Multi-scale Discussions on Natural Gas Storage and Transport in Nanoporous Material

I. Yucel Akkutlu
Khoa Bui, Seungmo Kang, Feng Feng, Sansarng Riewchotisakul, Behnaz Rahmani, Kou Rui, Maria Vasilyeva, Asana Wasaki

Texas A&M University
Petroleum Engineering Department
Multi-scale Pore Network

core plug

SEM Evidence of Nano-porosity

4 nm

1 μm
Question 1

Considerations for Gas Storage Capacity

- Reference pore volume, V_{p0}

- Adjustments to this pore volume necessary under reservoir conditions:
 - Pore-compressibility effect
 - Adsorption layer effect

![Diagram showing pore pressure and pore volume relationship](diagram)

$V_{p0} = 0.3914$ cm3

$C_p = 5.42 \times 10^{-6}$ psi$^{-1}$

$G_{sl} = 0.1962$ cm3

$P_L = 1800$ psi

$\rho_{ads,max} = 0.025$ mole/cm3

Kang et al. (2011) SPEJ 16:4
MC Simulation of Fluid Adsorption

4nm, 3,000 psi (20.7MPa) pore pressure and 176°F (80°C) temperature

\[\rho^*_\text{CH}_4 \times (1000^\circ\text{A}^{-3}) \]

VMD visualization of methane-ethane mixture in slit-pore

Free fluid

Adsorbed fluid

Ambrose et al. (2011) SPE Journal 17:1
Adsorption in SWCNT

Structured density profile across the tube under thermodynamic equilibrium conditions:

Rahmani and Akkutlu, 2013, SPE-164099
Phase Diagrams of Methane, Butane and Octane under Confinement

Methane

Butane

Octane

Akkutlu and Rahmani, 2015, URTeC-2151854
IFT of Methane in Nano-channel

From the local stress tensor, pressures are calculated considering both kinetic and internal (inter- and intra-molecular) contributions:

\[
\gamma = \frac{1}{N_0} \int_0^{L_z} \left[p_N(z) - p_T(z) \right] dz = \frac{1}{N_0} \int_0^{L_z} \left[p_{zz}(z) - \frac{p_{xx}(z) + p_{yy}(z)}{2} \right] dz
\]

http://dx.doi.org/10.1080/00268976.2015.1037369

Value of IFT is 6.65 mN/m across the V-L interface. This value is 45% smaller than that of the bulk IFT.
Fluid Transport in SWCNT

- Driving force generated using piston-like arrangement, controlling source and sink volumes to emulate pressure gradient
- Transport properties measured through the tube, e.g. velocity profile, to infer the effects of free and adsorbed phases on the overall transport

Riewchotisakul and Akkutlu, 2015. SPE-175107
Fluid Density and Velocity Profiles: Low Pressure

Average Pressure = 250 psi, \(\Delta P = 5-10 \) psi
Fluid Density and Velocity Profiles: High Pressure

Average pressure: 1,687 psi
Δp = 50 psi
Mass Transport Enhancement Ratio

\[R_{me} = \left(\frac{2r^2_{tube}r^2_{ads} - r^4_{ads}}{r^4_{tube}} \right) + 8\mu C_{sv} \left[\frac{r^2_{ads}}{r^4_{tube}} + \frac{\rho_{ads}}{\rho_{bulk}} \frac{r^2_{tube} - r^2_{ads}}{r^4_{tube}} \right] \]
Methane Mass Flux Profile across the Diameter of 5 nm Tube

Adsorbed phase transport contribute a large portion of the total mass flux
Bundle of Capillaries Approach

Nanoporous material permeability correction for the capillaries

\[k_a = k \sum [f(r_{tube}) \cdot R_{me}] \]

where \(f(r_{tube}) = \) organic pore size distribution (fraction)

A flow cutoff of 2 nm applied

\[[f(r_{tube}) \cdot R_{me}] = 1.573 \]

\(k_a = 1.573 \) k

57.3% enhancement in permeability

Question 4
Effect of Adding a Heavier Component

Feng and Akkutlu 2015, SPE-177005

- Density, g/cm³
- Normalized steaming velocity

Distance to the center of capillary, nm

- Pure CH₄, smooth
- 90% CH₄, smooth
- 10% C₄H₁₀, smooth
- 10% C₄H₁₀, smooth
Effect of Changing Wall Morphology

Feng and Akkutlu 2015, SPE-177005

- Effect of changing a, b values (the length of the trench/bump, or the frequency of the defects)
Permeability Model

Wasaki and Akkutlu, 2015, SPEJ December issue

$$k_{gas} = k_m + \mu D c_g + \mu D_s \frac{G_{sL} \rho_{grain} B_g}{\varepsilon_{ks}} \frac{p_L}{(p + p_L)^2}$$

$$k_m = k_o \left(1 - \left(\frac{p_{conf} - \alpha p}{p_1}\right)^m\right)^3$$

Molecular transport effects of organic nanopores

Geomechanical effect of inorganic pores only
Coupled Fracture-Matrix Simulation I: The impact of Dynamic Matrix Permeability

Wasaki and Akkutlu, 2015, SPEJ December issue

Constant permeability

13% more
Coupled Fracture-Matrix Simulation II: The impact of Limited Fracture Conductivity

Wasaki and Akkutlu, 2015, SPE 175033

Question 6

Because of relatively high pressure near the fracture, molecular transport effects become less influential on production.
Surfactant: dodecylhepta(oxy-ethylene)ether \((C_{12}E_7) \) contains one hydrophobic tail of 12 alkyl groups, and one hydrophilic head of 7 ethylene oxide groups and 1 terminal OH group

Oil: d-limonene (terpene solvent)
Questions!

- Can we develop advanced laboratory techniques targeting unconventional resources petrophysics?
- How accurately can we make the assessment of our resources?
- Is there multi-phase flow based on the classical concepts of displacement?
- How can we scale up transport processes so that we can better predict production?
- Do we need upscaling? How about multi-scale approaches?
- How well do we understand fracture-matrix coupling?
- How to improve the qualities of hydraulic fracture?
References

References, con’t

- Feng, F., and Akkutlu, I.Y., 2015. Flow of Hydrocarbons in Nanocapillary: A Non-Equilibrium Molecular Dynamics Study. SPE-177005, paper to be presented at the SPE Asia Pacific Unconventional Resources and Exhibition held in Brisbane, Australia, November 9-11.

