients,
the curvelet and wavelet reconstructed vortices retain
99.42% and 97.81% of the total enstrophy of the original

flow, respectively. In this case, the SNRs of the reconstructed
flows are 31.11 and 19.74 dB by the curvelet and wavelet
transforms, respectively. Figure 11 shows the reconstructed
enstrophy and SNR versus the ratio of the number of recon-
structed coefficients to the number of total coefficients. The
difference between Figs. 10 and 11 is the horizontal coordi-
nate. The curvelet transform has better performance at main-
taining the main geometric features.

3. Multiscale geometric decomposition and coherent
vortex extraction

We first test how geometric structures can be decom-
posed in multiple scales by the curvelet transform, in com-
parison with the wavelet transform. Figure 12 shows the
comparisons of decomposing the turbulent flow shown in
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FIG. 10. �Color online� �a� Number of reconstructed coefficients vs rate of reconstructed enstrophy. �b� Number of reconstructed coefficients vs SNR of
reconstructed fields. The horizontal coordinate denotes the number of coefficients. The solid line denotes wavelet transform and the dashed line denotes
curvelet transform.
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FIG. 11. �Color online� �a� The ratio of reconstructed coefficients vs rate of reconstructed enstrophy. �b� The ratio of reconstructed coefficients vs SNR of
reconstructed fields. The horizontal coordinate denotes the percent rate of reconstructed coefficient numbers to total coefficient numbers. The solid line denotes
wavelet transform and the dashed line denotes curvelet transform.
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Fig. 8�b�. It can be clearly seen that the curvelet transform
�shown in the right column� keeps the geometric structures
much better than the wavelet transform �shown in the left
column�. Discontinuous artifacts destroy the structures using
wavelet decomposition. Figure 13 displays the enstrophy
spectra in every scale by curvelet decomposition. The spectra
curves of wavelet decomposition, which we do not show
here, display much higher oscillation.

The coherent/incoherent fields can be decomposed using
curvelet and wavelet thresholding. Hard thresholding with
� j,l=��n�c̃j,l�2 /N is used and compared to wavelet-based de-
composition. Figures 14�a� and 14�b� are coherent fields ex-
tracted by the wavelet transform and the curvelet transform,
respectively. Figures 14�c� and 14�d� show their residual
fields. The corresponding statistical analyses of the residual
fields are given in Figs. 14�e� and 14�f�. It can be seen that
both residual incoherent fields display near Gaussian distri-
butions. Figure 15 shows the enstrophy spectra of the curve-
let’s residual field. The solid line denotes the original field,
the dot-dashed line denotes the coherent fields, and the
dashed line denotes residual fields. For the curvelet trans-
form, the reconstructed coherent field is almost the same as
the original fields. Both wavelet and curvelet transforms
demonstrate the ability to extract the white noise component
for low wavenumbers. Due to the redundancy of the curvelet
transform, the curvelet filtered field has a higher power com-
pared to the wavelet filtered one when the same percentage
of wavelet/curvelet coefficients is kept. The results highly
depend on the choice of the thresholding function and thresh-
olding value. In this paper, experiential threshold values of
0.062 and 0.214 are chosen for curvelet and wavelet hard
thresholding, respectively. How to choose optimal threshold-
ing values for decomposition of coherent and residual fields
in practice is still an open problem. The current form can be
considered a starting point, and there is much room for
refinement.

4. Curvelet compression

In order to analyze the effectiveness of curvelet coherent
vortex extraction and denoising properties, it is illustrative to
consider curvelet compression measured by the compression
coefficient defined by �N−N�� /N�100%, where N� is the
number of retained coefficients for a given threshold �. In
Fig. 16, the solid and dotted lines denote, respectively,
curvelet and wavelet compression. The percentage of the un-
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FIG. 12. �Color online� Multiscale geometric decomposition of turbulent
flow. �Left column� wavelet decomposition. �Right column� Curvelet de-
composition. From top to bottom: coarse scale to fine scale.
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FIG. 13. �Color online� Enstrophy spectra in every scale by curvelet decom-
position. The upper solid line denotes the original field. The lines from left
to right denote the scale from coarse to fine.
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resolved energy, i.e., the energy contained in the filtered
field, is shown in the same figure by the dashed and dot-
dashed lines corresponding to curvelets and wavelets, respec-
tively. Although the curvelet transform is redundant, the
number of significant coefficients decreases rapidly with an
increase in the threshold value. Quantitatively, using the
threshold value of 1.0, we have a compression coefficient
and percentage of filtered enstropy of 99.86% and 6.60% for
curvelets and 98.44% and 2.74% for wavelets.

5. Denoising of vortex flow

The proposed algorithm is also applicable to the experi-
mental data. An example of such application is given in Fig.
17, where the transient state of the evolution of the vortex
issued from the Coriolis platform in Grenoble, France, is
shown. Although the added noise is useful as a visual aid, we
suppress it in order to extract the vortex for a constraint in
data assimilation �see Ref. 18�. Figure 17�b� is the extracted
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FIG. 14. �Color online� ��a� and �b�� Coherent fields by wavelets �left column� and curvelets �right column�. ��c� and �d�� Residual fields. ��e� and �f��
Statistical analysis of the residual fields. The solid line denotes the Gaussian normal distribution in log-linear scale.
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result using the Db4 orthogonal wavelet transform. Figure
17�c� is obtained using the proposed curvelet-based method
in Eq. �8� with ten iterations. Figure 17�d� is obtained using
Weickert’s coherence-enhancing diffusion41 with coherent
parameter of 15, step size of 0.24, and an iteration of 30. The
parameters used for each method have been chosen empiri-
cally to optimize the visual quality.

B. 3D turbulent flows

In this section, we apply curvelet thresholding for 3D
vorticity fields. In order to fully assess the ability of the
curvelet transform to extract coherent structures from real
3Dl turbulence fields, we analyze the vorticity field using 3D
curvelets and nearly isotropic orthogonal 3D wavelets. In
Fig. 18, we show the performance of partial reconstruction

by curvelets and wavelets. Here the results are obtained by
reconstructing the largest 1% of curvelet coefficients and
wavelet coefficients in different visualization contexts �i.e.,
different rows are the same result shown by different display
approaches in order to see the edges and structures more
clearly�. The left column shows the original turbulent flow
with size of 643, taken from the data of 2563 DNSs of de-
caying compressible, isotropic turbulence at fluctuation
Mach number of M =0.488 and at Taylor Reynolds number
of Re�= l75 �case D9 of Ref. 57�. The middle and right col-
umns are the results of the 3D curvelet and wavelet shrink-
age, respectively. The figures in each row, from top to bot-
tom, are 3D cross sections, contour plots, and isosurface
plots, respectively. It is clear that the reconstructed coherent
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FIG. 15. �Color online� Enstrophy spectra by curvelet transform. The solid
line, dot-dashed line, and dashed line denote original flow, coherent field,
and residual field, respectively.
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FIG. 16. �Color online� The compression ratio of the coefficients and the percentage of the enstrophy of retained coefficients as a function of the threshold
value. �a� Small threshold values varying from 0 to 1. �b� Large threshold values varying from 0 to 10. The vertical coordinates denote compression ratios and
the horizontal coordinate denotes threshold value.

(a) (b)

(c) (d)

FIG. 17. �Color online� Denoising of a transient vortical flow: �a� original
flow, �b� by using wavelets, �c� by the proposed method, and �d� by
coherence-enhancing diffusion.
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structures using curvelets preserve edges better than those
obtained by wavelets. The oscillations along the edges, ob-
vious in the figures of the right column, are due to the wave-
let’s deficiency in representing surface singularities. Quanti-
tative analysis shows that the 1% of the largest curvelet and
wavelet coefficients retains 97.3% and 95.0% of the total
energy, respectively. Regarding the total enstrophy
�Z= 1

2����2dx� of the original flow, the curvelet- and wavelet-
based reconstructions of vortices retain 95.8% and 97.1%,
respectively. As can be clearly seen from the figure, the pro-
posed curvelet method captures the total energy and enstro-
phy of the original flow as the wavelet method does but with
better edges and structures.

The advantages of the proposed TV-synthesis iterative
shrinkage are illustrated in Fig. 19. In this case we set a
threshold to keep 0.05% of the coefficients, but all smooth
coefficients at the coarsest scale are retained even whose
values are smaller than the threshold. Figure 19 ��left� and
�middle�� shows the wavelet reconstruction and curvelet re-
construction with a one-step hard threshold, respectively.
The wavelet-filtered field results in oscillations along the
edges, while the curvelets solve this problem with small re-
maining pseudo-Gibbs artifacts that are parallel to the edges.
Figure 19 �right� is the reconstructed results using the TV-
synthesis curvelet transform with step size of 0.015 and an
iteration of 10.

(b)(a) (c)

(d) (f)(e)

(i)(h) (j)

FIG. 18. �Color online� Partial reconstruction by curvelets and wavelets �left column�. Total vorticity �middle column�. Reconstruction using 1% of curvelet
coefficients �right column�. Reconstruction using 1% of wavelet coefficients. Different rows display the same results differently to highlight the clarity of the
edges and structures using curvelets.
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The corresponding isosurfaces are shown in Fig. 20. Fig-
ure 20�a� shows the original flow, and Fig. 20�b� shows the
coherent components extracted by the wavelet transform.
The 3D discontinuities are obvious. Figure 20�c� is the co-

herent components extracted by the curvelet transform. It can
be seen that the edges/surfaces are preserved much better
than the surface shown in Fig. 20�b�. In Fig. 20�d�, the result
obtained by TV-synthesis curvelets further improves the cur-
velet’s artifacts. We note that the same cut-off threshold of
color is used in Figs. 20�a�–20�d�. Figures 20�e� and 20�f�
show the removed incoherent components by curvelets and
TV-synthesis curvelets. We can see that more detailed oscil-
lations are retained in the incoherent field by the curvelet
method.

In order to further demonstrate that the curvelet filtered
residual field is Gaussian, Fig. 21 shows the statistical analy-
sis of the residual incoherent vorticity field both in linear and
semilogarithmic scales. These results clearly demonstrate the
ability of the curvelet transform to decompose a turbulent
flow field into non-Gaussian coherent and incoherent fields
with a probability density function similar to that of Gauss-
ian distributions. Consequently, the curvelet transform can be
used in the context of both CVS �Ref. 8� and SCALES.5

Note that more experiments on the statistical analysis of 3D
separated fields can be found in our previous work,24 in
which we observed that the coherent fields obtained by the
curvelet and wavelet methods basically satisfy a gamma dis-
tribution, and the incoherent component nearly fits the
Gaussian distribution. This is somewhat different from the
previous observation using wavelets9 that the component
fields exhibit an exponential distribution, which is a special
case of the gamma distribution.

Finally, we want to emphasize the physical significance
of extracted structures by the proposed method. A puzzling
feature of 3D turbulence is the large deviation from the
Gaussian observed as one probes smaller and smaller
scales.58 These deviations are usually believed to be associ-
ated with spatial intermittency of small-scale structures, or-
ganized into very thin and elongated intense vortices. Energy
containing eddies at a given scale interact with other eddies.
Decomposing the turbulence into curvelet multiscale and
multidirection domains is useful to determine the influence
of the local and nonlocal interactions on the intermittency
corrections in scaling properties. We observed that the simi-
lar spatial localization and direction of the structures are re-
tained in successive scales. They vary in relative size from
one filtered scale to the next. Tracking the changes in geo-
metrical structures scale by scale �or subband by subband� is

(b)(a) (c)
FIG. 19. �Color online� Thresholded reconstruction by wavelets �left�, curvelets �middle�, and the proposed TV-synthesis curvelet transform �right�. The
threshold is set to keep the 0.5% largest coefficients and the smooth coefficients at the coarsest scale are kept unchanged.

(b)(a)

(c) (d)

(f)(e)
FIG. 20. �Color online� Extracted results shown in isosurface. �a� Original
flow. �b� Coherent components by wavelets. �c� By curvelets. �d� By TV-
synthesis curvelets. ��e� and �f�� Removed incoherent components by curve-
lets and TV-synthesis curvelets.
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helpful to understand the nonlocality and intermittency of
turbulence. Another significance of the proposed method is
to provide a potential filter in LES.

VIII. CONCLUSIONS

Turbulence is difficult to approximate and analyze math-
ematically or to calculate numerically because of its range of
spatial and temporal scales. Vortical structures are essential
characteristic features of turbulence. Vortex tube surface sin-
gularities underlie 3D turbulent flows. The development of
appropriate tools to study vortex breakdown, vortex recon-
nection, turbulent entrainment at laminar-turbulent inter-
faces, etc., is imperative to enhance our understanding of
turbulence. Such tools must capture vortical structure and
dynamics accurately to unravel the physical mechanisms un-
derlying these phenomena.

In this paper, the curvelet transform is applied to multi-
scale geometric analysis of turbulence in both two and three
dimensions from laboratory data to DNS data. The MGA
technique with curvelets as basis functions is verified as be-
ing effective for the extraction and compression of coherent
structures underlying turbulent data. 3D TV-based curvelet
shrinkage is proposed to suppress the pseudo-Gibbs artifacts,
which also makes it possible to obtain incoherent Gaussian
background flows easily where the classical theory of homo-
geneous turbulence involving Gaussian statistical equilib-
rium is valid. The turbulence analysis is posed as an optimi-
zation problem involving the TV norm and a constraint on
the curvelet space. The curvelet method is also promising to
get a high compression number of spatial modes to simulate
large Reynolds numbers of practical interest. This method
can also be applied to other fields.

There is room for future research to further explore the
application of curvelets and TV regularization in turbulence.
Like other filtering methods, such as wavelets, the results are
dependent on the threshold or shrinkage. The question of
how to find the optimal threshold still remains open. It must
also be mentioned that the computational cost of curvelets is

higher than that of wavelets. However, the theory and appli-
cation of 3D curvelets are burgeoning areas of research, and
it is possible that more efficient curvelet transforms will be
developed in the near future. Currently, a fast message pass-
ing interface-based parallel implementation can somewhat
reduce the cost.23

A natural extension is a CVS or SCALES of turbulent
flows based on the curvelet-based coherent vortex extraction
and adaptive computation,5,59,60 which is the subject of our
continuing work. To develop and apply an orthogonal curve-
let transform is another direction of future work.
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