Course “Data Analysis for Space Weather”

Instructors:
Dr. Tatiana Podladchikova
t.podladchikova@skoltech.ru

Dr. Astrid Veronig
astrid.veronig@uni-graz.at

Guest lecturers:
Dr. Astrid Veronig, University of Graz/Kanzelhöhe Observatory.
Dr. Norma Crossby, Royal Belgian Institute for Space Aeronomy, ESA SSA ESC Space Radiation

OVERVIEW
The course introduces students to Solar-Terrestrial physics, Space Weather and practically useful approaches of data analysis for study, forecasting, and mitigation of space weather effects. The course provides an overview of Sun-Earth connections, starting from the interior of the Sun and ending in the Earth's magnetosphere. To gain insight into this field, we focus on such topics as: solar interior and solar structure, solar atmosphere, solar wind, solar flares and coronal mass ejections, as well as associated geomagnetic storms and polar auroras. These phenomena drive Space Weather with the implications for space-borne and ground-based technological systems (satellites, human spaceflight, airlines, power systems and pipelines). We also examine the space weather effects on technology and human health, hazard assessment, mitigation and forecasting, space environment data, scientific and service products.

Learning Outcomes

Knowledge
1. Knowledge of Sun-Earth connections and Space Weather effects on space-borne and ground-based technological systems.
2. Knowledge of Space Weather phenomena and main scientific and service products.
3. Knowledge of the state of art data analysis methods in Solar-Terrestrial physics and Space Weather, as well as their distinctive peculiarities and possibilities.

Skills
1. Skills in analyzing of the Space Weather phenomena, their sources and implications.
2. Skills in the detection of eruptive events on Sun and analysis of geomagnetic activity.
3. Skills in the developing data analysis algorithms for the detection, study and forecasting of space weather phenomena.

Experience
1. Experience in the analyzing Sun-Earth connections with implications for space-borne and ground-based technological systems.
2. Experience in working with space environment data, as well as service products for the production of space weather warnings.
3. Experience in predictive modeling and advanced data analysis methods for space weather and astrophysics.
Student Participation
To facilitate development of practical skills, foster active interest, and deep understanding, the course includes practical problems in the form of laboratory works and homework.

Reading list:
6. Living Reviews on Solar Physics:
 http://www.springer.com/astronomy/astrophysics+and+astroparticles/journal/41116;
 Contains a number of review papers on various topics on solar physics. All articles are open access.