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Inject an impurity particle in a 1D quantum fluid at T=0
(1D fluid =1D gas for our purposes)
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Question: will it ever stop ?

Fine print: the question makes sense for infinite system or periodic boundary conditions.

We stick to periodic boundary conditions.



Experimental realizations of a1D
gquantum gas

A Quantum Newton's cradle (Nature 440, 900 (20006))




Experimental realization of a
mobile impurity in a 1D
guantum gas

a) Blue-detuned Radio f b) A
optical lattice adio frequency
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Phys. Rev. Lett. 103, 150601 (2009);

Phys. Rev. Lett. 109, 235301 (2012); Toroidal optical traps

N Phys. 9, 235241 (2013). :
ature Fhys (2013) are also possible
Very recent: Science 356, 945-948 (2017)



Dispersion of a1D fluid
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Question: will the impurity stop ?
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Naive (and wrong) answer: eventually yes

No phase transitions in 1D \ I

Landau crltlcal
velocity
IS zero in 1D

No superfluidity in 1D
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Figure 5 | Time evolution of (P (t)) for y =5 and several values of Q.
Initial momentum Q =1.05kr (red), 1.35kr (orange), 1.7k (green), 2kr
(blue). Inset: zoom in on the oscillations. The oscillations depend only
weakly on Q. This implies that if the impurity was created in a wave packet
state } o ing) its momentum 3, |ox 12 (inklﬁlft}link:l would still oscillate
with time for o not too broad in momentum space (see Supplementary
Section 59). If the Raman beams have a finite width w in the set-up shown
inFig. 4, ;. is a Gaussian in momentum space centred around Q with width
1/w.
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Figure 6 | Time evolution of {PL[ﬂ} for several values of mass ratio

r=m) fmyi. Initial momentum Q =1.05kg, interaction strength y =5. These
results are obtained by the variational approach discussed in the text. In the
integrable case, r =1, they agree gquantitatively with those obtained by
Bethe Ansatz (see Supplementary Section 58). One can see that the
saturation of momentum loss and gquantum flutter exist away from the
integrable point. However, quantum flutter gets strongly damped forr <1,
whereas for r =1the damping depends on r only weakly.



lllustration: impurity in a sea of noninteracting
fermions of the same mass

pairwise scattering in 1D, m = my
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due to energy and momentum conservation
the momenta of the impurity and fermion
are merely exchanged



lllustration: impurity in a sea of noninteracting
fermions of the same mass

Pauli blocking!




What about:

* Three-body processes?
 Quantum interference?
* Interactions?

e Bosonic fluids?

Theorem: the impurity still does not stop!



Scope and notations

@ Hamiltonian of the impurity-fluid system: H=~H,+H+0U.
|[E) - eigenstates of H.

@ Host fluid consists of N particles in volume V' with number density
p = N/V. Hamiltonian of the host fluid H,, is arbitrary.

@ Dispersion of the fluid is the lower edge of spectrum of l:Ih:
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where g = |q.




Initial condition

Initially the impurity is injected with some velocity vo (with vy = |vgl) into
the host fluid at zero temperature:

in) = [GS) @ |vo) = |GS. vo),

where |GS) is the ground state of the fluid.



Generalized critical velocity

Generalized critical velocity depends on mass of the impurity [Rayfield,

1966]:
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Physically, v is the minimal velocity which allows the impurity to create
real excitations of the fluid (remind however that impurity-fluid interaction
was ignored).



Geometrical meaning of the critical velocity
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The line v.q is tangent to the curve £(q) + 3
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Geometrical meaning of the critical velocity

The line v.q is tangent to the curve ¢(q) + -




Rigorous bound on |vy — v

For an everywhere repulsive impurity-fluid interaction U(x) > 0 and for
Vo = |Vol| < ve

where U = p [ dr U([r]).

OL, Phys. Rev. A 89, 033619 (2014)
OL, Phys. Rev. A91, 040101 (2015)




How to reconcile this result with the absence of
superfluidity in 1D?

Easy: superfluid flow through a static constriction is equivalent to
the stationary motion of impurity of infinite mass. However,

Ve(m =00) =0

and the bound collapses.



We can do more In certain cases:

Voo = Voo (V0)

explicitly

* Keldysh dynamical perturbation theory
for small impurity-fluid coupling

* Bethe ansatz in the integrable point



Model description

External particle immersed into quantum gas
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Initial state |in) = |vac)e’PX

(P(t=0)) = po. (P(t)) =7

Thermodynamic limit N — oo, L — o0, p = N/L = const
Tonks-Girardeau (TG) limit ¢ — oo: |vac) = |FS)

The mass ratio n = m;/my,. System is integrable for n = 1.




Quantum Boltzmann Equation (QBE)
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QBE: iterative solution
with controllable precision

g bidden reg d, Do
Ny
. Yy
P - Ty
O. Gamayun, O. L, V. Cheianoyv, m =05
Phys. Rev. E 90, 032132 (2014) E Lol



Bethe ansatz solution

e Hamiltonian in the impurity rest frame
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e Eigenfunctions in the impurity rest frame H, |f) = E¢|f)
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where ky, ks, ... ky,, are deformed quasimomenta (Bethe roots), defined through the set of integers
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(0, 7) is a solution of the transcendental equation

1 ~ 4R(x)

where the function R(x) €
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and parameter \ is found from the condition

Zk‘ = Py .

e Initial state in the impurity rest frame is just a fllled Fermi-Sea |in) = |FS) = ('lu:‘rt,;__j,-:-[l_‘.x:][Ef”'r‘“*r”‘33"]"‘”"3":)



Bethe ansatz solution
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Bethe Ansatz Results
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O. Gamayun, E. Burovski, V. Cheianov, O. L, M. Malcomson, M. Zvonarey,
Phys. Rev. Lett. 120, 220605 (2018).



Turning on the impurity-fluid coupling g adiabatically

g(t) =1t Integrability broken by time dependence!

Two types of adiabaticity in a many-body system:

I'< Er / N genuine many-body-adiabatic regime

(many-body wave function stays close to the eigenfunction)

Er / N KI'<K Ep thermodynamically adiabatic regime

(local observables stay close to their ground state values)

Initial state is the product state:

in) = |pg) ® |Fermi sea)



Genuine many-body adiabatic regime

Adiabatic theorem at work,
the system stays In the many-body eigenstate.

Subtlety: degeneracy at t=0, the initial eigenstate should be chosen
on continuity basis



Thermodynamically adiabatic regime

Problem: integrability is broken, adiabatic theorem does not apply

Solution: stepwise approximation — slow growth of g(t) substituted
by a stepwise sequence of small quenches

-




Thermodynamically adiabatic vs many-body adiabatic regimes
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Vo < U -no difference

Vo > Vg - dramatic difference

O. Gamayun, E. Burovski, V. Cheianov, O. L, M. Malcomson, M. Zvonarey,
Phys. Rev. Lett. 120, 220605 (2018).



Summary

A mobile impurity of finite mass injected in a 1D quantum
keeps moving forever.

Apparent conflict with the Landau argument on the absence of
superfluidity is resolved.

General theorem bounds the steady state velocity from below.

The steady state velocity is found explicitly in the weak coupling
limit and in the integrable point.

Integrable McGuire system — the simplest BA-solvable model. A
lot of physics can be studied in detail!

Thermodynamically adiabatic evolution can be studied in an
“integrable” with the help of a stepwise substitution. Outcome
can be drastically different from the many-body adiabatic case.



Literature

[1] C.J. M. Mathy, M. B. Zvonarev, and E. Demler, “Quantum flutter of supersonic particles in
one-dimensional quantum liquids,” Nature Physics 8, 881-886 (2012).

[2] M. Knap, C. J. M. Mathy, M. Ganahl, M. B. Zvonarev, and E. Demler, “Quantum flutter:
Signatures and robustness,” Phys. Rev. Lett. 112, 015302 (2014).

[3] O. Lychkovskiy, “Perpetual motion of a mobile impurity in a one-dimensional quantum gas*“,
Phys. Rev. A 89, 033619 (2014).

[4] O. Lychkovskiy, “Perpetual motion and driven dynamics of a mobile impurity in a quantum
fluid“, Phys. Rev. A 91, 040101 (Rapid Communication) (2015).

[5] E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy, “Momentum relaxation of a
mobile impurity in a one-dimensional quantum gas”, Phys. Rev. A 89, 041601 (Rapid
Communication) (2014).

[6] O. Gamayun, O. Lychkovskiy, V. Cheianov, “Kinetic theory for a mobile impurity in a
degenerate Tonks-Girardeau gas”, Phys. Rev. E 90, 032132 (2014).

[7] O. Gamayun, E. Burovski, V. Cheianov, O. Lychkovskiy, M. Malcomson, M. Zvonarev,
“Impact of the injection protocol on an impurity’s stationary state”, Phys. Rev. Lett. 120,
220605 (2018).



Quantum Boltzmann Equation (QBE)

Quantum kinetic equations [G] ™! = [G()]! — £

Pure Boltzmann

0(ke — Ipl)

”?=an o — p . Po > kr.
Poo = Po — 0 (|po| — kF) T
= = = Po—kr

Multiple Scattering Events
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