Energy Systems

Master of Science Program

Skoltech CES

The concept behind this program is to combine optimization, computer science, complex systems, statistical physics, control theory, and energy system engineering to develop innovative approaches to new and challenging programs in the design, optimization, and control of the electrical grid, natural gas networks and other complex engineered networks. The program also has a hardware/experimental  (measurement and sensing) component.

Key information

Program starts
September 2018
   
Modes and duration
Full time: 2 years
Tuition fees
No tuition fee for the applicants who pass the selection process
Application dates
All applicants:
Open: October 16, 2017
Awarded degree
Master of Science in Information Systems and Technology
Language of instruction
English
Accreditation
Program is accredited by the Russian Government, certificate № 2568 from April 14, 2017. License № 2534 from February 7, 2017.

Entry requirements
Successful candidates must know:
1. Linear algebra
2. Calculus
3. Differential equations
4. Basic probability
5. Programming
6. General Physics (mechanics, electro-magnetism, thermodynamics)

successful candidates must have Bachelor Degree in Mathematics, Computer Science or Physics, or Bachelor Degree in Engineering (Electric or Mechanical).

English language requirements
If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.


Aim and objectives

The aim of the program is to prepare the science and technology leaders in emerging energy system research.

The objective of the MSc program in Energy Systems Science and Engineering is to bridge the gap between industry driven problems in optimization, control and planning of energy networks and other engineered networks and respective fundamental science and cutting edge computational techniques and algorithms.

Content

The curriculum of the program contains a unique combination of advanced mathematical and computational methods together with applications oriented in-depth teaching of energy systems engineering and physics.

Energy Systems MSc Program Structure

Learning and professional outcomes

A successful graduate of the program will know:
1. Engineering foundations, understanding of energy equipment and modern mathematical analysis of real-life problems which arise in energy systems/networks and their components (software and hardware);
2. How to extract from practical, engineering reality mathematically-sound and physics-sensible problems relevant to energy systems/networks and their components;
3. How to analyze and solve the aforementioned problems using the state of the art techniques from applied statistics, physics and mathematics, convex optimization, optimal control and related areas;
4. Methodology of academic research in energy systems and its industry applications.

A successful graduate of the program will be able to:
1. Formulate/model real-world problems using the language of modern theoretical engineering;
2. Use the most appropriate modern mathematical/computational/software tools to successfully solve engineering problem in energy systems and related disciplines;
3. Develop new mathematical/computational methods or adapt existing methods to solve a particular engineering/networking problem;
4. Implement algorithms into efficient/scalable and reliable software;
5. Work with technical literature (e.g. conduct bibliographical research, read and critically analyze scientific articles, use scientific metrics and important databases);
6. Operate and make measurements with hardware energy and related sensing devices;
7. Present results to different audiences (engineers, industry, researchers, users, stakeholders, etc) in an effective oral and written manner.

Career opportunities and paths
The MSc program was developed to meet the high demand for specialists combining strong backgrounds in mathematics, computer science with practical knowledge and understanding of energy systems. Graduates of the program may begin an international research career or work with our industrial partners (possibly starting during the period of study).

The courses within this MSc program are developed and delivered by instructors with a broad international experience in academic and industrial research and development.

The graduates significantly enhance their future employability by combining knowledge of engineering reality and physics intuition with strong command of related mathematics and algorithms. Acquiring simultaneously practical, theoretical and computations skills will allow our students to “warm start” carriers in academy, industry or entrepreneurship by the program completion.

Courses within this MSc program and industrial experience combined into a unique MSc program. Thus, students gain is the opportunity to obtain early access to the national and international research, industrial and innovation landscapes enables both national and international employment with confidence.

Faculty

Program Director
michaelchertkov
Michael Chertkov Adjunct Professor
Program Coordinator
annasharova
Anna Sharova Junior Research Scientist

Research

Students are actively involved in research from the very beginning of their studies.

Main research areas:

  1. Smart and Resilient Power Grids
  2. District Heating Systems
  3. Natural Gas Systems
  4. Coupled Energy Infrastructures
  5. Energy Markets and Regulation
  6. Power Electronics and Devices
  7. Thermal and Thermo-Electric Devices


Industrial Partners:

  1. Rossti
  2. Federal Grid Company of Unified Energy System
  3. RAO Energy Systems of the East
  4. En+ Group
  5. Korea Electric Power Corporation (KEPCO)
  6. Mosenergo
  7. Enel

 
Academic Partners:

  1. Massachusetts Institute of Technology (MIT), USA
  2. California Institute of Technology (CalTech), USA
  3. Newcastle University, UK
  4. V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
  5. National Research University “Moscow Power Engineering Institute”
  6. Melentiev Energy Systems Institute Siberian Branch of the Russian Academy of Sciences
  7. Gubkin Russian State University of Oil and Gas (National Research University)

 
Contacts

Apply now!