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ABSTRACT 

 

HOMOGENIZATION OF COMPOSITE MATERIALS WITH NON-

ELLIPSOIDAL INHOMOGENEITIES USING THE PROPERTY 

 CONTRIBUTION TENSOR APPROACH 

 

 BY 

 

 ANTON SERGEYEVICH TROFIMOV, M.S. 

 

 

 Doctor of Philosophy, Engineering 

 

 Specialization in Mechanical Engineering 

 

 

 New Mexico State University 

 

 Las Cruces, New Mexico, 2017 

 

 Dr. Borys Drach, Chair 

 

 

Many composite materials contain inhomogeneities of irregular shapes for 

which no analytical solutions exist. This thesis focuses on effective properties of 

composites with irregularly shaped pores, polyhedral inhomogeneities and penny-

shaped cracks with “islands” of partial contact. The problem of homogenization is 

solved using direct finite element analysis of periodic representative volume elements 

and using non-interaction, Mori-Tanaka and Maxwell micromechanical schemes.  

A novel efficient numerical procedure is developed to generate and analyze the 

representative volume elements with volume fraction up to 30% for the former 

approach. The latter approach utilizes numerical solutions for individual 

inhomogeneity contribution tensors in micromechanical schemes. It is observed that 
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Mori-Tanka and Maxwell approximations are in good correspondence with the direct 

finite element results in the cases of materials containing inhomogeneities of the same 

shape as well as mixtures of different shapes.  

Stiffness and compliance contribution tensors of the considered polyhedral 

shapes are presented for the first time. Ways of extending the results beyond the 

material combinations used in this thesis are discussed in terms of applicability of the 

replacement relations and the semi-empirical relations addressing the effect of matrix 

Poisson’s ratio. In addition, analytical solutions for compliance and resistivity tensors 

of penny-shaped cracks with islands of partial contact are given. For the cases of 

materials with multiple cracks, an approach to calculation of the adjusted crack density 

parameter is proposed. With this parameter, all available schemes for the effective 

elastic properties of cracked solids as functions of crack density can be applied to 

penny-shaped cracks with islands. 
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1.0 INTRODUCTION 

The problem of the effective properties of heterogeneous materials plays a key 

role in material characterization. The ability to predict overall material properties 

provides the tools for analysis of both naturally occurring and man-made materials, 

which supports the growing needs in Materials Science. This problem was first 

considered  in the nineteenth century by Maxwell (1873) and received a significant 

attention in the twentieth century after the important works of Hill (1952, 1963), 

Eshelby (1957, 1959, 1961), Kröner (1958), Hashin and Shtrikman (1963) and Walpole 

(1969), who built the foundation for quantitative modeling of effective properties of 

heterogeneous media. In this chapter, the basic principles of modeling of the overall 

properties of microstructures containing inhomogenities are presented.  

In heterogeneous materials, effective properties are the constants that interrelate 

volume averages of the microscale physical fields (e.g. stress, strain, temperature and 

heat flux). These constants can be found using the homogenization procedure based on 

the concept of Representative Volume Element (RVE, Hill (1963)). RVE of a 

composite is a volume large enough to be statistically representative of the material, 

i.e. contain a representative sampling of all microstructural inhomogeneities present in 

the composite. A commonly accepted criterion to control the size of RVE is Hill’s 

condition (Hill, 1963)) that requires homogeneous boundary conditions 

 〈𝛔: 𝛆〉 = 〈𝛔〉: 〈𝛆〉, (1) 
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where 𝛔 and 𝛆 are stresses and strains, 〈… 〉denotes averaging over the RVE of 

volume 𝑉. In the case of elastic properties, boundary conditions in displacements 

𝐮|∂𝑉 = 𝛆0 ∙ 𝐱  or tractions 𝐭|∂𝑉 = 𝛔0 ∙ 𝐧 corresponding to the remotely applied strain 

𝛆0 and stress 𝛔0 fields satisfy Hill’s condition. In these expressions,𝜕𝑉 is the boundary 

of the RVE, 𝐱 is the position-vector of a point on the RVE boundary and 𝐧 is the 

outward unit normal on 𝜕𝑉. Similar considerations apply to other physical properties, 

such as thermal, in case of which homogeneous boundary conditions can be applied in 

terms of temperatures or heat flux. Periodic boundary conditions automatically satisfy 

Hill’s condition. Thus, a properly chosen RVE and correctly applied boundary 

conditions are two important initial steps in the problem of effective properties of the 

heterogeneous materials.   

Another essential concept in characterization of the overall material properties 

is identification of the microstructure parameters. Microstructure parameters must 

adequately represent individual inhomogeneities in accordance with their actual 

contributions to the physical property of interest (volumes, shapes, and orientations). 

Volume fraction is one of the most widely used parameter. It was introduced for the 

case of identical ellipsoidal inhomogeneities by Hill (1965). However, this parameter 

is not always the most appropriate choice. For example, following the review in 

(Sevostianov and Kachanov (2013), in the case of a material with multiple cracks, the 

crack density parameter 𝜌 = (1/𝑉)∑𝑎(𝑘)3 introduced by Bristow (1960) relates the 
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contribution of k-th crack with its radius cubed and does not depend on crack aspect 

ratio 𝛾 (𝛾 < 0.1). 

For materials containing inhomogeneities, which are the subject of this 

dissertation, effective properties can be expressed in terms of the property contribution 

tensors of an individual inhomogeneity. Such tensors were first introduced in the 

context of contributions of pores and cracks to elastic properties by Horii and Nemat-

Nasser (1983). 

In the context of effective elastic properties, we consider a volume 𝑉 containing 

matrix material and an isolated inhomogeneity of volume 𝑉1 and subjected to uniform 

traction boundary conditions on 𝜕𝑉: 𝐭|∂𝑉 = 𝛔0 ∙ 𝐧. Following the works of Kachanov 

et al. (1994), Sevostianov and Kachanov (2002), Tsukrov and Novak (2002), Kachanov 

et al. (2003), Eroshkin and Tsukrov (2005) the volume-averaged strain can be 

represented as follows 

 〈𝛆〉 = 𝐒0: 𝛔0 + ∆𝛆, (2) 

where 𝐒0 is the compliance tensor of the matrix. Since the material is assumed to be 

linearly elastic, the extra strain due to the inhomogeneity ∆𝛆 can be expressed as a 

function of 𝛔0: 

 ∆𝛆 =
𝑽𝟏

𝑽
𝐇:𝛔0, (3) 

where 𝐇 is the fourth-rank compliance contribution tensor of the inhomogeneity 

normalized by its volume fraction. Alternatively, following Sevostianov and Kachanov 
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(1999) one can consider a volume subjected to displacement boundary conditions on 

𝜕𝑉 𝐮|∂𝑉 = 𝛆0 ∙ 𝐱 . In that case, the volume-averaged stress can be represented as a sum: 

 〈𝛔〉 = 𝐂0: 𝛆0 + ∆𝛔, (4) 

where 𝐂0 is the stiffness tensor of the matrix. The extra stress due to the presence of 

the inhomogeneity can be expressed as follows: 

 
∆𝛔 =

𝑽𝟏

𝑽
𝐍: 𝛆0, (5) 

where 𝐍 is the fourth-rank stiffness contribution tensor of the inhomogeneity 

normalized by its volume fraction. The tensor characterizes the far-field asymptotic of 

the elastic fields generated by the inhomogeneity and determines its contribution to the 

effective elastic properties Igor Sevostianov and Kachanov (2011). 

Similarly, in the context of conductivity (thermal or electric), analogues of the 

𝐇 and 𝐍 tensors are the resistivity 𝐑 and conductivity 𝐊 contribution tensors. For 

instance, let us consider a thermal conductivity problem with uniform temperature 

boundary conditions applied to the external surfaces of a volume 𝑉 containing an 

inhomogeneity of volume 𝑉1. Following the Fourier’s law of heat conduction, the 

volume-averaged heat flux can be represented as follows: 

 〈𝐔〉 = −𝑘0 ∙ 𝐆0 + ∆𝐔, (6) 

where 𝑘0 is the matrix conductivity and 𝐆0 is the prescribed temperature gradient. 

Extra heat flux ∆𝐔 due to the presence of the inhomogeneity can be written as a function 

of 𝐆0: 
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 ∆𝐔 =
𝑉

𝑉1
𝐊 ∙ 𝐆𝟎, (7) 

where contribution tensor K interrelates extra heat flux ∆𝐔 and applied uniform 

temperature gradient 𝐆𝟎. Alternatively, this relation can be written in a dual form, 

where resistivity 𝐑 contribution tensor interrelates extra temperature gradient ∆𝐆 due 

to the presence of the inhomogeneity and applied uniform heat flux𝐔𝟎:  

 ∆𝐆 =
𝑉

𝑉1
𝐑 ∙ 𝐔𝟎. (8) 

Thus, to evaluate the contribution of an inhomogeneity to the overall response 

of a material, the corresponding individual property contribution tensor needs to be 

defined. The tensor can be calculated analytically (in some special cases) or 

numerically. The analytical approach is traditionally described in the framework of the 

classic theory of Eshelby (1957, 1961), assuming that the inhomogeneity is ellipsoidal. 

According to the solutions provided in Kunin and Sosnina (1971) and Sevostianov and 

Kachanov (2002), the inhomogeneity stiffness 𝐍 and compliance 𝐇 contribution 

tensors can be calculated as follows:  

 𝐍 =
𝑉

𝑉1
[(𝐂𝟏 − 𝐂𝟎)−1 + 𝐏]−1, 

𝐇 =
𝑉

𝑉1
[(𝐒𝟏 − 𝐒𝟎)−1 + 𝐐]−1, 

(9) 

where tensors 𝐂𝟏 and 𝐒𝟏 are stiffness and compliance tensors of inhomogeneity 

correspondingly, and tensors 𝐏 and 𝐐 can be expressed in terms of Eshelby’s tensor 𝐬: 

 𝐏 = 𝐬: 𝐒𝟎, 

𝐐 = 𝐂𝟎: (𝐉 − 𝐒), 

(10) 
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where 𝐉 is the fourth rank unit tensor. The components of 𝐬 are expressed in terms of 

elliptical integrals; in the special case of a spheroidal inclusion, representation in terms 

of elementary functions is available.  

In the case of “irregular” (non-ellipsoidal) shapes, only a limited number of 

analytical solutions are available due to the complexity of the boundary value problem. 

Most of the results have been obtained for 2-D shapes using complex variable 

approach. Zimmerman (1986) discussed the compressibility of 2-D solids containing 

pores of various shape. Jasiuk et al. (1994) considered the effect of polygonal pores on 

the elastic moduli. Kachanov et al. (1994) considered a more general case that includes 

2-D pores of both concave and convex shapes. Jasiuk (1995) compared the effects of 

polygonal pores and rigid inhomogeneities on the effective elastic properties. General 

cases of pores and inhomogeneities of arbitrary 2-D shapes were discussed in two 

works of Tsukrov and Novak (2002, 2004). In 3-D,  some results have been obtained 

for cracks of irregular shapes (see Section 8 of the review in Sevostianov and 

Kachanov, 2013). The toroidal shape was studied by Argatov and Sevostianov (2011) 

who approximated the contribution of a thin rigid toroidal inhomogeneity to the overall 

stiffness. The problem of the effective conductivity (thermal or electric) of a material 

containing toroidal insulating inhomogeneities was addressed by Radi and Sevostianov 

(2016). Garboczi & Douglas (2012) developed numerical approximations for intrinsic 

bulk and shear moduli in the case of randomly oriented block-like particles based on 

finite element calculations and corrected analytical solution for an ellipsoid.  
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Only numerical results exist for other 3-D shapes. Drach et al. (2011) used finite 

element calculations to obtain the compliance contribution tensors for several 3-D 

pores of irregular shapes typical for carbon-carbon composites. Drach et al. (2014) used 

response surface methodology to derive a statistical model correlating geometric 

parameters of pores with their compliance contribution tensor components. Rasool and 

Böhm (2012) analyzed the effects of spherical, cubic, tetrahedral and octahedral 

particle shapes on the effective thermoelastic properties of materials with matrix-

inclusion topology. Concave superspherical pores were discussed in Sevostianov et al. 

(2008) who used finite element analysis and in Sevostianov and Giraud (2012) who 

gave an analytical approximation of the numerical results. Chen et al. (2015) corrected 

some inaccuracies in these papers and showed the dependence of the compliance 

contribution tensor of a superspherical pore on the concavity parameter p . Another 

concave shape – supersphere of revolution – was considered by Sevostianov et al 

(2016).  

Two types of homogenization approaches are used to predict effective 

properties of the materials containing multiple inhomogeneities – direct finite element 

analysis (FEA) simulations of RVEs and micromechanical modeling based on the 

solutions for individual inhomogeneities. The simplest micromechanical scheme is the 

non-interaction approximation (NIA), in which inhomogeneities are treated as isolated 

ones and interactions with neighbors are neglected. In this case, the property 

contribution tensor of the RVE containing multiple inhomogeneities is obtained by 
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direct summation of the individual property contribution tensors. Most of the other 

schemes are based on the NIA – the non-interacting inhomogeneities are assumed to 

be placed into some sort of effective environment (effective matrix or effective field).  

 In this work, we address the problem for which only a limited number of 

solutions exist – estimation of effective properties of materials containing 3-D 

irregularly shaped inhomogeneities. Two approaches are studied – direct FEA 

simulations and homogenization using several commonly used micromechanical 

schemes. For the direct FEA approach, a novel numerical procedure for generation of 

periodic RVEs containing arrangements of irregular shapes is presented in Chapter 2. 

In the same chapter, compliance contribution tensors of  individual regular and irregular 

pores are obtained and used to approximate effective elastic properties of porous 

materials with different volume fractions via micromechanical modeling. Stiffness 

contribution tensors of polyhedral inhomogeneities are calculated and effective elastic 

properties of materials with polyhedral particles are estimated using direct FEA and 

micromechanical approaches in Chapter 3. Compliance and resistivity contribution 

tensors of a penny-shaped crack having a partial area of contact are calculated 

numerically and approximated analytically in Chapter 4. The implications for multiple 

cracks are also discussed. Conclusions of the research and suggestions for future work 

are given in Chapter 5.   
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2.0 HOMOGENIZATION OF LINEARLY ELASTIC MATERIALS WITH 

PORES OF REGULAR AND IRREGULAR SHAPES 

Abstract. Two approaches to predict the overall elastic properties of solids with 

regularly and irregularly shaped pores are compared. The first approach involves direct 

finite element simulations of periodic representative volume elements containing 

arrangements of pores. A simplified algorithm of collective rearrangement type is 

developed for generating microstructures with the desired density of randomly 

distributed pores of regular and irregular shapes. Homogeneity and isotropy (where 

appropriate) of the microstructures are confirmed by generating two-point statistics 

functions. The second approach utilizes Mori-Tanaka and Maxwell micromechanical 

models implemented via the cavity compliance contribution tensor (H-tensor) 

formalism. The effects of pore shape and matrix Poisson’s ratio on compliance 

contribution parameters of different shapes are discussed. H-tensors of cubical, 

octahedral and tetrahedral pores for several values of matrix Poisson’s ratio are 

published in explicit form for the first time. Good correspondence between the direct 

finite element simulations and micromechanical homogenization is observed for 

randomly oriented and parallel pores of the same shape, as well as mixtures of pores of 

various shapes up to 25% pore volume fractions.  

2.1 Introduction 

For many applications it is important to be able to determine how defects, and 

in particular pores, reduce the effective elastic properties of materials. There are several 
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approaches to homogenization of porous solids including direct finite element analysis 

(FEA) simulations of representative volume elements (RVEs) of the material, 

micromechanical modeling schemes based on the solutions for individual defects, and 

establishment of variational bounds of Hashin-Shtrikman type, see, for example, 

discussion in Böhm et al. (2004). However, most of the existing literature is limited to 

the ellipsoidal shapes of defects since these shapes allow for convenient analytical 

solutions provided by Eshelby (1957, 1959). Meanwhile non-ellipsoidal pores are not 

only present in many natural and man-made materials (see examples in Sevostianov 

and Kachanov (2012)) but are also considered in design of additively manufactured 

end use components with deliberately engineered porosity (Choren et al. (2013)). 

In this chapter, we describe a numerical procedure to generate and analyze 

RVEs with non-intersecting pores of regular (ellipsoidal and polyhedral) and irregular 

shapes. We compare the results of direct FEA simulations with the predictions of two 

popular micromechanical schemes, Mori-Tanaka (Benveniste (1987); Mori and Tanaka 

(1973); Weng (1990)) and Maxwell (Maxwell (1873); McCartney and Kelly (2008); 

Sevostianov (2014)). The approach is illustrated by considering spherical, spheroidal, 

octahedral, cubical and irregular pore shapes. The latter was selected from 

microcomputed tomography (μCT) data obtained for a sample of 3D woven 

carbon/epoxy composite provided by Albany Engineered Composites (Rochester, NH 

USA). The pore shape is shown in Figure 1. 

Most of the published work on comparison of analytical micromechanical 

models with direct numerical simulations deals with the inhomogeneities of regular 
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shapes such as spheres, spheroids and long fibers of circular cross-section. (Segurado 

and Llorca (2002)) numerically generated multiple RVEs with 30 spherical 

inhomogeneities utilizing the Random Sequential Adsorption (RSA) algorithm 

(Widom (1966)). They performed numerical simulations using FEA and compared 

their predictions of the effective elastic properties with several analytical 

homogenization models. The best correspondence was observed for the third order 

estimates of Torquato (1998). Later publications of that research group focused on 

nonlinear (elasto-plastic) behavior of composites with spherical and ellipsoidal 

inclusions, see for example (González et al. (2004); Pierard et al. (2007)). 

Ghossein and Lévesque (2012, 2014) performed a comprehensive comparison 

of analytical and numerical homogenization results for random composites reinforced 

by spherical and spheroidal particles. They utilized an efficient, molecular dynamics 

based algorithm to generate random microstructures reaching significant particle 

volume fractions (up to volume fraction of 0.74 for monodisperse spheres, which is 

close to the theoretical limit of hexagonal close packing). The effective elastic 

properties were computed by applying a technique based on Fast Fourier Transforms 

(FFT) introduced in Moulinec and Suquet (1994) and Moulinec and Suquet (1998). The 

technique was shown to produce predictions very close to FEA – less than 1% 

difference for spherical particle reinforced composite with considered material 

properties. Note that recent findings by Gusev (2016a) indicate that the FFT-based 

method requires substantial computational resources for accurate predictions when 

composites with high material property contrasts are considered. In their two 
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publications, Ghossein and Lévesque compared popular analytical homogenization 

schemes with numerical predictions for a wide range of material property contrasts, 

aspect ratios of the particles and their volume fraction. The authors limited their studies 

to microstructures with random orientation distribution of inhomogeneities of the same 

type, so the overall composite properties were isotropic.  

El Moumen et al. (2015) addressed the influence of inhomogeneity shape on 

the effective bulk and shear moduli in the case of simulated microstructures containing 

randomly oriented non-overlapping particles. The authors focused on stiff particles of 

spherical and two spheroidal shapes (one oblate and one prolate) and used “multi-phase 

element” FEA to determine the effective elastic moduli of microstructures containing 

particles of the same shape. They compared their numerical results with the Hashin-

Shtrikman bounds and Generalized Self Consistent scheme. In addition, they 

investigated the choice of the appropriate size of an RVE as a function of particle shape, 

material property contrast and volume fraction. The investigation was based on the 

statistical analysis involving microstructure covariograms and variations of effective 

properties between random realizations.  

For composites with irregularly shaped inhomogeneities, several significant 

results are available in 2D. The solutions based on conformal mapping were utilized by 

(Ekneligoda and Zimmerman (2006, 2008); Jasiuk et al. (1994); Kachanovet al. (1994); 

Mogilevskaya and Nikolskiy (2015); Tsukrov and Novak (2002); Zimmerman (1986, 

1991); Zou et al. (2010)). In 3D, (Garboczi and Douglas (2012)) presented a procedure 

to approximate bulk and shear elastic contribution parameters in the case of randomly 
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oriented inhomogeneities shaped as blocks. The approximation is based on the solution 

for an ellipsoid with the additional correction factors derived by fitting analytical 

expressions to tabulated data from FEA results. Good correspondence between FEA 

results and the proposed approximation was found for a wide range of aspect ratios, 

matrix/inhomogeneity elastic contrasts and Poisson’s ratios. 

Rasool and Böhm (2012) analyzed the effects of particle shape on the effective 

thermoelastic properties of composites reinforced with particles of spherical, cubical, 

tetrahedral and octahedral shapes. The authors performed FEA on five realizations of 

periodic structures with 20 particles of the same shape per RVE generated using a 

variation of RSA algorithm. Their results, however, were limited to a single stiffness 

contrast of 10 (particles stiffer than the matrix) and a single volume fraction value of 

0.2. We compared our predictions obtained using Mori-Tanaka scheme based on the 

stiffness contribution tensor with the numerical results presented in (Rasool & Böhm, 

2012) in a separate study (Böhm, personal communication) and obtained good 

correspondence (error within 1.2%). Recently, Böhm and Rasool (2016) extended the 

approach by considering elasto-plastic behavior of the matrix material.  

Analytical micromechanical predictions of effective elastic properties are 

limited by the available elasticity solutions for an inclusion (portion of the matrix 

material with some prescribed eigenstrain) or inhomogeneity (portion of a different 

material inserted into the matrix material). In addition to the famous Eshelby solution 

for ellipsoidal inclusions (Eshelby (1957)), the analytical results for 3D inclusions and 

inhomogeneities of cubical (Chen and Young (1977); Faivre (1969)), cylindrical (Wu 
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and Du (1995)), superspherical (Onaka (2001)), toroidal (Onaka et.al, (2002)) and 

general polyhedral shapes (Nozaki and Taya (2001); Rodin (1996)) have been 

presented in the literature. However, not all of the solutions obtained for non-ellipsoidal 

shapes are convenient or appropriate for evaluation of contribution of the 

inhomogeneities to effective elastic properties. For materials with polyhedral 

inhomogeneities, the effective stiffness was predicted in (Nozaki and Taya (2001)); for 

convex superspherical inhomogeneities – in (Hashemi et al. (2009)). Both of these 

publications utilized analytical solutions in the framework of Mori-Tanaka scheme. 

Numerical evaluation of contribution of individual inhomogeneity shapes also 

provides good basis for micromechanical modeling of effective properties. 

(Sevostianov et al. (2008); Sevostianov and Giraud (2012)) calculated contributions of 

superspherical pores; the accuracy of the calculations for concave superspherical pores 

was later improved by the authors in (Chen et al. (2015)). (Drach et al. (2011); Drach 

et al. (2014)) used FEA to evaluate compliance contribution tensors for several 

irregular pore shapes relevant for carbon-carbon and 3D woven carbon-epoxy 

composites. 

In this chapter, we utilize the compliance contribution tensor formalism to 

produce analytical micromechanical predictions of effective elastic properties as 

discussed in Section 2.2. Our approach to numerical homogenization using FEA of 

RVEs with synthetically generated microstructures is presented in Section 2.3. The 

section also describes how we utilize two-point statistics functions to evaluate the 

homogeneity and isotropy of the generated microstructures. Predictions of the effective 
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elastic properties for materials with pores of spherical, spheroidal, cubical, octahedral 

and an irregular shape are provided in Section 2.4. The results obtained by numerical 

modeling are compared with the estimates given by the Mori-Tanaka and Maxwell 

micromechanical models. Both parallel and random orientations of defects of the same 

shape are considered. The applicability of the method to mixtures of defects of different 

shapes is illustrated by modeling the material with spheroidal and irregularly-shaped 

pores. We also discuss the effects of shape and matrix Poisson’s ratio on the pore 

compliance contribution parameters of the considered shapes. Section 2.5 presents 

conclusions from the research. Lastly, all components of the compliance contribution 

tensors for pores of cubical, octahedral and tetrahedral shapes for several values of 

matrix Poisson’s ratio are provided in Appendix A. 

 

 

Figure 1. Irregularly shaped pore obtained from μCT of carbon/epoxy composite sample 
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2.2 Homogenization based on single pore problem 

Contribution of an individual pore to the effective material response can be 

evaluated using the pore compliance contribution tensor – H-tensor, as described in 

Horii and Nemat-Nasser (1983) and Kachanov et al. (1994), see also (Eroshkin and 

Tsukrov (2005); Sevostianov et al. (2014); Zohdi (2012)). The effective compliance 

tensor of the material with pores is presented as  

 𝐒 = 𝐒𝟎 + 𝐇𝐑𝐕𝐄, (11) 

where 𝐒𝟎 is the compliance tensor of the matrix material and 𝐇𝐑𝐕𝐄 is the contribution 

from all pores present in the representative volume element (RVE). For dilute 

distribution of pores, the non-interaction approximation can be used, and 𝐇𝐑𝐕𝐄 is found 

by direct summation of contributions from all individual pores in the RVE: 

 𝐇RVE
NI = ∑ 𝐇(𝑖)𝑖 , (12) 

where 𝐇(𝑖) is the compliance contribution tensor of the i-th pore. This tensor is defined 

as a set of the proportionality coefficients between the additional strain Δ𝛆 in a 

reference volume due to the presence of the pore and the remotely applied stress 𝛔0 

(see Mark Kachanov et al. (1994)): 

 Δ𝛆 = 𝐇(i): 𝛔0,, (13) 

where colon denotes contraction over two indices. For higher porosities when the non-

interaction approximation is no longer applicable, more advanced micromechanical 

schemes can be used. One of the most popular first order micromechanical schemes is 

the Mori-Tanaka scheme, see (Benveniste, 1987b; Mori and Tanaka (1973); Weng 
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(1990). When reformulated in terms of the compliance contribution tensor, this scheme 

provides the following simple estimate for tensor H (Kachanov et al. (1994)): 

 
𝐇RVE

MT =
𝐇RVE

NI

(1−𝑝)
, (14) 

where p  is the volume fraction of pores.  

Alternatively, H-tensor of the RVE may be found using Maxwell’s 

homogenization scheme (Maxwell (1873); McCartney and Kelly (2008); Sevostianov, 

(2014)): 

 
𝐇RVE

Maxwell = {[𝐇RVE
NI ]

−1
− 𝐐 Ω}

−1

, (15) 

where 𝐐 Ω is Hill’s tensor ((Hill, 1965; Walpole, 1969)) for the “effective inclusion” of 

shape Ω. In the case of aligned ellipsoidal inhomogeneities of the same shape, the 

effective inclusion shape is the same as the shape of the individual ellipsoids. When 

the homogenized composite is isotropic, e.g. randomly oriented ellipsoidal 

inhomogeneities of the same shape, the effective inclusion is of spherical shape. In all 

other cases, the effective inclusion is an ellipsoid with aspect ratios given by the ratios 

of the sums ∑ 𝑝𝑖𝑄𝑗𝑗𝑗𝑗
(𝑖)

𝑖  (no summation over 𝑗, 𝑗 = 1,2,3), where 𝑝𝑖 is the volume 

fraction of the 𝑖-th family of inhomogeneities, and 𝑄𝑗𝑗𝑗𝑗
(𝑖)

 is the component 𝑗𝑗𝑗𝑗 of the 

Hill’s tensor of inhomogeneity belonging to the family 𝑖. Additional details on the 

choice of the shape Ω can be found in Sevostianov (2014). 

In this paper, we consider pores in linearly elastic isotropic material. Note that 

any value of the matrix Young’s modulus 𝐸0 can be used because all results presented 
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here are normalized by 𝐸0. To find the compliance contribution tensor of a pore to be 

used in the single pore approach, we perform a set of six FEA simulations (three 

uniaxial tension and three shear loadcases) for the pore placed in a large reference 

volume and subjected to individual components of macroscopic strain given in Table 

1. The simulation results are then processed using the procedure described in (Drach et 

al. (2011, 2014)). To validate the procedure, we calculated the H-tensors for a sphere 

and prolate spheroid (aspect ratio 
𝑎2

𝑎1
= 0.5) for matrix Poisson’s ratio 𝜈0 = 0.3 and 

compared the results with analytical solutions presented in (Kachanov et al. (2003)) 

(corrected for misprint in David and Zimmerman (2011)). The maximum relative errors 

in the components were 0.5% and 0.3% for the sphere and spheroid, correspondingly. 

For the pore shown in Figure 1, the following components of H -tensor are obtained: 

 

[
 
 
 
 
 
 
 
 
 
 
𝐻̅1111 𝐻̅1122 𝐻̅1133 𝐻̅1112 𝐻̅1123 𝐻̅1131

𝐻̅2211 𝐻̅2222 𝐻̅2233 𝐻̅2212  𝐻̅2223  𝐻̅2231

𝐻̅3311 𝐻̅3322  𝐻̅3333 𝐻̅3312 𝐻̅3323 𝐻̅3331

𝐻̅1211 𝐻̅1222 𝐻̅1233 𝐻̅1212 𝐻̅1223 𝐻̅1231

𝐻̅2311 𝐻̅2322 𝐻̅2333 𝐻̅2312 𝐻̅2323 𝐻̅2331

𝐻̅3111 𝐻̅3122 𝐻̅3133 𝐻̅3112 𝐻̅3123 𝐻̅3131 ]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

1.408 −0.383 0.433 −0.073 0.014 0.018

−0.383 2.065 −0.635 −0.065 −0.013 −0.010

−0.433 −0.635 3.260 0.042 −0.038 −0.079

−0.073 −0.065 0.042 1.072 −0.035 −0.006

0.014 −0.013 −0.038 −0.035 1.689 −0.021

0.018 −0.010 −0.079 −0.006 −0.021 1.478 ]
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where the normalized components of 𝐇 are defined as  

 
𝐻̅𝑖𝑗𝑘𝑙 = 𝐸0 (

𝑉

𝑉𝑝
)𝐻𝑖𝑗𝑘𝑙, (17) 

where 
𝑉𝑝

𝑉
 is the volume fraction of the pore in the reference volume, 𝐸0 is the Young’s 

modulus of the matrix material, and the value 𝜈0 = 0.3 is used. H-tensors for pores of 
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cubical, octahedral and tetrahedral shapes for several values of Poisson’s ratio are 

provided in Appendix A. 

Contribution of parallel pores of the same shape to the effective Young’s 

moduli can be calculated using the following relationship: 

 𝐸𝑖

𝐸0
=

1

1+𝑝𝐸̃𝑖
, (18) 

where 𝐸̃𝑖 (𝑖 = 1,2,3) is a dimensionless parameter characterizing change in the 

Young’s modulus in 𝑥𝑖-direction induced by the pores. Similar relationships are 

introduced for effective bulk and shear moduli in the case of randomly oriented pores: 

 𝐾

𝐾0
=

1

1+𝑝𝐾̃
,   

𝐺

𝐺0
=

1

1+𝑝𝐺̃
, (19) 

where 𝐾̃ and 𝐺̃ are dimensionless pore compressibility and shear compliance 

parameters representing change in bulk and shear moduli produced by the pores. 

All five parameters (𝐸̃1, 𝐸̃2, 𝐸̃3, 𝐾̃ and 𝐺̃) can be expressed in terms of the normalized 

H-tensor (see Equation (17)) as follows: 

 𝐸̃𝑖 = 𝐻̅𝑖𝑖𝑖𝑖  (no summation over 𝑖) 

𝐾̃ =
𝑇𝑖𝑖𝑗𝑗

3
,   𝐺̃ =

3𝑇𝑖𝑗𝑖𝑗−𝑇𝑖𝑖𝑗𝑗

15
   (summation over 𝑖, 𝑗 = 1,2,3) 

(20) 

where 𝐓 is the Wu’s strain concentration tensor, related to H-tensor and compliance 

tensor of the matrix material 𝐒𝟎 as 𝐇 = 𝐓: 𝐒𝟎 (David and Zimmerman (2011)). Explicit 

expressions for parameters 𝐾̃ and 𝐺̃ in the case of spherical and randomly oriented 

spheroidal pores are given in (David and Zimmerman (2011)). 
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2.3 Homogenization based on direct FEA of periodic RVEs 

2.3.1 Microstructure generation 

To generate RVEs containing multiple pores for the full field approach, the pore 

shapes must be packed in a constrained volume without interpenetrations. The task is 

non-trivial and the solution approach depends on the existence of a robust algorithm to 

detect and prevent interpenetration or collision between pores.  

Two types of approaches exist for regular shapes (including spheres, ellipsoids 

and long fibers): RSA and collective rearrangement methods (CRM). The former are 

based on the approach presented in (Widom (1966)), according to which a new particle 

is added to the arrangement only if it does not intersect any of the already existing 

particles, otherwise the new particle is placed in a different (randomly chosen) position 

and the check is repeated (see for example Lind (2009)). While RSA algorithms are 

relatively easy to implement, the number of iterations to achieve a microstructure free 

of interpenetrations increases exponentially with the increase of the target volume 

fraction. Random close packing (volume fraction of 0.64 in the case of monodisperse 

spheres, see, for example, (Song et al. (2008)) is virtually impossible to achieve with 

RSA methods. In the latter type, the final number of particles is generated 

simultaneously at the beginning of the procedure and then the particles are repositioned 

to obtain the interpenetration-free microstructure using, for example, molecular 

dynamics approaches (e.g. Donev et al. (2004), Lubachevsky (1991), Ghossein and 

Lévesque (2012)). While such techniques allow to achieve high density packings (up 
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to the theoretical hexagonal close packing volume fraction of 74% in the case of 

monodisperse spheres), they are more difficult to implement than the RSA methods. 

Packing of irregular shapes is usually performed by replacing them with assemblies of 

regular shapes (e.g. spheres, see Bertei et al. (2014)) or converting them to voxel 

representations, which significantly simplifies the collision/penetration detection (e.g. 

Byholm et al. (2009)) but requires more computational resources. 

In the algorithm developed for this paper, irregular pore shapes are replaced 

with circumscribing ellipsoids, which are then packed using a simplified 

implementation of the CRM method based on Altendorf and Jeulin (2011). When 

compared to more advanced variations of the CRM (e.g. Ghossein and Lévesque 

(2012)), in the current approach the particles are not “grown” (or alternatively, the unit 

cell does not shrink) and they are not given velocities – they are moved instantaneously 

by the prescribed distance to remove interpenetrations. The process is repeated if new 

interpenetrations occur. Such simplifications result in easier implementation of the 

packing algorithm while still allowing for dense packing, however, come at a cost of 

increased computation time. Once the interpenetration-free packing of ellipsoids is 

attained, the original shapes are placed in the new positions of their ellipsoidal 

approximations. The choice of minimum volume circumscribing ellipsoid is described 

in Khachiyan (1996) and the procedure is implemented as a MATLAB function 

“lowner”. The description and the function itself are available on the official 

MATLABCentral website.  
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The algorithm for packing ellipsoids in this paper is as follows. In the 

beginning, the desired number of ellipsoids with given aspect ratios and orientations is 

generated within a cubical volume. At this stage, the arrangement may contain 

interpenetrations. The ellipsoids intersecting the faces of the cubical volume are 

duplicated to the corresponding opposite faces of the volume to preserve periodicity. 

Next, pairs of potentially interpenetrating ellipsoids are considered to determine the 

amount of overlap and the shortest displacement vector to separate the ellipsoids (for 

geometrical aspects of this step see Perram and Wertheim (1985)). Once displacement 

vectors are calculated for all overlapping pairs, they are applied to all corresponding 

ellipsoids at once. New interpenetrations might occur, and in this case the process is 

repeated. The iterative procedure is carried on until interpenetration-free arrangement 

is obtained. Figure 2 illustrates the final arrangements of parallel and randomly oriented 

pores with porosity 𝑝 = 0.2. The results presented in Section 2.4 were obtained for 

RVEs with 50 pores unless specified, see (El Moumen et al. (2015); Gusev (1997); 

Kanit et al. (2003)) for discussion on the appropriate choice of RVE for random 

composites. 
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(a) (b) 

Figure 2. Examples of RVEs with porosity 𝑝 = 0.2: (a) parallel pores; (b) randomly oriented pores 
 

 

 

2.3.2 Characterization of the generated microstructures: homogeneity 

and isotropy 

In this part, we focus on spatially homogeneous microstructures and non-

uniform distributions such as clusters are not considered. In addition, for the cases of 

randomly oriented pores, the RVEs are expected to be isotropic. Both homogeneity and 

isotropy of a microstructure can be tested by analyzing the following two-point 

covariance function (also known as covariogram), see (El Moumen et al. (2015); Okabe 

and Blunt (2005); Smith and Torquato (1988); Torquato and Stell (1982)): 

 𝑆2(𝐫𝟏, 𝐫𝟐) = < 𝐼(𝐫𝟏) ∙ 𝐼(𝐫𝟐) >, (21) 

where 𝐫𝟏, 𝐫𝟐 are position vectors of two points within microstructure, angular brackets 

denote an ensemble average, and 
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𝐼(𝐫) =  {

1, if a point defined by 𝐫 is in the pore phase   
0, if a point defined by 𝐫 is in the matrix phase

 . (22) 

For statistically homogeneous medium 𝑆2 is defined by the relative position 

vector  𝐫 =  𝐫𝟐 − 𝐫𝟏 of the two studied points. If the medium is also isotropic, 𝑆2 is a 

function of the relative distance 𝑟 =  |𝐫| only. For such media it has the following limits 

 𝑆2(𝑟 = 0) = 𝑝, 

lim
r→∞ 

S2(𝑟)  =  𝑝2, 
(23) 

where 𝑝 is the volume fraction of the pore phase. 

To test the isotropy of a microstructure, we compare three (one in each of the 

orthogonal directions) directional functions based on the relative position, while 

homogeneity test is based on the function of relative distance in all three directions. 

We start by converting RVE microstructures to voxel representations, each 

700x700x700 voxels in size. In the isotropy test, we select a relative position vector 𝐫 

in one of the orthogonal directions (𝑥1, 𝑥2 or 𝑥3), and find every pair of voxels in the 

microstructure separated by 𝐫 to calculate the corresponding directional function 

(𝑆2𝑥1
(𝐫), 𝑆2𝑥2

(𝐫) or 𝑆2𝑥3
(𝐫)) using Equation (11). To test the homogeneity, for every 

voxel in the volume we find all voxels that are located at the specified distance 𝑟 = |𝐫| 

from it in all three directions, and then calculate the distance function 𝑆2(𝑟). We 

implemented the procedures for isotropy and homogeneity tests in MATLAB. 

Figure 3a and Figure 3b illustrate two-point functions calculated using relative 

position for the RVEs containing 50 randomly oriented pores of irregular shape shown 

in Figure 1 with 𝑝 =  0.05 and 𝑝 = 0.25, respectively. The horizontal line in each 
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figure corresponds to the value 𝑝2. In both plots 𝑆2𝑥1
(𝐫), 𝑆2𝑥2

(𝐫) or 𝑆2𝑥3
(𝐫) curves are 

very close to each other which is what we expect to see in isotropic microstructures. 

Figure 4a and Figure 4b depict two-point functions calculated using relative distance 

for the same RVEs. In both plots 𝑆2(𝑟) follow the limits given in Equation (23). Hence, 

the microstructures are isotropic and homogenous. 

 

 

  
(a) (b) 

Figure 3. Two-point functions calculated for microstructures containing randomly oriented pores shown 

in Figure 1 using relative position along global coordinate axes with (a) 𝑝 = 0.05 and (b) 𝑝 = 0.25 

 

 

 

For comparison, Figure 5a shows 𝑆2(𝑟) functions generated for the following 

microstructure configurations: (1) 50 spheres randomly generated within RVE 

(interpenetrations allowed); (2) 50 spheres packed in RVE with maximum 

interpenetrations equal to one sphere radius; and (3) 50 spheres with no 

interpenetrations allowed. One can see that when full interpenetrations are allowed 

(case 1), the 𝑆2(𝑟) function starts at 𝑝 and monotonically decreases to the long-range 

value of 𝑝2. When restrictions on the amount of interpenetration are imposed (case 2), 

𝑆2(𝑟) function 
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(a) (b) 

Figure 4. Two-point functions calculated for microstructures containing randomly oriented pores shown 

in Figure 1 using relative distance with (a) 0.05p  and (b) 0.25p  

 

 

 

One can see that when full interpenetrations are allowed (case 1), the 𝑆2(𝑟) function 

starts at 𝑝 and monotonically decreases to the long-range value of 𝑝2. When restrictions 

on the amount of interpenetration are imposed (case 2), 𝑆2(𝑟) function starts oscillating 

about the limit 𝑝2. For the microstructure with no interpenetrations (case 3), 𝑆2(𝑟) 

function curve contains a characteristic dip (also observed in Figure 4b) as well as 

oscillations about 𝑝2 It follows from these observations that introduction of some order 

in the immediate vicinity of the particle (also called the short-range order, in this case 

– restriction placed on particle interpenetrations) results in oscillations about the long-

range limit of 𝑝2. (Smith and Torquato (1988)) reported a similar observation and noted 

that the amplitude of oscillations depends on particle volume fraction and becomes 

negligible at greater relative distances.  

Figure 5b shows 𝑆2(𝑟) function for 50 spherical pores packed without 

interpenetrations into a single spherical cluster in a large RVE. The function goes to 
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zero at distances greater than the diameter of the cluster as expected. The short-range 

order dip due to pore impenetrability as discussed above is also present in the plot. 

 

 

  

(a) (b) 

Figure 5. Two-point functions calculated using relative distance for (a) microstructures with spherical 

pores 𝑝 =  0.25 and three cases of interpenetration conditions; (b) spherical cluster of spherical pores 

 

 

 

The RVEs of the second type considered in this paper contain parallel pores. 

As before, we start with the isotropy test. Figure 6a,b illustrate two-point functions 

calculated using relative position for RVEs containing 50 parallel pores of irregular 

shape shown in Figure 1 with 𝑝 = 0.05  and 𝑝 = 0.25, respectively. Based on the plots 

we can conclude that there is no isotropy in the RVEs because of the difference in two-

point functions 𝑆2𝑥1
(𝐫), 𝑆2𝑥2

(𝐫) and 𝑆2𝑥3
(𝐫). This can be explained by the shape of the 

pore, which has different cross-sectional areas normal to the three orthogonal 

directions. Figure 7a,b show two-point functions calculated using relative distance for 

the same RVEs. The functions are in good agreement with the limits postulated before, 

so we can claim homogeneity of the RVEs containing parallel pores. Note that the 
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isotropy of a structure can also be evaluated when the effective properties are known, 

see for example, (Sevostianov and Kachanov (2008)) and (Gusev (2016b)).  

 

 

  
(a) (b) 

Figure 6. Two-point functions calculated for microstructures containing parallel pores of the shape 

shown in Figure 1 using relative position along global coordinate axes with (a) 𝑝 = 0.05 and (b) 𝑝 =
0.25 

 

 

  
(a) (b) 

Figure 7. Two-point functions calculated for microstructures containing parallel pores of the shape 

shown in Figure 1 using relative distance with  (a) 𝑝 = 0.05 and (b) 𝑝 = 0.25 
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2.3.3 Calculation of effective elastic properties of materials with 

simulated microstructures using FEA 

The output of the microstructure generation code (RVE surface mesh) is 

imported into a commercial FEA software MSC Marc/Mentat for model preparation 

and subsequent analysis. All further preparation steps are performed automatically 

using a custom script that provides a ready-to-run model upon completion. Use of an 

automation script streamlines the process of model preparation and assures uniformity 

of the simulation results. This, in turn, simplifies the post-processing of data from 

various loadcases and architectures. The RVE is auto meshed with linear tetrahedral 

3D elements (#134 using Marc classification). Note that linear tetrahedral elements are 

known to be stiffer than nonlinear due to constant strain within the elements (see, for 

example, (Benzleye et al. (1995); Cifuentes and Kalbag (1992)). For our analysis, we 

compared predictions obtained from models meshed with linear (tetra4) and quadratic 

tetrahedral (tetra10) elements. The resulting difference was on the order of 1% for the 

given discretization with maximum difference of 2.5% for one of the Young’s moduli 

in the case of aligned pores of irregular shape shown in Figure 1. Due to the reasonably 

accurate predictions by linear elements and considerably higher computational 

demands of the simulations based on quadratic elements, tetra4 elements were used. 

Two typical RVE FEA meshes with the number of elements on the order of 2·106 are 

illustrated in Figure 8a,b. 

In this chapter, the RVEs are treated as unit cells subjected to periodic boundary 

conditions. 
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(a) (b) 

Figure 8. RVEs meshed with 3D elements in MSC Marc/Mentat containing randomly oriented: 

(a) octahedral pores, porosity 𝑝 = 0.2; (b) irregular pores, porosity 𝑝 = 0.25 

 

 

 

The alternative approaches would be to prescribe either uniform displacements or 

uniform tractions on the RVE boundaries. It has been shown, however, that the 

effective elastic properties obtained with periodic boundary conditions are bounded by 

the results from the prescribed tractions and displacements, see (Hazanov and Huet 

(1994); Huet (1990); Suquet (1987)). The finite element meshes are generated to have 

the same surface mesh on the opposite faces of RVE. Periodic boundary conditions for 

two corresponding nodes on the opposite (positive and negative) faces are introduced 

similarly to Segurado and Llorca (2002):  

 𝑢𝑗
(𝑖+)

= 𝑢𝑗
(𝑖−)

+ 𝛿𝑗,   (𝑗 = 1,2,3) (24) 

where 𝑢𝑗
(𝑖+)

 and 𝑢𝑗
(𝑖−)

 are displacements in 𝑥𝑗   direction of the i-th node on the positive 

and negative faces respectively; and 𝛿𝑗 is the average displacement in the 𝑥𝑗 direction. 
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The periodic boundary conditions are applied in MSC Marc/Mentat using the “servo-

link” feature (see, for example, (Drach et al. (2014); MSC Software (2012)). Servo-

links allow prescription of multi-point boundary conditions for nodal displacements in 

the form of linear functions with constant coefficients. In this formulation, 𝛿𝑗-s are 

implemented as translational degrees as translational degrees of freedom of control 

nodes, which are linked to the nodes on the corresponding opposite faces of an RVE 

(see Figure 9). Note that servo-link connection of two opposite faces requires congruent 

meshes on the faces.  

To allow use of static FEA solution procedure, rigid body motion of an RVE 

needs to be restrained in a way that does not impose artificial strains.To eliminate rigid 

body displacements, a node inside the RVE is fixed. Any node can be used for the 

constraint as long as it is not on the surface of the RVE, because all surface nodes are 

tied in periodic boundary conditions equations. Rigid body rotations are not allowed 

by the periodic boundary conditions. Note that the applied strains corresponding to 

each loadcase are set to 0.001 to restrict element deformations to small values so that 

the initial element volumes could be used in the volume averaging procedure presented 

below. Once the numerical simulations are performed, the result files are processed 

using a custom Python script to calculate effective elastic properties of the RVE as 

follows. The script starts with calculating the average stress components within the 

RVE for each loadcase: 

 〈𝜎𝑖𝑗〉𝑚 =
1

𝑉
∑ (𝜎𝑖𝑗

(𝑙))
𝑚

∙ 𝑉(𝑙)𝑁
𝑙=1 ,      (𝑖, 𝑗 = 1,2,3;     𝑚 = 1,2, … ,6) (25) 
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where 〈𝜎𝑖𝑗〉𝑚 is the volume average of the stress component 𝑖𝑗 calculated from the 

results of the 𝑚-th loadcase, 𝑉 is the total volume of the RVE, (𝜎𝑖𝑗
(𝑙))

𝑚
 is the stress 

component 𝑖𝑗 at the centroid of the finite element 𝑙 calculated from the 𝑚-th loadcase, 

𝑉(𝑙) is the volume of the element 𝑙, and 𝑁 is the total number of elements in the model.  

Given the average stress components and applied strain, the effective stiffness 

tensor can be calculated from Hooke’s law 〈𝜎𝑖𝑗〉𝑚 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓(𝜀𝑘𝑙

0 )𝑚 (summation over 

𝑘, 𝑙 = 1,2,3). For example, from the first loadcase all components 𝐶𝑖𝑗11
𝑒𝑓𝑓

 are found: 

 
𝐶𝑖𝑗11

𝑒𝑓𝑓
=

〈𝜎𝑖𝑗〉1

(𝜀11
0 )1

 (26) 

The values of engineering constants reported in Figure 10, Figure 11, Figure 12, Figure 

13, Figure 15 and Figure 16 are then extracted from the effective stiffness components. 

 

 

 

Figure 9. Illustration of periodic boundary conditions implementation in 𝑥1, 𝑥2 and 𝑥3 directions using 

servo-links in MSC Marc/Mentat. Links (shown in red) connect opposite faces (positive and negative) 

of the RVE with corresponding control nodes 
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Table 1. Prescribed strains corresponding to the six loadcases used for calculation of an individual pore 

compliance contribution and effective elastic properties of RVEs 

Prescribed 

average strain 

Loadcase 

1 2 3 4 5 6 

𝜀11
0  0.001 0 0 0 0 0 

𝜀22
0  0 0.001 0 0 0 0 

𝜀33
0  0 0 0.001 0 0 0 

𝜀12
0  0 0 0 0.001 0 0 

𝜀23
0  0 0 0 0 0.001 0 

𝜀31
0  0 0 0 0 0 0.001 

 

 

 

2.4 Results 

2.4.1 Regular shapes 

Effective Young’s (𝐸1, 𝐸2, 𝐸3), bulk (𝐾) and shear (𝐺) moduli of materials 

containing pores of “regular” shapes (sphere, oblate spheroid, cube and octahedron) 

were estimated via single pore solution (see Section 2.2) using non-interaction, Mori-

Tanaka and Maxwell homogenization schemes based on numerically calculated H-

tensors, see Figure 10, Figure 11, Figure 12 and Figure 13. Matrix Poisson’s ratio 𝜈0 =

0.3 was assumed in all cases considered in Section IV unless otherwise specified. The 

results were compared to direct FEA simulations (see Section III) with porosity levels 

𝑝 = 0.10, 0.15, 0.20. Note that each microstructure contained pores of the same shape. 

FEA results for three microstructure realizations are presented for each porosity value. 
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Each realization is shown as a separate data point, however some of them are very close 

to each other and thus indistinguishable.  

Good correspondence between FEA results and Mori-Tanaka scheme 

predictions for spherical and spheroidal pores in the porosity range of 0-0.25 was 

previously reported in the literature, see for example (Segurado and Llorca (2002)). 

From the examination of Figure 10 and Figure 11a it can also be seen that Maxwell and 

Mori-Tanaka schemes produce identical predictions in the cases of spherical and 

aligned spheroidal pores. This observation coincides with the conclusions obtained for 

all aligned ellipsoidal inhomogeneities in Weng (2010). In the case of randomly 

oriented spheroidal, cubical and octahedral pores, the difference between Maxwell and 

Mori-Tanaka schemes is rather small. In the Maxwell scheme, the spherical shape of 

the effective inclusion was chosen for the microstructures with aligned and randomly 

oriented cubical as well as randomly oriented octahedral pores. For aligned octahedral 

pores, the effective inclusion was an oblate spheroid with aspect ratio of 0.95 (see 

discussion in Section 2.2). Note that the predictions for effective elastic properties of 

materials containing cubical pores can be found in (Hashemi et al. (2009)), however, 

we were not able to reproduce the results reported in that paper so they are not 

compared with our results. In addition, the conclusion in (Hashemi et al. (2009)) about 

effective bulk modulus being independent of the inhomogeneity shape directly 

contradicts our results, see Table 2.  
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Figure 10. Effective bulk and shear moduli of a material with spherical pores 

 

 

 

  

(a) (b) 

Figure 11. Effective elastic properties of a material containing prolate spheroidal (
𝑎2

𝑎1
= 0.5) 

pores:(a) parallel orientations; (b) random orientations 
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(a) (b) 

Figure 12. Effective elastic properties of a material containing cubical pores:  

(a) parallel orientations; (b) random orientations 

 

 

 

  

(a) (b) 

Figure 13. Effective elastic properties of a material containing octahedral pores:  

(a) parallel orientations; (b) random orientations 

 

 

 

Given all components of H-tensor of a pore in one coordinate system, we can calculate 

the pore compliance contribution tensor in any other rotated coordinate system using 

the following coordinate transformation relationship: 

 𝐻𝑚𝑛𝑜𝑝
′ = 𝑄𝑚𝑖𝑄𝑛𝑗𝑄𝑜𝑘𝑄𝑝𝑙𝐻𝑖𝑗𝑘𝑙, (27) 
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where 𝐇 and 𝐇′ are H-tensors in the original and transformed coordinate systems 

correspondingly, and 𝐐 is the transformation matrix. In the case of coordinate system 

rotation about x3-axis only, the transformation matrix 𝐐 is 

 
𝐐 = [

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

] (28) 

Thus, H-tensors of individual pore shapes can be used to analytically evaluate 

anisotropy of a material with parallel defects of the same type. Figure 14a and Figure 

14b show dependence of the effective Young’s moduli on the angle of the coordinate 

system in the case of a microstructure containing parallel cubical and octahedral pores 

respectively. Notice that with increase of porosity the degree of anisotropy of the 

cubical pores in the coordinate system oriented at and of the octahedral pores in the 

original coordinate system increases. 

 

 

  

(a) (b) 

Figure 14. Variation of normalized effective Young’s moduli with in-plane orientation of the coordinate 

system for microstructures containing (a) parallel cubical pores; (b) parallel octahedral pores. The results 

are obtained using Mori-Tanaka scheme and presented for porosities 𝑝 = 0.1 and 𝑝 = 0.2 
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2.4.2 Irregular shape  

The approach used for calculation of effective elastic properties for regular 

shapes was applied to the irregular pore shown in Figure 1. Direct FEA calculations 

are compared with Mori-Tanaka and Maxwell scheme predictions for porosity levels 

levels 𝑝 = 0.10, 0.15, 0.20, 0.25, see Figure 15. For the single pore solution, the H-

tensor given in Equation (6) was used. FEA results for five microstructure realizations 

are presented for each porosity value. The effective inclusions in Maxwell scheme were 

found to be an ellipsoid (aspect ratios 
𝑎2

𝑎1
= 0.70 and 

𝑎3

𝑎1
= 0.44) and a sphere for the 

aligned and randomly oriented cases, respectively. Based on Figure 15, Maxwell 

scheme provides a slightly better fit for the direct FEA results for microstructures with 

aligned inhomogeneities, while Mori-Tanaka seems to provide a better fit for the 

randomly oriented pores. 

 

 

  

(a) (b) 

Figure 15. Effective elastic properties of a material containing irregular pores of the same shape shown 

in Figure 1: (a) parallel orientations; (b) random orientations 
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2.4.3 Mixture of regular and irregular pore shapes 

Following the procedure established above we obtained the effective elastic 

properties of microstructures containing a mixture of two pore shapes (with equal 

volume fractions) – irregular pores shown in Figure 1 and prolate spheroidal pores with 

aspect ratio 
𝑎2

𝑎1
= 0.5. Direct FEA calculations are compared with Mori-Tanaka and 

Maxwell scheme predictions for porosity levels 𝑝 = 0.10, 0.15, 0.20, 0.25, see Figure 

16. FEA results for three microstructure realizations are presented for each porosity 

value. The effective inclusions in Maxwell scheme were found to be an ellipsoid 

(aspect ratios 
𝑎2

𝑎1
= 0.65 and 

𝑎3

𝑎1
= 0.52) and a sphere for aligned and randomly oriented 

cases respectively. Overall, Maxwell scheme seems to fit the direct FEA simulations 

slightly better than Mori-Tanaka scheme for these microstructures.  

 

 

  

(a) (b) 

Figure 16. Effective elastic properties of a material containing a mixture of prolate spheroidal (
𝑎2

𝑎1
= 0.5) 

pores and irregular pores shown in Figure 1: (a) parallel orientations; (b) random orientations 
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2.4.4 Effect of pore shape 

Table 2 provides a comparison of pore compliance contribution parameters with 

𝐸̃1, 𝐸̃2, 𝐸̃3, 𝐾̃ and 𝐺̃ (introduced in Section 2.2) for a sphere, oblate spheroid, cube, 

octahedron and irregular shape (shown in Figure 1). The results are presented in the 

coordinate axes shown in Appendix A. It is clear from the table that pore shape has a 

significant influence on the effective elastic properties of porous materials. In the case 

of randomly oriented pores, a tetrahedron is the most compliant of all considered 

shapes. Our results are consistent with previous observations and indicate that sphere 

is the stiffest pore shape. Comparing the contributions of parallel regular polyhedra, 

the greatest reduction in effective Young’s moduli 𝐸1, 𝐸2 and 𝐸3 is caused by 

tetrahedral pores.  

 

 

Table 2. Summary of pore compliance contribution parameters of different pore shapes 

 𝑬̃𝟏 𝑬̃𝟐 𝑬̃𝟑 𝑲̃ 𝑮̃ 

Sphere 2.005 2.005 2.005 2.625 1.909 

Spheroid 1.435 2.381 2.381 2.776 1.973 

Cube 2.035 2.035 2.035 3.229 2.143 

Octahedron 2.149 2.149 2.326 2.995 2.061 

Tetrahedron 2.570 2.570 2.474 4.034 2.410 

Irreg. shape 1.408 2.065 3.260 3.194 2.144 
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The significant difference between contributions to 𝐸1 and 𝐸3 from parallel spheroidal 

and irregular pores can be attributed to the eccentricity of their shapes and quantified 

based on their normalized projected areas, see Drach et al. (2014). 

2.4.5 Effect of matrix Poisson’s ratio 

The compliance contribution parameters 𝐸̃1, 𝐸̃2, 𝐸̃3, 𝐾̃ and 𝐺̃ considered in this 

paper are normalized with respect to the corresponding moduli of the matrix material, 

see Equations 8 and 9. However, they depend on the matrix Poisson’s ratio 𝜈0. In this 

sub-section, we investigate the effect of 𝜈0 on pore compliance contribution parameters 

and components of the H-tensor. 

Random orientations 

Table 3 presents pore compressibility 𝐾̃ and shear compliance 𝐺̃ parameters in 

the case of randomly oriented pores of spherical, spheroidal, cubical, octahedral, 

tetrahedral and irregular shape shown in Figure 1 for matrix Poisson’s ratios 𝜈0 =

0.1, 0.2, 0.3, 0.4. It is evident that both parameters depend on 𝜈0 – pore compressibility 

increases while shear compliance decreases with increase of 𝜈0. It is desirable to 

normalize 𝐾̃ and 𝐺̃ with respect to the matrix Poisson’s ratio so that 𝐾̃ and 𝐺̃ determined 

for one value of 𝜈0 could be used to estimate these parameters for a different value. We 

consider two approximate methods to perform such normalization and evaluate their 

accuracy for the considered shapes. In the first method, we introduce the 𝜈0-normalized 

pore compressibility 𝐾̃′ = (1 − 4𝜈0
2) ∙ 𝐾̃(𝜈0) and shear compliance 𝐺̃′ = (1 + 𝜈0

2) ∙

𝐺̃(𝜈0). If these parameters are known for one value of 𝜈0, the pore compressibility and 



42 

shear compliance for a different value 𝜈0′ are given by 𝐾̃(𝜈
0′) =

1

(1−4𝜈
0′
2 )

∙ 𝐾̃′ and 

𝐺̃(𝜈
0′) =

1

(1+𝜈
0′
2 )

∙ 𝐺̃′. 

 

 

Table 3. Pore compressibility and shear compliance parameters for different values of matrix Poisson’s 

ratio 

 𝑲̃ 𝑮̃ 

𝝂𝟎 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

Sphere 1.688 2.000 2.625 4.500 2.077 2.000 1.909 1.800 

Spheroid 1.754 2.095 2.776 4.815 2.170 2.078 1.973 1.852 

Cube 2.042 2.460 3.229 5.699 2.374 2.273 2.143 2.028 

Octahedron 1.892 2.270 2.995 5.247 2.278 2.181 2.061 1.945 

Tetrahedron 2.440 2.981 4.034 7.135 2.696 2.559 2.410 2.246 

Irreg. shape 1.955 2.370 3.194 5.640 2.400 2.277 2.144 1.998 

 

 

 

To test the accuracy of this approximation, we estimated 𝐾̃ and 𝐺̃ for 𝜈0′ = 0.1, 0.2, 0.4 

based on the 𝜈0-normalized parameters calculated for 𝜈0 = 0.3 and compared them 

with the values obtained using FEA. The relative errors of the approximation are given 

in Table 4. It is seen that with the exclusion of pore compressibility of the tetrahedral 

and irregular pore shapes for 𝜈0′ = 0.1, the approximation errors for 𝐾̃ are below 6%. 

The approximation errors for pore shear compliance estimates for the considered 

shapes are below 4%.  
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Table 4. Relative errors of approximation for pore compressibility and shear compliance parameters 

based on the first method of normalization, % 

 𝑲̃ 𝑮̃ 

𝝂𝟎′ 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

Sphere -3.7 0.0 0.0 -3.7 0.8 0.0 0.0 0.3 

Spheroid -5.5 -1.0 0.0 -2.5 1.9 0.5 0.0 -0.1 

Cube -5.4 0.0 0.0 -0.7 2.6 1.2 0.0 0.7 

Octahedron -5.5 -0.5 0.0 -1.5 2.3 1.0 0.0 0.4 

Tetrahedron -10.2 -3.1 0.0 -0.5 3.5 1.3 0.0 -0.8 

Irreg. shape -8.9 -2.7 0.0 -0.7 3.6 1.3 0.0 -0.8 

 

 

 

In the second method, we propose to normalize 𝐾̃ and 𝐺̃ of a non-spherical pore 

by the corresponding parameters calculated for a sphere: 𝐾̃′ = 𝐾̃(𝜈0)/𝐾̃(𝜈0)
(𝑠𝑝ℎ)

, 𝐺̃′ =

𝐺̃(𝜈0)/𝐺̃(𝜈0)
(𝑠𝑝ℎ)

. Then the pore compressibility and shear compliance for a different value 

of matrix Poisson’s ratio 𝜈0′ are given by 𝐾̃(𝜈
0′) = 𝐾̃′ ∙ 𝐾̃

(𝜈
0′)

(𝑠𝑝ℎ)
 and 𝐺̃(𝜈

0′) = 𝐺̃′ ∙ 𝐺̃
(𝜈

0′)

(𝑠𝑝ℎ)
. 

To test the accuracy of this approximation, we estimated 𝐾̃ and 𝐺̃ for 𝜈0′ = 0.1, 0.2, 0.4 

based on the normalized parameters 𝐾̃′ and 𝐺̃′ calculated for 𝜈0 = 0.3 and compared 

them with the values obtained using FEA. The relative errors of the approximation are 

given in Table 5. It can be seen that all but one approximation errors for 𝐾̃ for the 

considered shapes are below 5%. Similarly to the results of the first method, the 

maximum error is observed in the case of the tetrahedral shape for 𝜈0′ = 0.1. The 

approximation errors for 𝐺̃ for the considered shapes are below 3%. Overall, the second 

method results in lower approximation errors compared to the first. 
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Table 5. Relative errors of approximation for pore compressibility and shear compliance parameters 

based on the second method of normalization, % 

 𝑲̃ 𝑮̃ 

𝝂𝟎′ 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

Spheroid -1.7 -1.0 0.0 1.2 1.1 0.5 0.0 -0.5 

Cube -1.7 0.0 0.0 2.9 1.8 1.2 0.0 0.4 

Octahedron -1.8 -0.5 0.0 2.1 1.6 1.0 0.0 0.1 

Tetrahedron -6.3 -3.1 0.0 3.1 2.8 1.3 0.0 -1.2 

Irreg. shape -5.0 -2.7 0.0 2.9 2.8 1.4 0.0 -1.2 

 

 

 

Parallel orientations 

The H-tensor components of cubical, octahedral and tetrahedral pores are 

presented in Appendix A for matrix Poisson’s ratio values 𝜈0 = 0.1, 0.2, 0.3, 0.4. We 

analyze the dependence of three groups of components on 𝜈0: (a) 𝐻̅1111, 𝐻̅2222, 𝐻̅3333; 

(b) 𝐻̅1122, 𝐻̅2233, 𝐻̅3311; (c) 𝐻̅1212, 𝐻̅2323, 𝐻̅3131. It can be seen that components in 

group (a) exhibit little dependence on 𝜈0 – the maximum relative difference of 6.8% 

between 𝜈0 = 0.1 and 𝜈0 = 0.4 is observed for the irregular pore.  

The components in groups (b) and (c) exhibit greater dependence on 𝜈0. We 

propose to normalize these components using the approximating ellipsoid found for 

each shape based on its projected areas along principal directions (see (Borys Drach et 

al., 2014)). The normalization is performed by dividing the H-tensor components of a 

considered shape by the corresponding components of the ellipsoid. As with 
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normalization in the case of random orientations, this allows to separate Poisson’s ratio 

and pore shape effects, and use the parameters calculated for one value of 𝜈0 to estimate 

them for a different Poisson’s ratio. For example, to estimate 𝐻̅1122 for 𝜈0′ based on 

𝐻̅1122 for 𝜈0 the following expression can be used 

 

𝐻̅1122

(𝜈
0′)

=

(𝐻̅1122

(𝜈
0′)

)
𝑒𝑙𝑙

(𝐻̅1122

(𝜈0)
)
𝑒𝑙𝑙

𝐻̅1122
(𝜈0)

  

where (𝐻̅1122
(𝜈0)

)
𝑒𝑙𝑙

 and (𝐻̅1122

(𝜈
0′)

)
𝑒𝑙𝑙

 are components 1122 of the H-tensors of the 

approximating ellipsoid calculated for 𝜈0 and 𝜈0′ correspondingly. To test the accuracy 

of this approximation, we estimated H-tensor components in groups (b) and (c) for 

𝜈0′ = 0.1, 0.2, 0.4 based on the components calculated for 𝜈0 = 0.3 and compared 

them with the values obtained using FEA. The relative errors of the approximation are 

presented in Table 6 and Table 7. 

Table 6. Relative errors of approximation for H-tensor components 𝐻̅1122, 𝐻2233 and 𝐻3311 based on the 

normalization by corresponding components of approximating ellipsoids, % 

 𝑯̅𝟏𝟏𝟐𝟐 𝑯̅𝟐𝟐𝟑𝟑 𝑯̅𝟑𝟑𝟏𝟏 

𝝂𝟎′ 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

Cube -4.6 -1.9 0.0 0.8 -4.6 -1.9 0.0 0.8 -4.6 -1.9 0.0 0.8 

Octahedron 6.2 2.5 0.0 -4.5 0.1 0.0 0.0 2.1 0.1 0.0 0.0 2.1 

Tetrahedron 1.5 0.3 0.0 0.2 4.2 1.8 0.0 -1.1 4.2 1.8 0.0 -1.1 

Irreg. shape -0.3 -0.3 0.0 0.3 4.1 2.0 0.0 -2.2 1.7 0.5 0.0 -0.4 
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Table 7. Relative errors of approximation for H-tensor components 𝐻̅1212, 𝐻2323 and 𝐻1313 based on 

the normalization by corresponding components of approximating ellipsoids, % 

 𝑯̅𝟏𝟐𝟏𝟐 𝑯̅𝟐𝟑𝟐𝟑 𝑯̅𝟏𝟑𝟏𝟑 

𝝂𝟎′ 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

Cube 0.2 0.4 0.0 1.2 0.2 0.4 0.0 1.2 0.2 0.4 0.0 1.2 

Octahedron 4.5 2.7 0.0 -1.2 -0.1 0.0 0.0 0.7 -0.1 0.0 0.0 0.7 

Tetrahedron 3.4 1.7 0.0 -1.4 0.8 0.3 0.0 0.0 0.8 0.3 0.0 0.0 

Irreg. shape 0.1 0.0 0.0 0.0 1.2 0.6 0.0 -0.4 0.3 0.1 0.0 0.0 

 

 

 

Note, that in the case of the cube the approximating ellipsoid is a sphere. In the case of 

the octahedron, tetrahedron and considered irregular pore shape the approximating 

ellipsoids have aspect ratios [
𝑎2

𝑎1
= 1.000,

𝑎3

𝑎1
= 0.708], [

𝑎2

𝑎1
= 0.975,

𝑎3

𝑎1
= 1.004] and 

[
𝑎2

𝑎1
= 0.475,

𝑎3

𝑎1
= 0.318], respectively. It can be seen from the tables that with the 

exclusion of component 𝐻̅1122 of the octahedral shape for 𝜈0′ = 0.1 the approximation 

errors in H-tensor components are within 5%. 

2.5 Conclusions 

The proposed simplified packing algorithm utilizing the collective 

rearrangement method is an efficient tool for generating RVEs containing pores of 

regular and irregular shapes as well as their mixtures. The resulting microstructures are 

homogeneous as confirmed by the analysis of their covariograms. In the case of 

randomly oriented pores, the microstructures are also isotropic. 
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Compliance contribution tensors (H-tensors) for pores of various shapes 

obtained by FEA of a reference volume with a single pore can be used to predict the 

overall effective elastic properties using the first-order micromechanical schemes such 

as Mori-Tanaka or Maxwell. The difference between the results of these two schemes 

is not very significant for the considered pore shapes and porosity ranges (up to 0.25 

volume fraction of pores). As expected (see Sevostianov (2014); Weng (2010)), the 

predictions of Mori-Tanaka and Maxwell schemes coincide in the case of spherical 

pores and parallel spheroidal pores. H-tensors of cubical, octahedral and tetrahedral 

pores for several values of matrix Poisson’s ratio presented in Appendix are published 

in explicit form for the first time. 

Good correspondence is observed between direct FEA simulations of periodic 

RVEs and analytical micromechanical predictions based on H-tensors for 

microstructures containing pores of the same shape. For mixtures of pores of two 

different shapes it appears that the properly implemented Maxwell scheme (with the 

choice of the effective ellipsoid as recommended in (Sevostianov (2014)) provides a 

slightly better fit of the numerical simulation data. Note that these observations are 

limited to the considered range of pore volume fractions (0-25%). For higher volume 

fractions, the Mori-Tanaka scheme, for example, will not remain as accurate, see results 

of Segurado and Llorca (2002) for spherical pores. 

The results of this paper clearly indicate that effective bulk modulus of porous 

solids depends on the pore shape. Similar conclusions have been made about 2D 

shapes, see for example, Ekneligoda and Zimmerman, (2006). This is in direct 
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contradiction with the controversial conclusions presented in Hashemi et al. (2009), 

which we believe need to be revisited.  

We also present approximate methods to normalize pore compliance 

contribution parameters of the considered shapes with respect to matrix Poisson’s ratio 

𝜈0. This allows to separate Poisson’s ratio and pore shape effects, so that the parameters 

calculated for one value of 𝜈0 can be used for other Poisson’s ratios.  
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3.0 HOMOGENIZATION OF LINEARLY ELASTIC MATERIALS 

REINFORCED WITH PARTICLES OF POLYHEDRAL SHAPES 

Abstract. Contributions of 15 convex polyhedral particle shapes to the overall elastic 

properties of particle-reinforced composites are predicted using micromechanical 

homogenization and direct finite element analysis approaches. The micromechanical 

approach is based on the combination of the stiffness contribution tensor (N-tensor) 

formalism with Mori-Tanaka and Maxwell homogenization schemes. The second 

approach involves FEA simulations performed on artificial periodic representative 

volume elements containing randomly oriented particles of the same shape. The results 

of the two approaches are in good agreement for volume fractions up to 30%. 

Applicability of the replacement relation interrelating N-tensors of the particles having 

the same shape but different elastic constants is investigated and a shape parameter 

correlated with the accuracy of the relation is proposed. It is concluded that 

combination of the N-tensor components of the 15 shapes presented for three values of 

matrix Poisson’s ratios with the replacement relation allows extending the results of 

this paper to matrix/particle material combinations not discussed here. 

3.1 Introduction 

Regular polyhedra can be used to describe shapes of some crystalline metallic 

particles that are encountered as precipitates or synthesized as powders to be used as 

additives in particle-reinforced composites ((Menon & Martin, 1986; Miyazawa, 

Aratake, & Onaka, 2012; Niu et al., 2009; Onaka, Kobayashi, Fujii, & Kato, 2003; 
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Sundquist, 1964; Wang, 2000)). Table 8 presents microscopy images of particles having 

polyhedral shapes along with their idealized shapes. 

In this chapter, we analyze the effect of shape of several representative convex 

polyhedral on the overall elastic properties of particle-reinforced composites. 

Traditionally, the effect of inhomogeneities on elastic properties of materials is 

described using the classical (Eshelby, 1957) and (Eshelby, 1961) results for an 

ellipsoidal inhomogeneity. It means that the shape of the inhomogeneities is explicitly 

or implicitly assumed to be ellipsoidal (in most cases – just spherical). Few results on 

inhomogeneities having irregular geometry have been published in literature. In 2D, 

general cases of pores and inhomogeneities of arbitrary irregular shape have been 

studied using conformal mapping approach, see for example (Ekneligoda & 

Zimmerman, 2006, 2008; I. Jasiuk et al., 1994; Mogilevskaya & Nikolskiy, 2015; 

Tsukrov & Novak, 2002, 2004; Zimmerman, 1986).  

In 3D, several results for contributions of irregularly shaped inhomogeneities 

to effective elastic properties exist. Solutions for cracks having irregular shape are 

presented in (Mark Kachanov & Sevostianov, 2012). Effect of concavity factor of 

superspheres and axisymmetric concave pores has been analyzed in the works of (I. 

Sevostianov et al., 2008), (Igor Sevostianov & Giraud, 2012), (F. Chen et al., 2015) 

and (Igor Sevostianov et al., 2016). The authors supplemented finite element analysis 

(FEA) calculations with analytical approximations for compliance contribution tensors 

of pores of such shapes. The possibility to extend the results from pores to 

inhomogeneities with arbitrary properties has been discussed by Chen et al (2017). The 
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authors showed that replacement relations ((Igor Sevostianov & Kachanov, 2007)) that 

allow calculation of the compliance contribution tensor of an inhomogeneity from the 

one of a pore of the same shape are applicable to convex inhomogeneities only. 

Concave inhomogeneities require direct calculation of property contribution tensors. 

(Borys Drach et al., 2011) used FEA calculations to obtain compliance contribution 

tensors of several 3D irregularly shaped pores typical for carbon-carbon composites, 

and (Borys Drach, Tsukrov, & Trofimov, 2016) presented numerically obtained 

compliance contribution tensors of cubical, octahedral and tetrahedral pores. (Garboczi 

& Douglas, 2012) presented a procedure to approximate bulk and shear elastic 

contribution parameters in the case of randomly oriented inhomogeneities shaped as 

blocks. 

The effect of shape of an irregular inhomogeneity can also be analyzed by 

considering representative volume elements (RVEs) containing periodic arrangements 

of randomly oriented inhomogeneities. (Rasool & Böhm, 2012) analyzed contributions 

of spherical, cubical, tetrahedral and octahedral inhomogeneities to the effective 

thermoelastic properties of particle-reinforced composites. The results were obtained 

for the material combination with the particles ten times stiffer than the matrix and for 

the volume fraction of 20%. Recently, (Helmut J. Böhm & Rasool, 2016) extended the 

approach by considering elasto-plastic behavior of the matrix material. In addition to 

the contribution tensors of individual pores, (Borys Drach et al., 2016) used FEA to 

study the shape effects of cubical, octahedral and tetrahedral pores on the overall elastic 
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properties of porous materials using periodic RVEs containing parallel and randomly 

oriented pores.  

 

 

Table 8. Examples of ipolyhedral shapes  

Shape Idealized Microscopy  Shape Idealized Microscopy 

Sphere [1] 

 
 

 

Truncated 

Octahedron 

[6] 
 

 

Polyhedral 

Supersphere 

(smooth) [2] 

  
 

 
Cuboctahedron 

[7] 

 
 

Polyhedral 

Supersphere 

(smooth) [2] 

  
 

 

Rhombic 

Dodecahedron 

[8] 
  

Cube (smooth) 

[3] 

 
 

 

Octahederon 

(smooth) [7] 

 
 

 

Cube [4] 

  

 
Octahederon 

[9] 

  

Icosahedron 

[5] 

 
  

 

Tetrahedron 

[10] 

 
 

 
 

[1] (Seo, Ji, & Song, 2006) 

[2] (Menon & Martin, 1986) 

[3] (Onaka et al., 2003) 

[4] (Cao et al., 2010) 

[5] (McMillan, 2003) 

[6] (Zeon Han et al., 2015) 

[7] (Seo et al., 2006) 

[8] (Cravillon et al., 2012) 

[9] (Sun & Yang, 2014) 

[10] (Park, Jang, Kim, & Son, 2007) 
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The shapes in Table 8 can be described using the following general formula combining 

different types of polyhedra ((Miyazawa et al., 2012; Onaka, 2006, 2016)): 

 
[𝐴1ℎℎ𝑒𝑥𝑎 +  

𝐴2

𝑎𝑝 ℎ𝑜𝑐𝑡𝑎 +
𝐴3

𝑏𝑝 ℎ𝑑𝑜𝑑𝑒𝑐𝑎]
1/𝑝

+  𝐴4ℎ𝑖𝑐𝑜𝑠𝑎
1/𝑝

 + 𝐴5ℎ𝑡𝑒𝑡𝑟𝑎
1/𝑝 = 1, (29) 

where 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 are constants, 𝑝 is a shape parameter, and ℎℎ𝑒𝑥𝑎, ℎ𝑜𝑐𝑡𝑎, 

ℎ𝑑𝑜𝑑𝑒𝑐𝑎, ℎ𝑖𝑐𝑜𝑠𝑎 and ℎ𝑡𝑒𝑡𝑟𝑎 are functions that are given below: 

ℎℎ𝑒𝑥𝑎 = |𝑥|𝑝 + |𝑦|𝑝 + |𝑧|𝑝, 

ℎ𝑜𝑐𝑡𝑎 = |𝑥 + 𝑦 + 𝑧|𝑝 + | − 𝑥 + 𝑦 + 𝑧|𝑝 + |𝑥 − 𝑦 + 𝑧|𝑝 + |𝑥 + 𝑦 − 𝑧|𝑝, 

ℎ𝑑𝑜𝑑𝑒𝑐𝑎 = |𝑥 + 𝑦|𝑝 + |𝑥 − 𝑦|𝑝 + |𝑦 + 𝑧|𝑝 + |𝑦 − 𝑧|𝑝 + |𝑥 + 𝑧|𝑝 + |𝑥 − 𝑧|𝑝, 

ℎ𝑖𝑐𝑜𝑠𝑎 = |𝑓(𝛾, 𝛾, 𝛾)|𝑝 + |𝑓(−𝛾, 𝛾, 𝛾)|𝑝 + |𝑓(𝛾, −𝛾, 𝛾)|𝑝 + |𝑓(𝛾, 𝛾, −𝛾)|𝑝 +

|𝑓(𝜉, 𝜂, 0)|𝑝 + |𝑓(𝜉, −𝜂, 0)|𝑝 + |𝑓(0, 𝜉, 𝜂)|𝑝 + |𝑓(0, 𝜉, −𝜂)|𝑝 + |𝑓(𝜂, 0, 𝜉)|𝑝 +

|𝑓(𝜂, 0, −𝜉)|𝑝, 

ℎ𝑡𝑒𝑡𝑟𝑎 = 𝐻(𝛾, 𝛾, 𝛾) + (1/𝑝)(𝑝−2)𝐻(−𝛾,−𝛾,−𝛾), 

where  

𝑓(𝑎, 𝑏, 𝑐) = |𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧|𝑝, 𝛾 =
1

√3
, 𝜉 = √3−√5

6
, 𝜂 = √3+√5

6
,   

𝐻(𝛾, 𝛾, 𝛾) = {ℎ(𝛾, 𝛾, 𝛾)}𝑝 + {ℎ(𝛾,−𝛾,−𝛾)}𝑝 + {ℎ(−𝛾, 𝛾, −𝛾)}𝑝 + {ℎ(−𝛾, −𝛾, 𝛾)}𝑝, 

ℎ(𝑎, 𝑏, 𝑐) = {|𝑓(𝑎, 𝑏, 𝑐)| − 𝑓(𝑎, 𝑏, 𝑐)}/2. 

Using formula (29) we obtained 15 polyhedral shapes that are analyzed in this paper, 

see Table 9. In the present work, we utilize stiffness contribution tensor formalism to 

estimate overall elastic properties of materials with polyhedral inhomogeneities and 

compare the results with direct finite element simulations of periodic RVEs. The 
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concept of the stiffness contribution tensor is introduced in section 3.2. The section also 

details our numerical approach to calculation of stiffness contribution tensors of 

individual inhomogeneities. In section 3.3, we present the components of stiffness 

contribution tensors of all shapes shown in Table 9. In addition, we investigate the 

applicability of replacement relations to the considered shapes and introduce a 

parameter correlating the accuracy of the relations with a shape’s geometry. Predictions 

of the effective elastic properties for particle-reinforced materials with randomly 

oriented polyhedral inhomogeneities based on stiffness contribution tensors are 

presented in section 3.4. The predictions obtained using non-interaction, Mori-Tanaka 

and Maxwell micromechanical homogenization schemes are compared with direct 

finite element simulations of periodic RVEs. Section 3.6 presents the conclusions of 

the paper. Finally, stiffness contribution tensors of the considered polyhedral shapes 

for two Poisson’s ratio values 𝜈0 = 0.2 and 𝜈0 = 0.4 of the matrix (in addition to the 

results for 𝜈0 = 0.3 presented in section 3) are given in the Appendix B.  
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Table 9. Considered polyhedral shapes  

# Shape Image 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 a b p 

1 Sphere 

 

1 0 0 0 0 1 1 2 

2 
Polyhedral 

Supersphere 1 
 

1 1 1 0 0 1.69 1.58 𝑝 → ∞ 

3 

Polyhedral 

Supersphere 1 

(smooth)  

1 1 1 0 0 1.69 1.58 𝑝 = 9 

4 
Polyhedral 

Supersphere 2  
 

1 1 1 0 0 1.67 1.72 𝑝 → ∞ 

5 

Polyhedral 

Supersphere 2 

(smooth)  

1 1 1 0 0 1.67 1.72 𝑝 = 14.4 

6 Cube 

 

1 0 0 0 0 1 1 𝑝 → ∞ 

7 Cube (smooth) 

 

1 0 0 0 0 1 1 𝑝 = 3.3 

8 Icosahedron 

 

0 0 0 1 0 1 1 𝑝 → ∞ 

9 
Truncated 

Octahedron 
 

1 1 0 0 0 1.2 1 𝑝 → ∞ 

10 Cuboctahedron 

 

0 1 1 0 0 2 2 𝑝 → ∞ 

11 
Rhombic 

Dodecahedron 
 

0 0 1 0 0 1 1 𝑝 → ∞ 

12 Octahederon 

 

0 1 0 0 0 1 1 𝑝 → ∞ 

13 
Octahederon 

(smooth) 
 

0 1 0 0 0 1 1 𝑝 = 6.44 

14 Tetrahedron 

 

0 0 0 0 1 1 1 𝑝 → ∞ 

15 
Tetrahedron 

(smooth) 
 

0 0 0 0 1 1 1 𝑝 = 4 
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3.2 Property contribution tensors 

Property contribution tensors were first introduced as compliance contribution 

tensors in the context of pores and cracks by Horii and Nemat-Nasser (1983). 

Components of such tensors were calculated for 2D pores of various shape and 3D 

ellipsoidal pores in isotropic material by Kachanov et al. (1994). For the general case 

of an elastic ellipsoidal inhomogeneity, compliance contribution tensor and its 

counterpart – stiffness contribution tensor – were presented in Sevostianov and 

Kachanov (1999, 2002). (Kushch & Sevostianov, 2015) established the link between 

these tensors and dipole moments. 

Following (Igor Sevostianov & Kachanov, 1999), we consider a homogeneous 

isotropic elastic material (matrix) with a stiffness tensor 𝐂0 containing an 

inhomogeneity of volume 𝑉1 that has a different stiffness 𝐂1. Fourth-rank stiffness 

contribution tensor 𝐍 of an inhomogeneity relates additional stress due to the presence 

of the inhomogeneity 𝚫𝛔 (per reference volume 𝑉 of the elastic material including the 

inhomogeneity) with applied strain 𝛆0: 

 Δ𝜎𝑖𝑗 = 𝑁𝑖𝑗𝑘𝑙𝜀𝑘𝑙
0  (30) 

Strain distribution 𝛆 is assumed to be uniform inside 𝑉 in the absence of the 

inhomogeneity. Thus, the stiffness contribution tensor, which characterizes the far-field 

asymptotic of the elastic fields generated by an inhomogeneity, determines its 

contribution to the effective elastic properties (Sevostianov and Kachanov, 2011). We 

calculate the stiffness contribution tensors (N-tensors) of individual particles using 
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FEA. In the procedure, for a given particle geometry we simulate a single 

inhomogeneity in a large volume subjected to remotely applied uniform displacement 

fields. To prepare the necessary 3D FEA mesh for the analysis, we begin by generating 

the surface mesh of the particle in a custom MATLAB script using formula (29) and 

built-in function “isosurface.m”. Figure 17 shows the truncated octahedron and 

icosahedron surface meshes generated using our script. Each mesh is composed of 

approximately 50,000 elements. The generated surface mesh of a particle is then used 

in the numerical procedure to find components of the particle property contribution 

tensor as described below. 

 

 

  

(a) (b) 

Figure 17. Example of a particle surface mesh: a) truncated octahedron; b) icosahedron 

 

 

 

Particle surface mesh is placed in a large cubic-shaped reference volume with sides five 

times bigger than the largest linear dimension of the particle to reduce boundary effects 

and simulate remote loading (Drach et al.(2011). This setup is auto meshed with the 
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10-node non-linear tetrahedral 3D elements (tetra10) due to higher accuracy of the 

results compared to the 4-node linear elements (tetra4), see Figure 18. 

 

 

  

(a) (b) 

Figure 18. Illustration of the 3D mesh density of the matrix containing an icosahedral particle: 

a) general view of the reference volume; b) close-up view of the highlighted region 

 

 

 

After the volume mesh is generated, the components of the N-tensor are found 

from the set of six load cases: three normal loadings (in the directions of three global 

coordinate axes) and three shear loadings. The boundary conditions for all six load 

cases are prescribed in terms of displacements on the faces of the reference volume. 

Once the six FEA simulations are run, the result files are processed using a custom 

Python script to determine N-tensor. The script starts with calculating the average stress 

components within the volume for each load case: 

 〈𝜎𝑖𝑗〉𝑚 =
1

𝑉
∑ (𝜎𝑖𝑗

(𝑙))
𝑚

∙ 𝑉(𝑙)𝑁𝑒
𝑙=1 ,      (i, j = 1,2,3;     m = 1,2, … ,6) (31) 
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where 〈𝜎𝑖𝑗〉𝑚 is the volume average of the stress component 𝑖𝑗 calculated from the 𝑚-

th loadcase, 𝑉 is the reference volume, (𝜎𝑖𝑗
(𝑙))

𝑚
 is the stress component 𝑖𝑗 at the 

centroid of the finite element 𝑙 calculated from the 𝑚-th loadcase, 𝑉(𝑙) is the volume 

of the element 𝑙, and 𝑁𝑒 is the total number of elements in the model. Given the average 

stress components we then calculate the stiffness contribution tensor from: 

 𝑁𝑖𝑗𝑘𝑙(𝜀𝑘𝑙
0 )𝑚 = 〈𝜎𝑖𝑗〉𝑚 − (𝜎𝑖𝑗

0)
𝑚

,    (summation over 𝑘, 𝑙 = 1,2,3) (32) 

where  (𝜀𝑘𝑙
0 )𝑚 are the components of the prescribed strain and (𝜎𝑖𝑗

0)
𝑚

 are the stress 

components inside 𝑉 in the absence of the inhomogeneity. For example, from the first 

load case all components 𝑁𝑖𝑗11 are found (note that all 𝜀𝑘𝑙
0  except 𝜀11

0  are zero):  

 
𝑁𝑖𝑗11 = 

 〈𝜎𝑖𝑗〉1−(𝜎𝑖𝑗
0 )

1

(𝜀11
0 )

1

. (33) 

Components of the stiffness contribution tensors normalized by particle volume 

fraction, 𝑁̅𝑖𝑗𝑘𝑙 = (
𝑉

𝑉1
)𝑁𝑖𝑗𝑘𝑙, are presented for different shapes in Table 10.  

3.3 Stiffness contribution tensors of polyhedral particles 

3.3.1 N-tensor components for considered shapes 

Table 10 presents non-zero components of the stiffness contribution tensors 

calculated following the procedure described in section 3.2 for the shapes presented in 

Table 9. Young’s moduli and Poisson’s ratios of the matrix and particle materials used 

in calculations are 𝐸0 = 1𝐺𝑃𝑎, 𝜈0 = 0.3, 𝐸1 = 3𝐺𝑃𝑎, 𝜈1 = 0.4, respectively. 

 Only three components of the normalized stiffness contribution tensors are 
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presented for the shapes in the first part of Table 10 because the tensors have equal 

components in three directions: 𝑁̅1111
𝐹𝐸𝐴 = 𝑁̅2222

𝐹𝐸𝐴 = 𝑁̅3333
𝐹𝐸𝐴 , 𝑁̅1122

𝐹𝐸𝐴 = 𝑁̅2233
𝐹𝐸𝐴 = 𝑁̅3311

𝐹𝐸𝐴  and 

𝑁̅1212
𝐹𝐸𝐴 = 𝑁̅2323

𝐹𝐸𝐴 = 𝑁̅3131
𝐹𝐸𝐴 .  

 

 

Table 10. Stiffness contribution tensor components of the considered shapes 

Shape 𝑵̅𝟏𝟏𝟏𝟏
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟐𝟐

𝑭𝑬𝑨  𝑵̅𝟏𝟐𝟏𝟐
𝑭𝑬𝑨  

Sphere 1.5127 0.7701 0.3712 

Polyhedral Supersphere 1 1.5216 0.7751 0.3746 

Polyhedral Supersphere 1 (smooth) 1.5125 0.7710 0.3720 

Polyhedral Supersphere 2 1.5243 0.7769 0.3757 

Polyhedral Supersphere 2 (smooth) 1.5161 0.7730 0.3733 

Cube 1.5828 0.7837 0.3719 

Cube (smooth) 1.5302 0.7685 0.3681 

Icosahedron 1.5229 0.7745 0.3739 

Truncated Octahedron 1.5230 0.7803 0.3784 

Cuboctahedron 1.5393 0.7746 0.3720 

Rhombic Dodecahedron 1.5241 0.7815 0.3791 

Octahedron 1.5402 0.7934 0.3850 

Octahedron (smooth) 1.5217 0.7846 0.3813 

 

Shape 𝑵̅𝟏𝟏𝟏𝟏
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟐𝟐

𝑭𝑬𝑨  𝑵̅𝟏𝟐𝟏𝟐
𝑭𝑬𝑨  𝑵̅𝟑𝟑𝟑𝟑

𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟑𝟑
𝑭𝑬𝑨  𝑵̅𝟏𝟑𝟏𝟑

𝑭𝑬𝑨  

Tetrahedron 
1.6222 0.8034 0.3698 1.5829 0.8427 0.4091 

Tetrahedron 

(smooth) 
1.5513 0.7780 0.3693 1.5344 0.7948 0.3862 
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3.3.2 Replacement relations 

Replacement relations play an important role in geomechanics in the context of 

the effect of saturation on seismic properties of rock. This problem was first addressed 

by Gassmann (1951) who proposed the following relation expressing bulk modulus 𝐾 

of fully saturated rock in terms of the elastic properties of dry rock (see Mavko et al. 

(2009), Jaeger et al. (2007) for application of these relation in rock mechanics and 

geophysics): 

 
𝐾 = 𝐾𝑑𝑟𝑦 +

𝐾0(1−𝐾𝑑𝑟𝑦/𝐾0)
2
 

1−𝜑−𝐾𝑑𝑟𝑦/𝐾0+𝜑𝐾0/𝐾1
, (34) 

where subscripts “0” and “1” denote elastic constants of the matrix material and 

material filling the pores, respectively; 𝜑 is the volume fraction of the inhomogeneities 

(porosity for the material with unfilled pores); 𝐾𝑑𝑟𝑦 is the bulk modulus of the porous 

material of the same morphology. This approach was further developed in the works of 

Ciz and Shapiro (2007) who obtained relation similar to (34) for shear modulus and 

(Saxena & Mavko, 2014) who derived replacement relations (they use term 

“substitution relations”) for isotropic rocks containing inhomogeneities of the same 

shape, but different elastic constants. The latter were obtained under the assumption 

that strains and stresses inside inhomogeneities are uniform and overall properties and 

properties of the constituents are isotropic. Replacement relations for the most general 

case were obtained by (Igor Sevostianov & Kachanov, 2007) in terms of property 

contribution tensors of inhomogeneities having the same shape but different elastic 

constants and embedded in the same matrix:  
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 V1

𝑉
(𝐍𝐴

−1 − 𝐍𝐵
−1) = (𝐂𝐴 − 𝐂𝟎)

−1 − (𝐂𝐵 − 𝐂𝟎)
−1 (35) 

where 𝐍𝐴 and 𝐍𝐵 are the stiffness contribution tensors of inhomogeneities with 

material properties A and B, respectively, 𝐂𝐴  and 𝐂𝐵  are the stiffness tensors of 

particles having material properties A and B, and 𝐂𝟎 is the stiffness tensor of matrix 

material. (Chen et al., 2017) showed that these relations lead to the following one 

relating effective properties of a dry porous material and material containing 

inhomogeneities with material properties A having the same morphology: 

 
𝐒𝑁𝐼 = 𝐒0 + 𝜑 [(𝐒𝐴 − 𝐒0)

−1 + 𝜑(𝐒𝑑𝑟𝑦 − 𝐒0)
−1

]
−1

, (36) 

where 𝐒 denotes compliance tensor of a material.  

 For isotropic mixture of the inhomogeneities, (36) yields the following expressions 

for effective bulk and shear moduli, 𝐾 and 𝐺: 

 
𝐾 = 𝐾0

𝜑𝐾𝑑𝑟𝑦(𝐾0−𝐾𝐴)+𝐾𝐴(𝐾0−𝐾𝑑𝑟𝑦)

𝜑𝐾0(𝐾0−𝐾𝐴)+𝐾𝐴(𝐾0−𝐾𝑑𝑟𝑦)
, 

𝐺 = 𝐺0
𝜑𝐺𝑑𝑟𝑦(𝐺0−𝐺𝐴)+𝐺𝐴(𝐺0−𝐺𝑑𝑟𝑦)

𝜑𝐺0(𝐺0−𝐺𝐴)+𝐺𝐴(𝐺0−𝐺𝑑𝑟𝑦)
. 

(37) 

This relations coincide with ones obtained by Gassmann (1951), Ciz and Shapiro 

(2007), and Saxena and Mavko (2014). Moreover, relations (37) are independent of the 

homogenization method: non-interaction approximation, Mori-Tanaka scheme, 

Maxwell scheme, etc lead to the same results provided that properties of both porous 

material and composite are calculated by the same method. Chen et al (2017) also 

showed that replacement relations (35) and (36), being rigorous for inhomogeneities of 

ellipsoidal shape, can be used as an accurate approximation for non-ellipsoidal convex 
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superspheres. In this section, we investigate the applicability of the replacement 

relations to the polyhedral shapes presented in Table 9. 

We start with an inhomogeneity A having elastic properties 𝐸𝐴 = 3𝐺𝑃𝑎, 𝜈𝐴 =

0.4  (see Table 10) and calculate the stiffness contribution tensor for inhomogeneity B 

of the same shape having elastic properties 𝐸𝐵 = 20𝐺𝑃𝑎, 𝜈𝐵 = 0.2  using replacement 

relations (34). Matrix material is the same in both cases with Young’s modulus and 

Poisson’s ratio equal to 𝐸0 = 1𝐺𝑃𝑎 and 𝜈0 = 0.3, respectively. Table 11 presents the 

comparison between stiffness contribution tensors calculated via FEA (𝑁̅𝑖𝑗𝑘𝑙
𝐹𝐸𝐴) and 

obtained utilizing the replacement relation (𝑁̅𝑖𝑗𝑘𝑙
𝑟𝑒𝑝𝑙.

) as described above for all shapes 

presented in Table 9. The table also contains unsigned relative errors for individual 

components (∆𝑁̅𝑖𝑗𝑘𝑙) and Euclidean norm of the absolute error (‖𝐍𝐹𝐸𝐴 − 𝐍𝑟𝑒𝑝𝑙.‖). 

Additional results for 𝜈0 = 0.2 and 𝜈0 = 0.4 are presented in Appendix B. Sphere is a 

special case of an ellipsoid for which the replacement relation is exact. Therefore, there 

should be no difference between direct FEA results and N-tensor values obtained via 

replacement relation in the case of a sphere. As expected relative errors as well as 

Euclidean norm of the absolute error are zero, see the first row in Table 10. Calculations 

for other shapes result in non-zero relative errors and error norms with the largest 

relative error and error norm observed in the case of a tetrahedron.  
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Table 11. Comparison between stiffness contribution tensors calculated FEA directly and obtained 

utilizing the replacement relation formula 

Shape 𝑵̅𝟏𝟏𝟏𝟏
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟐𝟐

𝑭𝑬𝑨  𝑵̅𝟏𝟐𝟏𝟐
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟏𝟏

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟏𝟐𝟐

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟐𝟏𝟐

𝒓𝒆𝒑𝒍.
 
∆𝑵̅𝟏𝟏𝟏𝟏 
(%) 

∆𝑵̅𝟏𝟏𝟐𝟐 
(%) 

∆𝑵̅𝟏𝟐𝟏𝟐 
(%) 

‖𝐍𝑭𝑬𝑨 −
𝐍𝒓𝒆𝒑𝒍. ‖ 

Sphere 2.169 0.70 0.7331 2.169 0.701 0.733 0.00 0.00 0.00 0.000 

Polyhedral 

Supersphere 1 

(smooth) 

2.168 0.704 0.737 2.174 0.705 0.742 0.08 0.01 0.11 0.009 

Polyhedral 

Supersphere 1 
2.210 0.704 0.757 2.188 0.705 0.747 1.03 0.20 1.35 0.024 

Polyhedral 

Supersphere 2 

(smooth) 

2.185 0.704 0.747 2.174 0.705 0.742 0.50 0.08 0.65 0.012 

Polyhedral 

Supersphere 2 
2.224 0.705 0.766 2.193 0.707 0.751 1.38 0.26 1.92 0.033 

Cube (smooth) 2.240 0.683 0.730 2.226 0.682 0.721 0.50 0.16 1.24 0.016 

Cube 2.504 0.662 0.793 2.372 0.667 0.736 5.29 0.75 7.20 0.137 

Icosahedron 2.216 0.701 0.756 2.193 0.703 0.744 1.07 0.17 1.65 0.025 

Truncated 

Octahedron 
2.213 0.717 0.782 2.183 0.715 0.762 1.34 0.19 2.52 0.033 

Cuboctahedron 2.291 0.685 0.756 2.244 0.688 0.737 2.02 0.48 2.56 0.050 

Rhombic 

Dodecahedron 
2.218 0.719 0.790 2.184 0.717 0.765 1.54 0.31 3.23 0.039 

Octahedron 

(smooth) 
2.204 0.734 0.810 2.172 0.726 0.774 1.45 1.17 4.48 0.049 

Octahedron 2.282 0.747 0.861 2.214 0.730 0.789 2.97 2.33 8.42 0.103 

 

Shape 
Tetrahedron 

(smooth) 
Tetrahedron 

𝑁1111
𝐹𝐸𝐴  2.339 2.754 

𝑁1122
𝐹𝐸𝐴  0.694 0.702 

𝑁1212
𝐹𝐸𝐴  0.791 0.914 

𝑁3333
𝐹𝐸𝐴  2.310 2.644 

𝑁1133
𝐹𝐸𝐴  0.723 0.813 

𝑁1313
𝐹𝐸𝐴  0.821 1.024 

𝑁1111
𝑟𝑒𝑝𝑙.

 2.262 2.432 

𝑁1122
𝑟𝑒𝑝𝑙.

 0.670 0.634 
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Table 11. Continued 

𝑁1212
𝑟𝑒𝑝𝑙.

 0.726 0.728 

𝑁3333
𝑟𝑒𝑝𝑙.

 2.194 2.262 

𝑁1133
𝑟𝑒𝑝𝑙.

 0.738 0.804 

𝑁1313
𝑟𝑒𝑝𝑙.

 0.794 0.898 

max (∆𝑁𝑖𝑗𝑘𝑙(%)) 8.220 20.35 

‖𝐍𝐹𝐸𝐴 − 𝐍𝑟𝑒𝑝𝑙.‖ 0.131 0.400 

 

 

Based on Table 10, it can be concluded that the replacement relation can be applied to 

most of the considered shapes with very good accuracy (maximum error <5%) except 

for a cube, octahedron, tetrahedron and a smooth tetrahedron for which the maximum 

relative  errors are higher – 7.2%, 8.4%, 20.4% and 8.2%, respectively. Note that the 

replacement relation works better for shapes with low values of the parameter 𝑝, which 

has the effect of smoothing of the edges and corners of a shape. 

It appears that the errors in the replacement relation predictions are smaller for 

the shapes resembling a sphere (e.g. smooth polyhedral superspheres) and greater for 

the shapes different from the sphere (e.g. cube, tetrahedron). The parameter that can be 

used to measure the “sphericity” of a shape is the ratio 𝑆
3/2

𝑉⁄ , where 𝑆 is the surface 

area and 𝑉 is the volume of the shape. Among all possible 3D shapes, a sphere has the 

minimum surface area for a given volume and the ratio 𝑆
3/2

𝑉⁄ = 10.63. Figure 19a 

presents the Euclidean norm of the absolute error in replacement relation results for 

different shapes as a function of the surface area-to-volume parameter. Figure 19b 

presents the Euclidean norm of the absolute difference between the FEA calculated N-
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tensors of different shapes and N-tensor of a sphere. Two conclusions can be drawn 

from the figures: a) the error norm increases linearly with the parameter 𝑆
3/2

𝑉⁄ ; and 

b) the error norms in Figure 19b are almost half of the error norms in Figure 19a for the 

corresponding shapes. The latter conclusion indicates that the replacement relation (35) 

results in a better N-tensor approximation for a given inhomogeneity shape and elastic 

properties combination compared to a simple replacement of the shape with a sphere. 

 

 

  

(a) (b) 

Figure 19. Effect of the surface area-to-volume ratio of a shape on the Euclidean norm of the absolute 

error: (a) between N-tensors of the polyhderal shapes from Table 9 calculated via FEA and replacement 

relations; (b) between N-tensors of the polyhedral shapes from Table 9 calculated via FEA and N-tensor 

of a sphere 

 

 

 

3.4 Effective elastic properties 

In this section, we use N-tensors of individual shapes to estimate effective 

elastic moduli of materials containing randomly oriented inhomogeneities of the same 



67 

shape. We focus on five shapes – polyhedral supersphere 1, rhombic dodecahedron, 

icosahedron, cuboctahedron and octahedron. 

3.4.1 Analytical homogenization based on N-tensor 

To characterize contribution of multiple particles to the effective elastic 

properties a homogenization procedure based on N-tensor is used. The effective 

stiffness tensor of the material with particles is given by  

 𝐂 =  𝐂𝟎 + ∆𝐂RVE (38) 

where 𝐂𝟎 is the stiffness tensor of the matrix material and ∆𝐂RVE is the collective 

contribution of all particles to the overall stiffness of the representative volume 

element.  

The non-interaction scheme provides a reasonably good approximation for a 

dilute distribution of particles, and ∆𝐂RVE in this case is obtained by direct summation 

of contributions from all individual particles in the RVE: 

 ∆𝐂RVE
NI = ∑ 𝐍(i)i , (39) 

where 𝐍(𝑖) is the stiffness contribution tensor of the i-th particle. The procedure for 

calculation of stiffness contribution tensors of individual particles is presented in 

section 3.2.  

For higher volume fractions when interaction between particles is significant 

and the non-interaction approximation is no longer applicable, more advanced 

micromechanical schemes should be used. One of the most widely used is the Mori-

Tanaka scheme, proposed in (Mori & Tanaka, 1973) and clarified in (Benveniste, 
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1987a). Following this approximation the combined contribution of all particles to the 

overall stiffness of the RVE is given by 

 ∆𝐂RVE
MT = ∆𝐂RVE

NI : [𝜑(𝐂𝟏 − 𝐂𝟎) + ∆𝐂RVE
NI ]

−𝟏
: (𝐂𝟏 − 𝐂𝟎) (40) 

where 𝜑 is the volume fraction of particles and 𝐂𝟏 is the stiffness tensor of the 

inhomogeneity material. 

Alternatively, ∆𝐂RVE may be found using Maxwell’s homogenization scheme 

((Maxwell, 1873; McCartney & Kelly, 2008; Igor Sevostianov, 2014)): 

 
∆𝐂RVE

Maxwell = {[∆𝐂RVE
NI ]

−1
− 𝐏 Ω}

−1

 (41) 

where 𝐏 Ω is the Hill’s tensor ((Hill, 1965; Walpole, 1969)) for the “effective inclusion” 

of shape Ω. In our study we consider randomly oriented inhomogeneities and therefore 

the effective inclusion is of spherical shape.  

In the framework of non-interaction approximation, contributions from 

randomly oriented particles of the same shape to the effective bulk and shear moduli 

can be calculated using the relationship presented in (T. Te Wu, 1966): 

 𝐾

𝐾0
= 1 + 𝜑𝐾̃

𝐾0−𝐾1

𝐾0
,   

𝐺

𝐺0
= 1 + 𝜑 𝐺̃

𝐺0 −𝐺1

𝐺0
, (42) 

 𝐾̃ =
𝑇𝑖𝑖𝑗𝑗

3
,   𝐺̃ =

3𝑇𝑖𝑗𝑖𝑗−𝑇𝑖𝑖𝑗𝑗

15
   (summation over 𝑖, 𝑗 = 1,2,3), (43) 

 where 𝐾𝑜 and 𝐺𝑜 are bulk and shear moduli of the matrix material, 𝐾1 and 𝐺1 

are bulk and shear moduli of the inhomogeneity material, 𝐓 is the Wu’s strain 

concentration tensor related to 𝐍-tensor and stiffness tensors 𝐂𝟎 and 𝐂𝟏 as 𝐓 =

(𝐂𝟏 − 𝐂𝟎)
−𝟏: 𝐍 ((Igor Sevostianov & Kachanov, 2007)). 
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Relations for the effective bulk and shear moduli following Mori-Tanaka scheme can 

be represented as follows (Benveniste (1987a)):  

 𝐾

𝐾0
= 1 + 𝜑𝐾̃

𝐾1 −𝐾0

𝐾0[(1−𝜑)+𝜑𝐾̃]
,  

𝐺

𝐺0
= 1 + 𝜑𝐺̃

𝐺1 −𝐺0

𝐺0[(1−𝜑)+𝜑𝐺̃]
, (44) 

Finally, for the Maxwell scheme we have: 

 𝐾

𝐾0
=

𝐸

3𝐾0(1−2𝜈)
,  

𝐺

𝐺0
=

𝐸

2𝐺0(1+𝜈)
, (45) 

where 𝐸 and 𝜈 are the effective Young’s modulus and Poisson’s ratio that can be 

calculated from the effective stiffness tensor components, see (38). 

3.4.2 FEA of periodic representative volume elements 

To generate RVEs containing multiple non-intersecting particles we use a 

custom script utilizing a simplified implementation of the collective rearrangement 

method based on Altendorf and Jeulin (2011) and detailed in Drach et al. (2016). The 

script results in a fully periodic surface mesh of non-intersecting particles. The RVE 

surface mesh is imported into a MSC Marc/Mentat for further numerical analysis. All 

FEA model preparation steps at this stage are performed automatically using a custom 

script that provides a ready-to-run model upon completion. The final RVE is meshed 

with the 10-node tetrahedral 3D elements. Figure 20 illustrates two examples of 

generated microstructures.  

Since RVEs generated to have a congruent mesh of the opposite faces we treat 

them as unit cells and subject them to periodic boundary conditions. The boundary 
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conditions for two corresponding nodes on the opposite (positive and negative) faces 

are introduced similarly to (Segurado and Llorca (2002)):  

 𝑢𝑗
(𝑖+)

= 𝑢𝑗
(𝑖−)

+ 𝛿𝑗,   (𝑗 = 1,2,3) (46) 

where 𝑢𝑗
(𝑖+)

 and 𝑢𝑗
(𝑖−)

 are displacements in 𝑥𝑗   direction of the i-th node on the positive 

and negative faces respectively; and 𝛿𝑗 is the prescribed average displacement in the 𝑥𝑗 

direction. 

 

 

 

 
 

(a) (b) 

Figure 20. Illustration of generated RVEs: (a) packed cuboctahedral particles, volume fraction 𝜑 =
0.2: (b) final RVE with polyhedral particles, volume fraction 𝜑 = 0.2 

 

 

 

Periodic boundary conditions were implemented in MSC Marc/Mentat using the 

“servo-link” feature (see, for example, (A. Drach et al., 2014; Borys Drach et al., 2016; 

MSC Software, 2012)). Servo-links allow to prescribe multi-point boundary conditions 

for nodal displacements in the form of a linear function with constant coefficients. In 
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this formulation, 𝛿𝑗-s are implemented as translational degrees of freedom of control 

nodes, which are linked to the nodes on the corresponding opposite faces of an RVE. 

To constrain rigid body displacements, a node inside the RVE is fixed. Rigid body 

rotations are not allowed by the periodic boundary conditions, so additional constraints 

are not required. 

Six sets of boundary conditions are applied in terms of displacements to 

simulate three uniaxial tension and three shear load cases. Note that the prescribed 

strains are set to 0.001 to ensure small deformations so that the initial element volumes 

could be used in the volume averaging procedure described below. Figure 21 presents 

the stress distribution within the RVE subjected to the uniaxial tension along one of the 

global coordinate axis. Once the numerical simulations are performed, the result files 

are processed using a custom Python script to calculate effective elastic properties of 

the RVE. First, volume-averaged stress components are calculated for each load case. 

Given the averaged stress components and applied strain, we calculate the effective 

stiffness tensor using Hooke’s law:  

 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓(𝜀𝑘𝑙

0 )𝑚 = 〈𝜎𝑖𝑗〉𝑚, (47) 

where  〈𝜎𝑖𝑗〉𝑚 and (𝜀𝑘𝑙
0 )𝑚 are the volume-averaged stress and applied strain 

components, respectively, and 𝑚 is the load case number. For example, from the 

second load case we can calculate all 𝐶𝑖𝑗22
𝑒𝑓𝑓

components: 

 𝐶𝑖𝑗22
𝑒𝑓𝑓

= 
〈𝜎𝑖𝑗〉2

(𝜀22
0 )

2

. (48) 
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Engineering constants are then obtained from the effective compliance tensor. 

 

 

  

(a) (b) 

Figure 21. Distribution of 𝜎11 stress component (GPa) within an RVE subjected to uniaxial tension 

along 𝑥1 direction: (a) matrix material with 𝐸0 = 120 𝐺𝑃𝑎 and 𝜈0 = 0.34, polyhedral supersphere 

particles with  𝐸1 = 70 𝐺𝑃𝑎 and 𝜈1 = 0.35, volume fraction 𝜑 = 0.2; (b) matrix material with 𝐸0 =
2.89 𝐺𝑃𝑎 and 𝜈0 = 0.35, cuboctahedral particles with  𝐸1 = 79 𝐺𝑃𝑎 and 𝜈1 = 0.4, volume fraction 

𝜑 = 0.2 

3.5 Results 

Effective bulk (𝐾) and shear (𝐺) moduli of materials containing five types of 

particles selected from Table 9 (polyhedral supersphere 1, rhombic dodecahedron, 

icosahedron, cuboctahedron and octahedron) were approximated using non-interaction, 

Mori-Tanaka and Maxwell homogenization schemes based on numerically calculated 

𝐍-tensors for individual particles. Table 12 presents elastic properties of the matrix and 

inhomogeneity material that were used in homogenization. The results were compared 

to FEA simulations performed on RVEs containing 50 particles each (see section 3.4.2) 

with volume fractions of 𝜑 = 0.10, 0.15, 0.20 for the octahedral shape and 
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0.10, 0.20, 0.30 for all others. For each microstructure five RVE realizations were 

generated. Each realization is shown as a separate data point. All results are presented 

in Figure 22. Good correspondence between FEA simulations and Mori-Tanaka and 

Maxwell schemes is observed with the latter being a little closer to the direct FEA, see 

Figure 22a-e. From Figure 6a it can be concluded that Maxwell and Mori-Tanaka 

schemes produce almost identical predictions, since polyhedral supersphere 1 is very 

close to the spherical shape for which Maxwell and Mori-Tanka schemes coincide.  

 

 
Table 12. Material properties of considered microstructures.   

Particle shape 
Matrix material Particle material 

𝑬𝟎, 𝑮𝑷𝒂 𝝂𝟎 𝑬𝟏, 𝑮𝑷𝒂 𝝂𝟏 

polyhedral supersphere 1 120 0.34 70 0.35 

rhombic dodecahedron 70 0.17 3.5 0.44 

icosahedron 2.5 0.34 83 0.37 

cuboctahedron 2.89 0.35 79 0.4 

octahedron 2.89 0.35 1050 0.1 

 

 

Note that with increasing elastic contrast between the matrix and the particles, 

correlation between homogenization schemes and direct FEA decreases. The greatest 

elastic contrast considered in this paper (~360) was used for the material with 

octahedral particles (Figure 22e). The maximum relative error between the Maxwell 

scheme and direct FEA in this case is observed in shear modulus predictions and is 

equal to 2.5%.  
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 22. Effective elastic properties of materials containing randomly oriented particles of different 

shapes: a) polyhedral supersphere 1 (smooth); b) rhombic dodecahedron; c) icosahedron; d) 

cuboctahedron; e) octahedron 
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The replacement relationship discussed in section 3.3.2 interrelates 

contributions of inhomogeneities having the same shape but different elastic constants 

to the overall elastic properties. This allows extending results presented in section 3.3.1 

and Appendix B to combinations of matrix/particle properties not discussed in the 

paper. Here we investigate the accuracy of 𝐾 and 𝐺 predictions based on the 

replacement relation for materials containing randomly oriented octahedral, cubical, 

and tetrahedral particles. The predictions were obtained using Maxwell 

homogenization scheme based on N-tensors of polyhedral particles estimated using the 

relation (35). First, we obtained N-tensor components of the individual shapes for 𝐸0 =

1, 𝜈0 = 0.33, 𝐸1 = 20 and 𝜈1 = 0.2 by interpolating the components for 𝜈0 = 0.3 and 

𝜈0 = 0.4 presented in Table 4 and Appendix A, respectively. Then, we applied the 

replacement relation (35) to estimate the N-tensor components for 𝐸0 = 1, 𝜈0 =

0.33, 𝐸1 = 10 and 𝜈1 = 0.1, and used the result to predict effective bulk and shear 

moduli for 𝜑 = 0.2. The predictions are compared to the FEA results for periodic RVEs 

published in (Rasool & Böhm, 2012) and presented in Table 6. Note that the moduli 

𝐾𝑅𝐵 were calculated based on the effective Young’s moduli and Poisson’s ratios from 

Table 3 in (Rasool & Böhm, 2012) because we believe the authors made a mistake in 

their calculations of the effective bulk moduli in the paper.  

From the analysis of Table 13 we conclude that Maxwell scheme in combination 

with the replacement relation (3.2) provide very good estimates for the effective bulk 
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moduli of all three shapes (relative error <1%) and good predictions for the effective 

shear moduli except for a cube (relative error of 6.14%). 

 

 

Table 13. Comparison of effective bulk and shear moduli predictions for materials containing 

randomly oriented particles of octahedral, cubical and tetrahedral shapes (𝜑 = 0.2) based on the 

replacement relation (35) with numerical calculations presented in (Rasool & Böhm, 2012) 

Particle shape 
(Rasool & Böhm, 2012) Our predictions 

Unsigned rel. error, 

% 

𝑲𝑹𝑩 𝑮𝑹𝑩 𝑲 𝑮 𝚫𝑲% 𝜟𝑮% 

Octahedron 1.2478 1.4790 1.2542 1.4504 0.51 1.93 

Cube 1.2626 1.4660 1.2569 1.5620 0.45 6.14 

Tetrahedron 1.2708 1.5290 1.2804 1.5897 0.75 3.82 

 

 

 

In addition, we looked at the performance of the replacement relation in two 

extreme cases – when N-tensors of elastic particles are estimated from N-tensors of 

pores and from N-tensors of perfectly rigid particles. We began by calculating N-

tensors for pores (𝐸1 = 0) and perfectly rigid inhomogeneities (𝐸1 → ∞) for the five 

shapes discussed above (polyhedral supersphere 1, rhombic dodecahedron, 

icosahedron, cuboctahedron and octahedron), then used the results to calculate 𝐍-

tensors for elastic properties from Table 12 via the replacement relation. Stiffness 

contribution tensor components for the five particles having 𝐸1 = 0 𝐺𝑃𝑎 and  𝐸1 =

106 𝐺𝑃𝑎 are presented in Table 14. 

Finally, we estimated the effective bulk (𝐾) and shear (𝐺) moduli using 

Maxwell homogenization scheme. The results are compared with direct FEA 



77 

simulations and effective elastic properties of RVEs containing spheres, and presented 

in Figure 22. 

 

 

Table 14. Stiffness contribution tensor components for soft and rigid particles of the following shapes: 

polyhedral supersphere 1, rhombic dodecahedron, icosahedron, cuboctahedron and octahedron 

Shape 
Rigid, 𝑬𝟏 = 𝟏𝟎𝟔 𝑮𝑷𝒂 Pore, 𝑬𝟏 = 𝟎 𝑮𝑷𝒂 

𝑵̅𝟏𝟏𝟏𝟏
𝒓𝒊𝒈𝒊𝒅

 𝑵̅𝟏𝟐𝟏𝟐
𝒓𝒊𝒈𝒊𝒅

 𝑵̅𝟏𝟏𝟐𝟐
𝒓𝒊𝒈𝒊𝒅

 𝑵̅𝟏𝟏𝟏𝟏
𝒑𝒐𝒓𝒆

 𝑵̅𝟏𝟐𝟏𝟐
𝒑𝒐𝒓𝒆

 𝑵̅𝟏𝟏𝟐𝟐
𝒑𝒐𝒓𝒆

 

polyhedral supersphere1,  

𝐸0 = 120 𝐺𝑃𝑎, 𝜈0 = 0.34 
315.380 98.331 120.661 -508.577 -84.157 -337.858 

rhombic dodecahedron,  
𝐸0 = 70 𝐺𝑃𝑎, 𝜈0 = 0.17 

160.279 65.072 37.215 -157.868 -62.719 -28.168 

icosahedron, 

𝐸0 = 2.5 𝐺𝑃𝑎, 𝜈0 = 0.34 
6.717 2.102 2.504 -10.772 -1.786 -7.207 

cuboctahedron, 

𝐸0 = 2.89 𝐺𝑃𝑎, 𝜈0 = 0.35 
8.285 2.428 3.007 -13.994 -2.158 -10.051 

octahedron, 

𝐸0 = 2.89 𝐺𝑃𝑎, 𝜈0 = 0.35 
8.177 3.292 2.977 -15.182 -2.326 -10.820 

 

 

 

From the examination of the Figure 23a andFigure 23b it can be concluded that in the case 

of soft inhomogeneities, Maxwell scheme in combination with N-tensor obtained from 

the replacement relation based on a pore provides a good correlation with direct FEA 

results. On the other hand, for stiff inhomogeneities, Maxwell scheme predictions with 

N-tensor obtained from the replacement relation based on a perfectly rigid particle 

result in a better agreement with direct FEA calculations, see Figure 23c-e. Comparing 

the predictions for the effective moduli from spheres with direct FEA results indicates 

that the effective shear modulus is more sensitive to the shape of inhomogeneitis than 

the effective bulk modulus. In addition, the results show that predictions obtained from 

the replacement relation work better than approximations by spheres. 
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(a) (b) 

  

(c) (d) 

 

 

 

(e)  

Figure 23. Effective elastic properties estimated via Maxwell scheme and N-tensors based on the 

replacement relation of materials containing randomly oriented particles of different shapes: a) 

polyhedral supersphere1; b) rhombic dodecahedron; c) icosahedron; d) cuboctahedron; e) octahedron 
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3.6 Discussions and conclusions 

Stiffness contribution tensors (N-tensors) of 15 convex polyhedra were 

calculated using Finite Element Analysis and presented in this paper. The N-tensor 

components of these shapes were analyzed to determine whether the tensors were 

isotropic or exhibited cubic symmetry. As expected, a sphere was confirmed to be 

isotropic; polyhedral superspheres were found to be nearly isotropic; and a cube, 

truncated octahedron, cuboctahedron, rhombic dodecahedron and octahedron were 

concluded to have cubic symmetry. The applicability of the replacement relation that 

interrelates stiffness contribution tensors of inhomogeneities having the same shape but 

different elastic properties to the considered shapes was investigated. It was found that 

the replacement relation can be used with good accuracy (<5% maximum relative error) 

for most of the considered shapes except for a tetrahedron, octahedron, cube and 

smooth tetrahedron for which the maximum relative errors were considerably higher. 

Application of the replacement relation to a tetrahedron resulted in the largest relative 

error of 20.4% among all considered shapes. Note that the replacement relation works 

better for shapes with low values of the parameter 𝑝, which has the effect of smoothing 

of the edges and corners of a shape. We also observed a correlation between the 

accuracy of the replacement relation and the sphericity shape parameter – the Eucledian 

norm of the difference between N-tensor calculated via replacement relation and N-

tensor obtained from direct FEA increases linearly with sphericity. Similar correlation 

was observed for the Eucledian norm of the difference between the N-tensor of a 

polyhedral particle and its approximation by a sphere. 
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We used N-tensors of individual polyhedra to calculate overall elastic 

properties of materials containing multiple randomly oriented polyhedral particles via 

micromechanical homogenization based on non-interaction approximation, Mori-

Tanaka and Maxwell schemes. The results were compared with direct FEA calculations 

performed on periodic RVEs. Good correspondence between FEA simulations and 

Mori-Tanaka and Maxwell schemes up to volume fractions of 30% was observed with 

Maxwell scheme being a little closer to direct FEA. FEA results were also compared 

with effective properties calculated using Maxwell scheme and the replacement 

relation based on perfectly rigid particles and pores. We observed that in the cases when 

particle material is stiffer than the matrix, the replacement relation based on perfectly 

rigid particles results in good predictions for effective elastic properties. Conversely, 

in the cases when particles are softer than the matrix, the replacement relation based on 

pores produces better estimates for the overall elastic properties. 

Combination of N-tensor components presented in this paper for different 

values of matrix Poisson’s ratio (see Table 11 and Appendix B) with the replacement 

relation (35) can be used to estimate stiffness contribution tensors of polyhedral 

particles for any set of particle/matrix elastic properties. The estimate will have a 

particularly good accuracy in the cases when particles are stiffer than the matrix 

because Table 11 and Appendix B results were obtained for stiff particles. For a 

combination in which the particle material is softer than the matrix, approximation of 

the shape by a sphere might result in a better estimate than the one obtained from the 

replacement relation based on a stiff particle.  
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4.0 HOMOGENIZATION OF MATERIALS WITH CRACK WITH AN 

“ISLAND” OF A PARTIAL CONTACT 

Abstract. Compliance and resistivity contribution tensors of a penny-shaped 

crack having a partial contact of arbitrary location along crack faces are found, in terms 

of contact size and its distance from the center. This result is a first step towards 

modeling of “rough” cracks having contacts between crack faces. Being applied to 

multiple cracks, our results yield the “adjusted”, for the presence of contacts, value of 

crack density in terms of contact parameters. Similar results are obtained in the context 

of conductivity.  

4.1 Introduction 

Cracks having partial contacts between crack faces are common in various 

materials. Clarke, 1921 observed cracks of annular geometries in metal castings. Cai et 

al. (2011) reported formation of annular cracks in human femur cortical bone during 

radial fretting. Kudinov (1977) reported formation of the flat annular pores in plasma-

spraying process and evaluated relative size of the island of contact. Bhowmick et al. 

(2007) observed cracks of similar geometry occurring in silicon subjected to fatigue 

contact loading. Figure 24 provides illustrations.  

A partial contact between crack faces significantly “stiffens” the crack, even if 

the contact is small. This was discussed by Todoroki et al. (1988) in the context of 

fatigue cracks who noted that ignoring the contacts produces incorrect estimates of the 

fatigue life. Yet another aspect of the problem is that, due to the “stiffening” effect on 
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cracks, the presence of partial contacts makes detection of a crack more difficult, as 

experimentally observed by Buck et al. (1983).  

 

 

 

  

Figure 24. (a) Optical micrographs of contact damage in silicon (100) from cyclic loading of spherical 

indenter at P=250N, n=85x103 cycles (from Bhowmick et al., 2007); (b) SEM image of a crack in 

human cortical bone having uncracked segments (“islands” of uncracked material) indicated by 

arrows (from Zimmermann et al. (2015)); (c) Pancake-like splats observed in the process of plasma 

spraying of Al2O3 powder. The edge and the central part of splat are in contact with the lower layer 

while the ring-like area in-between forms a crack (from Fan et al. (1998)) 

 

The first step to analysis of cracks with contacts is to examine the effect of one 

contact; in other words, to analyze a crack of the annular geometry (with an “island” of 

partial contact). Most of the available quantitative results have dealt with the 

axisymmetric geometry (centrally located “island”) under tension, and focused on 

calculation of the stress intensity factors (SIF). This problem can be reduced to integral 

(a) (c)

(b)
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equations of various types. The first approximate solution for 𝐾𝐼 was obtained by 

Grinchenko and Ulitko (1965) by the method of iterations. The analysis given by 

Smetanin (1968) for 𝐾𝐼 at both external and internal edges uses an asymptotic method. 

Moss and Kobayashi (1971) used the technique proposed by Mossakovski and Rybka 

(1964) to develop iterative approximate solutions for elastic fields. The analysis of the 

annular crack problem presented by Shibuya et al. (1975) employs a technique whereby 

the governing integral equations are reduced to an infinite system of algebraic 

equations. Choi and Shield (1981) solved the axisymmetric problems of an annular 

crack subject to torsional and axial loads; they used Betti theorem to derive the 

governing integral equations and solved the problem in terms of Fredholm integral 

equation with kernel having the logarithmic singularity. They also estimated accuracy 

of the results of Smetanin (1968) and Moss and Kobayashi (1971). Selvadurai and 

Singh (1985) obtained series solution for a system of triple integral equations and 

calculated 𝐾𝐼 at both edges of the annular crack. They also compared the SIFs derived 

by other methods. Nied (1981) and Nied and Erdogan (1983) formulated the problem 

in terms of a system of singular integral equations and solved it numerically. Clements 

and Ang (1988), solving the same problem, obtained a pair of uncoupled Fredholm 

integral equations with simple continuous and bounded kernels and solve them by the 

method of iterations. They also provided comparison of their results with ones of 

Selvadurai and Singh (1985) and Nied (1981). Korsunsky and Hills (2005) developed 

a technique employed a one-dimensional integral equation approach to calculate the 
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SIFs at the edges of an arbitrarily shaped crack lying on a surface of revolution and 

subject to an arbitrary axisymmetric stress field. They used this technique to calculate 

𝐾𝐼 at the inner and outer edges of the annular crack. Their result coincides with one of 

Smetanin (1968). Asadi et al. (2009) obtained 𝐾𝐼 for the system of multiple coaxial 

annular cracks, with particular attention paid to the case of two cracks. Note that all 

these results produced by different methods are close to one another. 

Beom and Earmme (1993) considered shear loading of the annular crack. Using 

Hankel transform to reduce the problem to a pair of triple integral equations, they 

solved them numerically and obtained results for 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 under four different 

distribution of the shear load: uniform radial shear, linearly varying radial shear, 

uniform shear and linearly varying shear. Note that under the uniform shear, the 

variation of 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 along the crack edges has the same angular dependence as the 

one for a penny-shaped crack.  

Sevostianov (2003) numerically evaluated the effect of the annular crack on the 

effective resistivity (thermal or electrical). Recently, Glubokovskikh et al. (2016)used 

this approach, as well as the result on compliance of contacting rough surfaces 

(Sevostianov and Kachanov (2008a, b) to finding the effective normal compliance of 

finite cracks with contacting surfaces; they also provided comparison with 

experimental data.  

All the above-mentioned works assumed that the partial contact is located at the 

center of the crack – an assumption that is overly restrictive for applications. The 
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present chapter, analyzes, numerically, arbitrarily located contacts, and evaluates their 

stiffening effect as a function of the contact size and location, under both normal and 

shear loads. The obtained numerical results are verified by comparison with the ones 

obtained analytically in the special case of centrally located island. The results are then 

applied to the case of multiple cracks to evaluate the “effective” crack density adjusted 

for the presence of contacts. Similar analyses are also given in the context of 

conductivity.  

4.2 Hypothesis to be verified 

As seen from photomicrographs of Figure 24, partial contacts between crack 

faces typically have irregular geometry and locations. For the possibility to extend the 

obtained results to irregular geometries, we formulate the following hypothesis, to be 

verified in the text to follow:  

(A) The stiffening effect of a contact obviously increases for contacts located 

closer to the crack center. We hypothesize that this dependence is characterized 

by the function √1 − 𝑑2/𝑎2 (Figure 25) where d is the distance of contact 

center from the center of the crack and a is the crack radius, i.e. the stiffening 

effect follows the elliptical profile of the crack in absence of the contact; 

(B) In the problem of effective elastic properties of cracked materials, important 

role is played by closeness of the normal 𝐵𝑁 and shear 𝐵𝑇 compliances of a 

crack (the average normal and shear discontinuities induced by uniform unit 

normal and shear tractions, respectively): this allows one to characterize the 
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crack density by second-rank crack density tensor, implying orthotropy for an 

arbitrary orientation distribution of cracks Kachanov (1992). For a circular 

crack the two compliances differ by factor 1 − 𝜈/2. We hypothesize that this 

ratio is approximately preserved for a crack with a partial contact.  In the case 

of off-center location of the contact, the shear compliance of the crack depends 

on the direction of the shear in the crack plane. In this case, we hypothesize that 

the ratio 𝐵𝑇/𝐵𝑁 still holds provided 𝐵𝑇 is replaced by the average, 〈𝐵𝑇〉, over 

shear directions. 

 

 

  

Figure 25. The configurations of a crack with an island of cohesion: (a) centrally located island; (b) 

off-center island 

 

 

 

4.3 Background results: property contribution tensors 

The compliance contribution tensors have been first introduced in the context 

of ellipsoidal pores and cracks in isotropic material by Horii and Nemat-Nasser (1983). 

For the general case of ellipsoidal inhomogeneities (isotropic and anisotropic) 
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embedded in an isotropic matrix, these tensors were defined and calculated by 

Sevostianov and Kachanov(1999, 2002); for other physical properties, the property 

contribution tensors were introduced by Kachanov and Sevostianov (2005).  

We consider a homogeneous material (the matrix) having compliance tensor 

𝐒𝟎 and resistivity 𝐫𝟎 and containing an inhomogeneity of volume 𝑉1, of compliance 𝐒𝟏 

and resistivity 𝐫𝟏. We assume that both materials satisfy are linearly elastic and linearly 

conductive, i.e. satisfy the Hooke’s Hooke’s law 𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 and Fourier’s law 𝑇,𝑖 =

𝑟𝑖𝑗𝑞𝑗, where 𝜀𝑖𝑗 is (infinitesimal) elastic strain tensor, 𝜎𝑘𝑙 is stress tensor,  𝑇 is 

temperature and 𝑞𝑗 is heat flux vector. 

Remark. Instead of thermal conductivity problem, electric conductivity may be 

considered. Then, temperature has to be replaced by electric potential, heat flux density 

– by electric current density, and Fourier’s law – by Ohm’s law. 

The compliance contribution tensor of an inhomogeneity is a fourth-rank tensor 

H that gives the extra strain (per reference volume V ) due to its presence:  

 ∆𝛆 =  
𝑉1

𝑉
𝐇:𝛔0,  or, in components, ∆𝜀𝑖𝑗 = 

𝑉1

𝑉
𝐻𝑖𝑗𝑘𝑙: 𝜎𝑘𝑙

0  (49) 

where 𝜎𝑘𝑙
0  are remotely applied stresses that are assumed to be uniform within V  in 

the absence of the inhomogeneity. For a circular crack, of radius a, 

𝑉1

𝑉
𝐻𝑖𝑗𝑘𝑙 =

8(1 − 𝜈0)

3𝐺0

𝑎3

𝑉
{𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + 

𝜃𝑖𝑘𝑛𝑙𝑛𝑗 + 𝜃𝑖𝑙𝑛𝑘𝑛𝑗 + 𝜃𝑗𝑘𝑛𝑙𝑛𝑖 + 𝜃𝑗𝑙𝑛𝑘𝑛𝑖

2(2 − 𝜈0)
} (50) 

where in  is the unit vector along the axis of spheroid symmetry and 𝜃𝑖𝑘 = 𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗.  



88 

Similar approach can be applied for to the problem of conductivity (electrical 

or thermal) of a material containing an inhomogeneity. The change in ∇𝑇 required to 

maintain the same heat flux density if the inhomogeneity is introduced is:  

 
∆(∇𝑇) =

𝑉1

𝑉
𝐑 ∙ 𝐪 (51) 

where the symmetric second-rank tensor 𝐑 is called the resistivity contribution tensor 

of an inhomogeneity. In the limit of strongly oblate perfectly insulating spheroid – the 

case relevant for a crack (provided the conductance across the crack through air is 

neglected), 

 𝑉1

𝑉
𝐑 =

1

𝑘0

8𝑎3

3𝑉
𝐧𝐧 (52) 

4.4 Crack with a central contact: compliance and resistivity 

contribution tensors  

The internal variable technique of Rice (1975) allows one to obtain compliance 

contributions 𝐻𝑖𝑗𝑘𝑙 of cracks of various geometries for which SIFs are available, by 

observing that the increment of the overall compliance 𝑑𝑆𝑖𝑗𝑘𝑙 of volume 𝑉 due to 

incremental propagation ∆𝐴 of crack front 𝐿 is given by 

 
𝑑𝑆𝑖𝑗𝑘𝑙 =

1

𝑉

1

4
∫ 𝛽𝑞𝑟

𝜕𝐾𝑞

𝜕𝜎𝑖𝑗

𝜕𝐾𝑟

𝜕𝜎𝑘𝑙
𝑑𝐴

∆𝐴

 (53) 

In the case of the isotropic matrix, there is no coupling between mode I, II and III at 

the crack tip so that  
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𝛽𝑖𝑗 =
8(1 − 𝜈2)

𝐸
[

1 0 0
0 1 0

0 0
1

1 − 𝜈

] (54) 

We now treat the crack as having grown from an infinitesimal nucleus to its current 

geometry. Then components of the compliance contribution of the crack are given by 

integration over the growth path ∫𝑑𝑆𝑖𝑗𝑘𝑙 =
𝑉1

𝑉
𝐻𝑖𝑗𝑘𝑙 provided SIFs along the growth 

path are known; if they are available in numerical form, they can often be approximated 

by simple analytical expressions leading to approximate explicit formulas for the crack 

compliance contribution.  

Results for SIFs 𝐾𝐼- 𝐾𝐼𝐼𝐼 and heat flux intensity factor 𝐾𝑇 (see, Sevostianov 

(2006)) at the outer edges of an annular crack are given in the form  

 𝐾𝐼 = 𝜎11√𝜋𝑎𝐹1(𝜆) 

𝐾𝐼𝐼 = 𝜎13√𝜋𝑎𝐹2(𝜆)sin (𝜃) 

𝐾𝐼𝐼𝐼 = 𝜎13√𝜋𝑎𝐹2(𝜆)(1 − 𝜈0)cos (𝜃) 

𝐾𝑇 = 𝑞1√𝜋𝑎𝐹𝑇(𝜆) 

(55) 

where 𝜎𝑖𝑗 and 𝑞𝑖 are components of stress tensor and heat flux vector, respectively, 𝜆 =

𝑐/𝑎 and functions 𝐹1,2(𝜆), as taken from Choi and Shield (1981) and Beom and 

Earmme (1993), for the outer edge are shown in Figure 26a. Note that 𝐹2(𝜆) depends on 

the Poisson’s ratio of the material. As seen in Figure 26b the following formula holds 

with good accuracy  
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𝐹2(𝜆) =

2

2 − 𝜈0√𝜆
𝐹1(𝜆) (56) 

In the limiting case of a penny-shaped crack without the island (𝜆 = 1), exact relation 

between 𝐹1(𝜆) and 𝐹2(𝜆) is recovered (see, for example, Murakami, 1987).  

Remark. Sevostianov and Kachanov (2001), considering normal compliance of 

an axisymmetric crack used the SIFs at the outer edge of an annular crack provided by 

Smetanin (1968). Later, they used SIF at the inner edge as well (Kachanov and 

Sevostianov (2012). For normal compliance that uses 𝐾𝐼 it indeed makes no difference. 

However, the data on 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 provided by Choi and Shield (1981) and Beom and 

Earmme (1993) for the outer edge are in much more suitable form than for the inner 

one. Since both approaches are approximations and the preference is determined by the 

accuracy of the available results on SIFs and convenience of their presentation, we use 

here the data for the outer edge. 

As far as heat flux intensity factor is concerned, it follows from the work of 

Barber (2003) on the connection between the incremental elastic stiffness of a partial 

contact between two half-spaces and conductance across it that 
𝐾𝑇

𝑞1
=

𝐾𝐼

𝜎11
 and, therefore, 

𝐹𝑇(𝜆) = 𝐹1(𝜆). At the outer edge, a square root function provides a good 

approximation for 𝐹1(𝜆) (Figure 26c): 

 
𝐹1(𝜆) ≈

2√𝜆

𝜋
 (57) 
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Figure 26. (a) Functions 𝐹1(𝜆) and 𝐹2(𝜆) entering (55) as taken from Choi and Shield (1981) and 

Beom and Earmme (1993); (b) Accuracy of the approximation (56) for 𝜈0 = 0.3 and 𝜈0 = 0.5; (c) 

Accuracy of the approximation (57); in the case of 𝜈0 = 0, 𝐹1(𝜆) = 𝐹2(𝜆) ; (d) Function 𝛷(𝜆, 𝜈0) 
entering expression (59) 

 

 

 

Using these approximations and treating the crack as having grown from the fixed inner 

boundary outwards, we obtain components of the compliance contribution of the 

annular crack (the 1x  axis is normal to the crack) as follows: 

 𝑉1

𝑉
𝐻1111 =

1

𝑉
∫ ∫ 𝑑𝑆1111𝑟𝑑𝑟𝑑𝜑
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𝑎

𝑏
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1

𝑉

16(1 − 𝜈0
2)𝑎3

3𝐸0

(3𝜆2 − 𝜆2)

2
 

(58) 

Similarly, 
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𝑉1

𝑉
𝐻1212 =

1

𝑉
∫ ∫ 𝑑𝑆1212𝑟𝑑𝑟𝑑𝜑

𝑎

𝑏

2𝜋

0

=
1

𝑉

1

4
∫ ∫ [𝛽22 (

𝜕𝐾𝐼𝐼

𝜕𝜎12

)
2

+ 𝛽33 (
𝜕𝐾𝐼𝐼𝐼

𝜕𝜎13

)
2

] 𝑟𝑑𝑟𝑑𝜑
𝑎

𝑏

2𝜋

0

 

=
1

𝑉

32(1 − 𝜈0
2)

𝜋𝐸0

∫ ∫ [𝑠𝑖𝑛2𝜑 + 𝑐𝑜𝑠2𝜑(1 − 𝜈0)]
𝑟(𝑟 − 𝑏)
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𝑉

32(1 − 𝜈0
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𝐸0
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𝑑𝑟

𝑎

𝑏
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1

𝑉

32(1 − 𝜈0
2)

3𝐸0(2 − 𝜈0)
𝑎3𝛷(𝜆, 𝜈0) 

(59) 

Integral in (59) cannot be evaluated in terms of elementary functions, but it 

converges in the entire interval of variation of the parameters. Function 𝛷(𝜆, 𝜈0) is 

illustrated in Figure 25d. The resistivity contribution tensor of the crack is obtained in 

a similar way: analogously to (53), we have 

 
𝑑(𝑘𝑖𝑗)

−1 =
1

𝑉
𝑅𝑖𝑗 =

1

𝑉

1

4
∫ (𝑐

𝜕𝐾𝑇

𝜕𝑞𝑖

𝜕𝐾𝑇

𝜕𝑞𝑗
𝑑𝑙)𝑑𝐿

𝐿

 (60) 

where coefficient 𝑐 relates the near tip temperature discontinuity to the heat flux 

intensity factor: 

 [𝑇] = 𝑐𝐾𝑇√𝑟/2𝜋 (61) 

In the case of the isotropic matrix, 𝑐 = 4/𝑘0 and, analogously to formulas (58) we have 
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8
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(62) 
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4.5 Computation of property contribution tensors for a crack with non-

central location of a contact island 

The geometry of a crack with an island is defined by two dimensionless 

parameters: the ratio 𝜆 = 𝑐/𝑎 and eccentricity 𝛽 = 𝑑/𝑎. We calculated non-zero 

components of the compliance and resistivity contribution tensors - 𝐻1111, 𝐻1212, 

𝐻1313, and 𝑅11 - of individual annular cracks using Finite Element Method (FEM). To 

produce the 3D mesh, we start by generating the surface mesh of the crack in a custom 

MATLAB script as follows. First, the profiles (ellipses) of the crack cross-sections are 

created (Figure 27a) and coordinates of the outline points are stored. Since the crack 

profiles are stored as ordered lists of point coordinates, they can be easily connected 

into triangular elements to produce a continuous surface mesh of the crack (Drach et 

al. (2014); see Figure 27b. The generated surface mesh is then used in the numerical 

procedure to find components of the crack property contribution tensors as described 

below.  

Crack surface mesh is placed in a large cubic-shaped reference volume with 

sides five times larger than the crack diameter, in order to reduce boundary effects and 

simulate remote loading. This setup is auto meshed with linear tetrahedral 3D elements. 

Note that linear tetrahedral elements are known to be stiffer than nonlinear ones, due 

to constancy of strain within the elements. We compared predictions of the compliance 

contribution tensors obtained from models meshed with four and ten nodes tetrahedral 

elements. The difference was of the order of 1%. 
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Figure 27. (a) Elliptic profiles of the crack cross-sections; (b) Surface mesh 

 

 

 

Due to reasonably accurate predictions by linear elements and considerably higher 

computational demands of the simulations based on quadratic elements, four points 

tetrahedral elements were used. 

After the volume mesh has been generated, two types of boundary conditions 

were used to find non-zero components of the property contribution tensors 𝐻𝑖𝑗𝑘𝑙 and 

𝑅𝑖𝑗: homogeneous tractions and temperature gradient on the faces of the reference 

volume, respectively. The non-zero components of the compliance contribution tensor 

are found from the set of three loading cases: normal loading 𝜎11 and two shear loads 

𝜎12 and 𝜎13. Resistivity contribution tensor has only one non-zero component 𝑅11 along 

the crack’s axis of symmetry, therefore we consider only the case when temperature 

gradient is applied along x1 axis. Once the boundary conditions are prescribed, the 

FEM simulations are performed, and the result files are processed using a custom 

Python script to determine 𝐻𝑖𝑗𝑘𝑙 and 𝑅𝑖𝑗 tensors. To validate the procedure, we 

compared the analytic solution for the compliance contribution tensor of a penny 

(a) (b)



95 

shaped crack with the one evaluated numerically (modeled as an oblate spheroid of the 

aspect ratio 0.01). The maximum error was below 1%.  

4.6 Results and verification of the hypotheses  

We calculated property contribution tensors for a crack with an island, as a 

function of two parameters: size of the island as characterized by 𝜆 = 𝑐/𝑎 and the 

position of the island as characterized by 𝛽 = 𝑑/𝑎 (the configuration is shown in 

Figure 25). These parameters vary as 0 < 𝜆 < 1 and 0 < 𝛽 < 𝜆. Poisson’s ratio in the 

calculation was taken as 𝜈0 = 0.3. Figure 28 compares numerical results with 

analytical ones, given by formulas (58), (59), and (62), in the case of centrally located 

island. Figures Figure 29 and Figure 30 show the dependence of components of 𝐻𝑖𝑗𝑘𝑙 

(normalized to 𝐷 =
1

𝑉

2𝜋2(1−𝜈0
2)

𝐸0
a3) and ijR  (normalized to 𝐷1 =

1

𝑉

2𝜋2

𝑘0
a3) on 

parameters 𝜆 and 𝛽. Two hypotheses, formulated in Section 4.2, have been validated 

by these calculations: 

A. The effect of a contact as a function of its shift from the center decreases 

approximately as √1 − 𝛽2 (Figure 31a-c) – reflecting the profile of crack 

opening displacement in absence of the contact. 
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Figure 28. Components of the compliance and resistivity contribution tensors for an annular crack 

with centrally positioned island. Comparison of analytical results (formulas (58), (59) and (62)) with 

FEM computations. 

 

 

 

  

  

Figure 29. Normalized non-zero components of the compliance and resistivity contribution tensors as 

functions of the distance between the center of the island of contact and the crack center at different 

sizes of the island. 
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B. The ratio of the normal compliance of the crack to the average, over 

tangential directions, shear compliance, is approximately the same as its value 

1 − 𝜈/2 for the circular crack (without contact) (Figure 31d). This fact has two 

important implications: 

  The usual parameter of crack density (scalar or tensor) can be 

retained for cracks with arbitrarily located partial contacts. The value of 

the crack density parameter needs to be adjusted according to Figure 32 

that shows the radius 𝑎𝑒𝑓𝑓(𝜆, 𝛽) of a circular crack without contact that 

has the same compliance as considered crack of radius a with the contact 

characterized by parameters 𝜆 and 𝛽; 

 Concerning the overall anisotropy of a material with multiple cracks, 

the said anisotropy has been found earlier to be approximately 

orthotropic; this fact is rooted in closeness of the two compliances. Our 

finding, therefore, that the presence of partial contacts does not violate 

the overall orthotropy.  

C. Since effect of a contact is characterized by a function of two parameters  

 (𝑎𝑒𝑓𝑓/𝑎)3 = 𝑀(𝜆, 𝛽) (63) 

it is difficult to construct its approximate analytical representation. The 

following observation is useful in this regard: this function is well approximated 

by the following expression: 

 𝑀(𝜆, 𝛽) ≈ 𝑓1(𝜆) + 𝑓2(𝜆)𝑓3(𝛽) (64) 
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where functions 𝑓1, 𝑓2, and 𝑓3 are given by 

 𝑓1 = (3𝜆2 − 𝜆3)/2 

𝑓2 = 60𝑒−6𝜆𝑓1(𝜆) 

𝑓3 = 1 − √1 − 𝛽2 

(65) 

The accuracy of the representation (64) is illustrated in Figure 10. 

 

 

  

  
Figure 30. Normalized non-zero components of the compliance and resistivity contribution tensors as 

functions of the island size at different distances between the center of the island and the crack center 
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Figure 31. (a)-(c) The change of the compliance contribution tensor of a crack due to the presence of 

the contact island (𝐻𝑖𝑗𝑘𝑙
𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟  and 𝑅𝑖𝑗

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟  are compliance and resistivity contribution tensor of a 

circular crack without contact island). Confirmation of the hypothesis A corresponds to the lines being 

straight. (d) The ratio 2𝐻1111/(𝐻1212 + 𝐻1313) (that equals 1 − 𝜈0/2 for a circular crack without 

contact island). Confirmation of the hypothesis B corresponds to the lines being horizontal and equal 

to 1 − 𝜈0/2. Poisson’s ratio is 𝜈0 = 0.3 

 

 

 

  
Figure 32. Radius of the “effective” penny shaped crack without island having the same compliance 

and resistivity contribution tensors as the crack with the island of partial contact as (a) function of the 

island size, at different distances between the center of the island and the crack center; (b) function of 

the distance between the center of the island of contact and the crack center at different sizes of the 

island 

0.6 0.7 0.8 0.9 1.0
0.0  

0.25 

0.50 

0.75 

1.0  

21 (a) 

1111H

 = 0.9  = 0.8
 = 0.7

 = 0.6

 = 0.5

 = 0.1

 = 0.4
 = 0.3

 = 0.2

0.6 0.7 0.8 0.9 1.0
0.0  

0.25 

0.50 

0.75 

1.0  

2/)( 13131212 HH 

(b) 
21 

 = 0.9  = 0.8
 = 0.7

 = 0.6

 = 0.5

 = 0.1

 = 0.4
 = 0.3

 = 0.2

0.6 0.7 0.8 0.9 1.0
0.0  

0.25 

0.50 

0.75 

1.0  
11R

(c) 

 = 0.9
 = 0.8

 = 0.7
 = 0.6

 = 0.5

 = 0.1

 = 0.4
 = 0.3

 = 0.2

21 

0.0 0.2 0.4 0.6 0.8 1.0
0.65

0.70

0.75

0.85
)/(2 131312121111 HHH 

(d) 

 = 0.9

 = 0.8 = 0.7
 = 0.6 = 0.5

 = 0.4

 = 0.1

 = 0.3

 = 0.2

0.80



0.0
0.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



aaeff /

(a)

 = 0.6
 = 0.7

 = 0.8

 = 0.5
 = 0.4

 = 0.3

 = 0.2

 = 0.1

 = 0

0.0

0.2

0.4

0.6

0.8

1.0

aaeff /

0.0 0.2 0.4 0.6 0.8 1.0

(b)

 = 0.9
 = 0.8

 = 0.7
 = 0.6

 = 0.5

 = 0.1

 = 0.4

 = 0.3

 = 0.2





100 

  

Figure 33. Accuracy of the approximation (64) of the effect of a contact island 

 

 

 

4.7 Implications for multiple cracks. Adjusted crack density 

As shown above, the normal compliance 𝐵𝑁 
of a crack with an “island” and its 

average over tangential directions shear compliance 〈𝐵𝑇〉 are about as close as they are 

for a circular crack. Therefore, a set of multiple cracks with random locations of islands 

is equivalent – in its effect on the overall elastic properties – to a set of circular cracks, 

of reduced crack density. In other words, the presence of islands can be accounted for 

by appropriately reduced crack density.  

The obtained results yield explicit expression for this reduction. Indeed, the 

usual parameter of crack density 𝜌 = (1/𝑉)∑𝑎(𝑘)3 introduced by Bristow (1960) 

takes the contribution of k-th crack proportionally to its radius cubed. If this crack has 

an island of partial contact, this contribution is reduced by the “island factor” (63) that 

reflects the position of the island and its size. Therefore, the adjusted value of the crack 

density is  
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𝜌∗ = (1/𝑉)∑(

𝑎

𝑀

3

)
3

 (66) 

With this adjustment, all the available schemes for the effective elastic properties of 

cracked solids as functions of crack density (the non-interaction approximation, the 

differential scheme, etc.) can be applied to cracks with islands.  

For non-randomly oriented cracks with islands, parameter (63) should be 

replaced by the tensor one – a similarly adjusted crack density tensor 𝛂 =

(1/𝑉)∑(𝑎3𝐧𝐧)𝑘 (introduced by Kachanov (1980): 

 
𝛂∗ = (1/𝑉)∑(

𝑎3

𝑀
𝐧𝐧)

(𝑘)

 (67) 

Remark. Strictly speaking, the effective elastic compliances also contain the 

term dependent on the fourth-rank tensor 𝛂 = (1/𝑉)∑(𝑎3𝐧𝐧𝐧𝐧)𝑘 that can be 

similarly adjusted; however, the contribution of this term is usually relatively small; 

see Kachanov (1992) for discussion in detail.  

 If the distribution of parameter M is statistically independent of the distributions of 

crack radii 𝑎(𝑘) and crack orientations, the adjusted crack density parameters can be 

written in the form 

 𝜌∗ = 〈
1

𝑀
〉 𝜌     and     𝛂∗ = 〈

1

𝑀
〉 𝛂 (68) 

where 𝜌 and 𝛂 are the usual parameters in absence of islands and angle brackets denote 

the average, over the crack set, value of the inverse of the “island factor”.  
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4.8 Concluding remarks 

A crack of annular geometry, with arbitrarily located “contact island” of the 

circular shape, has been analyzed, from the point of view of its compliance and 

resistivity contributions. Such cracks are common in a variety of materials, and their 

analysis is essential for finding the effective elastic and conductive properties of such 

materials.  

The key points of our analysis can be summarized as follows: 

 The stiffening effect of the “island” depends on two parameters: the island 

size and the distance between its center and the center of the crack. This 

dependence is investigated numerically, and the results are approximated 

by a simple analytical expression (64);  

 The normal (𝐵𝑁) compliance of a crack with an “island” and its average 

over tangential directions shear compliance 〈𝐵𝑇〉   are about as close as they 

are for a circular crack. Hence a set of multiple cracks of this kind is 

equivalent to a set of circular cracks, of reduced crack density; the latter is 

explicitly expressed in terms of island parameters. Therefore, all the 

effective media theories for cracked materials can be used. Note that similar 

closeness of the two compliances for a variety of highly “irregular” cracks 

shapes was found by Grechka and Kachanov (2006).  
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5.0 CLOSING REMARKS 

A novel efficient numerical procedure is developed to generate and analyze 

RVEs with non-ellipsoidal inhomogeneities with volume fraction up to 30%. In the 

case of porous materials with identical and mixture of voids, Mori-Tanka and Maxwell 

approximations are in good correspondence with direct FEA simulations for considered 

volume fractions (0-25%). Approximation methods that allow to separate shape effect 

and matrix Poisson’s ratio are derived, providing an opportunity of extending obtained 

results to materials with different Poisson’s ratio. 

The applicability of the replacement relation that interrelates stiffness 

contribution tensors of inhomogeneities having the same shape but different elastic 

properties to the considered shapes is examined. Satisfactory approximation is obtained 

for most considered inhomogeneities of polyhedral shape, except for a tetrahedron, 

octahedron, cube and smooth tetrahedron for which the maximum relative errors were 

considerably higher. The error in replacement relation linearly increases with sphericity 

shape parameter, being zero for the case of spherical inhomogeneity.  

Micromechanical homogenization using stiffness contribution tensors of 

individual polyhedra is performed to calculate overall elastic properties of materials 

containing multiple randomly oriented particles with volume fraction up to 30%. From 

comparison with direct FEA it is observed that accuracy of predictions for effective 

elastic properties using replacement relation depends on matrix and inhomogeneity 

mechanical properties. In the cases when particles are softer than the matrix, the 
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replacement relation based on pores produces better estimates for the overall elastic 

properties. On the other hand, replacement relation based on perfectly rigid particle 

results in more accurate approximations when particles are stiffer than the matrix. 

Crack of annular geometry is considered and property contribution tensors are 

calculated utilizing Rice’s formalism and using FEA. Good correlation between 

analytical and numerical approaches is obtained for crack with a central island of 

contact. Finite element calculations are extended to the case of a crack with non-central 

contact. The effect of the contact as a function of its shift from the center is proportional 

to √1 − 𝛽2 – reflecting the profile of crack opening displacement in the absence of the 

contact. The ratio of the normal compliance of the crack with an island to the shear 

compliance averaged over the tangential directions is approximately the same as for 

the circular crack without contact. With the adjusted value of the crack density 

proposed in this work, all available schemes for the effective elastic properties of 

cracked solids as functions of crack density can be applied to cracks with islands.  

The research in the field of effective properties of composite materials 

containing various types of defects should continue. The ability to solve complex 

boundary value problems will benefit the industry by providing new results for property 

contribution tenors and contribute to the development of a more comprehensive library 

of solutions. These solutions will be used for optimization of composite materials, 

which in turn will further stimulate the development of novel structures.   
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APPENDIX A: COMPLIANCE CONTRIBUTION TENSORS FOR 

DIFFERENT PORE SHAPES 

The H-tensors presented below are normalized by pore volume fraction and 

matrix Young’s modulus as shown in Equation (17). The components for pores of 

cubical, octahedral and tetrahedral shapes were calculated using the procedure 

described in Section 2.2. 

Sphere. The analytical expression for the H-tensor of a spherical pore obtained using 

Eshelby solution ((Eshelby, 1957, 1959)) can be found in (Mark Kachanov et al., 2003): 

 
𝐇̅ =

3(1 − 𝜈)

2(7 − 5𝜈)
[10(1 + 𝜈)𝐉 − (1 + 5𝜈)𝐈𝐈] (A. 1) 

where J  is the fourth rank unit tensor with components 𝐽𝑖𝑗𝑘𝑙 =
(𝛿𝑖𝑘𝛿𝑙𝑗+𝛿𝑖𝑙𝛿𝑘𝑗)

2
, and 𝐈 is 

the second rank unit tensor with components s 𝐼𝑖𝑗 = 𝛿𝑖𝑗.  

Spheroid. The H-tensors for oblate and prolate spheroids were presented in Kachanov 

et al. (2003) and corrected for a misprint in David and Zimmerman (2011). 

Cube. Cubical shape can be considered as a special case of a supersphere 𝑥2𝑝 + 𝑦2𝑝 +

𝑧2𝑝 = 1 when 𝑝 → ∞. The results for inhomogenities of this type were presented in 

Sevostianov et al. (2008) and Chen et al. (2015). However, the H-tensor for cubical 

pore was not provided in the explicit form in the above publications. The components 

calculated using FEA for matrix Poisson’s ratio values 𝜈0 = 0.1, 0.2, 0.3, 0.4 are given 

in Figure A.2.  



106 

 

 Figure A.1. Orientation of the cube for H-tensor calculations  
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(c) (d) 

Figure A.2 Normalized H-tensor components of the cubical pore: (a) 𝜈0 = 0.1; (b) 𝜈0 = 0.2; (c) 𝜈0 =
0.3; (d) 𝜈0 = 0.4 

 

 

 

Octahedron. Octahedral shape can be considered as a special case of a supersphere 

(𝑥2𝑝 + 𝑦2𝑝 + 𝑧2𝑝 = 1) when 𝑝 = 0.5.. The results for inhomogenities of this type 

were presented in Sevostianov et al. (2008) and Chen et al.(2015). However, the H-

tensor for octahedral pore was not provided in the explicit form in the above 
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publications. The components calculated using FEA for matrix Poisson’s ratio values 

𝜈0 = 0.1, 0.2, 0.3, 0.4 are given in  

 

 

 
Figure A.3. Orientation of the octahedron for H-

tensor calculations 
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(c) (d) 

Figure A. 4. Normalized H-tensor components of the octahedral pore: (a) 𝜈0 = 0.1; (b) 𝜈0 = 0.2; (c) 

𝜈0 = 0.3; (d) 𝜈0 = 0.4 
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Tetrahedron. To the authors’ knowledge, the H-tensor for a pore of tetrahedral 

shape has never been published. The components calculated using FEA for matrix 

Poisson’s ratio values ν0 = 0.1, 0.2, 0.3, 0.4 are presented in Figure A.6.  

 

 

 
Figure A.5.Orientation of the tetrahedron for H-

tensor calculations 
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(c) (d) 

Figure A.6. Normalized H-tensor components of the tetrahedral pore: (a) 𝜈0 = 0.1; (b) 𝜈0 = 0.2; (c) 

𝜈0 = 0.3; (d) 𝜈0 = 0.4  
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APPENDIX B: COMPARISON OF STIFFNESS CONTRIBUTION TENSORS 

FOR DIFFERENT PARTILCE SHAPES 

Table B.1 Comparison between stiffness contribution tensors calculated via direct FEA and obtained 

utilizing the replacement relation. Matrix material: 𝐸0 = 1𝐺𝑃𝑎 and 𝜈0 = 0.2, particle material: 𝐸1 =
20𝐺𝑃𝑎, 𝜈1 = 0.2 

Shape 𝑵̅𝟏𝟏𝟏𝟏
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟐𝟐

𝑭𝑬𝑨  𝑵̅𝟏𝟐𝟏𝟐
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟏𝟏

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟏𝟐𝟐

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟐𝟏𝟐

𝒓𝒆𝒑𝒍.
 
∆𝑵̅𝟏𝟏𝟏𝟏 
(%) 

∆𝑵̅𝟏𝟏𝟐𝟐 
(%) 

∆𝑵̅𝟏𝟐𝟏𝟐 
(%) 

‖𝐍𝑭𝑬𝑨 −
𝐍𝒓𝒆𝒑𝒍.

‖ 

Sphere 2.011 0.502 0.754 2.011 0.502 0.754 0.00 0.00 0.00 0.000 

Polyhedral 

Supersphere 1 

(smooth) 

2.012 0.505 0.758 2.010 0.505 0.757 0.10 0.01 0.11 0.002 

Polyhedral 

Supersphere 
2.054 0.506 0.777 2.031 0.506 0.767 1.15 0.13 1.32 0.024 

Polyhedral 

Supersphere 2 

(smooth) 

2.029 0.505 0.766 2.017 0.505 0.762 0.56 0.06 0.64 0.012 

Polyhedral 

Supersphere 
2.068 0.506 0.785 2.036 0.507 0.771 1.54 0.19 1.86 0.033 

Cube (smooth) 2.078 0.488 0.754 2.064 0.487 0.745 0.69 0.30 1.23 0.0174 

Cube  2.336 0.477 0.824 2.201 0.477 0.765 5.78 0.10 7.17 0.136 

Icosahedron 2.060 0.504 0.777 2.035 0.504 0.765 1.20 0.07 1.60 0.025 

Truncated 

Octahedron 
2.061 0.517 0.799 2.030 0.515 0.780 1.52 0.43 2.45 0.036 

Cuboctahedron 2.129 0.491 0.779 2.081 0.492 0.760 2.24 0.34 2.54 0.049 

Rhombic 

Dodecahedron 
2.068 0.520 0.808 2.032 0.517 0.783 1.78 0.62 3.11 0.043 

Octahedron 

(smooth) 
2.059 0.532 0.8261 2.024 0.523 0.790 1.74 1.80 4.36 0.041 

Octahedron 2.145 0.545 0.875 2.069 0.526 0.804 3.54 3.58 8.11 0.115 

 

Shape Tetrahedron (smooth) Tetrahedron 

𝑁1111
𝐹𝐸𝐴  2.1877 2.6230 

𝑁1122
𝐹𝐸𝐴  2.1595 2.5115 

𝑁1212
𝐹𝐸𝐴  0.4985 0.5155 

𝑁3333
𝐹𝐸𝐴  0.5266 0.6269 

𝑁1133
𝐹𝐸𝐴  0.8146 0.9411 
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Table B.1. Continued 

Shape Tetrahedron (smooth) Tetrahedron 

𝑁1313
𝐹𝐸𝐴  0.8427 1.0522 

𝑁1111
𝑟𝑒𝑝𝑙.

 2.1058 2.2801 

𝑁1122
𝑟𝑒𝑝𝑙.

 0.4731 0.4393 

𝑁1212
𝑟𝑒𝑝𝑙.

 0.7497 0.7558 

𝑁3333
𝑟𝑒𝑝𝑙.

 2.0407 2.1163 

𝑁1133
𝑟𝑒𝑝𝑙.

 0.5381 0.6031 

𝑁1313
𝑟𝑒𝑝𝑙.

 0.8145 0.9192 

max (∆𝑁𝑖𝑗𝑘𝑙(%)) 7.96 19.69 

‖𝐍𝐹𝐸𝐴 − 𝐍𝑟𝑒𝑝𝑙.‖ 0.130 0.443 

 

 

 

Table B.2. Comparison between stiffness contribution tensors calculated FEA directly and obtained 

utilizing replacement relation formula. Matrix material: 𝐸0 = 1𝐺𝑃𝑎 and 𝜈0 = 0.4, particle material: 

𝐸1 = 20𝐺𝑃𝑎, 𝜈1 = 0.2  

Shape 𝑵̅𝟏𝟏𝟏𝟏
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟐𝟐

𝑭𝑬𝑨  𝑵̅𝟏𝟐𝟏𝟐
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟏𝟏

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟏𝟐𝟐

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟐𝟏𝟐

𝒓𝒆𝒑𝒍.
 
∆𝑵̅𝟏𝟏𝟏𝟏 
(%) 

∆𝑵̅𝟏𝟏𝟐𝟐 
(%) 

∆𝑵̅𝟏𝟐𝟏𝟐 
(%) 

‖𝐍𝑭𝑬𝑨 −
𝐍𝒓𝒆𝒑𝒍.

‖ 

Sphere 2.721 1.259 0.730 2.721 1.259 0.730 0.00 0.00 0.00 0.000 

Polyhedral 

Supersphere 1 

(smooth) 

2.719 1.262 0.736 2.717 1.262 0.733 0.07 0.02 0.12 0.002 

Polyhedral 

Supersphere 
2.761 1.259 0.755 2.738 1.262 0.744 0.82 0.23 1.44 0.026 

Polyhedral 

Supersphere 2 

(smooth) 

2.735 1.262 0.744 2.724 1.263 0.739 0.39 0.10 0.69 0.012 

Polyhedral 

Supersphere 
2.773 1.260 0.765 2.742 1.263 0.749 1.10 0.30 2.07 0.034 

Cube (smooth) 2.800 1.235 0.722 2.787 1.232 0.717 0.45 0.02 1.27 0.013 

Cube 3.078 1.191 0.777 2.945 1.206 0.720 4.32 1.27 7.32 0.148 

Icosahedron 2.768 1.256 0.754 2.744 1.259 0.741 0.85 0.23 1.75 0.027 

Truncated 

Octahedron 
2.755 1.274 0.783 2.727 1.275 0.762 1.04 0.03 2.69 0.029 

Cuboctahedron 2.851 1.233 0.749 2.804 1.239 0.729 1.64 0.53 2.67 0.053 
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Table B.2. Continued 

Shape 𝑵̅𝟏𝟏𝟏𝟏
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟐𝟐

𝑭𝑬𝑨  𝑵̅𝟏𝟐𝟏𝟐
𝑭𝑬𝑨  𝑵̅𝟏𝟏𝟏𝟏

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟏𝟐𝟐

𝒓𝒆𝒑𝒍.
 𝑵̅𝟏𝟐𝟏𝟐

𝒓𝒆𝒑𝒍.
 
∆𝑵̅𝟏𝟏𝟏𝟏 
(%) 

∆𝑵̅𝟏𝟏𝟐𝟐 
(%) 

∆𝑵̅𝟏𝟐𝟏𝟐 
(%) 

‖𝐍𝑭𝑬𝑨 −
𝐍𝒓𝒆𝒑𝒍. ‖ 

Rhombic 

Dodecahedron 
2.760 1.277 0.792 2.728 1.277 0.765 1.17 0.01 3.46 0.033 

Octahedron 

(smooth) 
2.735 1.295 0.815 2.708 1.288 0.777 1.00 0.51 4.68 0.041 

Octahedron 
2.802 1.306 0.874 2.743 1.292 0.794 2.09 1.00 8.90 0.085 

 

Shape Tetrahedron (smooth) Tetrahedron 

𝑁1111
𝐹𝐸𝐴  2.8833 3.2665 

𝑁1122
𝐹𝐸𝐴  1.2419 1.2262 

𝑁1212
𝐹𝐸𝐴  0.7848 0.9041 

𝑁3333
𝐹𝐸𝐴  2.8501 3.1522 

𝑁1133
𝐹𝐸𝐴  1.2752 1.3405 

𝑁1313
𝐹𝐸𝐴  0.8179 1.0179 

𝑁1111
𝑟𝑒𝑝𝑙.

 2.8106 2.9684 

𝑁1122
𝑟𝑒𝑝𝑙.

 1.2205 1.1747 

𝑁1212
𝑟𝑒𝑝𝑙.

 0.7173 0.7123 

𝑁3333
𝑟𝑒𝑝𝑙.

 2.7351 2.7849 

𝑁1133
𝑟𝑒𝑝𝑙.

 1.2961 1.3582 

𝑁1313
𝑟𝑒𝑝𝑙.

 0.7924 0.8950 

max (∆𝑁𝑖𝑗𝑘𝑙(%)) 8.60 21.22 

‖𝐍𝐹𝐸𝐴 − 𝐍𝑟𝑒𝑝𝑙.‖ 0.136 0.385 
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