Директор ЦКП биовизуализации и спектроскопии

bioimaging@skoltech.ru

Дмитрий Горин, профессор, Центр Фотоники и Квантовых Материалов Сколтеха, *D.Gorin@skoltech.ru* инженер ЦКП биовизуализации и спектроскопии

Полина Рудаковская, к.х.н., <u>P.Rudakovskaya@skoltech.ru</u>

Инженер-исследователь ЦКП биовизуализации и спектроскопии

Денис Жигунов, к.ф.-м.н.

центр образован в 2017г. в результате объединения оборудования нескольких лабораторий:

лаборатории плазмоники, руководитель Владимир Драчев, профессор, заведующий лабораторией, Центр Сколтеха по проектированию, производственным технологиям и материалам

Центра Наук о жизни, Константин Лукьянов, профессор; Тимофей Зацепин, профессор лаборатории биофотоники, руководитель Дмитрий Горин, профессор, заведующий лабораторией,

Цель и задача

Визуализация и спектральный анализ с использованием фотонных инструментов на трех уровнях: нано- (внутриклеточный), микро- (клетка, ткань), макро (тело).

Оборудование в эксплуатации

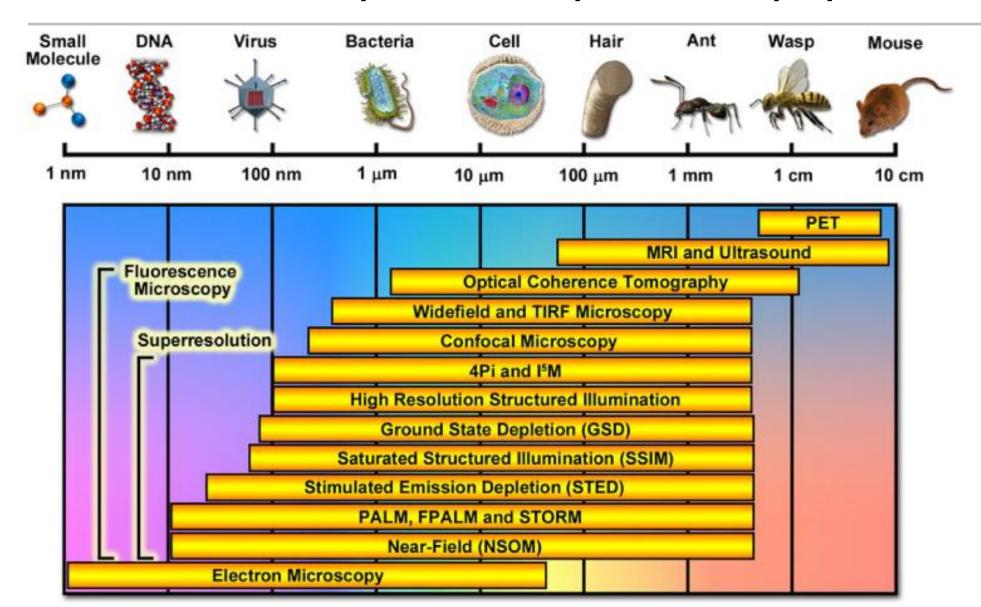
- ➤ Лазерный анализатор размера и дзета потенциала частиц Zetasizer Nano ZS
- ➤ Конфокальный микроскоп с разрешением по времени Picoquant MicroTime 200 STED
- ➤ Спектральный эллипсометр SENresearch 4.0. Sentech Instruments
- ▶ Проточные цитометры ZE-5 и CytoFLEX B5-R3-V5
- спин-диск конфокальный флуоресцентный микроскоп Operetta High Content Imaging System
- Рамановский микроскоп LabRam HR Evolution
- ➤ Спектрофлуориметрическая система FluoroMax 4, HORIBA
- ▶ Высокоэффективный спектрофотометр работающий в УФ, видимой и ближней ИК области спектра Agilent Carry 5000

- ➤ Система микроскопии плоскостного освещения Lightsheet.Z1
- ➤ Инвертированный моторизованный микроскоп Axio Observer.Z1
- ➤ Лазерный сканирующий микроскоп ZEISS LSM 800 с технологией Airyscan
- Оптический рефлектометр для тестирования фотонных компонентов LUNA OBR 4600
- Анализатор оптического спектра высокого разрешения Bosa 400
- Система in vivo 2D-3D визуализации с цифровой микротомографией IVIS Spectrum CT In Vivo Imaging System
- Оптоакустический микроскоп RSOM Explorer P50

Визуализация и спектральный анализ на нано-/ внутриклеточном уровне Лазерный анализатор Zetasizer Nano ZS

Zetasizer Nano ZS высокоэффективный двухугловой анализатор размеров частиц и молекул методом динамического ZSP рассеяния света. также дзетаявляется анализатором потенциала частиц, молекул и поверхностей, и анализатором молекулярной массы полимеров.

https://www.malvernpanalytical.com/e
n/products/


Измерения:

- размер частиц и молекул 0.3 нм 10 микрон, (мин. объем 12мкл; измерение размеров в растворе белков с концентрацией 0.1 мг/мл (лизоцимы)),
- •трансляционной диффузии (поступательная диффузия), электрофоретической подвижности белков,
- •дзета-потенциал частиц при высоких и низких концентрациях коллоидов, частицы 3.8нм − 100микрон (мин. объем 150 мкл),
- ●вязкости и вязкоупругости растворов полимеров, концентрации, молекулярной массы (диапазон 980Да 20МДа; мин. объем 12мкл), второго вириального коэффициента А₂ макромолекул и DLS параметра взаимодействия k₂

- ➤Точность, надёжность и повторяемость результатов анализа за одну-две минуты
- **≻**Материал исследуют в исходной среде
- ▶Для определения среднего размера достаточно знать вязкость жидкости
- ➤Измерение размеров < 1 нм.</p>
- ➤ Малый объём

ЦКП биовизуализации и спектроскопии Микроскопия сверхвысокого разрешения

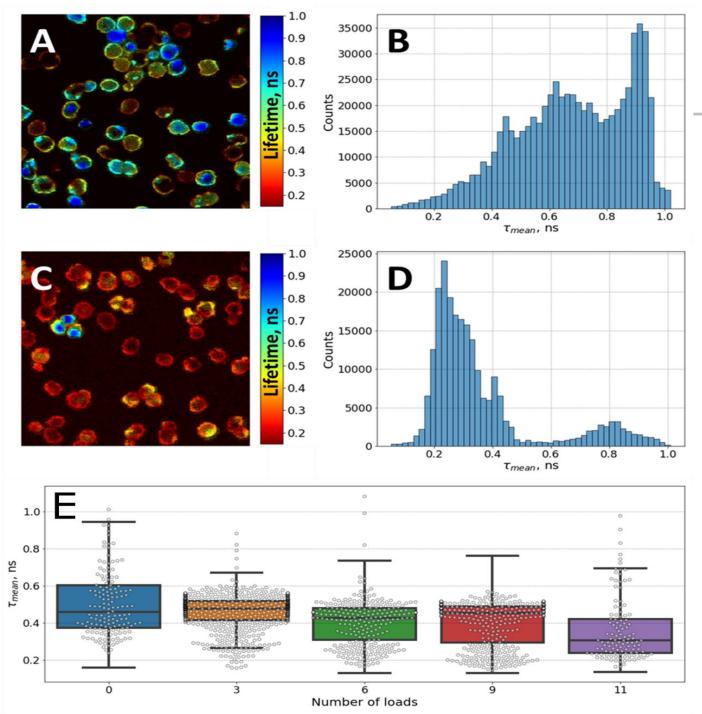
Визуализация и спектральный анализ на нано-/

внутриклеточном уровне

микроскоп Picoquant MicroTime 200 STED

Picoquant MicroTime 200 STED -

конфокальный микроскоп с разрешением по оптических времени ДЛЯ исследований образцов, включая флуоресцентную визуализацию в реальном времени и спектроскопию. STimulated Emission Depletion, метод подавления спонтанного испускания), основанный на подавлении эмиссии флуорофоров, расположенных вне центра возбуждения


https://www.picoquant.com/products/

Измерения:

- визуализация с 20-кратным и 40-кратным увеличением
- ●Микроскопия ультра-высокого разрешения на основе технологии STED
- •Оптическое разрешение менее 50 нм
- •Возбуждение при 640 нм и, возможно, с дополнительными лазерами при 595 нм и 660 нм
- •Пьезо-сканирование для 2D- и 3D-визуализации и точного позиционирования точек

- ≻Оптическое разрешение менее 50 нм
- ≻Выбор длины волны возбуждения
- ➤ подходит для микроскопии с суперразрешением на основе STED
- ➤ может использоваться не только для выполнения STED и STED-FCS, но также поддерживает все другие процедуры измерения и анализа, доступные для MicroTime 200. Это включает в себя FLIM , FCS, FCCS, FLCS, FRET, PIE-FRET

Примеры использования микроскопа Picoquant MicroTime 200 STED

M.D. Mokrousov, et al., **Biomedical Optical Express**, **10**, **9**, **2019**, **4775**

Визуализация и спектральный анализ на нано-/ внутриклеточном

уровне спектроскопический эллипсометр SENResearch 4.0

 SENresearch
 4.0.
 Sentech

 Instruments
 - спектроскопический

 эллипсометр
 с
 высоким

 спектральным
 разрешением

 позволяет
 анализировать

 подложки вплоть до 200 мкм.

https://www.sentech.com/en/SENresear ch__219/

Измерения:

- •толщин одно- и многослойных пленок и пленочных структур под различными углами
- •оптических характеристик пленочных структур (коэффициент преломления, показатель поглащения) на различных типах поверхностей в УФ и видимого и ИК диапазонах длин волн
- •Измерение нанопленок

Программная часть позволяет выбирать различные оптические модели для изучения, а также получать Psi, Delta, интенсивности и матрицы Мюллера.

Исследования применяются в: нанотехнологии, фотовольтаике, микроэлекронике, органической электронике, покрытиях на стекле, дисплеях.

- ➤ Широкий спектральный диапазон (190-3500 нм)
- ➤ Высокая стабильность и точность при измерения
- **≻**Отсутствие подвижных оптических деталей (SSA
- Step Scan Analyzer пошаговое сканирование)
- ≻Высокая скорость измерения образцов
- ≻Измерение оптических характеристик пленок
- ➤ Высокоточное выравнивание образца по углу наклона и высоте с помощью АСТ
- ➤ Измерения на прозрачных и поглощающих подложках
- → Измерение при разных углах плечей эллипсометра (скатерометрия)
- ➤ Высокая скорость измерений (менее 10 сек для полного спектра, более 500 длин волн)


Визуализация и спектральный анализ на микро- уровне

Флюоресцентный цитометр ZE-5 and CytoFLEX B5-R3-V5

CytoFLEX S B5-R3-V5 -

компактный, мощный проточный цитометр, позволяет с легкостью анализировать клетки крови и клеточные культуры, бактерии, водоросли, дрожжи, микродаже наночастицы, такие, как внеклеточные везикулы.

https://www.mybeckman.ru/flow-cytometry/instruments/cytoflex/b53000

Измерения:

- •Анализ содержания ДНК в клетках;
- •Подсчет количества клеток в образце из пробирок;
- •Определение размеров клеток и других частиц;
- •Анализ жизнеспособности клеток;
- •Анализ пролиферации клеток;
- •Подсчет количества тромбоцитов;
- •Анализ стволовых клеток и т.д.
- •Анализ наночастиц (от 200 нм);
- •Регистрация редких событий;
- •Многоцветное иммунофенотипирование;
- •Анализ ДНК (клеточный цикл, плоидность) жизнеспособность;
- •Пролиферация; апоптоз; детектирование флуоресцентных белков; FRET; бактерии, дрожжи, водоросли; фагоцитоз; изучение трансдукции сигнала;
- •контроль качества в пишевой промышленности

- ▶высокая чувствительность и разрешение
- ▶ размеры доступных для изучения микрочастиц составляют от 80нм
- > Учувствительность и разрешение: FITC: <30 MESF (молекул эквивалентного растворимого флуорохрома): PE: >< 10 MESF; Разрешение частиц: <300нм (488 нм, канал бокового рассеяния); <200нм (405нм, канала бокового светорассеяния);
 </p>

Визуализация и спектральный анализ на микро- уровне

Система визуализации Operetta

High Content **Imaging** Operetta System система vitro высококонтрастной визуализации с конфокальным совмещенная модулем на основе диска. Система вращающегося и 3D позволяет получать изображения **ВЫСОКИМ** контрастом минимальным фотообесвечиванием фототоксичностью.

https://www.perkinelmer.com/product/

Измерения:

- •Апоптоз; Клеточный цикл;
- •Клеточное деление;
- •Клеточная миграция;
- •Клеточная морфология;
- •Изменение формы клеток;
- •Реорганизация цитоскелета;
- •Цитотоксичность;
- •In situ флуоресцентная гибридизация (FISH);
- •Анализ липидных частиц;
- •Культивация нервных клеток;
- •Экспрессия белков;
- •Анализ сигнальных путей;
- •Активация рецепторов;
- •РНК тестирование; Факторы траскрипции.
- •Для прибора характерен широкий спектр применения от ежедневных анализов до более сложных комплексных исследований.

- ➤ мощный, стабильный 8х светодиодный источник света для оптимального возбуждения флуорофоров
- ▶ высокое разрешение и быстрое считывание с минимальным фотоповреждением



Визуализация и спектральный анализ на микро- уровне

Рамановский спектрометр LabRam HR

LabRam HR Evolution - спектрометр комбинационного рассеивания для рамановской спектроскопии образцов с высоким пространственным и спектральным разрешением от УФ до ИК диапазона

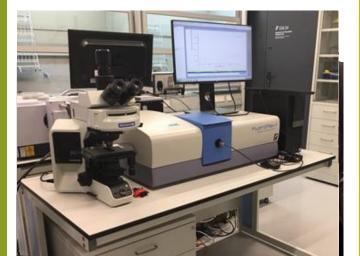
https://www.horiba.com/ru/scientific/products/raman-spectroscopy/

Измерения:

Исследователь получает ДЛЯ анализа характеристики спектральных пиков: длину волны, ширину, минимальное максимальное значение интенсивности. Если образец прозрачный, TO, используя конфокальный микроскоп, можем внутренний анализировать также состав объекта и получать объемные изображения.

Для получения изображения используют два метода анализа: определение положения обнаруженных пиков по усредненным по линии спектрам; сравнение полученных спектров с эталонными спектрами заданных химических веществ из имеющейся библиотеки.

- ▶ Высокие пространственные и спектральные разрешения
- >>Простота использования и эргономичность
- **≻**Сверхбыстрая конфокальная визуализация
- ➤ Raman-AFM и TERS-совместимые
- **≻**Сверхнизкие частоты
- **≻** Автоматическое расположение частиц и химический идентификатор
- ≻Поиск лучших условий для анализа проб
- ➤ CaptuR лазерная ловушка
- ➤ картрирование образца



Визуализация и спектральный анализ на микро- уровне

Спектрофлюориметр FluoroMax 4, HORIBA

Спектрометр Horiba FluoroMax® 4 является мощным инструментом для измерения флуоресценции твердых веществ, жидкостей, порошков и тонких пленок.

http://nytek.ru/catalog/spectrofluorome
ters/fluoromax-series/

Измерения:

Монохроматор возбуждения имеет оптический диапазон 220 - 600 нм, эмиссионный монохроматор - 290 - 850 нм. Ширина оптической щели может регулироваться от 0 до 30 нм. Прибору доступны несколько режимов измерения:

- •флуоресценция, хеми-, био- и электролюминесценция
- •возбуждение, эмиссия, синхронное сканирование
- •3D-сканирование возбуждения / эмиссии, сканирование кинетики процессов
- •количественное определение и анализ с помощью программы Origin®

области применения:

- Материаловедение (полупроводники, фотовольтаика, нанотехнологии, полимеры);
- Медико-биологические исследования (протеомика, фармакология, энзимология, цитология, биохимия, изучение геномов);
- Изготовление продуктов питания (контроль качества, исследования и разработка)

- ➤ высокая чувствительность благодаря соотношению сигнал/шум от 6000:1;
- ➤ высокая скорость сканирования от 80 нм/сек;

- **≻**измерение образцов малых объемов
- работа с тонкими пленками, порошками, гранулами, волокнами и предметными стеклами
- ➤твердые вещества измеряются под углом 30° или 60°.

Визуализация и спектральный анализ на микро- уровне

Спектрофотометр Agilent Carry 5000

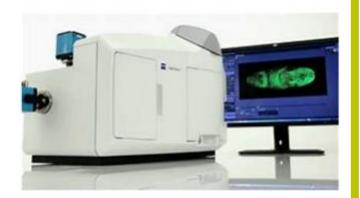
Agilent Carry 5000 - высокопроизводительный спектрофотометр работающий в спектральном диапазоне 180 нм - 3.3 мкм УФ, видимой и ближней инфракрасной области спектра.

https://www.agilent.com/en/products/u v-vis-uv-vis-nir/

Измерения:

Спектрофотометр предназначен для научноисследовательских работ в самых разных областях, включая материаловедение и разработку новых материалов, качественного и количественного спектрального химического анализа.

- •измерение толщины тонких плёнок и анализ противоотражательных покрытий;
- •анализ нанокомпозитных материалов; колориметрия и сопоставление цвета;
- •измерения оптической плотности, например, светофильтров и защитных очков
- •измерение биологических проб высокой мутности;
- •изучение путей внутриклеточных биохимических реакций;
- •анализ перспективных солнцезащитных веществ для кремов и косметики


- → Изменяемая ширина щели (до 0.01 нм) для оптимального контроля над разрешением
- ➤ Большой отсек образцов с механизмом быстрой замены и позиционирования приставок LockDown, для получения воспроизводимых результатов
- ➤ Максимальное световое пропускание благодаря оптике Шварцшильда, для более высокой точности при низких уровнях пропускания
- ➤ Минимальный уровень шума и светорассеяния
- ➤ Расширенный динамический диапазон за счёт ослабления луча сравнения в зависимости от поглощения образца
- ➤ Независимая продувка отсеков образца и монохроматора азотом Skoltech

Визуализация и спектральный анализ на микро- уровне

Система микроскопии плоскостного освещения Lightsheet.Z1

Lightsheet Z.1 — новейшая уникальная система, основанная на методе плоскостного освещения, разработанная для изучения клеточных структур и целых живых организмов.

https://zeisssolutions.ru/equipment/mikroskopy/laze rnaya-mikroskopiya/

Измерения:

- •крайне низкая токсичность системы, с интегрированной системой инкубации, позволяет просматривать и дифференцировать группы клеток, не нанося ущерба образцам
- ●исследования в биологии развития, морской и клеточной биологии, а также в физиологии растений
- •возможность получения пространственновременной структуры клеток во время эмбриогенеза модельных организмов
- ●быстрая визуализация клеточной динамики в эмбрионах и мелких организмах, например, миграция клеток, сердечное развитие, кровоток, развитие сосудов, нейрон -развитие или кальция изображений
- •получение живого изображения 3D-клеточных культур, сфероидов и кист, тканей и органотипических культур
- •использование изображений для анализа миграции клеток, экспрессии и клеточной

- Оптика для освещения 5x/0.1.
- Оптика для детектирования 10x/0.2
- Лазерные линии 405 нм; 445 нм; 488 нм; 515 нм; 561 нм; 638 нм.
- Светодиод LED для освещения образца во время ориентирования
- Объективы 5х/ 0.16, 20х/1.0 водная иммерсия, 40х/1.0 водная иммерсия, 60х/1.0 водная иммерсия
- Поле зрения от 60 мкм– до 2,8 мм
- Максимальный размер образца 5 мм

Визуализация и спектральный анализ на микро- уровне

Инвертированный моторизованный микроскоп Axio Observer.Z1

Axio Observer.Z1 - инвертированный моторизованный микроскоп для биологических исследований

https://zeiss-solutions.ru/equipment/

Измерения:

Микроскоп разработан специально для исследований живых клеточных культур, в том числе в лабораторной посуде, максимально адаптирован для микроманипуляций и клеточного анализа.

- Высочайшее качество оптики высокого контраста, разрешения и цветового контраста (IC2S-оптика), апохроматическая коррекция для флуоресцентного сигнала.
- Сверхустойчивая конструкция, эргономичность.
- Доступны все современные методы исследования светлое поле, темное поле, фазовый контраст, дифференциально-интерференционный контраст (ДИК), поляризация, люминисценция, а также уникальные разработанные Carl Zeiss методы контрастирования плас-ДИК (для наблюдения в пластиковой посуде), отрицательный и положительный фазовый контраст, варел-контраст.
- Возможность установки инкубатора для поддержания температуры, рН, О2, влажности.

- ≻Микроскоп имеет Регистрационное Удостоверение Мин3драва РФ
- ≽универсальный инвертированный биологический микроскоп большой выбор методов контрастирования: светлое поле, темное поле, фазовый контраст, ПласДИК, ДИК, улучшенный Хоффман-контраст (iHMC) возможность установки микроманипуляторов
- ▶ варианты управления микроскопом ручной (А1/D1) и моторизованный (Z1)

Визуализация и спектральный анализ на микро- уровне

Лазерный сканирующий микроскоп ZEISS LSM 800 с технологией Airyscan

ZEISS LSM 800 с технологией Airyscan свободно настраиваемый ЭТО компактный конфокальный лазерный сканирующий микроскоп, оснащенный высокочувствительной GaAsP детекцией быстрым линеаризованным сканированием. В сочетании с Airyscan — принципиально новой концепцией детектирования от компании Zeiss разрешение увеличивается в 1.7 раза во всех трех измерениях, снижая при этом в 5 раз конфокальный объем.

https://zeiss-solutions.ru/equipment/

Измерения:

- Быстрая и удобная настройка системы даже для сложных длительных экспериментов по визуализации живых клеток
- Высокая скорость получения достоверных данных
- Повышенная производительность
- Параллельный захват изображений и online обработка данных

- ≻Три высокочувствительных детектора GaAsP
- **≻**Точные количественные измерения
- ▶ Автоматическая калибровка
- > Простой и понятный интерфейс
- ➤ Большая скорость работы
- > Высокое качество изображений

Визуализация и спектральный анализ на микро- уровне

Оптический рефлектометр LUNA OBR 4600

LUNA OBR 4600 — оптический рефлектометр использущий рассеяние назад для тестирования фотонных компонент обладающий высоким пространственным разрешением.

https://lunainc.com/product/sensingsolutions/

Измерения:

Оптические рефлектометры обратного рассеяния (Optical Backscatter Reflectometer) серии OBR 4600 разработаны для анализа волоконно-оптических компонентов и оптических световодов, а также волокн небольшой протяженности (до 2000 м).

- ◆Тестирование и анализ параметров волоконных компонентов и световодов
- •Интегральная фотоника, анализ параметров интегральных фотонных схем
- •Тестирование волоконных кабелей и кабельных сборок
- •Диагностика и выявление дефектов в ВОЛС
- ●Анализ параметров оптического пути и задержек в ВОЛС
- Радиофотоника
- Одномодовые и многомодовые компоненты и устройства

- ≻Пространственное разрешение 10 мкм для дистанции измерения 30 м, 20 мкм для 70 м.
- >> Пространственное разрешение 1 мм для 2000 м (опционально).
- **≻**Динамический диапазон 80 дБ.
- ≻Чувствительность -130 дБ.
- ≻Рабочие длины волн: С и Lдиапазоны, О-диапазон.
- **≻Отсутствие** "мертвой зоны"

Визуализация и спектральный анализ на микро- уровне

Анализатор оптического спектра высокого разрешения Bosa 400

Optical Spectrum Analyzer Bosa 400

- анализатор оптического спектра высокого разрешения использующий спектроскопию вынужденного рассеяния Мандельштама Бриллюэна для характеризации материалов и фотонных компонент.

https://aragonphotonics.com/bosa-optical-spectrum-analyzer/

Измерения:

- Измерение параметров длины волны лазеров с волоконным выводом
- Тестирование пассивные компонентов ВОЛС
- Измерения в интегральной фотонике
- Тестирование параметров фазы
 модулированного оптического сигнала

- >> Оптическое разрешение 10 МГц (0,08 пм)
- ≻Динамический диапазон более 80 дБ
- **≻**0, С или С+L диапазоны длин волн
- **≻**Быстрая скорость сканирования
- ≻Лучшая точность на рынке 0,5 пм
- ➤ Широкий набор возможности автоматизации измерений

Визуализация и спектральный анализ на макро- уровне

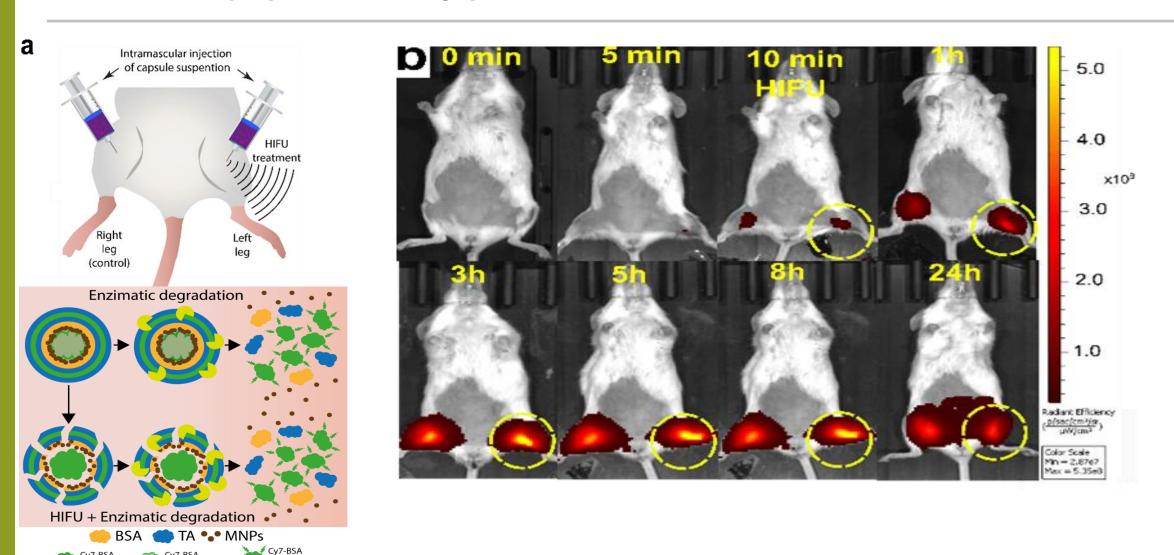
Система визуализации IVIS SpectrumCT

IVIS SpectrumCT In Vivo Imaging System - Система преклинической in vivo 2D и 3D визуализации с цифровой микротомографией с помощью которой возможно получение изображений фантомов биологических тканей методами флуоресцентной и рентгеновской микроскопии.

https://www.perkinelmer.com/category/

Измерения:

Система позволяет проводить in vivo молекулярные и анатомические продольные исследования.


Стабильная вращающаяся платформа для животных вращается на 360 ° для получения полных трехмерных данных.

Несколько животных можно сканировать одновременно, при этом средняя доза на сканирование составляет около 13mGy, время сканирования и восстановления составляет менее минуты.

Оптические и микроКТ методы также могут работать независимо друг от друга.

- ➤Интегрированная оптическая и микроКТ технология
- →3D оптическая томография для флуоресценции и биолюминесценции
- ➤Оптимально для: Биолюминесценции, мультиспектральной флуоресценции и спектрального несмешивания
- ➤ Низкая доза и сверхбыстрый микроКТ

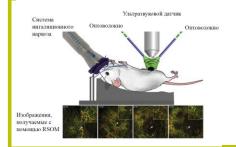
Схема эксперимента (a) и изображения (b) полученные методом флуоресцентной томографии после внутримышечного введения и воздействия HIFU

Визуализация и спектральный анализ на макро- уровне

Оптоакустический микроскоп RSOM Explorer P50

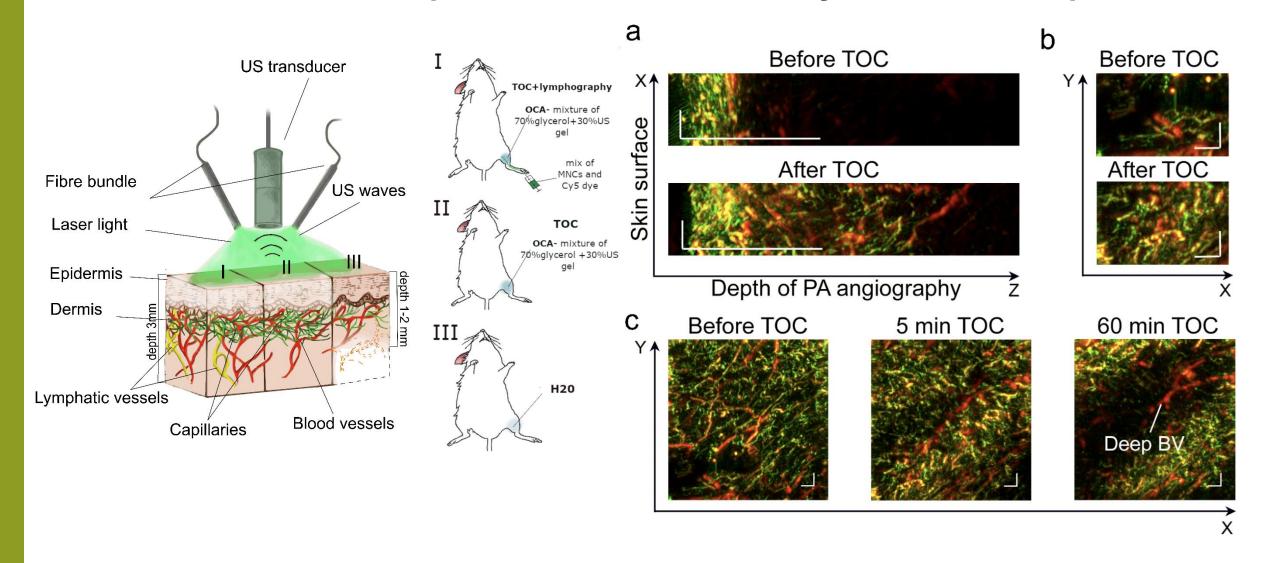
Raster scanning optoacoustic mesoscopy system (RSOM) Explorer P50 - система оптоакустической преклинической in vivo визуализации гемоглобина, меланина и контрастных агентов.

https://www.ithera-medical.com/products/

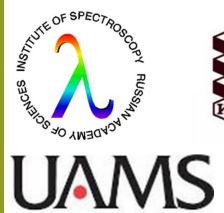


Измерения:

доклинические исследования васкуляторных заболеваний, рака кожи, ангиогенеза заболеваний, опухолей, при которых нарушается накопление таких естественных абсорберов как гемоглобин и меланин на мезоскопическом уровне; в дополнение к абсорберам естественным **MOTYT** исследоваться также молекулярные зонды.


- •Оптоакустическое изображение н мезоскопическом уровне
- •Оптический контраст на глубине до нескольких миллиметров

- >Осевое /латеральное разрешение: до 10 / 40 мкм;
- ≻Глубина проникновения: до 3 мм;
- №80 секунд время накопления сигнала для 5 х 5 мм области сканирования;
- ➤ Импульсный лазер 532 нм;
- >> 50 МГц одноэлементный детектор с ультра широкой полосой (>90 %);
- Автоматическая визуализация;



Техника оптического просветления для оптоакустической микроскопии

Академические и индустриальные партнеры

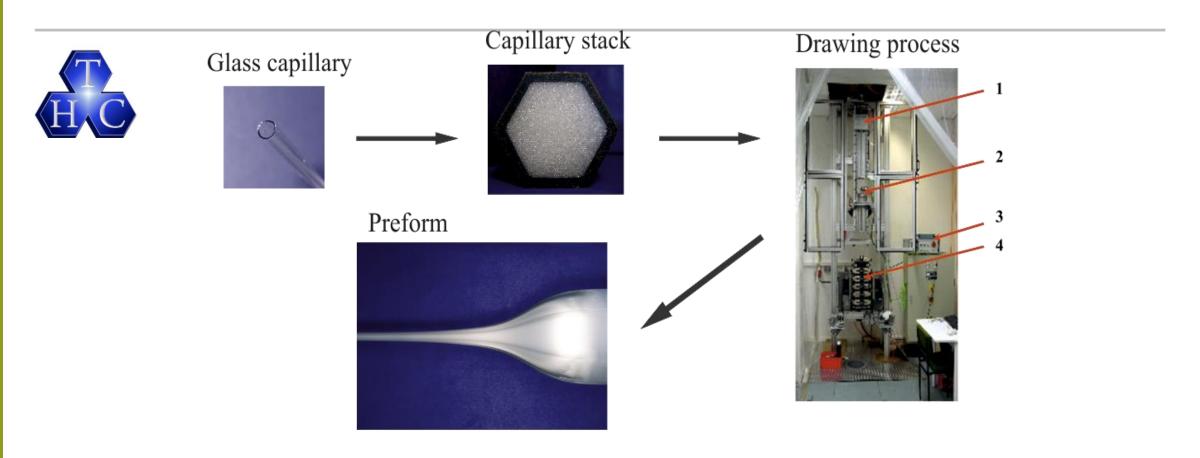
Queen Mary

University of London

Max Planck Institute of Colloids and Interfaces

UNIVERSITY OF ARKANSAS FOR MEDICAL SCIENCES

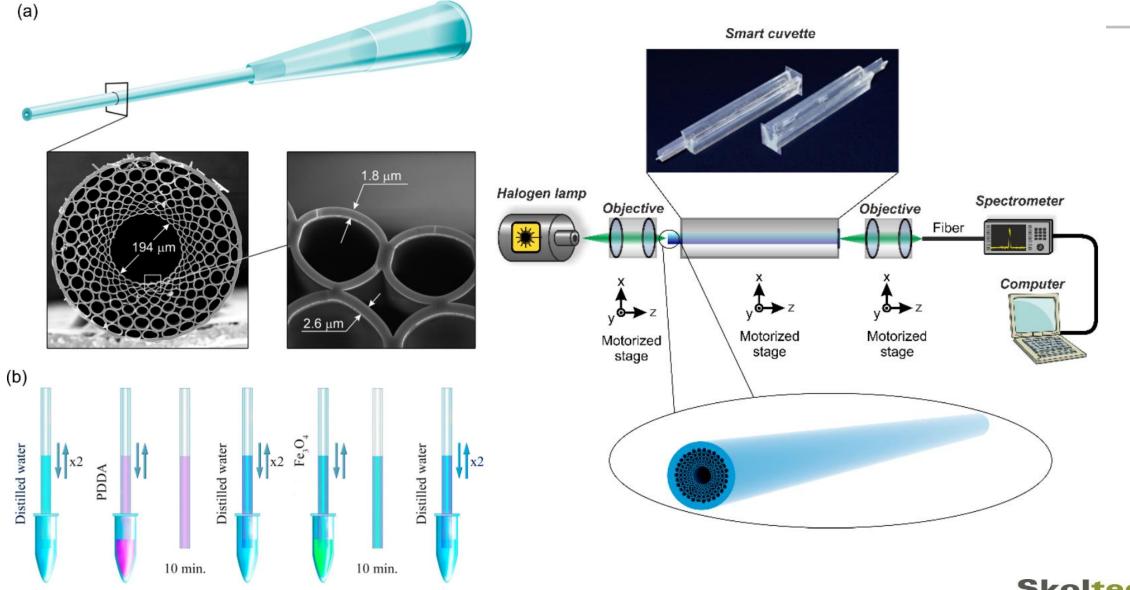
Лаборатория Биофотоники Центра Фотоники и Квантовых материалов Сколтеха


Цель: разработка технологий и устройств для диагностики, визуализации и лечения

Три направления:

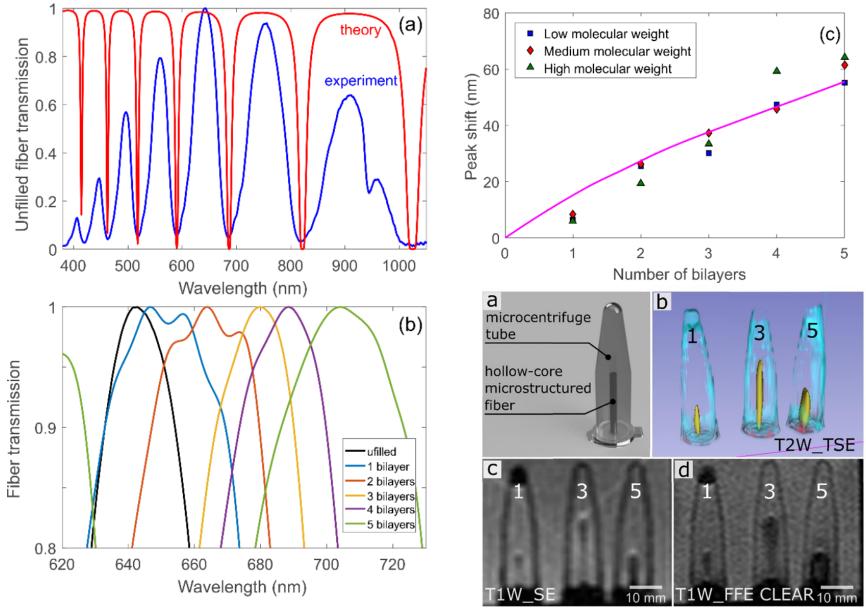
- 1. Сенсоры, терапевтические устройства для эндоскопического применения
- 2. Комбинация оптических сенсоров и систем доставки лекарств.
- 3. Изучение процессов перехода норма/патология (изоляция и детекция экзосом, циркулирующих раковых клеток, контрастные агенты для ОА, УЗ, МРТ)

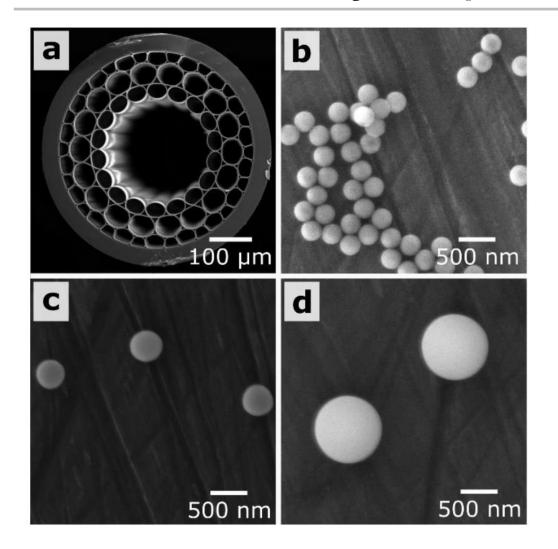
Технология создания микроструктурного волокна и ФКВ

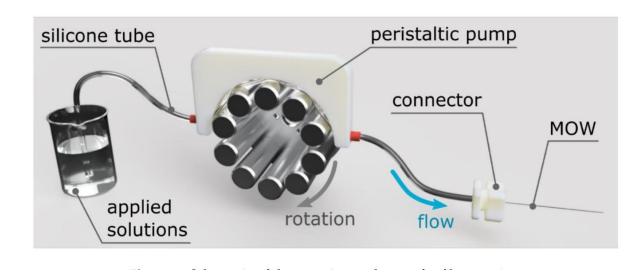


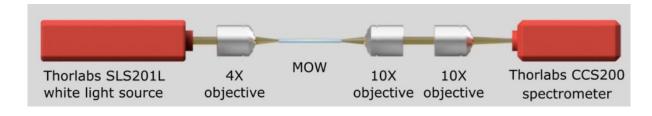
1 - Pitch device. 2 - Furnace. 3 - Drawing process controller. 4 - Drawing device.

Patent of the World Intellectual Property Organization, "Photonic fibers and methods for the production....", № 2004038466, 06.05.2004, Skibina Nina [de]; Beloglazov Valentin [de]; Yu.S. Skibina, V.V. Tuchin, V.I. Beloglazov, G. Steinmeyer, J. Bethge, R. Wedell, N. Langhoff, Photonic crystal fibres in biomedical investigations (review), Quantum Electronics **41**(4), 284-301 (2011)


Метод полиионной сборки для модификации полой сердцевины микроструктурированных волокон

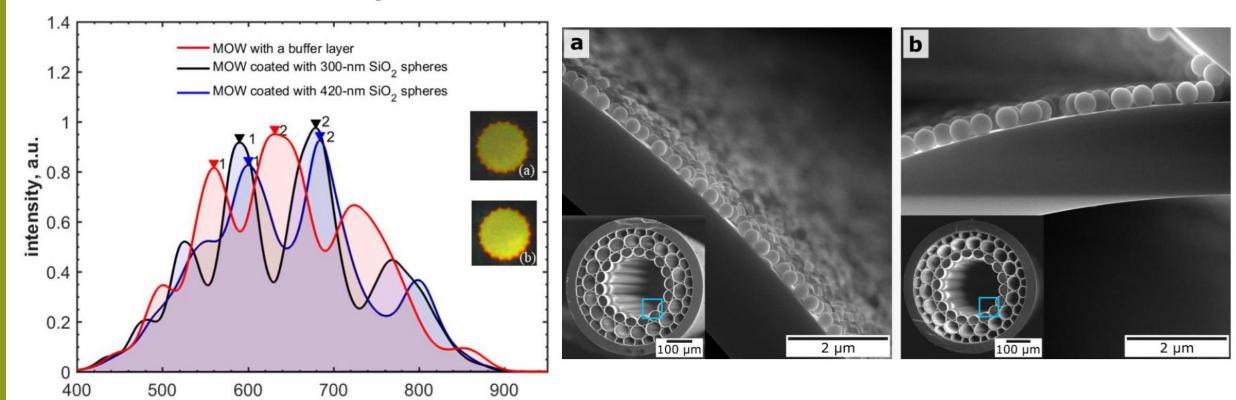

Использование наноразмерных и нанокомпозитных слоев для модификации





R. Noskov et al, Optical Express, Vol. 27, No. 7, 2019, 9872

Модификация поверхности полой сердцевины субмикронными частицами



Влияние размера субмикронных частиц на спектральный сдвиг

Spectral Shift Measured, nm			Spectral Shift Calculated, nm	
Peak number	300-nm SiO_2	420-nm SiO_2	300-nm SiO_2	420-nm SiO ₂
peak1	31 ± 2	38 ± 2	33	39
peak2	39 ± 2	45 ± 2	38	45

wavelength, nm

Академические партнеры

Institute of Biological and Medical Imaging

Индустриальные партнеры

