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The Wavelet-based Unsteady Reynolds-Averaged Navier-Stokes (W-URANS) turbu-
lence modeling approach is proposed for simulations of wall-bounded internal and external
compressible turbulent flows. The new approach utilizes anisotropic wavelet-based mesh
refinement and its effectiveness is demonstrated in the case of flow simulations with two
turbulence models, namely the k ´ω and Spalart-Allmaras models. Supersonic plane chan-
nel flow and weakly compressible channel flow with periodic hill constrictions are tested
as internal benchmark flows, while a flow past a circular cylinder at sub-critical Reynolds
number is used as a prototype for an external flow. The effectiveness of the W-URANS
approach is demonstrated for a number of two- and three-dimensional benchmark problems
by comparing the results of the W-URANS simulations with results already available in
the literature. It has been observed that the three-dimensional simulations for separated
flows are able to capture the 3D vortical structures, which can thereby improve the RANS
performance compared to conventional non-adaptive low-resolution unsteady RANS meth-
ods. The current study serves as a baseline for the development of a unified hierarchical
eddy resolving turbulence modeling framework, capable of performing simulations of dif-
ferent fidelities: from non-modeling direct numerical simulations to full-modeling RANS
simulations.

I. Introduction

In applications of aerodynamics and turbomachinery, numerical simulation is playing an increasingly
important role for investigations of turbulent flows, especially in compressible regimes. Unlike incompressible
regimes, the fluid dynamics is fairly complicated by significant variations of thermodynamic characteristics
in the high Mach number regimes. High fidelity methods, i.e. direct numerical simulations (DNS), remain
computationally prohibitive for moderate and high Reynolds number flows due to the wide range of length
and time scales and the resulting computational requirements that exceed current capabilities.

The latest advances in wavelet-based numerical methodologies to solve partial differential equations,1–5

combined with the unique properties of wavelet analysis to identify and isolate localized dynamically dom-
inant flow structures,6, 7 and to track them on adaptive computational meshes,8–12 have demonstrated the
convenience of spatio-temporal mesh adaptation for numerical simulations of turbulent flows. The wavelet-
based methods with inherent adaptive mesh refinement capabilities and sparse data representation not only
take full advantage of spatio-temporal intermittency of turbulent flows by substantially reducing the number
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of degrees of freedom and, consequently, the computational cost, but also provide a systematic framework
for active error control.

Further tight integration of adaptive wavelet-based method with turbulence modeling allows the con-
struction of a hierarchical framework for simulating turbulent flows13 where coherent flow structures are
either totally or partially resolved on self-adaptive computational grids, while modeling the effect of un-
resolved motions. The separation between resolved (more energetic) eddies and residual (less energetic)
flow is achieved by means of nonlinear wavelet thresholding filter. The value of wavelet threshold controls
the relative importance of resolved field and residual background flow and, thus, the fidelity of turbulence
simulations. By increasing the thresholding level, a unified hierarchy of wavelet-based turbulence models
of different fidelities can be obtained. Wavelet-based direct numerical simulation (WDNS), coherent vortex
simulation (CVS)6 and wavelet-based stochastic coherent adaptive large-eddy simulation (SCALES),7 also
referred to as Adaptive LES, represent different fidelity methods within this hierarchy. A distinct advantage
of the adaptive wavelet-based hierarchical framework is that the overall physical fidelity of the simulation
can be simply controlled by the adaptive wavelet threshold filter,14, 15 thereby providing a fully unified hi-
erarchical modeling framework that allows transition continuously among various fidelities, from WDNS to
CVS to Adaptive LES, and even to W-URANS simulations.

Transition from DNS to CVS to Adaptive LES through controlling wavelet threshold is well established.
WDNS uses wavelet-based discretization of the Navier-Stokes equations to adapt dynamically the local
resolution of intermittent flow structures.12, 16, 17 Transition from WDNS to CVS6 is achieved by using an
optimal wavelet threshold, resulting in the decomposition of the flow field into coherent and non-coherent
contributions. For Adaptive LES, the wavelet threshold is further increased so that the stochastic and the
least energetic coherent portion of the turbulent solution are discarded and only the most energetic part
of the coherent vortices are captured in the resolved field.7 However, an adaptive hybrid approach with
coexistence, connection and even active communication between W-URANS and Adaptive LES regions in
a mathematically consistent fashion has not been developed. The present study is the first step toward
extending the Hierarchical Eddy Resolving Approach to include W-URANS.

Wavelet-based adaptation, discussed above, employs tensorial wavelets and results in isotropic mesh re-
finement, which unnecessarily increases the number of degrees of freedom and, thus, the computational cost
of high Reynolds number wall-bounded flow simulations, where high gradients of velocity and temperature
may occur within the thin boundary layers. The recently developed Adaptive-Anisotropic Wavelet Colloca-
tion Method (A-AWCM)18 addresses this limitation by allowing the use of body-fitted curvilinear meshes
while preserving the essential features of the classical wavelet-based adaptation procedure, i.e. the error
control of the numerical solution and the fully automated mesh refinement.

In addition to A-AWCM, the RANS modeling approach is also a necessity for simulations of high Reynolds
number wall-bounded internal and external flows with complex geometries in practical or industrial appli-
cations. In this paper a novel Wavelet-based adaptive Unsteady Reynolds-Averaged Navier-Stokes (W-
URANS) approach utilizing A-AWCM for numerical computations of compressible unsteady RANS equa-
tions is presented. It can handle body-fitted grid for arbitrary geometry and stream-wise periodic boundary
condition. Both a two-equation model (k ´ ω) and a one-equation model (Spalart-Allmaras, S-A) are ex-
amined in this work. The W-URANS modeling approach is first demonstrated for 2D supersonic plane
channel flow by comparing the friction velocity based Reynolds number Reτ and the mean profiles with the
DNS data available in the literature. Then a channel flow with periodic hill constrictions is presented to
demonstrate the capability of W-URANS along with A-AWCM, where the geometry becomes complex and
a body-fitted mesh in physical domain is used. Finally, the results for the flow past a circular cylinder, a
typical external flow case, are presented for the new W-URANS approach. The results for both 2-D and
3-D simulations are included in this paper for these statistically steady or unsteady flows. It has been ob-
served that unlike conventional URANS simulation, the W-URANS in 3D cases is able to capture the 3D
vortical structures and thereby produce substantial improvement with respect to conventional low-resolution
non-adaptive URANS.19

This paper is organized as follows. Section II introduces the governing equations of the simulations,
including the Favre-averaged Navier-Stokes equations for compressible flows and the evolution equations for
turbulence models. The wavelet-based adaptive methods and the A-AWCM for complex domain geometries
are described in Section III. The simulation environment and corresponding results are presented and
discussed in Section IV. Concluding remarks are given at the end in Section V.
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II. Governing Equations

II.A. Favre-averaged Navier-Stokes equations

The Favre-averagedNavier-Stokes equations for conservation of mass, momentum, and energy in compressible
flows with modeled turbulent terms are written below.

Bρ
Bt ` Bpρujq

Bxj
“ 0, (1)

Bρui
Bt ` B

Bxj
pρuiujq “ ´ Bp

Bxi
` Bτ̂ij

Bxj
, (2)

Bρe
Bt ` B

Bxj
rpρe` pqujs “ B

Bxj
ruiτ̂ij ´ qj s ` B

Bxj

”

pµ` σ˚ ρk
ω

q Bk
Bxj

ı

, (3)

where

p “ ρRT, (4)

e “ 1

2
uiui ` p

ρpγ ´ 1q`k, (5)

qj “ ´cp
ˆ

µ

PrL
` µT

PrT

˙ BT
Bxj

,

τ̂ij “ 2µS̃ij ` τij ,

τij “ 2µT S̃ij´ 2
3
ρkδij , (6)

S̃ij “ devpSijq “ Sij ´ 1

3

Buk
Bxk

δij ,

Sij “ 1

2

ˆ Bui
Bxj

` Buj
Bxi

˙

,

where ρ is the the Reynolds-averaged density of the fluid (gas), p is the Reynolds-averaged pressure, ρuj is
the mass flux, uj is the Favre-averaged velocity, T is the Favre-averaged temperature, and e is the Favre-
averaged total energy per unit mass. Parameter R is the gas constant, while cv and cp are the specific heats
at constant volume and pressure, respectively. The specific heat ratio γ “ cp

cv
” 1.4 for diatomic gases, and

Pr “ µcp
λ

is the Prandtl number. The term qj is sum of both the laminar and modeled turbulent heat flux
vectors with PrL “ 0.72 and PrT “ 0.9 being the laminar and turbulent Prandtl numbers respectively. The
turbulent eddy viscosity is denoted by µT , which is unknown and needs turbulence models for closure. The
term τ̂ij is the sum of the molecular and Reynolds stress tensors, while τij is the Reynolds stress tensor, Sij

is the mean strain-rate tensor, and S̃ij is the deviatoric tensor of Sij . The temperature dependent dynamic
molecular viscosity µ is given by the Sutherland’s law,

µ

µref

“ Tref ` S

T ` S

ˆ

T

Tref

˙3{2

, (7)

where the constants S “ 110.4K and Tref “ 293.15K.
The highlighted terms in Eq. (3), (5) and (6) are retained only for the k´ω model and are neglected for

the Spalart-Allmaras model.

II.B. Turbulence model equations

Two RANS models are considered in this paper : the k ´ ω model and the Spalart-Allmaras model. Both
models use auxiliary transport equations with the Favre-averagedNavier-Stokes equations to solve turbulence
quantities, such as turbulent kinetic energy k, specific turbulent dissipation rate ω, and effective viscosity µ̃
tightly associated with the eddy viscosity µT , which is modeled as a function of these turbulence quantities.
Therefore the closure terms with µT in the mean flow equations can be evaluated.

Note that in contrast to conventional RANS methods, where the grid is specified a priori, our approach
uses a dynamically adaptive grid. The finest grid resolution scales allowed in our adaptive W-URANS method
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could be considerably smaller than the commonly accepted ones in conventional non-adaptive RANS method
due to the presence of dynamically evolved small scale structures. These small structures may not be damped
by model dissipation and need to be resolved in the W-URANS simulations. Note that these small-scale
structures are not typically supported by non-adaptive RANS meshes.

Conventional RANS computations use dissipative numerical schemes to damp small scale 3D vortical
structures and to resolve only smooth quasi one-dimensional eddies. When the same simulations are done
using adaptive methods with finer resolution and higher order non-dissipative schemes like the ones used in
this work, larger eddies cascade into less energetic smaller scales structures, which should be captured by the
adaptive mesh. Our numerical experiments shows that well-resolved solution near the wall results in fewer
adaptive grid points. If the localized eddies are not properly resolved, aliasing errors may arise and spread
into wider regions resulting in more grid points.

It is known that the widely used k ´ ε model needs a near-wall treatment using either wall functions
or damping functions in the viscous sublayer due to the over-prediction of the eddy viscosity in the law-
of-the-wall layer (between y` “ 0 to 40). When a wall function is used, the first wall neighboring grid
point must reside in the log-layer and hence it cannot be readily accommodated in the adaptive wavelet
method mentioned above where the near-wall resolution should be y` „ Op0.1q. At the same time, the k´ω

model20 without any wall functions or near-wall damping functions has been shown to be usable because of
its underestimation of the turbulent kinetic energy k and overestimation of the dissipation rate ε near the
wall.21 These two features are exactly what are needed to counter overestimation of µT in the k ´ ε model.
Since the k ´ ω model is constantly undergoing revision and improvement, a recent version of the model
proposed by Wilcox (2008)22 with zero round-jet parameter χω is selected in this paper. The two evolution
equations are written as

Bρk
Bt ` B

Bxj
pρkujq “ τij

Bui
Bxj

` B
Bxj

„

pµ` σ˚ ρk

ω
q Bk

Bxj



´ ρβ˚kω, (8)

Bρω
Bt ` B

Bxj
pρωujq “ α

ω

k
τij

Bui
Bxj

` B
Bxj

„

pµ` σ
ρk

ω
q Bω

Bxj



´ ρβω2 ` σd0
ρ

ω
maxp0, Bk

Bxj
Bω
Bxj

q, (9)

where

µT “ ρk{ω̃, ,

ω̃ “ max

¨

˝ω,Clim

d

2S̃ijS̃ij

β˚

˛

‚,

k is the turbulent kinetic energy, ω is the specific dissipation rate. The constant coefficient Clim “ 7{8,
α “ 5{9, β˚ “ 9{100, β “ 0.0708, σ “ 1{2, σd “ 1{8 and σ˚ “ 3{5.

On the solid wall, the velocity must satisfy the no-slip conditions, while temperature, turbulent kinetic
energy, and specific dissipation rate of the obstacles are assumed constant,

u “ 0

T “ Tw

k “ 0

ω “ ωw “ Cµ

ρpδhq2

,

/

/

/

.

/

/

/

-

on BOi, @i, (10)

where Tw is the temperature of the solid wall, and constant C “ 80 is chosen to set the required resolution
δh, depending on the first neighboring grid spacing normal to the wall.

The two-equation model described above results in an eddy viscosity from turbulence velocity (
?
k) and

time (1{ω) scales. Spalart and Allmaras23 proposed a transport equation directly for the eddy viscosity.
The Spalart-Allmaras model has enjoyed great success in predicting aerodynamic flows,24 especially for high
Mach flows, where the compressibility effect cannot be neglected. The standard Spalart-Allmaras model23

in terms of ρν̃ is written as

Bρν̃
Bt ` B

Bxj
pρν̃ujq “ cb1p1 ´ ft2qS̃ρν̃ ´

”

cw1fw ´ cb1

κ2
ft2

ı

ρ

ˆ

ν̃

d

˙2

` B
Bxj

„ˆ

µ

σ
` ρν̃

σ

˙ Bν̃
Bxj



´
ˆ

µ

σρ
` ν̃

σ

˙ Bρ
Bxj

Bν̃
Bxj

` cb2
ρ

σ

Bν̃
Bxj

Bν̃
Bxj

,

(11)
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and the eddy viscosity is computed from:
µT “ ρν̃fv1, (12)

where

fv1 “ χ3

χ3 ` c3v1
,

χ “ ν̃{ν,

S̃ “ max

„

0.3
a

2ΩijΩij ,
a

2ΩijΩij ` ν̃

κ2d2
fv2



,

Ωij “ 1

2

ˆ Bui
Bxj

´ Buj
Bxi

˙

,

fv2 “ 1 ´ χ

1 ` χfv1
,

fw “ g

„

1 ` c6w3

g6 ` c6w3

1{6

,

g “ r ` cw2pr6 ´ rq,

r “ min

„

ν̃

S̃κ2d2
, 10



,

ft2 “ ct3 expp´ct4χ2q,

and d is the distance from the field point to the nearest wall. To avoid possible numerical problems, Spalart
(private communication) suggests limiting S̃ to be no smaller than 0.3

a

2ΩijΩij . cb1 “ 0.1355, cb2 “ 0.622,

σ “ 2{3, κ “ 0.41, cw2 “ 0.3, cw3 “ 2, cv1 “ 7.1, cw1 “ cb1
κ

` 1`cb2
σ

. This “standard” version of the S-A
model does not have the trip term “ft1”, and hence it is argued that ft2 is not necessary, i.e. ct3 “ 0. The
no-slip wall boundary condition for ν̃ is ν̃ “ 0.

III. Wavelet-based Adaptive Computations

The turbulence models described above are implemented using the parallel Adaptive Wavelet Collocation
method (AWCM).5 The unsteady RANS governing equations are evaluated at collocation points, which are
adapted in space and time to dynamically resolve all the features of the numerical solution. The essential
features of the AWCM are briefly described in the next two sections. For detailed discussion the reader is
referred to Refs. 1, 2, 5, 18. A novel treatment of periodic boundary conditions is described in Section III.C.

III.A. Adaptive Wavelet Collocation Method

The Adaptive Wavelet Collocation Method is based on multi-resolution wavelet analysis to construct time-
dependent computational meshes with spatially varying resolution, required to adequately resolve the local-
ized features of the solution with a priori prescribed accuracy. The grid adaptation is based on the analysis of
wavelet decomposition of a spatially dependent field, say upxq, sampled on a set of dyadic nested collocation
points xj

k at different levels of resolution j, formally written as

upxq “
ÿ

lPL1

c1l φ
1
l pxq `

J´1
ÿ

j“1

2n´1
ÿ

µ“1

ÿ

kPKµ,j

d
µ,j
k ψ

µ,j
k pxq, (13)

where n denotes the number of spatial dimensions, bold subscripts denote n-dimensional indices, while L1 and
Kµ,j are n-dimensional index sets associated with scaling functions φ1l and wavelets ψµ,j

k , respectively. Each

of the basis functions, i.e. φ1l or ψµ,j
k , corresponds one-to-one with a grid point l P L1 or k P Kµ,j . Scaling

functions φ1l carry the averaged signal, while the multi-dimensional second-generation wavelet functions ψµ,j
k

define local, variational details. The amplitudes are given by the coefficients c1l and dµ,jk , respectively, and
hence have a unique correspondence to grid points. Levels of resolution span over 1 ď j ď J , with J being
the maximum level present in the approximation (associated to the finest grid resolution). During wavelet
transform, detail (or wavelet) coefficients dµ,jk are obtained recursively from scaling coefficients cµ,jk from level

5 of 19



J ´ 1 to 1. After wavelet transform, grid points l P L1 at the coarsest level store the scaling coefficients c1l ,

and all the other grid points k P Kµ,j at higher levels store the wavelet coefficients dµ,jk . To avoid ambiguity,
grid points k P Kµ,j with 1 ď j ď J ´ 1 represent all collocation points located at level 2 ď j ď J . Note
that for n-dimensional space, there are 2n´ 1 families of wavelet functions, µ.

Wavelet threshold filtering arises naturally from the series expansion (13). The filtering operation is
performed by applying the wavelet transform to the original field upxq, zeroing the wavelet coefficients below
a given threshold, ǫ “ ǫpx, tq for generality, and transforming back to the physical space. The resulting
approximate field, say uąǫpxq, composed of a subset of the original wavelets, represents the dominant modes
and formally can be written as the conditional series

uąǫpxq “
ÿ

lPL1

c1l φ
1
l pxq `

J´1
ÿ

j“1

2n´1
ÿ

µ“1

ÿ

kPKµ,j

|dµ,j

k
|ąǫ‖upxq‖

d
µ,j
k ψ

µ,j
k pxq. (14)

In many implementations, the filter threshold is taken to be relative to some characteristic scale, often
represented by either the L2´ or L8´ norm of upxq and denoted as ‖upxq‖.7 The resulting nonlinear filtering
operation separates resolved flow structures and unresolved residual motions. For a properly normalized
threshold, the reconstruction error of the filtered variable is shown to converge as25

‖uąǫ ´ u‖ ď Opǫq‖u‖. (15)

The dynamic grid adaptation is tightly coupled with the wavelet filter. Due to the one-to-one correspon-
dence between wavelets and grid points, the latter are omitted from the computational mesh if the associated
wavelets are omitted from the representation (14). The multilevel structure of this wavelet approximation
provides a natural way to obtain the solution on a near optimal numerical grid, which is dynamically adapted
to the evolution of the main flow structures, both in location and scale, while higher resolution computations
are carried out where (and only where) steep gradients in the resolved flow field occur.

The multi-resolution wavelet decomposition (14) is used for both grid adaptation and interpolation, while
a hierarchical finite difference scheme, which takes advantage of the wavelet interpolating properties, is used
to differentiate the local function approximations, and to provide the values of derivatives of the function at
those particular locations.

III.B. Adaptive-Anisotropic Wavelet Collocation Method

Second-generation wavelet bases described in section III.A rely on topologically rectilinear grids and in-
herently isotropic mesh elements, which, despite being a highly valuable methodology for the numerical
solution of fluid dynamics equations due to mathematical rigor, simplicity and computational efficiency,26

puts some limitations on the applicability of the approach. These limitations were recently overcome with
the development of the Adaptive-Anisotropic Wavelet Collocation Method (A-AWCM).18 A-AWCM pre-
serves active error-controlling properties of the original AWCM, but provides additional flexibility to control
mesh anisotropy and to solve the problem in complex domains by separating the computational space from
the physical one and introducing a mapping between them, thus, allowing the use of anisotropic curvilinear
meshes in complex geometries.

The introduction of a function that maps the physical domain, say x P Ωp, to the computational domain,
say ξ P Ωc , provides the necessary flexibility of the mesh geometry when dealing with wall-bounded flows,
such as channel flows and flows around obstacles. In physical space, a more optimal spatial distribution of
mesh points can be realized, where mesh element aspect ratios, grid stretching and orientation of the cells
can be properly varied. Furthermore, body-fitted meshes can be constructed with the accurate resolution of
the boundary layer and wake regions. At the same time, the structured rectilinear assembly of collocation
points in the computational space is retained, which allows one to use computationally efficient discrete
wavelet transform and derivative approximations.

A-AWCM utilizes a general curvilinear coordinate mapping function xpξq, which can be either continuous
or discrete. The mapping coordinates are viewed as additional variables, which can be adapted on and which
can be differentiated in computational space, thus, allowing the construction of the Jacobian matrix

Jij ” Bxi
Bξj

. (16)
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Spatial derivatives in physical space are evaluated numerically as

B
Bxi

“ Bξj
Bxi

B
Bξj

“ J ´1
ij

B
Bξj

, (17)

where J ´1
ij is the inverse Jacobian matrix. Based on the particular flow structures and flow geometry, mesh

anisotropy should be controlled through mapping function or mesh generation, and ideally should take into
consideration local flow anisotropy. For instance, more isotropic cells are needed around boundary layer
separation points to properly resolve flow physics, while anisotropic meshes should be used in boundary and
shear layers. At the same time, additional measures should be taken to avoid the generation of mapping
resulting in cells with high skewness, degenerate Jacobian (detpJ q Ñ 0), or non-smooth mesh lines, since the
degradation of the mesh quality can not be fully rectified by the automated mesh refinement. It should be
noted that an additional adaptation on physical coordinates can only assure the accuracy of the representation
of the physical coordinates and would result in additional mesh refinement in the regions where the mesh
is ill-conditioned, but does not guarantee the optimality of the mesh anisotropy, which could be controlled
only as a part of mesh generation process.

III.C. A-AWCM with Periodic Boundary Conditions

Special consideration should be given to the case when physical domain has periodic boundary condition,
since physical coordinates are not periodic. In this case the mesh adaptation can be performed on the
coordinate perturbations xprdi defined by

x
prd
i “ xi ´ J prd

ip pξp ´ minpξpqq, (18)

where i “ 1, . . . , n, repeated index p assumes summation only along periodic directions, and J prd
ip is the

linear with respect to ξp Jacobian, given by

J prd
ip “ pxi|ξp“maxpξpq ´ xi|ξp“minpξpqq{pmaxpξpq ´ minpξpqq. (19)

Note that for simply translated periodic boundaries xprdi is constant. Rewriting Eq. (18) for xi and
substituting into Eq. (16) results in the following Jacobian matrix

Jij “ Bxprdi

Bξj
` J prd

ip δpj `
BJ prd

ip

Bξj
pξp ´ minpξpqq, (20)

where index p assumes summation only in periodic directions. Note that the linear Jacobian (19) is not a

function of ξp, resulting in
BJ prd

ip

Bξj
“ 0 if j “ p, while the term J prd

ij “ 0 when j is the non-periodic direction.

IV. Simulations and Results

IV.A. Supersonic channel flows

In this subsection, simulations of supersonic channel flows are presented for verification of the W-URANS
turbulence modeling approach. The simulations are carried out using a fourth-order A-AWCM described in
Section III. The grid adaptation is performed on momentum, total energy and temperature fields scaled by
L2 norm with wavelet filtering threshold ǫ “ 1ˆ10´3. Relatively small ǫ should be used for W-URANS, since
the unknown variables in the RANS equations are mean Reynolds-averaged or Favre-averaged quantities and
the threshold ǫ controls the error of solutions (cf. Eq. (15)). All numerical configurations described in this
paragraph hold in the remaining context.

The computational domain size is 4πH ˆ 2H ˆ 4πH{3 in steam-wise(x), wall-normal(y) and span-
wise(z) directions, respectively, where H is the half height of the channel. The bulk Reynolds number
is Re “ ρbubH{µw, and the Mach number is Ma “ ub{cw, where p¨qb and p¨qw , respectively, denote bulk
mean quantities and quantities averaged at the walls, and c is the speed of sound. The friction Reynolds
number Reτ “ ρwuτH{µw where uτ “

a

τw{ρw. Here, τw indicates the wall shear stress. Two different
flow configurations are considered: Re “ 3000 with Ma “ 1.5 (CH1) and Re “ 6000 with Ma “ 3.0 (CH2).
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2.    3.    4.    5.    6.    1.    7.    

Level

(a) A section of adaptive grids of CH1-2DF colored
by levels of resolution.

2.    3.    4.    5.    1.    6.    

Level

(b) A section of adaptive grids of CH1-2DC colored
by levels of resolution.

Figure 1. Adaptive grids retained after converging.

A feedback control of the body force in the stream-wise direction based on the bulk mass flow rate is em-
ployed to maintain the desired flow rate. Initial conditions are as follows: the laminar parabolic velocity
profile for plane Poiseuille’s channel flows, uniform density and total energy. Initial conditions for k, ω or ν̃
have correspondingly prescribed values at the wall and exponentially approach to uniform values in the free
stream.

Two-dimensional channel flow with Re “ 3000 and Ma “ 1.5 is used for verification of RANS implemen-
tations. The discretization of the computational domain is done by using dyadic nested wavelet collocation
grids for the wavelet decomposition (14). Two different computational grids are used. A finer mesh has J “ 7
and effective resolution 640 ˆ 256 and a coarser mesh has J “ 6 and effective resolution 128 ˆ 192. Using
A-AWCM, the mesh is stretched in the wall normal direction following a hyperbolic tangent distribution.
The finer mesh case is denoted as CH1-2DF while the coarser mesh case as CH1-2DC. See detailed parame-
ters in Table 1. In the table, ∆x`{∆y` is the grid aspect ratio in the immediate vicinity of the wall, while
∆yp1q` is the first wall normal grid spacing. Stretching ratio represents the grid spacing expanding rate of
successive grids in the y direction, i.e. ∆ypkq{∆ypk´ 1q, where k denotes the grid index. Compression ratio
is defined as the percentage of collocation points discarded in the adaptive grid compared to the number of
non-adaptive grid points.

The S-A model is known to be very robust for aerodynamic flows with high Mach numbers and is therefore
examined in this work. For time integration, the explicit standard four-stage Runge-Kutta scheme is applied
for the S-A model. The adaptive meshes for case CH1-2DF and CH1-2DC solved with the S-A model are
displayed in Figure 1. More grid points are preserved in the near-wall regions whereby the adaptive mesh
refinement occurs. However, the meshes in the middle of the channel appear fairly ‘non-adaptive’, where
the RANS solutions are steady and smooth. The actual degrees of freedom are quite reasonable with fairly
good compression ratios (see Table 1).

Mean velocity profiles across the channel obtained by the two mesh setups with different aspect ratios
are compared with the DNS data27 and plotted in Figure 2. Both results of distinct meshes agree with
DNS quite well. Considering the effect of compressibility, the Van Driest transformed velocity profiles28

collapse according to Morkovin hypothesis29 and are compared in Figure 3(a). The mean temperature
profiles normalized by the wall averaged temperature are also plotted (Figure 3(b)).

Although the performance of the S-A model is fairly good with the W-URANS method as shown above,

Table 1. Mesh parameters for supersonic channel flows.

Case
Effective
resolution

J ∆x`{∆y` ∆yp1q` Stretching
ratio

Compression
ratio

CH1-2DF 640 ˆ 256 7 17 0.26 1.04 96.5%

CH1-2DC 128 ˆ 192 6 63 0.34 1.06 95.5%

CH1-3DF 640 ˆ 256 ˆ 320 7 17 0.26 1.04 99.1%

CH2-2DC 256 ˆ 192 6 102 0.27 1.06 93.0%
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Figure 2. Velocity profiles with different grid aspect ratios solved with the S-A model. DNS data from Ref. 27.

 0

 5

 10

 15

 20

 25

 1  10  100

u+
V

D

y+

velocity profile

DNS Reτ=221
SA Reτ=221

(a) Van Driest transformed velocity profiles.

u`
V D

“
şu`

0
pρ{ρwq1{2du`. DNS data from Ref. 27.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1  10  100

T
/T

w

y+

temperature profile

DNS Reτ=221
SA Reτ=221

(b) Temperature profiles. DNS data from Ref. 30.

Figure 3. Velocity and temperature profiles.

the k ´ ω model encounters convergence problems due to the singularity of the variable ω at a no-slip wall.
Analytically, ω varies like 1{y2 as y Ñ 0, while in practice, a large approximate value of ω is specified at the
wall, cf. Eq. (10). This approximation for the boundary condition gives rise to serious numerical stiffness,
and hence may cause oscillations and convergence problems when it is implemented with high order schemes
like the one used in this work. Furthermore, this singular behavior near the wall necessitates the use of
implicit time integration schemes. The Crank-Nicolson method is used in this work. Different values of
ω|w have been tested by increasing δh from ∆yp1q in Eq. (10). It was observed that the simulations blew
up unless ω|w reduced to the value with δh ą 10∆yp1q, where 10∆yp1q corresponded to a wall distance
with y` « 5. Unfortunately, the solution produced using this ω|w substantially overestimated the friction
Reynolds number Reτ by over 10%.

To alleviate this issue, an alternative formulation of the transport equation rewritten for the scalar
ω̃ “ 1{pω1{2q, which goes like y as y Ñ 0, is implemented and its robustness and accuracy is improved.
First, the explicit time integration scheme can then be used. Then, larger values of ω|w can be applied
with converged solutions, which produce better results. Figure 4 shows the sensitivity of ω|w to the velocity
profiles and Reτ . When the same actual ω|w value is applied with the different ω related equations, there is a
slight discrepancy. This may be explained that in the implementation of the new ω̃ equation, a lower bound

is used to limit the entire ω̃ field, which is the actual boundary condition for ω̃|w “ 1{pω|1{2
w q. However, no

upper bound limiter is used for the original ω field.
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Figure 4. Velocity profiles with different ω wall boundary conditions. Model 1 indicates the original ω equation and

Model 2 indicates the equation in terms of ω̃ “ 1{pω1{2q.

The turbulent kinetic energy k and dissipation rate ε “ β˚kω profiles are depicted in Figure 5. For
smaller ω|w, k is overestimated throughout the wall-normal direction across the channel whereas ε is only
significantly overestimated around y` « 10. Overall, the eddy viscosity µT is overestimated and thereby
higher Reτ is predicted. Since the poor performance of the k´ω model for simulations of internal flows, the
remaining test cases of internal flows utilize the S-A model only.

To investigate the 3D effect of the channel flow case with the W-URANS method, a 3D simulation
with the same Re and Ma is performed with computational grids denoted as CH1-3DF in Table 1. The
resulting solution fields resolve fairly week 3D perturbations though the effective grid resolution is considered
sufficiently fine. Both the adaptive mesh and results are very similar to the 2D case. This is demonstrated
by the velocity profiles from both 2D and 3D simulations shown in Figure 6. These observations may be
explained by dissipation nature of the turbulence model so that the 3D W-URANS simulation of this plane
channel flow converges to a steady and smooth solution.

A higher Reynolds number Re “ 6000 and Mach number Ma “ 3.0 channel flow case is investigated
with 2D W-URANS. This case has larger variations of density and thermodynamic changes. The S-A model
is tested to capture the Mach number effects. The adaptive mesh parameters are shown in Table 1 referred
to as CH2-2DC. Figure 7 plots the mean velocity and wall-average normalized density profiles. The good
agreements of the data with the DNS results demonstrate the reliability of the S-A model for simulations of
compressible turbulent flows using the W-URANS method.

High levels of grid anisotropy, i.e. large grid cell aspect ratios (up to 100) and wall normal stretching
ratios work fine for this W-URANS channel flow case, which demonstrates the capability of the A-AWCM
methodology. It is legitimate to do so also because there is no flow separation in plane channel cases otherwise
separation points would be difficult to resolved by fairly anisotropic grids. A case with flow separation is
considered in the next section.

IV.B. A channel flow with periodic hill constrictions

A flow through a channel with periodic hill constrictions is a typical benchmark to investigate the flow
physics of turbulent separated flows over smooth surfaces and to validate different RANS and LES solutions
with high fidelity DNS and LES data sets. The flow consists in polynomial-shaped obstacles mounted on a
flat plate with recirculation region in their wake. It is Case 81 of European Research Community of Flow,
Turbulence and Combustion (ERCOFTAC) “Classic Collection” Database. Periodic hill crests are separated
by 9H and channel height from the plane top wall to the hill feet is Ly “ 3.035H , where H is the hills’
height. For 3D cases, the size of the span is 4.5H .

A 2D simulation is presented first here with Re “ 2800 andMa “ 0.2. The S-A turbulence model is used.
The Reynolds number is based on H and the bulk velocity between the hill crests and the top wall. In actual
implementation, a feedback control of the body force in strea-wise (x) direction based on the volume bulk
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Figure 7. Results of the channel flow case with Re “ 6000 and Ma “ 3.0.
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Figure 8. Adaptive grids retained after converging colored with levels of resolution. Local mesh refinement is needed
at the separation point.
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Figure 9. Instantaneous vorticity magnitude contours.

mass flow rate is employed to maintain the desired flow rate. The Reynolds number based on the volume
bulk mass flow rate is Rev “ 0.72Re.32 A zero momentum initial condition and uniform density and total
energy are specified. In the early stage of the simulation, a relatively large constant body force is used to
push the flow until the bulk flow reaches its desired value, after which the feedback mechanism is enabled.

The wavelet collocation grids are comprised of 2560 ˆ 768 grid points at the finest level J “ 8. A body-
fitted mesh is generated using a two-boundary method with analytical grid coordinates defined between
the top and bottom boundaries. Grid points are evenly distributed in the x direction. For grid points
along the y direction with the same x coordinate, a hyperbolic distribution is employed to define the y
coordinates between the wall boundary nodes. The wall neighboring grid aspect ratio is ∆x`{∆y` « 13 and
∆y`p1qmax « 0.11. The ultimate compression ratio for this case is 99.1% and the corresponding adaptive
mesh is depicted in Figure 8. Local mesh refinement occurs around the separation point and upstream
part of the separation line as well as the near wall viscous sublayers. The grid cell aspect ratios over the
separation bubble region are nearly isotropic so that the separated flow can be resolved and no numerical
aliasing and instability occur. Since stream-wise periodicity is specified, the curvilinear Jacobian tensor
is modified according to Eq. (20). In addition, the periodic coordinate perturbations xprdi in Eq. (18) are
adapted to resolve the physical coordinates more accurately.

The vorticity magnitude field is displayed in Figure 9, and the mean skin friction coefficient Cf distri-
bution along the bottom wall is plotted and compared with the DNS data33 in Figure 10. As is expected,
this 2D W-URANS simulation cannot predict the size of the separation bubble and reattachment precisely,
while the W-RANS predicted Cf over the first hill agrees fairly well with the DNS result.

The corresponding 3D case is also carried out. A periodic boundary condition is imposed for the span-
wise direction. The grid resolution in the X-Y plane is the same as the 2D case while the domain size in the
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Figure 13. Adaptive grids colored by the levels of resolution for the 2D case.
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Figure 14. Vorticity magnitude contours for the 2D case.

span-wise direction follows the same value 4.5H as in the literature. The number of grid points at the finest
level of resolution in the Z direction is 1280 with even distribution. It is shown in Figure 11 and 12 that the
eddy viscosity predicted by the S-A model is substantial enough to dissipate small scale flow structures and
the flow field is quasi two-dimensional. Therefore the mean skin friction coefficient over the curved lower
wall shown in Figure 10 is nearly the same as the 2D case. Meanwhile, the actual number of grid points is
about 1.1 million with correspondingly quite significant compression ratio of 99.956% due to the smoothness
of Reynolds averaged fields.

IV.C. A flow past a circular cylinder

The simulation setup follows Ref. 19. The flow configuration is a flow past a circular cylinder at a sub-critical
Reynolds number Re “ ρ0UD{µ0 “ 3900 and Mach number Ma “ U{c0 “ 0.2, where U is the free-stream
velocity and c0 “

a

γp0{ρ0 is the ambient speed of sound. The k ´ ω model has been examined19 with the
W-URANS method whereas the S-A model is tested in this work and the complete results is compared. An
analytically azimuthal and the radial distributions of grid points proposed by Beaudan and Moin,34 based on
the so-called wake envelope, are employed in the physical domain. More efficient resolution of the shedding
vortex street and numerical mesh elements with better anisotropy in the boundary layer are obtained in the
wake region.

The flow around the two-dimensional cross-section of the cylinder is described in a Cartesian coordinate
system px, yq, where the x axis corresponds to the inflow direction. In polar coordinates pr, θq an annular
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(a) W-URANS using the k ´ ω model with model co-
efficients described in Ref. 19.

(b) W-URANS using the S-A model described above.

Figure 15. Iso-surfaces of the instantaneous vorticity magnitude field at 0.5U{D.

physical domain is defined by 0.5 ă r{D ă 20 and 0 ă θ ă 2π. For the 3D case, span-wise width, which
plays an important role for crossflow around a circular cylinder,35 is prescribed as 0 ă z{D ă π, following
similar computational studies.36 A convergence test19 has been performed using different J and wavelet
filter threshold ǫ. It shows that J “ 7 and ǫ “ 5 ˆ 10´4 is sufficient for grid convergence with the base
(coarsest level) grids 40 ˆ 12 ˆ 2. For spatial resolution, on the finest grid pj “ Jq, the first point is located
at a radial distance r « 3ˆ 10´4D from the surface. Meanwhile, the cells adjacent to the body surface have
an aspect ratio of approximately 5:2.

Solutions for a 2D simulation using the the S-A model are depicted in Figure 13 and 14. Figure 13 shows
the instantaneous adaptive mesh. The corresponding vorticity magnitude contours are depicted in Figure 14.
Note that in this case the grids are adapted on the vorticity magnitude and L2 norm of the train rate tensor
in addition to adaptation on primary variables, i.e. momentum and total energy. These adapted quantities
are scaled by their L8 norms, which follows Ref. 19 and is different from the other cases in this report.
Adaptive mesh refinement is observed in Figure 13 to resolve the vorticity field. The active number of grid
points for this 2D case with the S-A model is about 160,000 with compression ratio about 92%.

It is observed in Ref. 19 that unlike conventional URANS simulation, the W-URANS in the 3D case using
the k ´ ω model is able to capture the 3D vortical structures and thereby produce substantial improvement
with respect to 2D W-URANS and 3D conventional non-adaptive low-resolution URANS. The S-A model
is also examined for the 3D simulation and the results are compared here. From the iso-surfaces of the
instantaneous vorticity magnitude plotted in Figure 15, one can easily identify the significant difference
between the solutions of the two RANS models. Unlike the k´ω model, the S-A model produces quasi one-
dimensional vortices. Its solution is more similar to a conventional 3D URANS computation. Subsequently,
the number of adaptive grid points needed by the S-A model is substantially less than the k ´ ω model,
reducing from about 30 million to 3 million with compression ratio from 90% to 99%.

This is the consequence of the turbulent eddy viscosity field predicted by the two distinct models shown
in Figure 16 and 17. The S-A model turns out to overestimate the eddy viscosity dramatically compared to
the k ´ ω model. In the k ´ ω model, used by Ref. 19, the cross-diffusion term applied on the right hand
side of the original ω transport equation has its coefficient σd0 “ 0.5 as used by Kok.37 This cross-diffusion
term is devised to improve results for free-shear layers, e.g. the wake flow in this case, when using the k´ω

model. It is an extra source term of the ω equation and hence reduces the net production of the turbulent
kinetic energy, which in turn reduces the eddy viscosity in the wake region and then decreases the predicted
spreading rates. This may explain the low level of computed eddy viscosity in the wake region by the k ´ ω

model.
Using diffusion coefficients used by Kok37 is reported underestimating the spreading rate than measured

data for the wake flow.22 This is reflected by the wake profiles of the velocity components at X{D “ 3
plotted in Figure 18. The deficit stream-wise velocity predicted by 3D W-URANS with the k ´ ω model is
much higher than the experimental data and other URANS results, while the corresponding wake width is
narrower than the others. On the contrary, 3D W-URANS with the S-A model predicts the closest stream-
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Figure 16. Eddy viscosity contours using the k ´ ω model for the 3D case.
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Figure 17. Eddy viscosity contours using the S-A model for the 3D case.

wise velocity profile to the experimental data. For the cross-flow components, the k ´ ω model performs
the best compared to the conventional 3D URANS and W-URANS with the S-A model. The conventional
URANS predicts opposite signs for the cross-flow component, while the W-URANS with the S-A model
predicts correct signs but lower magnitudes. All 2D simulations compared in the plots underestimate deficit
stream-wise velocity and cross-flow velocity in magnitudes.

The mean pressure coefficient over the surface of the cylinder and steam-wise velocity along the centerline
in the near wake region are plotted in Figure 19. It is shown that 2D results are quite similar among different
predictions with lower back pressure over the surface and larger stream-wise velocity along the central line
in the near wake, compared to the measured data. The 3D W-URANS with the S-A model produces very
similar pressure coefficient with the conventional 3D URANS, while the 3D W-URANS with the k ´ ω

model gives more accurate but slightly overestimated results compared with the experimental data. For the
stream-wise velocity distribution, the 3D W-URANS with the k´ω model performs better in the very near
wake X{D ă 1.5 while the W-URANS with the S-A model matches the data well downstream X{D “ 3.5
where the other two predictions produce lower values of this velocity component.

The integral quantities of the flow are reported in Table 2 comparing between the current and previous
work. The mean drag coefficient CD, the mean base pressure coefficient CPb

, the Strouhal number St “ fD{U
(with f the vortex shedding frequency), the root-mean-square value of the lift coefficient C 1

l and the mean
separation angle θs are presented. The 2D results are consistently poor compared with the 3D ones. The
3D W-URANS with the k ´ ω model appears to underestimate while all the other simulations tend to
overestimate all parameters except θs. For the W-URANS with the S-A model, its 2D and 3D cases produce
the closest results compared with the other reference simulations, though its grid spacing of the finest level
of resolution is about 0.02D - the same as the W-URANS with the k´ω model. This outcome suggests that
the S-A model is fairly more dissipative than the k´ω model and the quasi one-dimensional vortex structure
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Figure 18. Mean velocity profiles in the near wake located at X{D “ 3. The experimental data from Ref. 38, 3D
URANS results from Ref. 39 and 3D W-URANS results from Ref. 19.
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Figure 19. Mean pressure coefficient over the surface of the cylinder and steam-wise velocity along the centerline. The
experimental data from Ref. 36, 3D URANS results from Ref. 39 and 3D W-URANS results from Ref. 19.

predicted by the former is determined by the nature of the model regardless the span-wise resolution. Note
that the conventional 3D URANS39 using the k ´ ω model chooses a span-wise grid spacing of about 0.2D.
Such ad hoc coarse resolution forces its 3D simulation close to the corresponding 2D simulation whereas the
W-URANS addresses this issue and guarantees the grid independence by using very fine effective resolution,
while keeping the number of computational grid points small.

V. Conclusions

The Wavelet-based Unsteady Reynolds-Averaged Navier-Stokes turbulence modeling approach is devel-
oped and validated for simulations of wall-bounded internal and external compressible turbulent flows with
the k ´ ω and S-A models. The new approach is able to handle arbitrary geometries with body-fitted
anisotropic meshes using a curvilinear mapping between the computational and physical domains, while
preserving active error-controlling properties of the original adaptive wavelet method. Since a very small
adaptive wavelet threshold (Op10´3q) is applied, the present W-URANS yields nearly identical results as
the non-adaptive URANS that uses the same fine grid resolution. This implies grid convergence of the
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Table 2. Global flow parameters. Results from W-URANS compared to conventional URANS results and experimental
data.

Case CD ´CPb
C 1

l St θs

2D W-URANS
(precent S-A model)

1.55 1.86 1.10 0.227 82

2D W-URANS19 1.51 1.95 1.10 0.24 81

2D URANS39 1.59 1.96 1.17 0.235 –

3D W-URANS
(precent S-A model)

1.50 1.54 1.02 0.220 86

3D W-URANS19 0.95 0.74 0.20 0.21 86

3D URANS39 1.32 1.42 0.70 0.223 –

experiment36 0.99 0.88 – 0.215 86

W-URANS solutions. This is not the case for conventional URANS computations, where very coarse reso-
lution is usually chosen along with numerically dissipative schemes to damp out small turbulent structures.
The 3D W-URANS with the S-A model produces results similar to its 2D counterpart, whereas the 3D
W-URANS with the k´ω model is able to resolve small-scale 3D vortical structures. This suggests that the
S-A model is intrinsically more dissipative than the k ´ ω model though very fine resolution is applied to
both models. The current study serves as a baseline for development of a unified hierarchical eddy resolving
turbulence modeling framework, capable of performing simulations of different fidelity: from non-modeling
direct numerical simulations to full-modeling RANS simulations.
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