Dynamics of quantum integrable models via coupled Heisenberg equations

Oleg Lychkovskiy

in collaboration with Oleksandr Gamayun, Igor Ermakov and Filipp Uskov

Center for Advansed Studies seminar, Skoltech, Nov 01, 2021

Quantum dynamics of an observable

- H Hamiltonian
- O (Schrödinger operator of) observable
- $ho_0~-$ initial state
- ρ_t time-evolving state

von Neumann equation:

 $i\partial_t \rho_t = [H, \rho_t]$ $\langle O \rangle_t \equiv \operatorname{tr} \rho_t O$

evolution of the observable:

Heisenberg representation

$$i\partial_t \rho_t = [H, \rho_t] \qquad \Leftrightarrow \qquad \rho_t = e^{-iHt} \rho_0 \ e^{iHt}$$

$$\langle O \rangle_t = \operatorname{tr} \left(e^{-iHt} \rho_0 \, e^{iHt} \, O \right) = \operatorname{tr} \rho_0 \, O_t$$

Heisenberg operator

$$O_t = e^{iHt}O e^{-iHt}$$
Heisenberg operator Schrödinger operator

Heisenberg equation:

$$\partial_t O_t = i[H, O_t]$$

Heisenberg equation

 $O_t = e^{iHt} O e^{-iHt} \qquad \langle O \rangle_t = \operatorname{tr} \rho_0 O_t$

Heisenberg equation:

$$\partial_t O_t = i[H, O_t], \qquad O_0 = O$$

technically, proceed as

$$[H, O_t] = e^{iHt} [H, O] e^{-iHt} \equiv [H, O]_t$$
$$\partial_t(\dots) = i[H, \dots]$$

Heisenberg operators are also useful for calculating correlation functions:

$$\langle O_t \, \tilde{O} \rangle_{\beta} \equiv \operatorname{tr} \left(O_t \, \tilde{O} \, e^{-\beta H} \right) / \operatorname{tr} e^{-\beta H}$$

Transverse-field Ising model: Hamiltonian

$$H = a_1 \sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x - a_0 \sum_{j=1}^{N} \sigma_j^z$$

notations for translation-invariant operators:

$$\sum_{j=1}^{N} \sigma_{j}^{x} \sigma_{j+1}^{x} \to \sigma^{x} \sigma^{x}$$
$$\sum_{j=1}^{N} \sigma_{j}^{x} \sigma_{j+2}^{y} \to \sigma^{x} \mathbb{1} \sigma^{y}$$

 $H = a_1 \sigma^x \sigma^x - a_0 \sigma^z$

Transverse-field Ising model: Heisenberg equations

observable: $A^1 = \sigma^x \sigma^x$ Hamiltonian: $H = a_1 \sigma^x \sigma^x - a_0 \sigma^z$ $i[H, A^1] = 2a_0(\sigma^x \sigma^y + \sigma^y \sigma^x)$ $i[H, \sigma^x \sigma^y + \sigma^y \sigma^x]: \qquad \sigma^z, \quad \sigma^x \sigma^x, \quad \sigma^y \sigma^y, \quad \sigma^x \sigma^z \sigma^x$ $i[H,\sigma^z]: \sigma^x \overline{\sigma^y + \sigma^y \sigma^x}$ $i[H,\sigma^y\sigma^y]: \sigma^x\sigma^y + \sigma^y\sigma^x, \sigma^x\sigma^z\sigma^y + \sigma^y\sigma^z\sigma^x$ $i[H, \sigma^x \sigma^z \sigma^x]: \qquad \sigma^x \sigma^y + \sigma^y \sigma^x, \quad \sigma^x \sigma^z \sigma^y + \sigma^y \sigma^z \sigma^x$ $i[H, \sigma^x \sigma^z \sigma^y + \sigma^y \sigma^z \sigma^x]: \qquad \overline{\sigma^x \sigma^z \sigma^z \sigma^x}, \quad \sigma^x \sigma^z \overline{\sigma^x}, \quad \overline{\sigma^y \sigma^y \sigma^y}, \quad \overline{\sigma^y \sigma^y \sigma^y}$

Transverse-field Ising model: Heisenberg equations

$$\partial_t G_t^n = 2i \left(a_0 (-A_t^n + A_t^{-n}) + a_1 (-A_t^{1+n} + A_t^{1-n}) \right)$$

$$\partial_t A_t^n = -4i \left(a_0 G_t^n + a_1 G_t^{n-1} \right) \qquad n \in \mathbb{Z}$$

$$G^{n} = (i/2) \left(\sigma^{x} \underbrace{\sigma^{z} \sigma^{z} \dots \sigma^{z}}_{n-1} \sigma^{y} + \sigma^{y} \underbrace{\sigma^{z} \sigma^{z} \dots \sigma^{z}}_{n-1} \sigma^{x} \right) \qquad A^{n} = \sigma^{x} \underbrace{\sigma^{z} \sigma^{z} \dots \sigma^{z}}_{n-1} \sigma^{x}$$

$$G^{-n} = -G^{n} \qquad \qquad A^{-n} = \sigma^{y} \underbrace{\sigma^{z} \sigma^{z} \dots \sigma^{z}}_{n-1} \sigma^{y}$$

$$G^{0} = 0 \qquad \textbf{Onsager algebra}$$

$$A^{0} = -\sigma^{z}$$

$$A^{0} = -\sigma^{z}$$

Solving Heisenberg equations

$$\partial_t G_t^n = 2i \left(a_0 (-A_t^n + A_t^{-n}) + a_1 (-A_t^{1+n} + A_t^{1-n}) \right)$$

$$\partial_t A_t^n = -4i \left(a_0 G_t^n + a_1 G_t^{n-1} \right) \qquad n \in \mathbb{Z}$$

$$\partial_t^2 G_t^n = -16 \Big(a_0 \, a_1 \, G_t^{n-1} + (a_0^2 + a_1^2) G_t^n + a_0 \, a_1 \, G_t^{n+1} \Big), \qquad n = 1, 2, \dots$$

$$G_t^n = \sum_{m=1}^{\infty} \left(\partial_t c_t^{nm} G^m + 2 i c_t^{nm} \left(a_0 \left(-A^m + A^{-m} \right) + a_1 \left(-A^{1+m} + A^{1-m} \right) \right) \right)$$
$$c_t^{nm} \equiv \left(2/\pi \right) \int_0^{\pi} d\varphi \sin(n\varphi) \sin(m\varphi) \sin(\varepsilon_{\varphi} t) \varepsilon_{\varphi}^{-1} \qquad \varepsilon_{\varphi} \equiv 4\sqrt{a_0^2 + a_1^2 + 2a_0 a_1 \cos\varphi}$$

$$A_t^n = \int_0^t \partial_{t'} A_{t'}^n = \dots$$
 (explicit but bulky expression)

$$G_t^n = \sum_{m=1}^{\infty} \left(\partial_t c_t^{nm} G^m + 2 \, i \, c_t^{nm} \left(a_0 \left(-A^m + A^{-m} \right) + a_1 \left(-A^{1+m} + A^{1-m} \right) \right) \right)$$

$$\langle O \rangle_t = \operatorname{tr} \rho_0 O_t \equiv \langle O_t \rangle$$

$$\rho_0 = \bigotimes_{m=1}^N \left(\frac{1}{2} (1 + \mathbf{p}\boldsymbol{\sigma}) \right), \quad \mathbf{p} = (p_x, p_y, p_z), \quad |\mathbf{p}| \le 1, \quad \boldsymbol{\sigma} = (\sigma^x, \sigma^y, \sigma^z)$$

$$\langle A^n \rangle = N p_x^2 p_z^{n-1}, \quad \langle A^{-n} \rangle = N p_y^2 p_z^{n-1}, \quad \langle A^0 \rangle = -N p_z, \quad n = 1, 2, \dots$$

$$\langle A^n \rangle_t = \langle A^n \rangle_0 + 4N \int_0^\pi \frac{d\varphi}{\pi} \Big(a_0 \sin\left(n\varphi\right) + a_1 \sin\left((n-1)\varphi\right) \Big) \sin\varphi \\ \times \left(R_\varphi \frac{\sin\varepsilon_\varphi t}{\varepsilon_\varphi} + Q_\varphi \frac{1 - \cos\varepsilon_\varphi t}{\varepsilon_\varphi^2} \right)$$

$$\langle G^n \rangle_t = iN \int_0^\pi \frac{d\varphi}{\pi} \sin(n\varphi) \, \sin\varphi \left(R_\varphi \cos\varepsilon_\varphi t + Q_\varphi \frac{\sin\varepsilon_\varphi t}{\varepsilon_\varphi} \right)$$

$$R_{\varphi} = \frac{2 p_x p_y}{1 + p_z^2 - 2p_z \cos\varphi}$$

$$Q_{\varphi} = -4 a_1 \left(\frac{p_x^2 p_z - p_y^2 / p_z + (a_0/a_1)(p_x^2 - p_y^2)}{1 + p_z^2 - 2p_z \cos\varphi} + \frac{p_y^2 / p_z + p_z}{1 + p_z^2 - 2p_z \cos\varphi} \right)$$

 $\mathbf{p} = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$

Transverse-field Ising model: noninteracting fermions

Jordan-Wigner transformation:

$$c_{j}^{\dagger} \equiv \sigma_{j}^{+} \Pi_{j-1}, \quad c_{j} \equiv \sigma_{j}^{-} \Pi_{j-1}, \quad \{c_{j}^{\dagger}, c_{l}\} = \delta_{jl}, \quad \{c_{j}, c_{l}\} = 0$$
$$\Pi_{n} \equiv \prod_{j=1}^{n} \sigma_{j}^{z}, \quad \sigma_{j}^{+} = (\sigma_{j}^{x} + i\sigma_{j}^{y})/2, \quad \sigma_{j}^{-} = (\sigma_{j}^{x} - i\sigma_{j}^{y})/2, \quad |\text{vac}\rangle = |\downarrow\downarrow \dots \downarrow\rangle$$

$$H = \sum_{j} (c_{j}^{\dagger} c_{j-1} + c c_{j-1} + h.c.) - a_{0} \sum_{j} c_{j}^{\dagger} c_{j}$$

 A^n, G^n are quadratic forms in $c_j^{\dagger} c_j$, e.g.

$$A^n \sim \sum_j (c_j + c_j^{\dagger})(c_{j+n-1} + c_{j+n-1}^{\dagger}), \quad n \ge 1$$

Transverse-field Ising model: noninteracting fermions

in the fermionic representation an initial state can be hard to handle:

$$\rho_0 = \bigotimes_{m=1}^N \left(\frac{1}{2} (1 + \mathbf{p}\boldsymbol{\sigma}) \right)$$

$$p_x = \cos\phi\,\sin\theta, \ p_y = \sin\phi\,\sin\theta, \ p_z = \cos\theta$$

$$|\mathrm{in}\rangle = e^{i(\phi/2)\sum_{j}\sigma_{j}^{z}}e^{i(\theta/2)\sum_{j}\sigma_{j}^{x}}|\downarrow\downarrow\ldots\downarrow\rangle, \qquad \rho_{0} = |\mathrm{in}\rangle\langle\mathrm{in}|$$

superposition of states with all possible fermion numbers

Onsager algebra

structure:

$$[A^{n}, A^{m}] = 4 G^{n-m},$$

$$[G^{n}, A^{m}] = 2A^{m+n} - 2A^{m-n},$$

$$[G^{n}, G^{m}] = 0$$

can be generated from A^0, A^1 recursively through

$$G^{n} = \frac{1}{4} [A^{n}, A^{0}], \qquad n = 0, 1, 2, \dots,$$
$$A^{n+1} - A^{n-1} = \frac{1}{2} [G^{1}, A^{n}], \qquad n = 0, \pm 1, \pm 2, \dots$$
(1)

if and only if the Dolan-Grady conditions (1982) are satisfied:

$$[A_0, [A_0, [A_0, A_1]]] = 16[A_0, A_1],$$

$$[A_1, [A_1, [A_1, A_0]]] = 16[A_1, A_0].$$

Onsager algebra in nearest-neighbor spin models

Gehlen and Rittenberg (1985):

for each $n \ge 1$ a spin-n/2 representation exists;

the corresponding Hamiltonian

 $H = a_0 A^0 + a_1 A^1$

is a nearest-neighbor Hamiltonian:

spin 1/2 - transverse-field Ising model

higher spins – superintegrable chiral n-state Potts models

Dynamics in models with Onsager algebra

 $H = a_0 A^0 + a_1 A^1$

Heisenberg equations and their solution are independent on the representation

$$G_t^n = \sum_{m=1}^{\infty} \left(\partial_t c_t^{nm} G^m + 2 i c_t^{nm} \left(a_0 \left(-A^m + A^{-m} \right) + a_1 \left(-A^{1+m} + A^{1-m} \right) \right) \right)$$
$$c_t^{nm} \equiv \left(2/\pi \right) \int_0^{\pi} d\varphi \sin(n\varphi) \sin(m\varphi) \sin(\varepsilon_{\varphi} t) \varepsilon_{\varphi}^{-1} \qquad \varepsilon_{\varphi} \equiv 4\sqrt{a_0^2 + a_1^2 + 2a_0 a_1 \cos\varphi}$$

3-state Potts model

$$\begin{split} A^{0} &= \frac{4}{3} \sum_{j=1}^{N} \left(\frac{\tau_{j}}{1 - \omega^{*}} + h.c. \right) = \frac{4}{3} \sum_{j=1}^{N} S_{j}^{z}, \\ A^{1} &= \frac{4}{3} \sum_{j=1}^{N} \left(\frac{\sigma_{j} \sigma_{j+1}^{\dagger}}{1 - \omega^{*}} + h.c. \right), \qquad \omega = e^{2\pi i/3} \end{split}$$

$$\tau_j^3 = \mathbb{1}_j, \qquad \sigma_j^3 = \mathbb{1}_j, \qquad \tau_j^2 = \tau_j^{\dagger}, \qquad \sigma_j^2 = \sigma_j^{\dagger}, \qquad \sigma_j \tau_j = \omega \tau_j \sigma_j$$

$$\tau = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^* \end{pmatrix}, \qquad \sigma = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

3-state Potts model

$$G_t^n = \sum_{m=1}^{\infty} \left(\partial_t c_t^{nm} G^m + 2 \, i \, c_t^{nm} \left(a_0 \left(-A^m + A^{-m} \right) + a_1 \left(-A^{1+m} + A^{1-m} \right) \right) \right)$$

in contrast to Ising model, general formulae for A^n, G^n are unknown

we generate them recursively one by one using computer algebra code

bulky expressions, no apparent structure (though certain properties can be guessed)

n	1	2	3	4
number of terms in A^n	1	9	43	181

fortunately, the sum converges rapidly

3-state Potts model: dynamics after a quench

 $\mathbf{p} = (0, 0, 1)$

Open problems

- explicit formulae for *n*-state representations of Onsager algebra
- site-resolved dynamics
 - straightforward for Ising model (work in progress with Igor Ermakov)
 - higher spins?
 - local analog of Onsager algebra?
- models with non-local representations of Onsager algebra?
- time-dependent Hamiltonians?

Kitaev model on a honeycomb lattice

$$H = J_x \sum_{x-\text{links}} \sigma_{jA}^x \sigma_{j'B}^x + J_y \sum_{y-\text{links}} \sigma_{jA}^y \sigma_{j'B}^y + J_z \sum_{z-\text{links}} \sigma_{jA}^z \sigma_{j'B}^z$$

we consider

$$= J_y = J_z = 1$$

mapping to Majorana fermions:

$$H = \sum_{\text{links}} I_{jj'} c_{jA} c_{j'B}$$

local integrals of motion

 J_{γ}

quadratic model when IoMs fixed

sum over disorder configurations for generic states!

Kitaev model on a Bethe lattice: routs and strings

route: sequence of turns, left or right, e.g.

$$\mathscr{V} = rll, \qquad \mathscr{W} = lr.$$

string: operator constructed from a link and two routes:

$$Z_{lr}^{rll} = \sigma_{\boldsymbol{j}_7A}^y \, \sigma_{\boldsymbol{j}_5B}^x \, \sigma_{\boldsymbol{j}_5A}^y \, \sigma_{\boldsymbol{j}B}^y \, \sigma_{\boldsymbol{j}A}^x \, \sigma_{\boldsymbol{j}_3B}^x \, \sigma_{\boldsymbol{j}_3A}^z$$

the same operator has different string representations:

Time derivative of strings

strings form an algebra wrt commutation

$$\begin{split} [iH, Q_{\mathscr{W}}^{\mathscr{V}}] &= \operatorname{Ex} \begin{bmatrix} Q_{\mathscr{W}}^{\mathscr{V}} \end{bmatrix} + 2 \, \frac{\operatorname{sign} \left(\mathscr{V}^{\widetilde{}} \right)}{\operatorname{sign} \left(\mathscr{V} \right)} \, Q_{\mathscr{W}}^{\mathscr{V}} + 2 \, \frac{\operatorname{sign} \left(\mathscr{W}^{\widetilde{}} \right)}{\operatorname{sign} \left(\mathscr{W} \right)} \, Q_{\mathscr{W}}^{\mathscr{V}}, \\ [iH, Q_{\emptyset}^{\emptyset}] &= \operatorname{Ex} \begin{bmatrix} Q_{\emptyset}^{\emptyset} \end{bmatrix} \\ \mathbf{j} \end{split}$$

Q = X, Y, Z

$$\operatorname{Ex}\left[\begin{array}{c}Q^{\mathscr{V}}_{\mathscr{W}}\\\mathbf{j}\end{array}\right] = 2\left(\begin{array}{c}-Q^{\mathscr{V}r}_{\mathscr{W}} + Q^{\mathscr{V}l}_{\mathscr{W}} - Q^{\mathscr{V}}_{\mathscr{W}r} + Q^{\mathscr{V}}_{\mathscr{W}l}\\\mathbf{j}\quad \mathbf{j}\quad \mathbf{j}\quad \mathbf{j}\quad \mathbf{j}\end{array}\right)$$

$|\mathscr{V}|,|\mathscr{W}|\geq 1$

Time derivative of strings

$$[iH, X_{\emptyset}^{\mathscr{V}}] = \operatorname{Ex} \begin{bmatrix} X_{\emptyset}^{\mathscr{V}} \end{bmatrix} + 2 \frac{\operatorname{sign}(\mathscr{V})}{\operatorname{sign}(\mathscr{V})} X_{\emptyset}^{\mathscr{V}} - 2 \frac{\operatorname{sign}(\widetilde{\mathscr{V}})}{\operatorname{sign}(\mathscr{V})} \times \begin{cases} Y_{\mathscr{V}}^{\emptyset}, & \mathscr{V}_{1} = \mathscr{V} \\ J_{1} & J_{1} & J_{2} \\ & J_{1} & J_{2} \\ & J_{2} & J_{2} & J_{2} \end{cases}$$

$$[iH, Y_{\emptyset}^{\mathscr{V}}] = \operatorname{Ex} \begin{bmatrix} Y_{\emptyset}^{\mathscr{V}} \end{bmatrix} + 2 \, \frac{\operatorname{sign} \,(\mathscr{V}^{\widehat{}})}{\operatorname{sign} \,(\mathscr{V})} \, \operatorname{y}_{\emptyset}^{\mathscr{V}} - 2 \, \frac{\operatorname{sign} \,(\widehat{}^{\mathscr{V}})}{\operatorname{sign} \,(\mathscr{V})} \times \begin{cases} Z_{\widetilde{\mathscr{V}}}^{\emptyset}, \quad \mathscr{V}_{1} = r \\ \mathbf{j}_{3} \\ \\ \\ \\ X_{\widetilde{\mathscr{V}}}^{\emptyset}, \quad \mathscr{V}_{1} = l \\ \\ \mathbf{j}_{4} \end{cases}$$

$$[iH, Z_{\emptyset}^{\mathscr{V}}] = \operatorname{Ex} \begin{bmatrix} Z_{\emptyset}^{\mathscr{V}} \end{bmatrix} + 2 \, \frac{\operatorname{sign} \left(\mathscr{V}^{\widetilde{}} \right)}{\operatorname{sign} \left(\mathscr{V} \right)} \, Z_{\emptyset}^{\mathscr{V}} - 2 \, \frac{\operatorname{sign} \left(\widetilde{}^{\mathscr{V}} \right)}{\operatorname{sign} \left(\mathscr{V} \right)} \times \begin{cases} X_{\mathscr{V}}^{\emptyset}, & \mathscr{V}_{1} = r \\ \mathbf{j}_{5} & & \\ \\ & \\ & \\ & Y_{\mathscr{V}}^{\emptyset}, & \mathscr{V}_{1} = l \\ & & \\ & \mathbf{j}_{6} & & \end{cases}$$

Sum over sites

$$Q_{\mathscr{W}}^{\mathscr{V}} = \sum_{\mathbf{j}}' Q_{\mathscr{W}}^{\mathscr{V}}$$

removes subscripts j from all equations

Sum over strings of equal length

$$Q^{mn} = \frac{1}{2} \left(\frac{1}{\sqrt{2}} \right)^{n+m} \sum_{\substack{\mathscr{V}, \mathscr{W}: \\ |\mathscr{V}| = m \\ |\mathscr{W}| = n}} \operatorname{sign} \mathscr{V} \operatorname{sign} \mathscr{W} \left(Q_{\mathscr{W}}^{\mathscr{V}} + Q_{\mathscr{V}}^{\mathscr{W}} \right)$$

reduces the size of algebra from exponential to polynomial

Heisenberg equations

$$\mathcal{X}_{t}^{m\,n} \equiv X_{t}^{m\,n} - \frac{1}{2} \left(Y_{t}^{m\,n} + Z_{t}^{m\,n} \right)$$
$$\mathcal{Y}_{t}^{m\,n} \equiv Y_{t}^{m\,n} - \frac{1}{2} \left(Z_{t}^{m\,n} + X_{t}^{m\,n} \right)$$
$$\mathcal{Z}_{t}^{m\,n} \equiv Z_{t}^{m\,n} - \frac{1}{2} \left(X_{t}^{m\,n} + Y_{t}^{m\,n} \right)$$

$$\partial_t \mathcal{Q}_t^{m\,n} = -2\sqrt{2} \left(\mathcal{Q}_t^{(m+1)\,n} + \mathcal{Q}_t^{m\,(n+1)} - \mathcal{Q}_t^{(m-1)\,n} - \mathcal{Q}_t^{m\,(n-1)} \right), \quad m, n \ge 1$$
$$\partial_t \mathcal{Q}_t^{0\,n} = -2\sqrt{2} \left(\mathcal{Q}_t^{1\,n} + \mathcal{Q}_t^{0\,(n+1)} - \frac{3}{2} \mathcal{Q}_t^{0\,(n-1)} \right), \qquad n \ge 1$$

5

Solving Heisenberg equations

$$\begin{aligned} \mathcal{Q}_{t}^{m\,n} &= \sum_{0 \leq \tilde{m} \leq \tilde{n}} \mathbb{G}_{\tilde{m}\,\tilde{n}}^{m\,n}(t) \mathcal{Q}^{\tilde{m}\,\tilde{n}}, \quad m \leq n \\ \mathbb{G}_{\tilde{m}\tilde{n}}^{mn}(t) &= \int_{0}^{\pi} \int_{0}^{\pi} \frac{dp}{\pi} \frac{dq}{\pi} e^{-iE(p,q)\,t} \chi_{\tilde{m}\tilde{n}}(p,q) \,\xi^{m\,n}(p,q) \\ \mathbb{G}_{\tilde{m}\,\tilde{n}}^{m\,n}(0) &= \delta_{\tilde{m}\,\tilde{n}}^{m\,n}, \quad 0 \leq m \leq n, \quad 0 \leq \tilde{m} \leq \tilde{n} \\ \xi^{m\,n}(p,q) &= e^{\frac{i\pi}{2}(m+n)} \left(\left(\sin(mp)\sin(nq) - 2\sin\left((m+1)p\right)\sin\left((n+1)q\right) \right) + \{m \leftrightarrow n\} \right) \\ \chi_{\tilde{m}\,\tilde{n}}(p,q) &= -(2 - \delta_{\tilde{m}\,\tilde{n}}) \,e^{-\frac{i\pi}{2}(\tilde{m}+\tilde{n})} \sum_{l=1}^{\infty} \frac{1}{2^{l}} \left(\sin\left((\tilde{m}+l)p\right)\sin\left((\tilde{n}+l)q\right) + \{\tilde{m} \leftrightarrow \tilde{n}\} \right) \end{aligned}$$

(staggered) translation-invariant product state:

$$\rho_0 = \bigotimes_{\mathbf{j}} \left(\frac{1}{2} (1 + \mathbf{p} \,\boldsymbol{\sigma}_{\mathbf{j}A}) \right) \left(\frac{1}{2} (1 + \eta \, \mathbf{p} \,\boldsymbol{\sigma}_{\mathbf{j}B}) \right), \quad \eta = \pm 1$$

$$\begin{split} \langle \sigma_{\mathbf{j}A}^{z} \, \sigma_{\mathbf{j}B}^{z} \rangle_{t} &= \frac{2}{3} \eta \int_{0}^{\pi} \int_{0}^{\pi} \frac{dp}{\pi} \frac{dq}{\pi} \, e^{-iE(p,q) \, t} \chi_{00}(p,q) \, \xi^{00}(p,q) \left(p_{z}^{2} - \frac{1}{2} (p_{x}^{2} + p_{y}^{2}) \right) \\ &+ \frac{1}{3} \eta \left(p_{x}^{2} + p_{y}^{2} + p_{z}^{2} \right), \end{split}$$

Ktaev model: dynamics after a quench

blue solid line – our result for Bethe lattice, magenta dashed line – numerical calculation for honeycomb lattice from [L. Rademaker, SciPost Phys. 7, 071 (2019)]

$$\mathbf{p} = (0, 0, 1), \quad \eta = -1$$

Open problems

- generalize to $J_x \neq J_y \neq J_z$ (feasible but tedious)
- site-resolved dynamics (feasible but tedious)
- generalize to true Honeycomb lattice (hardly feasible :)

Further prospects

Are there any other models that can be addressed by the method?

Note: an algebra is redundant,

closeness wrt commutation with the Hamiltonian alone suffice

O. Lychkovskiy. <u>Closed hierarchy of Heisenberg equations in integrable models</u> with Onsager algebra // SciPost Phys. 10, 124 (2021)

O. Gamayun, O. Lychkovskiy. <u>Out-of-equilibrium dynamics of the Kitaev model</u> on the Bethe lattice via a set of Heisenberg equations // arXiv 2110.13123

Thank you for your attention!