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Abstract. A perfect modeling framework for the systematic study of the effect of filter shape
on the resolved scales of motion in large eddy simulation is developed. The effects of the
explicit and implicit filtering approaches in large eddy simulation are considered. A simple
model for smooth filtering is proposed and the related effects are analyzed. The proposed ap-
proach provides an effective research tool for assessing the behavior of sub-grid scale models
in a dynamic fashion. The performances of various classical models are examined by using
the perfect modeling formalism for simulating the large and/or the small residual scales effect.
Numerical experiments are performed for decaying isotropic turbulence. The consistency of
the sub-grid scale models with the effective composite filter employed in real simulations is
discussed. The necessity of using mixed models when solving doubly-filtered Navier–Stokes
equations is verified. It is found that time evolution of large scale velocity field is more sensi-
tive to sub-grid large scale models like Bardina model, while the grid-filtered sub-filter scale
model is necessary to ensure the proper energy dissipation.
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1 Introduction

In large eddy simulation (LES) of turbulence, one can actually simulate the most energetic, large eddies
of the flow, by modeling the effect of the residual ones. The formal scale separation is obtained by means
of a low-pass filtering operation, that leads to the definition of filtered (or large-scale) and residual (or
small-scale) fields. The filtering operation can be implicitly introduced by the numerical discretization of the
governing equations (grid filtering) or explicitly performed during the simulation (explicit filtering). Since
the original works on LES (Smagorinsky [27], Deardorff [5], Leonard [16], Schumann [26]), both the finite
support of the computational mesh and the low-pass filtering characteristics of the discrete operators (Ro-
gallo and Moin [24], Lund [19]) have been exploited to implicitly filter the Navier–Stokes (NS) equations. In
other words, the results of calculations with low resolution have been interpreted as filtered solutions. Only
more recently, an explicit filtering operation has been introduced to unambiguously reduce the degrees of
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freedom of the simulated flow and to control the numerical errors (Lund and Kaltenbach [20], Ghosal [12],
Vasilyev et al. [29], Geurts and Frolich [11]). In this case, the mathematical model itself is modified, leading
to the definition of the filtered Navier–Stokes (FNS) equations and, at least in principle, the issues of filtering
and numerical method are kept separate.

The distinction between the two approaches is rarely considered: they both are usually referred to as LES
without taking into account the substantial differences between them. The conceptual mathematical differ-
ence becomes evident when looking at the effect of the grid refinement. In FNS simulation, if the filter width
is kept constant, the numerical solution tends towards the large-scale field. In fact, the numerical mesh for
LES is typically chosen such that, though too coarse to allow a direct numerical simulation (DNS), it is fine
enough to resolve large-scale motions. On the contrary, without introducing the explicit filtering, the grid
filter width changes with the mesh size and there is no convergence, until the DNS solution is approached
for very fine meshes. However, these remain pure conjectures, unless the issue of modeling the unknown
residual stresses is considered.

It should be noted that the grid filtering should also be considered even in LES with explicit filtering.
Even when the numerical grid is fine enough to solve the large-scale motions, the numerical discretization
of the governing equations results in additional implicit filtering that can not be ignored, unless a very ac-
curate discretization is employed or a large filter width to grid ratio is used. Thus, the issues of filtering and
modeling are independent from the numerical method only from a theoretical point of view and the real LES
equations should be considered as the doubly filtered NS equations. In fact, a decomposition of the total re-
sidual stress appearing in the LES equations into a term mainly due to discretization and another mainly due
to explicit filtering is particularly useful, e.g. (Carati et al. [2]).

The objectives of this paper are manifold: The first concerns the development of the perfect modeling ap-
proach introduced by De Stefano and Vasilyev [4] as a tool for dynamical testing of sub-grid scale models.
The second concerns the understanding of the effect of the superposition of explicit and implicit filtering
operations on the dynamics of the resolved large scale structures. Finally, the performances of different com-
monly used sub-grid scale models are analyzed by partially or fully modeling the effect of the residual field
using the perfect modeling paradigm. In contrast to a priori analysis of SGS models or a posteriori compari-
son of the LES and DNS results commonly found in LES literature, the perfect modeling framework enables
us to analyze the contribution of each separate sub-models in a dynamic fashion. Note that approaches anal-
ogous in spirit to perfect modeling formalism can be found in (Geurts [10], Domaradzki and Saiki [6], Stoltz
and Adams [28]).

The rest of the paper is organized as follows: Sect. 2 briefly describes the main concepts and provides
definitions that are used throughout the paper. This section is mainly intended to avoid confusion caused by
the multiplicity of definitions available in the LES literature and to prepare the framework for the follow-
ing discussion. The effect of smooth filtering is examined in Sect. 3, while Sect. 4 focuses on consistency
between filtering, modeling procedure and the numerical method. Finally, concluding remarks are drawn
in Sect. 5.

2 Filtering in large Eddy simulation

In this paper, we consider incompressible turbulent flow of a Newtonian fluid with constant physical proper-
ties, governed by the continuity and NS equations

∂uj

∂xj
= 0 , (1)

∂uj

∂t
+ ∂ ujuk

∂xk
= − ∂p

∂xj
+ν

∂2uj

∂xk∂xk
, (2)

where p stands for the reduced pressure and ν for the kinematic viscosity of the fluid. The large-scale field is
defined by means of a low-pass filtering operation, that can be carried out either in physical or Fourier space.
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Table 1. Summary of filtered velocity definitions

Physical Space Wavenumber Space Description

u û unfiltered velocity field
ū ̂̄u≡ F̂û explicitly filtered (large-scale) velocity field
u′ ≡ u− ū û′ ≡ (1− F̂)û small-scale residual velocity field
ũ ̂̃u≡ Ĝû implicitly filtered velocity field˜̄u ̂̄̃

u≡ Ĝ̂̄u≡ Ĝ F̂û≡ Ĥû doubly filtered velocity field
ū′′ ≡ ū−˜̄u ̂̄u′′ ≡ (1− Ĝ)̂̄u≡ (1− Ĝ)F̂û large-scale residual velocity field

ũ′ ≡ ũ−˜̄u ̂̃u′ ≡ Ĝû′ ≡ Ĝ(1− F̂)û filtered small-scale residual velocity field

2.1 Explicit filtering

The desired scale separation is obtained by applying a low-pass spatial filter to the velocity field, or any other
turbulent field of interest, according to

ū(x, t) =
∫

dκ eiκ·x F̂(κ) û(κ, t) , (3)

where κ is the wave number vector, i2 = −1, F̂ is a suitable filter function, and (̂·) denotes the Fourier
transform. We assume a uniform filter width, such that the filtering operation commutes with spatial differen-
tiation. In this paper, three-dimensional (3-D) filter functions are simply constructed as the tensorial product
of 1-D filters acting along each spatial direction, i.e., for uniform filtering, F̂(κ) ≡ F̂1(κ1) F̂1(κ2) F̂1(κ3).
The 1-D filter is parameterized in terms of the characteristic filter wave number κF or, equivalently, the char-
acteristic filter width, ∆F , such that κF∆F = π, say F̂1(κ; κF). For filters that have zero second moment no
consensus on filter width definition exists. For simplicity, we consider the definition given in (Lund [19]), ac-
cording to which the filter width is determined by the equation F̂1(κF; κF) = 0.5. Note how, throughout this
paper, explicitly filtered velocity is denoted by a bar, ū, while the corresponding small-scale residual velocity
is denoted by a prime, u′ ≡ u− ū. The summary of filtered velocity definitions is given in Table 1.

The evolution equations for the filtered field are the FNS equations, e.g., see (Lund and Kaltenbach [20]):

∂ū j

∂t
+ ∂ū j ūk

∂xk
= − ∂ p̄

∂xj
+ν

∂2ū j

∂xk∂xk
− ∂T jk

∂xk
, (4)

with the incompressibility constrain ∂ū j/∂xj = 0. The residual stresses in Eq. (4),

T jk = ujuk − ū j ūk , (5)

hereafter referred to as sub-filter scale (SFS) stresses, take into account the effect of the small scales onto
the dynamics of the filtered velocity field. Owing to the fact that the filter shape is a priori prescribed, the
non-linear term is explicitly filtered. Indeed, it does not make sense to include into definition (5) the known
Leonard stresses L F

jk = ū j ūk − ū j ūk. The terminology sub-filter scale stresses is herein used to emphasize
that these residual stresses are inherent to the application of the explicit filtering operation, e.g. (Carati
et al. [2]). Also, as indicated by the adopted notation, T jk can be viewed by itself as a filtered quantity and
each term in the equations has the same frequency content. Note that the present SFS stress definition is
different from the commonly used one, e.g. (Chow and Moin [3]). In order to close the FNS Eq. (4), a func-
tional relation, T jk ∼= T

mod
jk (ū), expressing the SFS stress tensor as a function of the unknown filtered field

is needed.
From a physical point of view, one would like to follow the dynamics of flow structures down to a given

size, that is to solve the turbulent field up to a given wave number, say κF . For this reason, the most natural
choice for explicit filtering is the sharp Fourier cutoff at κF . In this case, the scale separation is the cleanest
possible and one can clearly define the large-scale field

ū(x, t) =
∫

|κ1|≤κF

dκ1

∫
|κ2|≤κF

dκ2

∫
|κ3|≤κF

dκ3 eiκ·x û(κ, t) . (6)
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According to definition (5), the SFS stresses do not involve small scale motions, exactly accounting for
the effect of the filtered out small scales onto the dynamics of the large ones. On the contrary, for smooth
filters, there is an overlapping between large and small scales and the solution of the FNS equations (4)
lacks some of the fundamental properties of the original unfiltered field, as demonstrated in (De Stefano and
Vasilyev [4]) for Burgers model turbulence. This will be further demonstrated here for three-dimensional
isotropic turbulent flow. It is worth noting that in many practical simulations one may not use a sharp cutoff
filter. In this case the next best choice is to use a discrete filter as close to sharp cut-off as possible (Vasilyev
et al. [29]). However, throughout this paper the sharp Fourier cutoff at κF is prescribed as the explicit fil-
ter. It is worth stressing that, since most of the models adopted in turbulent flow simulation are based on
the scale-invariance properties of high Reynolds number turbulence in the inertial range, e.g. (Meneveau and
Katz [21]), the scale separation characteristic wave number κF should be chosen in this range.

Finally, observe that, so far, no numerical approximation has been considered and the FNS equations (4)
stand for a modified mathematical model to be numerically solved. They are amenable to be discretized at
a spatial resolution of order ∆F , when supplied with a suitable SFS stress model. At this point, the issue of
how the unknown boundary conditions for the filtered field could be derived from the physical ones, pre-
scribed for the unfiltered field, would dramatically arise. However, in this paper the issue is not addressed,
since homogeneous turbulent flow is considered for the numerical experiments.

2.2 Grid (implicit) filtering

When numerically solving the governing equations, either unfiltered NS or FNS equations, given the low-
pass filtering characteristics of the discrete differencing operators, one actually introduces another, implicit
filtering operation, also referred to as grid filtering (Rogallo and Moin [24], Lund [19]). Note that the implicit
filter is very different from the explicit filter, since the former is generally unknown, while the latter is ex-
plicitly prescribed. Furthermore, the exact definition of the built-in numerical filter, its shape and width, can
not be determined, since, in general, each term in the governing equations is acted on by a distinct method-
dependent 1-D filter and a single 3-D implicit filter does not exists (Lund [19]). However, for the simplicity
of consideration, we assume that the implicit filtering operation can be viewed as the application of a single
uniform filter, Ĝ(κ) ≡ Ĝ1(κ1)Ĝ1(κ2)Ĝ1(κ3), where G1(κ; κG) is the 1-D grid filter parameterized in terms
of the characteristic wave number κG . Hereafter grid-filtered quantities are denoted with a tilde (see Table 1).
Thus, in the absence of any explicit filtering operation, the LES equations can be viewed as grid filtered NS
equations

∂ũ j

∂t
+ ∂˜̃uj ũk

∂xk
= − ∂ p̃

∂xj
+ν

∂2ũ j

∂xk∂xk
− ∂τ̃jk

∂xk
, (7)

where the residual stresses, τ̃jk = ũ juk − ˜̃uj ũk, is referred to as sub-grid scale (SGS) stresses. Note that the
grid-filtered non-linear term can be considered recoverable during the simulation. For this reason, the SGS
stresses definition does not involve the Leonard stresses, LG

jk = ˜̃uj ũk − ũ j ũk. This point is important and it
has too often been overlooked in the LES literature.

In order to close the Eq. (7), a suitable model for the SGS stress tensor, τ̃jk ∼= τ̃ mod
jk (ũ), must be intro-

duced. In this context, the model must mimic the effect of flow motions that are not resolved by the actual
grid.

When considering the numerical solution of the FNS equations (4), a basic requirement is that κG ≥ κF ,
a requirement that can be trivially met in spectral simulations. The superposition of explicit and implicit filter
formally leads to the doubly filtered NS equations:

∂˜̄uj

∂t
+ ∂

˜̃
ū j

˜̄uk

∂xk
= − ∂ p̃

∂xj
+ν

∂2˜̄uj

∂xk∂xk
− ∂τ̃ jk

∂xk
, (8)

with the continuity constrain ∂˜̄uj/∂xj = 0. In the above equations, the non-linear term is considered acted on
by the same composite filter. Indeed, the residual stresses arising from grid filtering

σ̃ jk = ˜̄
uj ūk − ˜̃

ū j
˜̄uk (9)
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Table 2. Summary of residual stresses definitions

Definition Description

T jk ≡ ujuk − ū j ūk sub-filter scale (SFS) stresses

σ̃ jk ≡ ¯̃uj ūk −
˜̃
ū j

˜̄uk sub-grid large scale (SGLS) stresses

T̃ jk ≡ ũ juk − ¯̃uj ūk grid filtered sub-filter scale (GFSFS) stresses

τ̃ jk ≡ ũ j uk −
˜̃
ū j

˜̄uk total residual stresses

have been added to the grid-filtered sub-filter scale stresses

T̃ jk ≡ ũ juk − ˜̄
uj ūk , (10)

leading to the definition of the total residual stresses:

τ̃ jk = σ̃ jk + T̃ jk = ũ juk − ˜̃
ū j

˜̄uk . (11)

Basically, σ̃ jk represents the contribution of the large-scale residual field and can be referred to as sub-grid

large-scale (SGLS) stress, while T̃ jk represents the effect of the small-scale one. The latter will be referred
to as grid filtered sub-filter scale (GFSFS) stress. For a summary of residual stresses definitions see Table 2.

Note that equations (8) correspond to the governing equations for the unknown ˜̄u, formally obtained by
filtering the original equations (2) by means of the composite filter Ĥ ≡ Ĝ F̂. In order not to alter the resolved
large scales range, the characteristic wave number of the composite filter, κH , is set to be equal to κF , even
if, in practice, it could be smaller.

The doubly filtered equations must be interpreted as the actual LES equations and the total residual
stresses τ̃ jk can be still referred to as SGS stresses. Actually, in the present context, this term is not com-
pletely exact but, for the sake of clarity, we prefer to maintain the terminology usually adopted in the
literature. In this framework, one can think of either modeling the entire term τ̃ jk or separately consider the
SGLS and GFSFS contributions. Again, the model is usually expressed directly in terms of the resolved field,

by introducing a functional relation τ̃ jk ∼= τ̃
mod

jk (˜̄u).
The superposition of explicit and implicit grid filtering makes it possible to solve only for filtered large

scales, ˜̄u, leaving the residual large scales, ū′′ = ū−˜̄u, filtered out of the computations (see Table 1). When
explicit and implicit grid filtering commute, one can also look at (8) as the governing equations for the fil-
tered velocity field ¯̃u. This alternative viewpoint is quite common in works about LES with explicit filtering,
wherein an explicit filtering operation is superimposed onto the implicit filtering associated with the LES
grid, in order to clean the highest resolved frequencies, contaminated by numerical errors, e.g. (Lund [19]).
We here prefer to keep up the original point of view, since it allows one to clearly identify two successive,
conceptually different issues: first, reducing the simulated range of scales by low-pass filtering the govern-
ing equations and, then, numerically solve them. Also, note that in spectral simulations, under the condition
κG ≥ κF , the grid filtering is actually not effective, that is Ĥ ≡ F̂ or, equivalently, ˜̄u ≡ ū. Practically, the
same ideal condition is also obtained when a sufficiently fine numerical grid, together with a high-order FD

method, is exploited for solving the FNS equations. In this case it holds that σ̃ jk ∼= 0 and τ̃ jk ∼= T̃ jk, so that
only the small scale contribution must be modeled.

3 Filter shape effect

In this section, the effect of the shape of the filter upon the LES solution is discussed. The influence of the
effective filter shape on low order flow statistics is examined by performing numerical experiments with de-
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caying isotropic turbulence, thus extending the study conducted for Burgers model turbulence in (De Stefano
and Vasilyev [4]).

The numerical experiments are performed by using a pseudo-spectral method with de-aliasing (Ruetsch
and Maxey [25]). This allows us to have the simulated flow scales, say |κ| ≤ κmax, practically not affected by
any numerical error. The time integration is performed by means of the classical Adams–Bashforth/Crank–
Nicolson hybrid scheme. Specifically, the explicit Adams–Bashforth procedure is exploited for the non-
linear term and the implicit Crank–Nicolson one for the viscous and forcing terms. In order not to alter the
spatial accuracy, the time integration step is kept constant during the simulation at a particularly low level,
namely ∆t = 10−3τeddy, where τeddy is the initial eddy-turnover time.

First of all, a DNS solution of the unfiltered NS equations (2) is obtained on a 1283 grid (i.e., κmax = 64).
In order to make de-aliasing, according to the 3/2 rule, a 1923 enlarged grid is however employed for com-
puting non-linear terms. The full de-aliasing is performed in order to separate the numerical and modeling
effects. The simulation is conducted by forcing the flow field until an equilibrium stationary state has reached
and the inertial range has developed, say at time t = t0. The random forcing scheme of Eswaran and Pope
(Eswaran and Pope [8], Eswaran and Pope [7]) is used for simulating forced turbulence. The Reynolds
number of the flow, based upon the Taylor microscale, is Reλ

∼= 72.
To study how the filtering operation affects the NS solution, we carry out the numerical simulation of

the filtered equations, both (4) and (8), by using the same pseudo-spectral code. The forcing procedure is
now turned off so that decaying turbulence is actually simulated. Preliminarily, a DNS is conducted until the
Reynolds number becomes Reλ

∼= 50, while the energy content of the flow reduces to about fifty percent of
the initial value, say at time t = t0 + tintegr, where tintegr ∼= 0.8τeddy. In the following, let us note uDNS the
DNS velocity field. The DNS solution is used as a reference for all the LES results.

The numerical solution of the filtered equations is conducted by initializing the velocity field with the
filtered DNS solution. The wave number corresponding to the smallest flow scale that we are interested in
is fixed at κF = 16. Both sharp cutoff and smooth grid filters are considered, corresponding to the same
characteristic wave number κG , with κG ≥ κF .

The unknown residual terms are dynamically evaluated, for both cases, according to the perfect mod-
eling procedure introduced in (De Stefano and Vasilyev [4]). It consists in supplying LES with the ideal
SGS stresses evaluated upon the reference DNS solution. Namely, the SGS forces are computed accord-
ing to the definition during the DNS, evaluated on the LES grid and stored at each discrete time-step, for
t0 ≤ t ≤ t0 + tintegr. As already successfully experienced (De Stefano and Vasilyev [4]), the perfect modeling
procedure, when joined to good numerics, allows one to examine the pure effect of filtering.

As far as spectral simulations are considered, when a spectral grid with a sufficiently high number of
modes is employed, implicit filtering is not effective and the governing equations to be actually solved re-
main the FNS ones (4). In our numerical experiments, in order not to have the implicit cutoff induced by the
actual pseudo-spectral method, we simply consider a computational grid such that κmax ≥ κF ; namely, we
adopt a 323 grid (i.e., κmax = κF = 16). The numerical solution of the FNS equations (4) is conducted by
supplying the simulation with the perfect SFS stress term,

T
per

jk = uDNS
j uDNS

k −uDNS
j uDNS

k . (12)

The time evolution of the total large-scale energy, Etot, and energy dissipation, −dEtot/dt, for the per-
fect FNS solution has been verified to be practically the same as for the cutoff filtered (truncated) DNS. As
to spectral energy distribution, the spectra for perfect FNS, (truncated) DNS and no-modeled solutions are
reported in Fig. 1 (left) at a given time instant, t − t0 = 0.5 τeddy. Note that the energy spectra are plotted nor-
malized with respect to the maximum initial energy density for the unfiltered solution. For comparison, the
ideal slope of the inertial range, −5/3, is also reported. The classical pile-up of energy at highest large-scale
wave numbers is evident when no-modeling procedure is adopted, while the perfect modeling procedure pro-
vides the exact spectral distribution. This result is obvious but necessary to validate the perfect modeling
procedure. In practical simulations, if a good SFS model that mimics the unknown energy flux through the
cutoff wave number is available, one is able to recover the right large-scale energy evolution. Moreover, the
LES solution can retain most of the energy of the flow. In the present case, owing to the adopted primary
filter width and the moderate Reynolds number of the flow, the filtered velocity field has been verified to
keep a very high fraction of the energy of the flow. However, even if the model provides the right dissipation,
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Fig. 1a,b. Density energy spectra for LES with perfect SGS models (◦ ◦ ◦) compared to the corresponding filtered DNS (· · · · · · )
and no-model solutions (— · —) for sharp cutoff (left) and smooth filtering (right) cases for t − t0 = 0.5τeddy. The initial filtered
DNS spectrum (——) is also shown

the energy spectral distribution in the resolved wave number range could not be well reproduced, as will be
shown later.

On the other hand, for low order FD methods, the effect of the superposition of grid filtering can be very
strong and must be analyzed with care. However, since the exact definition of the implicit filter can not be
known, herein we use a filter that approximates in some sense those involved in real simulations. As an
example of a smooth grid filter we consider the truncated top-hat filter, that is, in one spatial dimension

Ĝ1(κ; κG) =
{

sin(πκ/κ0)
(πκ/κ0)

, if |κ| ≤ κG

0, if |κ| > κG,
(13)

where κ0 ≡ πκG/β stands for the first zero of the transfer function, the coefficient β being such that κG effec-
tively stands for the filter characteristic wave number. From imposing Ĝ(κG; κG) = 0.5, it holds β ∼= 1.896.
However, this represents only an illustrative example. In fact, as already discussed in Sect. 2, the actual grid
filtered equations being solved can not be derived through the simple application of a single filter.

Given the grid filter shape, the residual stress contribution in the LES equations (8) can be perfectly
evaluated according to definition (11)

τ
per
jk = uDNS

j uDNS
k − uDNS

j uDNS
k , (14)

where, for sake of simplicity, (·) denotes composite filtering. Thus, ideal LES calculations can be performed
starting from the filtered DNS solution, supplied with the perfect model (14). For the present pseudo-spectral
simulations, we consider a numerical grid such that κmax ≥ κG . For instance, by choosing κG = κF = 16,
a 323 grid is adopted. This way, the numerical and the filtering issues are clearly kept apart in our experi-
ments.

Again, as expected, running LES supplied with the perfect SGS stresses, the same energy and energy dis-
sipation evolution of the doubly filtered DNS solution are recovered. Moreover, low order statistics are well
captured by perfect LES. For instance, in Fig. 2, the skewness of the derivative of a velocity component is
shown. For unfiltered DNS the skewness is nearly constant in time and the value of about −0.5 is in agree-
ment with other studies, e.g., (Meyers et al. [22]). The same good agreement holds for the energy spectra, as
illustrated in Fig. 1 (right).

Note how, in the case of composite filtering, even when the LES is conducted with the present ideal SGS
model (the best one can imagine) the resolved field loses some important features of the real fully resolved
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Fig. 2. Skewness of a velocity component derivative for LES
with perfect models, for sharp cutoff (◦ ◦ ◦) and smooth fil-
tering (���), compared to truncated (- - - - - -), double filtered
(——) and unfiltered DNS (— · —)

field: for instance, the slope of the energy spectrum in the inertial range is clearly misrepresented (see Fig. 1).
Moreover, the LES solution retains less energy with respect to the truncated DNS case, even when κG = κF .
Therefore, the exact reference solution for verifying LES results should be provided by the doubly filtered
DNS solution. Unfortunately, in real computations, owing to the filter shape being unknown, it is nearly
impossible to make detailed comparisons with filtered DNS or experimental data.

It is worth noting that the LES simulation is usually asked to provide the right large-scale energy spec-
trum with respect to the truncated DNS. Thus, the SGS model should not only mimic the energy flux through
the cutoff wave number, but also remedy the action of smooth filtering onto the large scales.

4 Model consistency

Since the first, pioneering works on the LES approach, e.g., (Piomelli et al. [23]), great attention has been
devoted to the issue of consistency between filtering and residual stress modeling. How the SGS model must
relate to the actual filter employed is inherent to the residual stresses definition. This is particularly true for
LES with explicit filtering, for which the filter function is given and known.

In case of double filtering, the discussion conducted in Sect. 2.2 suggests that one should adopt differ-
ent models for the different parts of the SGS stress tensor. This leads to the definition of mixed models.
In particular, one can attempt to somewhat recover the contribution of the residual large scales in terms of
the solved ones, so modeling the SGLS stresses, σ̃ jk, by approximately inverting the grid filtering operation
(Gullbrand and Chow [13], Jeanmart and Winckelmans [14]). As the grid-filter shape is actually unknown,
this inversion can be performed only in an approximate way. Along this line, several models have been pro-
posed, starting from the reconstruction model by Leonard [16]. On the other hand, the action of small scale
motions essentially resulting in a dissipation, eddy-viscosity models can be exploited for modeling the grid

filtered SFS stresses, T̃ jk. Several mixed models can be constructed by combining the above two different
methodologies, e.g. (Winckelmans et al. [32]). In this section, after a brief presentation of the various models
tested, some numerical results are discussed. The present simulations stand for a sort of dynamic test in
which the model is partly evaluated according to the perfect modeling formalism.

4.1 SFS and SGS modeling

In order to close the FNS equations (4), a suitable model must be introduced for the unknown SFS stresses
(5) We recall that, in this case, the residual stress tensor exactly accounts for the small-scale effect upon the
large-scale dynamics. In fact, as expected, by adopting a scale-similarity model, that is by assuming u≈ ū,
the model would provide no contribution. The eddy-viscosity Smagorinsky model (Smagorinsky [27]) is
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usually adopted for approximating the deviatoric part of the SFS stress tensor,

T
mod

jk − 1

3
δjkT

mod

hh = −2C∆2
F |S|Sjk , (15)

where |S| ≡ (2SjkSjk)
1/2 and Sjk stand for the components of the large-scale velocity strain-rate tensor. In

our experiments, the coefficient in Eq. (15) is not prescribed a priori but determined, as a function of time,
by means of the classical dynamic procedure, e.g., (Germano et al. [9], Lilly [18]). As usual, we fix the test
to explicit filter widths ratio at α = 2, in order to ensure that the test filter characteristic wave-number still
belongs to the inertial range.

Moreover, by considering the LES equations as formally obtained by filtering the NS equations with the

composite filter Ĥ (explicit sharp cutoff plus smooth grid filter), the SGS stress tensor, τ jk ≡ ujuk − u j u k,

is decomposed into the SGLS term, σ jk ≡ ujuk − u j u k, and the grid-filtered SFS one, T jk ≡ ujuk − ujuk .
Hence, the perfect modeling approach can be exploited for partly modeling the residual stresses, the re-
mainder being modeled by means of common models. This way, one can address, at least theoretically, the
capabilities of different modeling procedures.

The SGLS term can be modeled by means of reconstruction or approximate deconvolution type models,
e.g. (Stoltz and Adams [28]). Since the definition of the smooth grid filter is assumed known for the present
experiments, by de-convolving the LES field with respect to grid filter, one can obtain the large-scale vel-
ocity and directly evaluate the SGLS stresses. The results, not reported here, are exactly equivalent to perfect
SGLS modeling. In practical simulations, the inversion can be performed only in an approximate way (Gull-
brand and Chow [13], Jeanmart and Winckelmans [14], Stoltz and Adams [28]). For instance, if udec is the
approximate de-convolved velocity, the SGS stress can be approximated as

τ
mod
jk = u dec

j u dec
k − u j u k . (16)

However, due to the unrecoverable loss of information as a result of explicit filtering, it is reasonable to as-
sume that doubly filtered velocity field, u, can be de-convolved only up to the large scale field, i.e. udec ∼= ū.
Thus, velocity de-convolution, at best, could provide only SGLS stress, since udec ∼= udec. Alternatively, the
SGLS stress can be modeled. In this work two different SGLS models are investigated: the filtered Bardina
model (Bardina et al.[1])

σ
mod
jk = u j u k − u j u k (17)

and the filtered Leonard model (Leonard [17])

τ
mod
jk = ∆2

H
∂ u j

∂xl

∂ u k

∂xl
. (18)

Note that additional explicit filtering is required to ensure the adequate frequency content of the modeled
stress. As demonstrated by Winckelmans et al. [31] and confirmed by the results of numerical experiments
presented in the following section, this model is able to represent by itself an efficient SGS model. However,
the model is not dissipative enough and should be complemented with an additional model that captures the
dissipation due to the action of the SFS stresses. Also, the strong link between the Leonard and the Bardina
model is well known, e.g. (Winckelmans et al. [32], Winckelmans et al. [31], Vreman et al. [30]). In fact,
since most of these models can not reproduce the effect of small-scale turbulence, an explicit dissipation
model can be supplied. The eddy-viscosity Smagorinsky model can be adopted for this goal

T
mod

jk − 1

3
δjk T

mod

hh = −2C∆2
H |S | S jk, (19)

where S jk stands for the doubly filtered velocity strain-rate tensor. Again, the overbar at the r.h.s. takes into
account how, by definition, the LES solution does not have small-scale components. The model coefficient
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can be dynamically determined by introducing a further test cutoff filter at ακF and consistently defining the
doubly test filtered velocity. Note that the resulting dynamic procedure is slightly different from the one used
in (Winckelmans et al. [32], Germano et al. [9], Lilly [18]), owing to the difference in grid filtered SFS stress
definition (10).

4.2 Numerical experiments

The results of the numerical solution of the FNS equations (4) supplied with the dynamic Smagorinsky SFS
model are reported in Fig. 3 in terms of time evolution of total energy and energy dissipation. All the data
are normalized with respect to the initial large-scale values. As well known, the dynamic model works very
well for sharp cutoff filtering. In fact, as it was demonstrated by Jimenez [15], the dynamic procedure pro-
vides a feedback to guarantee the adequate dissipation for the residual scales model. After an initial transient,
the dissipation provided by the dynamic model mimics well the ideal one. However, when considering the
energy spectrum (see Fig. 4) it is clearly seen that the slope of the inertial range is misrepresented.

As far as SGS modeling for LES equations (8) is concerned, results are obtained by supplying the numer-
ical simulation with various mixed models, obtained by differently combining SGLS and GFSFS models. In

Fig. 3a,b. Temporal evolution of the total large-scale energy (left), Etot, and the energy dissipation (right), −dEtot/dt, for the
FNS solution with the dynamic SFS model (◦ ◦ ◦) compared to the cutoff filtered DNS (· · · · · · )

Fig. 4. Density energy spectrum for the FNS solution with
the dynamic SFS model (——) compared to the cutoff filtered
DNS (· · · · · · ) for t − t0 = 0.5τeddy
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Fig. 5a,b. Temporal evolution of the total resolved large-scale energy (left), Er,tot, and energy dissipation (right), −dEr,tot/dt,
for the LES solutions with different modeling procedures: perfect SGLS with no GFSFS (— · —), no SGLS with perfect GFSFS
(——), and perfect total stress (◦ ◦ ◦) compared to the doubly filtered DNS (· · · · · · )

Fig. 6. Density energy spectra for the LES solutions with dif-
ferent models: perfect SGLS with no GFSFS (— · —), no
SGLS with perfect GFSFS (——), and perfect total stress
(◦ ◦ ◦) compared to the doubly filtered DNS (· · · · · · ) for t −
t0 = 0.5τeddy

Fig. 5, the total resolved energy decay and energy dissipation evolution are reported for the following cases:
no SGLS modeling with perfect GFSFS modeling, perfect SGLS modeling with no GFSFS modeling, and
perfect (total) SGS modeling. By making a comparison with the ideal doubly filtered DNS solution, it ap-
pears evident how the model is more sensitive to the large-scale contribution: not modeling SGLS stresses
results in a considerably worse solution than the one obtained without GFSFS model, as clearly demon-
strated in Fig. 6. This greater sensitivity to large scale contribution is partially due to the de-correlation
between the LES and DNS fields. Also, note the energy pile-up at high frequencies when no GFSFS is
supplied, which confirms the inadequacy of energy dissipation provided by the perfect SGLS model.

In Fig. 7, the results corresponding to the filtered Bardina model (17) with and without the dynamic
Smagorinsky GFSFS model are reported. It is evident how the addition of an eddy-viscosity model is neces-
sary to obtain good LES results. The effect of adding an eddy-viscosity term is less important when using the
Leonard modeling procedure (18), for which quite good results are obtained even with no GFSFS model, as
illustrated in Fig. 8. However, this result could depend upon the actual flow simulation parameters, for which
the GFSFS model is not very important. In fact, by looking at the fraction of energy dissipation provided by
the modeled GFSFS stress reported in Fig. 9, it is evident how, owing to the moderate Re number of the flow,
as well as to the adopted primary filter width, the magnitude of the GFSFS dissipation is smaller than the
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Fig. 7a,b. Temporal evolution of total resolved large-scale energy (left), Er,tot, and energy dissipation (right), −dEr,tot/dt, for
the LES solutions with filtered Bardina model with (· · · · · · ) and without (- - - - - -) the Smagorinsky dynamic model compared to
the doubly filtered DNS (——)

Fig. 8a,b. Temporal evolution of the total resolved large-scale energy (left), Er,tot, and the energy dissipation (right),
−dEr,tot/dt, for the LES solutions with filtered Leonard model with (· · · · · · ) and without (- - - - - -) Smagorinsky dynamic model
compared to the doubly filtered DNS (——)

viscous one. For higher filter widths, as well as for higher Re number flows, as typical in practical flow sim-
ulations, the GFSFS dissipation is expected to be more important. The higher Reynolds number simulations
will be conducted in the future.

Finally, further insight can be obtained by examining the energy spectra corresponding to different
simulations reported in Fig. 10. It is important to note that, regardless of the adopted SGLS model, the
Smagorinsky model provides the wrong slope for the inertial range in the neighborhood of the cutoff
frequency when compared to the doubly filtered DNS solution, since it does not capture the additional
damping of energy at high frequencies due to the action of smooth filtering. In fact, the Leonard model
(18) when used together with the perfect grid-filtered SFS model results in the right energy spectrum.
However, the Smagorinsky model gives quite good slope when compared to the sharp-cutoff filtered DNS
solution. Thus, one needs to be careful when comparing LES results with filtered DNS or experimental
results.
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Fig. 9a,b. Temporal evolution of the total large-scale viscous (left), εν
r,tot, and GFSFS dissipation (right), εGFSFS

tot , for the LES
solution with mixed models: filtered Bardina (— · —) and filtered Leonard (· · · · · · ) models plus dynamic Smagorinsky model
compared to the doubly filtered DNS (——)

Fig. 10. Density energy spectra for LES solutions with filtered
Bardina (— · —) and filtered Leonard (· · · · · · ) models plus
dynamic Smagorinsky model compared to the doubly filtered
DNS (——) for t − t0 = 0.5τeddy

5 Conclusions

The LES formulation is inherent to the application of numerical methods with a resolution not sufficient to
solve for all the scales of turbulence. For finite difference methods, low resolution not only reduces the range
of the flow scales that are effectively resolved (thus acting as an implicit sharp cutoff filter), but also has
a smoothing effect on the resolved scales. The classical viewpoint that large and small stand for resolved
and unresolved scales is actually not valid. In fact, even when a clear separation of scales is introduced by
explicitly treating the NS equations by means of a sharp Fourier cutoff filter, the large-scale motions remain
partly unresolved by virtue of implicit smooth grid filtering. This effect can be very strong, especially for
lower order finite difference methods. The closure model introduced to simulate residual stresses must be
consistent with the filter effectively employed in the simulation and, thus, it should also rely on the numerical
method itself. In fact, an efficient SGS model should be able to reproduce the effects of the loss of informa-
tion at large scale level due to the adopted numerics. This makes it particularly difficult to develop good SGS
models, since the effective shape of the implicit filter can not be defined.
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An analytical filter, namely the tensorial product of 1-D box filters along each spatial direction, was used
as an example of smooth filter. The effect of filtering was studied using the perfect modeling approach. It was
demonstrated that the ideal reference solution for LES verification should be consistent with the filter shape
regardless of employed SGS model.

The performances of different classical SGS models were examined using the perfect modeling approach
in partly modeling large- and small-scale contributions. It was verified that the use of mixed models is un-
avoidable when solving doubly filtered NS equations. Bardina scale-similarity and/or Leonard-like models
are necessary to reconstruct large-scale contributions. Nevertheless, these models do not provide proper dis-
sipation and they must be supplemented by eddy-viscosity models. Several mixed models were analyzed
and the mixed Leonard-Smagorinsky model showed good results. Note that the present SGS modeling an-
alysis was not conducted by means of a priori tests, as usually is done in similar studies, since the model
performance was effectively evaluated during the simulation.

It is worth noting that one way to avoid the effect of implicit filtering is to use high order numerical
methods, together with explicit truncation of the smallest resolved scales. However, this is only partially ef-
fective, since the use of a mesh size much smaller than the primary filter width is prohibitively expensive.
In fact, just considering a numerical mesh two times finer than the filter width, the cost increases by a fac-
tor of eight on a three-dimensional mesh. However, this may be a fair price to pay for doing well-controlled
and well-understood LES. In simulating turbulent flows of engineering and scientific interest, one would like
to optimize the use of available computer resources by reducing the cost of explicit filtering or avoiding it at
all. Thus, the development of efficient models for the additional residual stresses induced by the grid filtering
still remains a fundamental issue in LES research.
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