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A novel Wavelet-based adaptive Delayed Detached Eddy Simulation (W-DDES) ap-
proach for simulations of wall-bounded compressible turbulent flows is proposed. The
new approach utilizes anisotropic wavelet-based mesh refinement and its effectiveness is
demonstrated for flow simulations using the Spalart-Allmaras DDES model. A variable
wavelet thresholding strategy blending two distinct thresholds for the Reynolds-averaged
Navier-Stokes (RANS) and Large-Eddy Simulation (LES) regimes is used. A novel mesh
adaptation on mean and fluctuation quantities with different wavelet threshold levels is
proposed. The new strategy is more accurate and efficient compared to the adaptation
on instantaneous quantities using a priori defined uniform thresholds. The effectiveness of
the W-DDES method is demonstrated by comparing the results of the W-DDES simula-
tions with results already available in the literature. A supersonic plane channel flow is
tested as a benchmark wall-bounded flow. Both the accuracy indicated by the threshold
and efficiency in terms of degrees of freedom for the novel adaptation strategy are suc-
cessfully gained compared with the wavelet-based adaptive LES method. Moreover, the
newly proposed W-DDES resolves the typical log-layer match issue encountered in the
conventional non-adaptive DDES method mainly due to the use of wavelet-based adaptive
mesh refinement. The current study serves as a crucial step towards construction of a
unified wavelet-based adaptive hierarchical RANS/LES modeling framework, capable of
performing simulations of varying fidelities from no-modeling direct numerical simulations
to full-modeling RANS simulations.

I. Introduction

The latest advancements in wavelet-based numerical methodologies to solve partial differential equa-
tions,1–5 combined with the unique properties of wavelet analysis to identify and isolate localized dynamically
dominant flow structures,6, 7 and to track them on adaptive computational meshes,8–12 have demonstrated
the benefits of using spatio-temporal mesh adaptation for numerical simulations of turbulent flows. The
wavelet-based methods with inherent adaptive mesh refinement capabilities and sparse data representation
not only take full advantage of spatio-temporal intermittency of turbulent flows by substantially reducing
the number of degrees of freedom and, consequently, the computational cost, but also provide a systematic
framework for active error control.

Further tight integration of an adaptive wavelet-based method with turbulence modeling allows a con-
struction of a hierarchical framework for simulating turbulent flows13 where coherent flow structures are
either totally or partially resolved on self-adaptive computational grids, while modeling the effect of unre-
solved motions. The separation between resolved (more energetic) eddies and residual (less energetic) flow
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is achieved by means of the nonlinear wavelet thresholding filter. The value of wavelet threshold controls
the relative importance of resolved field and residual background flow and, thus, the fidelity of turbulence
simulations. By increasing the thresholding level a unified hierarchy of wavelet-based turbulence models
of different fidelity can be obtained. Wavelet-based direct numerical simulation (WDNS), coherent vortex
simulation (CVS)6 and wavelet-based stochastic coherent adaptive large-eddy simulation (SCALES),7 also
referred to as Adaptive LES, represent different fidelity methods within this hierarchy. A distinct advantage
of the adaptive wavelet-based hierarchical framework is that the overall physical fidelity of the simulation
can be simply controlled by the adaptive wavelet threshold filter,14, 15 thereby providing a fully unified hi-
erarchical modeling framework that allows transition continuously among various fidelities, from WDNS to
CVS to Adaptive LES, and even to Wavelet-based Adaptive Unsteady RANS (W-URANS) simulations.16

Transition from DNS to CVS to Adaptive LES is well established through controlling the wavelet thresh-
old. WDNS uses wavelet-based discretization of the Navier-Stokes equations to adapt dynamically the local
resolution of intermittent flow structures.12, 17, 18 Transition from WDNS to CVS6 is achieved by using an
optimal wavelet threshold, resulting in the decomposition of the flow field into coherent and incoherent con-
tributions. For Adaptive LES, the wavelet threshold is further increased so that the stochastic and the least
energetic coherent portion of the turbulent solution are discarded and only the most energetic part of the
coherent vortices are captured in the resolved field.7 In adaptive LES methods, similar to conventional LES,
the discarded subgrid-scale (SGS) coherent structures dominate the total SGS dissipation.7, 19 Therefore,
many standard LES closures are applicable for the Adaptive LES method.

The transition to the W-URANS regime is not as straightforward. In RANS equations, the unknown
variables are mean (Reynolds-averaged or Favre-averaged) quantities, which are smooth and whose evolution
is described by dissipative models. As shown in Ref. 16, the accurate solution of RANS equations, even on
adaptive meshes as in W-URANS, requires the use of low wavelet threshold values compared to the ones
used in WDNS, which is counterintuitive when compared to the monotonically increasing threshold value
for decreasing fidelity from the WDNS to CVS to Adaptive LES regimes. The objective of the present study
is to develop a hybrid mathematically consistent approach with coexistence, connection and even active
communication between the W-URANS and Adaptive LES regions. The current work serves as a crucial
step towards construction of a unified wavelet-based adaptive hierarchical RANS/LES modeling framework,
capable of performing simulations of various fidelity from no-modeling direct numerical simulations to full-
modeling RANS simulations.

It is important to emphasize that in contrast to conventional hybrid RANS/LES methods where the grid
is specified a priori, our approach uses a dynamically adaptive grid. A variable wavelet thresholding strategy
blending two distinct thresholds for the W-URANS and Adaptive LES regimes is used. In addition, a novel
mesh adaptation on mean and fluctuation quantities with different wavelet thresholds levels is proposed. The
effectiveness of the W-DDES method is demonstrated by comparing the results of the W-DDES simulations
with the results already available in the literature. A supersonic plane channel flow are tested as a benchmark
wall-bounded flow.

This paper is organized as follows. Section II introduces the governing equations of the simulations,
including the Favre-filtered Navier-Stokes equations for compressible flows and the evolution equations for
turbulence models. The wavelet-based adaptive methods and the Adaptive-Anisotropic Wavelet Collocation
Method (A-AWCM) for complex domain geometries are described in Section III. Section IV describes the
novel adaptation strategy treating different flow regimes and mean and fluctuation quantities elaborately.
The simulations setup and corresponding results are presented and discussed in Section V. Concluding
remarks are given at the end in Section VI.

II. Governing Equations

II.A. Favre-filtered Navier-Stokes equations

For compressible flows, the W-URANS formulations are in terms of Reynolds-averaged and Favre-averaged
dependent variables, whereas the adaptive LES formulations are in terms of wavelet-based grid-filtered and
Favre-filtered dependent variables. For the sake of simplicity, we use the term “Favre-filtered” for all depen-
dent variables in the W-DDES formulations. The Favre-filtered Navier-Stokes equations for conservation of
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mass, momentum, and energy in compressible flows with modeled turbulent terms are written below.

Bρ
Bt ` Bpρujq

Bxj
“ 0, (1)

Bρui
Bt ` B

Bxj
pρuiujq “ ´ Bp

Bxi
` Bτ̂ij

Bxj
, (2)

Bρe
Bt ` B

Bxj
rpρe` pqujs “ B

Bxj
ruiτ̂ij ´ qjs , (3)

where

p “ ρRT, (4)

e “ 1

2
uiui ` p

ρpγ ´ 1q , (5)

qj “ ´cp
ˆ

µ

PrL
` µT

PrT

˙ BT
Bxj

, (6)

τ̂ij “ 2µS̃ij ` τij ,

τij “ 2µT S̃ij , (7)

S̃ij “ devpSijq “ Sij ´ 1

3

Buk
Bxk

δij ,

Sij “ 1

2

ˆ Bui
Bxj

` Buj
Bxi

˙

,

where ρ is the the wavelet-based grid-filtered density of the fluid (gas), p is the wavelet-based grid-filtered
pressure, ρuj is the mass flux, uj is the Favre-filtered velocity, T is the Favre-filtered temperature, and e is
the Favre-filtered total energy per unit mass. ParameterR is the gas constant, while cv and cp are the specific
heats at constant volume and pressure, respectively. The specific heat ratio γ “ cp

cv
” 1.4 for diatomic gases,

and Pr “ µcp
λ

is the Prandtl number. The term qj is the sum of both the laminar and modeled turbulent heat
fluxes with PrL “ 0.72 and PrT “ 0.9 being the laminar and turbulent Prandtl numbers respectively. The
turbulent eddy viscosity is denoted by µT , which is unknown and needs turbulence models for closure. The
term τ̂ij is the sum of the molecular and Reynolds stress tensors, while τij is the Reynolds stress tensor, Sij

is the mean strain-rate tensor, and S̃ij is the deviatoric tensor of Sij . The temperature dependent dynamic
molecular viscosity µ is given by the Sutherland’s law,

µ

µref

“ Tref ` S

T ` S

ˆ

T

Tref

˙3{2

, (8)

where the constants S “ 110.4K and Tref “ 293.15K.

II.B. Turbulence model equations

The Delayed Detached Eddy Simulation (DDES) model employed in this work is the Spalart-Allmaras (S-
A) model based DDES.20 This model is an improved version of the original DES model21 with a crucial
re-defining of the DES length scale d̃ in terms of a shielding function fd, which is written as

fd ” 1 ´ tanhpr8rds3q, (9)

with its argument rd given by

rd ” νT ` ν
?
ui,jui,jκ2d2

, (10)

where νT is the kinematic eddy viscosity, ν the molecular viscosity, ui,j the velocity gradients, κ the Kármán
constant, and d the distance to the wall. The parameter rd is unity in the log-layer, and gradually falls to 0
at the edge of the boundary layer. Therefore, fd vanishes within the log-layer and increases to 1 out of the
boundary layer. Then the length scale d̃ replaces the wall distance d, namely the RANS length scale in the
S-A model. d̃ has the form

d̃ ” lRANS ´ fd maxp0, lRANS ´ lLESq (11)
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where lRANS “ d, lLES “ ΨCDES∆, and ∆ is the sub-grid length scale given by maximum local grid spacing
among three Cartesian directions in the physical domain, namely

∆ “ maxp∆x,∆y,∆zq, (12)

CDES “ 0.65 is an empirical constant,22 Ψ is a low Reynolds number correction20 given by

Ψ2 “ min

»

—

–
102,

1 ´ cb1

cw1κ2f˚
w

rft2 ` p1 ´ ft2qfv2s

fv1 maxp10´10, 1 ´ ft2q

fi

ffi

fl
, (13)

f˚
w “ 0.424 and other constant coefficients follow the original S-A model and are described below. Note
that in RANS mode fd “ 0, d̃ “ d, whereas in LES mode fd “ 1 and, thus, d̃ “ minpd,ΨCDES∆q. Using
the blending or shielding function fd, the RANS mode is shielded or delayed up to the log-layer, whereas
for the original DES model, the LES mode may take over the RANS mode earlier below the log-layer at
intermediate cell aspect ratios, which causes the modeled-stress depletion (MSD).20

The standard Spalart-Allmaras model23 in terms of ρν̃ is written as

Bρν̃
Bt ` B

Bxj
pρν̃ujq “ cb1p1 ´ ft2qS̃ρν̃ ´

”

cw1fw ´ cb1

κ2
ft2

ı

ρ

ˆ

ν̃

d̃

˙2

` B
Bxj

„ˆ

µ

σ
` ρν̃

σ

˙ Bν̃
Bxj



´
ˆ

µ

σρ
` ν̃

σ

˙ Bρ
Bxj

Bν̃
Bxj

` cb2
ρ

σ

Bν̃
Bxj

Bν̃
Bxj

,

(14)

and the eddy viscosity is computed from:
µT “ ρν̃fv1 (15)

where

fv1 “ χ3

χ3 ` c3v1
,

χ “ ν̃{ν,

S̃ “ max

„

0.3
a

2ΩijΩij ,
a

2ΩijΩij ` ν̃

κ2d̃2
fv2



,

Ωij “ 1

2

ˆ Bui
Bxj

´ Buj
Bxi

˙

,

fv2 “ 1 ´ χ

1 ` χfv1
,

fw “ g

„

1 ` c6w3

g6 ` c6w3

1{6

,

g “ r ` cw2pr6 ´ rq,

r “ min

„

ν̃

S̃κ2d̃2
, 10



,

ft2 “ ct3 expp´ct4χ2q,
and d̃ is the hybrid DDES length scale defined in Eq. (11). To avoid possible numerical problems, Spalart
(private communication) suggests limiting S̃ to be no smaller than 0.3

a

2ΩijΩij . cb1 “ 0.1355, cb2 “ 0.622,

σ “ 2{3, κ “ 0.41, cw2 “ 0.3, cw3 “ 2, cv1 “ 7.1, cw1 “ cb1
κ

` 1`cb2
σ

. This “standard” version of the S-A
model does not have the trip term “ft1”, and hence it is argued that ft2 is not necessary, i.e. ct3 “ 0. The
no-slip wall boundary condition for ν̃ is ν̃ “ 0.

III. Wavelet-based Adaptive Computations

The turbulence models described above are implemented using the parallel Adaptive Wavelet Collocation
method (AWCM).5 The unsteady RANS governing equations are evaluated at collocation points, which are
adapted in space and time to dynamically resolve all the features of the numerical solution. The essential
features of the AWCM are briefly described in the next two sections. For detailed discussion the reader is
referred to Refs. 1, 2, 5, 24. A novel treatment of periodic boundary conditions is described in Section III.C.
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III.A. Adaptive Wavelet Collocation Method

The Adaptive Wavelet Collocation Method is based on multi-resolution wavelet analysis to construct time-
dependent computational meshes with spatially varying resolution, required to adequately capture the local-
ized features of the solution with a priori prescribed accuracy. The grid adaptation is based on the analysis
of the wavelet decomposition of a spatially dependent field, say upxq, sampled on a set of dyadic nested
collocation points xj

k at different levels of resolution j, formally written as

upxq “
ÿ

lPL1

c1l φ
1
l pxq `

J´1
ÿ

j“1

2n´1
ÿ

µ“1

ÿ

kPKµ,j

d
µ,j
k ψ

µ,j
k pxq, (16)

where n denotes the number of spatial dimensions, bold subscripts denote n-dimensional indices, while L1 and
Kµ,j are n-dimensional index sets associated with scaling functions φ1l and wavelets ψµ,j

k , respectively. Each

of the basis functions, i.e. φ1l or ψµ,j
k , corresponds one-to-one with a grid point l P L1 or k P Kµ,j . Scaling

functions φ1l carry the averaged signal, while the multi-dimensional second-generation wavelet functions ψµ,j
k

define local, variational details. The amplitudes are given by the coefficients c1l and dµ,jk , respectively, and
hence have a unique correspondence to grid points. Levels of resolution span over 1 ď j ď J , with J being
the maximum level present in the approximation (associated to the finest grid resolution). During wavelet
transform, detail (or wavelet) coefficients dµ,jk are obtained recursively from scaling coefficients cµ,jk from level
J ´ 1 to 1. After wavelet transform, grid points l P L1 at the coarsest level store the scaling coefficients c1l ,

and all the other grid points k P Kµ,j at higher levels store the wavelet coefficients dµ,jk . To avoid ambiguity,
grid points k P Kµ,j with 1 ď j ď J ´ 1 represent all collocation points located at level 2 ď j ď J . Note
that for n-dimensional space, there are 2n´ 1 families of wavelet functions, µ.

Wavelet threshold filtering arises naturally from the series expansion (16). The filtering operation is
performed by applying the wavelet transform to the original field upxq, zeroing the wavelet coefficients below
a given threshold, ǫ “ ǫpx, tq for generality, and transforming back to the physical space. The resulting
approximate field, say uąǫpxq, composed of a subset of the original wavelets, represents the dominant modes
and formally can be written as the conditional series

uąǫpxq “
ÿ

lPL1

c1l φ
1
l pxq `

J´1
ÿ

j“1

2n´1
ÿ

µ“1

ÿ

kPKµ,j

|dµ,j

k
|ąǫ‖upxq‖

d
µ,j
k ψ

µ,j
k pxq. (17)

In many implementations, the filter threshold is taken to be relative to some characteristic scale, often
represented by either the L2´ or L8´ norm of upxq and denoted as ‖upxq‖.7 The resulting nonlinear filtering
operation separates resolved flow structures and unresolved residual motions. For a properly normalized
threshold, the reconstruction error of the filtered variable is shown to converge as25

‖uąǫ ´ u‖ ď Opǫq‖u‖. (18)

The dynamic grid adaptation is tightly coupled with the wavelet filter. Due to the one-to-one correspon-
dence between wavelets and grid points, the latter are omitted from the computational mesh if the associated
wavelets are omitted from the representation (17). The multilevel structure of this wavelet approximation
provides a natural way to obtain the solution on a near optimal numerical grid, which is dynamically adapted
to the evolution of the main flow structures, both in location and scale, while higher resolution computations
are carried out where (and only where) steep gradients in the resolved flow field occur.

The multi-resolution wavelet decomposition (17) is used for both grid adaptation and interpolation, while
a hierarchical finite difference scheme, which takes advantage of the wavelet interpolating properties, is used
to differentiate the local function approximations, and to provide the values of derivatives of the function at
those particular locations.

III.B. Adaptive-Anisotropic Wavelet Collocation Method

Second-generation wavelet bases described in section III.A rely on topologically rectilinear grids and in-
herently isotropic mesh elements, which, despite being a highly valuable methodology for the numerical
solution of fluid dynamics equations due to mathematical rigor, simplicity and computational efficiency,26
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puts some limitations on the applicability of the approach. These limitations were recently overcome with
the development of the Adaptive-Anisotropic Wavelet Collocation Method (A-AWCM).24 A-AWCM pre-
serves active error-controlling properties of the original AWCM, but provides additional flexibility to control
mesh anisotropy and to solve the problem in complex domains by separating the computational space from
the physical one and introducing a mapping between them, thus, allowing the use of anisotropic curvilinear
meshes in complex geometries.

The introduction of a function that maps the physical domain, say x P Ωp, to the computational domain,
say ξ P Ωc , provides the necessary flexibility of the mesh geometry when dealing with wall-bounded flows,
such as channel flows and flows around obstacles. In physical space, a more optimal spatial distribution of
mesh points can be realized, where mesh element aspect ratios, grid stretching and orientation of the cells
can be properly varied. Furthermore, body-fitted meshes can be constructed with the accurate resolution of
the boundary layer and wake regions. At the same time, the structured rectilinear assembly of collocation
points in the computational space is retained, which allows one to use computationally efficient discrete
wavelet transform and derivative approximations.

A-AWCM utilizes a general curvilinear coordinate mapping function xpξq, which can be either continuous
or discrete. The mapping coordinates are viewed as additional variables, which can be adapted on and which
can be differentiated in computational space, thus, allowing the construction of the Jacobian matrix

Jij ” Bxi
Bξj

. (19)

Spatial derivatives in physical space are evaluated numerically as

B
Bxi

“ Bξj
Bxi

B
Bξj

“ J ´1
ij

B
Bξj

, (20)

where J ´1
ij is the inverse Jacobian matrix. Based on the particular flow structures and flow geometry, mesh

anisotropy should be controlled through mapping function or mesh generation, and ideally should take into
consideration local flow anisotropy. For instance, more isotropic cells are needed around boundary layer
separation points to properly resolve flow physics, while anisotropic meshes should be used in boundary and
shear layers. At the same time, additional measures should be taken to avoid the generation of mapping
resulting in cells with high skewness, degenerate Jacobian (detpJ q Ñ 0), or non-smooth mesh lines, since the
degradation of the mesh quality can not be fully rectified by the automated mesh refinement. It should be
noted that an additional adaptation on physical coordinates can only assure the accuracy of the representation
of the physical coordinates and would result in additional mesh refinement in the regions where the mesh
is ill-conditioned, but does not guarantee the optimality of the mesh anisotropy, which could be controlled
only as a part of mesh generation process.

III.C. A-AWCM with Periodic Boundary Conditions

Special consideration should be given to the case when the physical domain has periodic boundary conditions,
since physical coordinates are not periodic. In this case the mesh adaptation can be performed on the
coordinate perturbations xprdi defined by

x
prd
i “ xi ´ J prd

ip pξp ´ minpξpqq, (21)

where i “ 1, . . . , n, repeated index p assumes summation only along periodic directions, and J prd
ip is the

linear (with respect to ξp) Jacobian, given by

J prd
ip “ pxi|ξp“maxpξpq ´ xi|ξp“minpξpqq{pmaxpξpq ´ minpξpqq. (22)

Note that for simply translated periodic boundaries xprdi is constant. Rewriting Eq. (21) for xi and
substituting into Eq. (19) results in the following Jacobian matrix

Jij “ Bxprdi

Bξj
` J prd

ip δpj `
BJ prd

ip

Bξj
pξp ´ minpξpqq, (23)

where index p assumes summation only in periodic directions. Note that the linear Jacobian (22) is not a

function of ξp, resulting in
BJ l

ip

Bξj
“ 0 if j “ p, while the term J prd

ij “ 0 when j is the non-periodic direction.
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IV. Variable Thresholds and Novel Adaption Strategy.

The family of DES models, for instance the DDES model, provides a unified model form with hybrid
length scales transitioning between the LES and RANS regime. As explained in section I, two distinct levels
of thresholds for the Adaptive LES and W-URANS should be used respectively for computations using these
two different methods. Using a uniform wavelet threshold ǫ at the value of either the Adaptive LES or
W-URANS is inappropriate. The accuracy of the simulation in the RANS regime is lost if an aggressively
high level of ǫ of the Adaptive LES is used. In contrast, a small ǫ as low as in W-URANS automatically
switches Adaptive LES to the WDNS regime and, thus, is also unacceptable. Therefore, a variable wavelet
threshold strategy that blends two distinct regions of DDES model is required and is the subject of this
paper. Since the DDES model already makes use of the blending function fd, which switches between the
length scales lRANS and lLES in Eq. (11) and serves as a good indicator between two regimes, it is natural
to use the same blending function for interpolation between the high ǫLES and low ǫRANS in Adaptive LES
and RANS regions, respectively:

ǫhyb “ p1 ´ fdqǫRANS ` fdǫLES (24)

The threshold field ǫhyb is used to perform grid adaptation in the A-AWCMmethod. In general, the quantities
that dominate and drive the physics of the flow must be well resolved, and thus the grid adaptation should
be performed based on scales of these quantities using Eq. (17). For instance, for wall-bounded compressible
turbulent flows with isothermal wall boundaries, the velocity, total energy and temperature are appropriate
quantities to be adapted.

This strategy by itself does not work well. When turbulence contents are developed, for example in a plane
channel flow, fluctuations exist in both the RANS and LES regions even though the intensity of fluctuations
of the former is lower than the latter. In other words, the flow structures in the RANS region near the
wall are not as smooth as those in a W-URANS simulation. Therefore, a relatively low threshold ǫRANS

would cause an unnecessary increase of grid points below the log-layer region and the expected efficiency
of a hybrid-model method would be lost. Recall that the reason for the low threshold ǫRANS is the mean
quantities in the RANS equations. In the DDES case, all variables become instantaneous, and dynamically
evolved turbulent eddies are intended to be resolved. The low threshold ǫRANS is no longer a good choice
to adapt on the primary unknown variables of the evolution equations. In order to deal with this difficulty,
a novel adaptation strategy is proposed and consists of following steps:

1. using ǫhyb in Eq. (24), adapt on the instantaneous variables during the early transient stage and
calculate the statistical mean quantities averaged over the same period,

2. decompose instantaneous quantities into mean and fluctuation components after the LES contents are
developed and the accumulated mean quantities become smooth,

3. calculate scales, say the L2 norm, for both the mean and fluctuation components, and using the original
ǫhyb adapt on both the mean quantities and the fluctuation quantities but with the increased threshold
level for the latter.

This new adaptation procedure is very effective in reducing the degrees of freedom. For the time being,
the accuracy of the mean quantities preserves particularly in the RANS regions. A supersonic turbulent
channel flow case with the wavelet-based adaptive DDES method described above using the new adaptation
procedure is tested. The effect of this adaptation procedure is illustrated in Figure 1. Adaptive grid points
colored by resolution levels at the solid wall by different adaptation strategies are depicted. Note that adapted
quantities are momentum components, total energy and temperature. Since momentum and temperature
are constant at the wall, perturbations exist only in the total energy that contains the density. Instantaneous
quantities in Figure 1(a) and mean quantities in Figure 1(b) use ǫRANS “ 2.5ˆ10´3 and ǫLES “ 5.0ˆ10´2.
For the fluctuation fields in Figure 1(b), increased thresholds ǫRANS “ 1.25 ˆ 10´2 and ǫLES “ 2.5 ˆ 10´1

are prescribed for testing purpose.
Figure 1(a) has substantially more grid points retained at the wall than Figure 1(b), while the total

number of active grid points for the former is 3.2 million, it is 2.2 million for the latter. Considerable
reduction of grid points for the latter case arises from much sparser representation in the near wall RANS
region. In the middle part of the channel, adaptive meshes are similar for both cases. Considering the mean
and fluctuation components separately using different levels of effective wavelet filter threshold is thereby
beneficial to retain the accuracy and gain the efficiency. As the solution becomes statistically converged, the

7 of 15



2.    3.    4.    5.    1.    6.    

Level

(a) Adaption on the instantaneous quantities.

2.    3.    4.    5.    1.    6.    

Level

(b) Adaption on the mean and fluctuation quantities.

Figure 1. Adaptive grids points colored by resolution levels at the solid wall. Horizontal direction is the stream-wise

direction and the vertical direction is the span-wise direction.

averaged fields are smoother. Accordingly, the thresholds for mean quantities can be smaller and the ones
for fluctuations can be larger without loss of accuracy for the mean value. Overall, the degrees of freedom
can potentially be reduced further since the grid points retained to resolve the turbulent fulctuations are
dominant.

Details of the simulation setup and results are presented below in section V. One may argue here that
DDES is known to be inappropriate for plane channel flow cases due to the log-layer mismatch (LLM)20, 27

for attached flows. However, as stated above, the task of the current work is to investigate the coexistence of
W-URANS and adaptive LES. If the wavelet-based adaptive DDES method works effectively and efficiently
and produces similar or even better results with non-adaptive DDES, this approach could be easily applied
to separated flow, which is the ongoing work.

V. Simulations and Results

V.A. Supersonic channel flows

In this subsection, a simulation of a supersonic channel flow is presented for testing of the wavelet-based
DDES turbulence modeling approach and the novel grid adaptation strategy described in section IV. Fourth
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order wavelets and finite difference scheme are used for the discrete wavelet transform and interpolation,
and derivative approximations. For the time integration, the explicit standard four-stage Runge-Kutta
scheme is applied with the CFL“ 0.5. The grid adaptation is performed on mean (Reynolds-averaged)
and fluctuation components of momentum, total energy and temperature scaled by L2 norm. Specifically,
the three components of momentum share a single scale that is calculated by the corresponding mean and
fluctuation momentum magnitudes rather than using the scale of each individual component in the x, y and z
directions, respectively. The fluctuations of the total energy and temperature are evaluated by the Reynolds
fluctuation root mean square. The wavelet filter thresholds for the mean quantities are ǫRANS “ 2.5ˆ 10´3

and ǫLES “ 5.0ˆ10´2, while increased thresholds ǫRANS “ 1.25ˆ10´2 and ǫLES “ 2.5ˆ10´1 are prescribed
for all fluctuation quantities.

It is worth noting that since the Reynolds average fields start to be computed from the early transient
stage, an exponentially weighted time average method is employed instead of the simple ensemble average.
Given an instantaneous quantity φ, the corresponding Reynolds average quantity is denoted as xφy, which
reads

xφyptq ”
ż t

´8

φpt1q 1
ts
e´pt´t1q{tsdt1. (25)

Differentiating Eq. (25) gives
dxφy
dt

“ 1

ts
pφ ´ xφyq. (26)

Using first order approximation, Eq. (26) can be numerically evaluated as

xφyn “ αφn ` p1 ´ αqxφyn´1, (27)

α “ ∆t

∆t` ts
. (28)

where ∆t is the time integration interval and ts is the time scale for the averaging. For the present channel
flow case one flow through time (FTT), tFTT, is used for ts. A certain Reynolds fluctuation quantity is
referred to as φ1 “ φ´ xφy. A Favre average quantity is signified as tφu “ xρφy{xρy while the corresponding
Favre fluctuation variable is denoted as φ2 “ φ´ tφu.

The computational domain size is 4πH ˆ 2H ˆ 4πH{3 in steam-wise(x), wall-normal(y) and span-
wise(z) directions, respectively, where H is the half height of the channel. The bulk Reynolds number
is Re “ ρbubH{µw, and the Mach number is Ma “ ub{cw, where p¨qb and p¨qw , respectively, denote bulk
mean quantities and quantities averaged at the walls, while c is the speed of sound. The friction Reynolds
number is Reτ “ ρwuτH{µw, where uτ “

a

τw{ρw. Here, τw indicates the wall shear stress. Two different
flow configurations are considered, i.e. Re “ 3000 with Ma “ 1.5 (CH1) and Re “ 6000 with Ma “ 3.0
(CH2). A feedback control of the body force in the stream-wise direction based on the bulk mass flow
rate is employed to maintain the desired flow rate. Once the statistically steady state regime is achieved,
the feedback is turned off and the statistics start to be recalculated. The initial conditions are: the laminar
parabolic velocity profile for plane channel flows, uniform density and total energy. Initial condition for ν̃
has a prescribed value at the wall and exponentially approaches to a uniform value in the free stream. In
order to accelerate the transition to fully developed turbulence, the least stable modes of the two-dimensional
Orr-Sommerfield solution are superimposed as velocity perturbations in the x and y directions along with
smooth random noises in the y and z directions.

The discretization of the computational domain is done by using dyadic nested wavelet collocation grids
for the wavelet decomposition (17). The computational mesh has J “ 6 and an effective (finest level)
resolution of 640ˆ244ˆ320 with base (coarsest level) grids with resolution of 20ˆ7ˆ10. Using A-AWCM,
the mesh is stretched in the wall normal direction following a hyperbolic tangent distribution. For the finest
level of resolution, the first wall normal grid spacing is ∆yp1q` “ 0.29 with a corresponding stretching
ratio equal to 1.04. The x and z directions have the periodic boundary condition with grid points evenly
distributed. A feedback control of the body force in the stream-wise direction based on the bulk mass flow
rate is employed to maintain the desired flow rate. The grid aspect ratios in the immediate vicinity of the
wall are ∆x`{∆y` “ 15 and ∆z`{∆y` “ 10. The grid compression ratio, defined as the percentage of
collocation points discarded in the adaptive grid (2.5 million) compared to the number of non-adaptive grid
points, is to 95.0%. An Adaptive LES study28 for the same channel flow case has active grid points of 3.5
million with an aggressive uniform threshold ǫ “ 0.1 adapting on instantaneous momentum, total energy
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Figure 2. The adaptive grids on the surfaces of the physical domain.
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Figure 3. The vorticity magnitude contours on the surfaces of the physical domain.

and temperature. Both the accuracy indicated by the threshold and efficiency in terms of degrees of freedom
for the novel adaptation strategy are successfully gained.

The adaptive grid for the developed turbulent flow field is illustrated in Figure 2, demonstrating refine-
ment around localized structures visualized by the vorticity magnitude contours in Figure 3. The mean
and turbulence statistics profiles are plotted in Figure 4–6. Statistics are computed by interpolating the
continuous wavelet basis onto 2D, nonadaptive sampling grids, and averaging along the stream-wise direc-
tion in each 2D slide and then across multiple slides over a long time period with exponentially decaying
weights. Therefore all curves plotted below show the stream-wise, span-wise and time averaged quantities
of the W-DDES solution. Due to the high Mach number and iso-thermal boundary condition, temperature
within the channel increases because of the viscous dissipation heating. It appears that the thermodynamic
related quantities, namely the density and total energy, converge more slowly than the momentum.

The friction Reynolds number Reτ predicted by the W-DDES is 212, 4.0% underestimated compared
with the benchmark DNS results,29–31 Reτ “ 221. Two sources exist for this error. The first is the ǫhyb for
the mean quantities. The second is the LLM issue of DDES, where the interception of the log-law velocity
profiles predicted in the LES regime of the DDES model is higher than that in the RANS regime, though
both regimes share the same log-law slope. This issue may introduce an underestimation of the friction up to
15%.20 However, our predicted Reτ is obviously much better than a typical LLM result by the conventional
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Figure 4. Mean profiles comparison between W-DDES and DNS results.
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Figure 5. Turbulent stresses profiles comparison between W-DDES and DNS results.

DDES. In fact, it is even better than the result of the wavelet-based adaptive wall resolved LES, Reτ “ 205
as reported in Ref. 28. Moreover, the Reynolds mean velocity and temperature profile shown in Figure 4
agree quite well with the DNS data. The LLM happens to be eliminated by a significant overestimation of
the resolved part of the turbulent normal stress xρu2

1u
2
1y as plotted in Figure 5(a). This can be explained by

the benefit of the wavelet-based adaptive method where the local mesh refinement in the LES region results
in high levels of resolved turbulent stresses, and hence more momentum can be transported into the lower
portion of the boundary layer. On the contrary, the conventional non-adaptive DDES predicts relatively low
levels of resolved turbulent stresses, while it excessively damps out turbulence at the RANS-LES interface,
located at the log-law region.

As argued in section IV, the current work aims to show the capability for the coexistence of the W-
RANS and adaptive LES regimes within the A-AWCM framework. Our results successfully demonstrate the
feasibility of the novel W-DDES modeling approach proposed in this work.

Figure 5(b) depicts the resolved, modeled and total turbulent shear stress ´xρu2
1u

2
2y compared with the

DNS data. Note that modeled normal stress is negligible in Figure 5(a) because of the small mean velocity
gradient Bxxu1y. Similar to the turbulent normal stress, the predicted shear stress is slightly underestimated
around the RANS-LES interface layer where y` « 20 to 50. In addition, the predicted peak of the maximum
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Figure 6. Reynolds fluctuation root mean square of the temperature field and comparison with the DNS data.30

value of the turbulent normal stress component shown in Figure 5(a) is slightly closer to the middle of the
channel than the DNS data. From these observations, the issue of damping of turbulence at the RANS-LES
interface for conventional low resolution non-adaptive DDES27 still exists. The Reynolds fluctuation root
mean square temperature profiles plotted in Figure 6 illustrate an underestimation of temperature fluctuation
compared with the DNS data. Note that the turbulent heat flux is modeled through a Reynolds analogy
as in Eq. 6 with a constant turbulent Prandtl number, PrT “ 0.9, the temperature fluctuations are not
well modeled, as opposed to the eddy viscosity and the Reynolds stresses. So the result in Figure 6 is not
unaccepted. The fact that we partially resolve the temperature fluctuations, makes the approach closer to
LES than RANS where the flucation should be zero.

It is worth emphasizing the importance of using the absolute wavelet thresholding scale ‖u‖ smoothly
varying in time. Turbulent fluctuations are highly intermittent in nature. As a result, the instantaneous
scales of the fluctuating components also vary in time. A rapid increase of the absolute thresholding scale
could result in excessive filtering of turbulent fluctuations in the LES region and the expansion of RANS
region, which, in turn, could manifest itself in the log-layer mismatch. In the simulations discussed above,
the time averaged scales given by discrete version Eq. 26 of Eq. 25 are used, with ts « 0.1tFTT.

A possible appearance of the LLM solution when the instantaneous absolute thresholding scales are used
is demonstrated in Figure 7. The discrepancy of the mean stream-wise velocity profiles is significant as
shown in Figure 7(a). The excessive filtering of fluctuating components in LES region results in the under-
resolution of turbulent shear stress as shown in Figure 7(b), which causes an excessive underestimation of
the total shear stresses. It should be noted that when the instantaneous absolute thresholding scales are
used, the solution switches between two branches: one with the LLM issue and the other without. Figure
8 shows the mechanism of the two-branch solutions when the instantaneous absolute thresholding scales are
used. A typical LLM solution produces relatively higher values of eddy viscosity and lower values of resolved
Reynolds stresses or fluctuations. Therefore the adaptive criterion of the wavelet coefficient based on the
instantaneous fluctuation quantities is loosen and more grid points are retained. Meanwhile, more grid
points, in turn, suppress the eddy viscosity and hence enhance the resolved Reynolds stresses, which finally
leads to a more accurate solution without LLM. However, when the fluctuation components are increased,
more grid points are discarded, resulting in coarsening of the adaptive grid and the solution driven back
to typical LLM branch. When using time averaged absolute thresholding scales, no LLM is observed and
solutions for LES and RANS branches match and converge to the statistically steady solution presented in
Figure 4, 5 and 6.

VI. Conclusions

A novel Wavelet-based adaptive Delayed Detached Eddy Simulation (W-DDES) approach for simulations
of wall-bounded compressible turbulent flows is proposed. Its effectiveness is demonstrated for flow simula-
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Figure 7. Turbulent stresses profiles comparison between W-DDES with log-layer mismatch and DNS results.
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Figure 8. Schematic of the mechanism of the two-branch solutions when instantaneous quantity scales are used for

wavelet filter thresholding. A typical LLM solution produces relatively higher values of eddy viscosity and lower values

of resolved Reynolds stresses or fluctuations. Therefore the adaptive criterion of the wavelet coefficient based on the

instantaneous fluctuation quantities is loosen and more grid points are retained. Meanwhile, more grid points, in turn,

suppress the eddy viscosity and hence enhance the resolved Reynolds stresses, which finally leads to a more accurate

solution without significant LLM. However, when the fluctuation components have increased, more grid points are

discarded. This way the adaptive grid will be locally coarsened, and drive the solution back to typical LLM branch.

Adaptive LES data from Ref. 28 as reference.

tions using the Spalart-Allmaras DDES model. A variable wavelet thresholding strategy blending two distinct
thresholds for the Reynolds-averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) regimes is
used. A novel mesh adaptation on mean and fluctuation quantities with different wavelet thresholds levels
is proposed. Both the accuracy indicated by the threshold and efficiency in terms of degrees of freedom
for the novel adaptation strategy are successfully achieved compared with the wavelet-based adaptive LES
method, in which the adaptation is performed on instantaneous quantities using a priori defined uniform
thresholds. Moreover, the newly proposed W-DDES resolves the typical log-layer match issue encountered
in the conventional non-adaptive DDES method thanks to the benefit of the local mesh refinement of this
adaptive wavelet-based method. To avoid a two-branch-solution with switching between branches with and
without the log-layer mismatch, the time averaged absolute thresholding scales should be used. Simulations
of separated flows using the W-DDES method are currently underway and will be reported in the future. The
current study serves as a crucial step towards construction of a unified wavelet-based adaptive hierarchical
RANS/LES modeling framework, capable of performing simulations of varying fidelities from no-modeling
direct numerical simulations to full-modeling RANS simulations.
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