IMPORTANT: Solutions must be submitted on special blanks - one problem per blank. Each blank should have your name and problem number in the appropriate text field - blanks without that information will be disregarded. Several blanks per problem can be used provided that each blank has your name and correct problem number. Problems 1-5 are compulsory for all applicants. Rest of the problems are program-specific - they are compulsory or give extra points for Master programs indicated in the title of the problem.

1. Find the derivative with respect to x of the functions
(a) $x^{\cos x}$
and
(b) $\int_{\sin ^{2}\left(x^{2}\right)}^{\mathrm{e}^{2 x}} \sin \left(\xi^{2}\right) \mathrm{d} \xi$
2. (a) Find the integral $\int_{1}^{\mathrm{e}^{2}} \ln x \mathrm{~d} x$.
(b) Expand the function $\left[\cos \left(x^{3}\right)\right]^{-1 / 2}$ into the Taylor series around $x=0$ up to $o\left(x^{6}\right)$.
3. Solve the differential equation $x y^{\prime}+2 y=3 x^{2}, y(1)=1$.
4. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

(a) Find eigenvalues and eigenvectors of the matrix \mathbf{A}.
(b) Find $\max _{\mathbf{x}} \frac{|(\mathbf{A x}, \mathbf{x})|}{(\mathbf{x}, \mathbf{x})}$, where (\cdot, \cdot) is a dot product of vectors and the maximization is performed over all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T} \in \mathbb{R}^{3}$, such that $\sum_{i=1}^{3} x_{i}=0$.
5. A father suggests two algorithms to divide a round pie between his sons: A) The elder son gets $2 / 3$, and the younger son gets $1 / 3$; B) The pie is cut along the line passing through two points chosen randomly at its circumference, and the younger son gets the smaller piece. Which algorithm gives a larger mathematical expectation of the younger son's part?
6. Compulsory problem for "Data Science" and "Computational Science and Engineering": Let X be a set of N points in \mathbb{R}^{2}. Suppose that these points have distinct coordinates in the sense that for any (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ from X we have $x \neq x^{\prime}$ and $y \neq y^{\prime}$. Let us call the point (x, y) from X Pareto-optimal if there exists no other point $\left(x^{\prime}, y^{\prime}\right)$ from X such that $x^{\prime}<x$ and $y^{\prime}<y$. Prove that all the Pareto-optimal points in X can be found using $O(N \log N)$ comparisons of coordinates.
7. Compulsory problem for "Mathematical Physics": Two material points of mass m are moving without a friction on two concentric circles in some plane with radii R and $r(r<R)$. The material points are connected by a weightless spring of stiffness k, which has a negligible length in the free state. Find the Lagrangian for this mechanical system, write the Euler-Lagrange equation and find conserved quantities (integrals of motion), if any.
8. Chemistry problem (extra points for "Materials Science"): A portion of some organic compound X (weight 5.7 g) having no branching in the hydrocarbon skeleton has been combusted in oxygen, which produced carbon dioxide and water as the only products. Note that a full combustion of 1 mole of X requires 7.5 moles of oxygen. All combustion products were absorbed completely by 20% aqueous potassium hydroxide. The obtained solution was freeze-dried yielding a solid with a constant weight of 37.6 g . This solid was annealed at $200^{\circ} \mathrm{C}$ under normal pressure, which resulted in the weight loss of 3.1 g . It is also known that compound X reacts with aqueous KOH and can be hydrolyzed under acidic conditions. Acid-induced hydrolysis of X produces two compounds A and B, which have the same empiric formula, but different molecular weights.
(a) Identify molecular formula of X .
(b) Identify structure of X , which satisfies all the aforementioned conditions.
(c) Write equations of all described reactions and identify also structures of compounds A and B.
9. Physics problem (compulsory for "Photonics and Quantum Materials", extra points for "Materials Science"): A quantum particle of mass m is moving in a one-dimension potential $U(x)$ such that $U(x>0)=\alpha x^{2}(\alpha$ is positive $)$ and $U(x<0)=+\infty$.
(a) Find the energy spectrum. Hint: Use the symmetry of wave functions for a harmonic oscillator.
(b) The potential is disturbed by a quartic term: $U(x>0)=\alpha x^{2}-\beta x^{4}$ (α and β are positive), which renders all bound states metastable. Assuming $\beta^{2} \ll m \alpha^{3} / \hbar^{2}$, estimate the decay rate of the former ground state.
10. Physics problem (compulsory for "Photonics and Quantum Materials", extra points for "Materials Science"): A conducting bar moves along frictionless conducting rails connected to a 4Ω resistor as shown in the figure. The length of the bar is 1.6 m and a uniform magnetic field of 1.2 T is applied perpendicular to the paper pointing outward, as shown in the figure.

(a) What is the applied force required to move the bar to the right with a constant speed of $6 \mathrm{~m} / \mathrm{s}$?
(b) What is the power dissipated in the 4Ω resistor?
11. Compulsory problem for "Energy Systems": The dynamics of an overdamped particle positioned at $x \in \mathbb{R}$ immersed into thermal bath is modeled by the Langevin (stochastic differential) equation

$$
\eta \frac{d x}{d t}=-\frac{d}{d x} V(x)+\xi(t)
$$

where η is a friction coefficient, $V(x)$ is a potential. $\xi(t)$, representing the effect of the thermal bath on the particle, is modeled with as a Gaussian white noise with zero mean, $\langle\xi(t)\rangle=0$, satisfying the fluctuation-dissipation relation: $\langle\xi(t) \xi(s)\rangle=2 \eta T \delta(t-s)$, where T is the temperature of the bath.
(a) Consider the case of a confined potential bounded from below, $V(x) \geq 0, \lim _{x \rightarrow \pm \infty} V(x) \rightarrow \infty$. Find stationary (time-independent) probability distribution for the particle to be at position x. Does the particle move in average, i.e. is the "current", $d\langle x\rangle / d t$, nonzero?
(b) The same equation, when the potential is periodic in space with the spatial period $L, \forall x$: $V(x+L)=V(x)$, and the temperature is changing periodically in time with the temporal period $\tau, \forall t: T(t+\tau)=T(t)$, represents the stochastic dynamics of a thermal ratchet. Can the average current be nonzero in this case? Argue physically and/or back it up mathematically, by choosing an exemplary potential and temperature profiles and resolving the Langevin equation.
12. Compulsory problem for "Energy Systems": Consider an electric power network with m generators and n loads (consumers). Generator's production is limited by $0 \leq P_{j} \leq P_{\max }, j=1, \ldots, m$, where $P_{\max }$ represents its capacity. Assume that the power transfer factors $a_{j k}$, that represents the power that flows from generator j to load k, and power consumed by load, $L_{k}, k=1, \ldots, n$, are known.

1. Propose a mathematical formulation aiming to achieve optimal generation dispatch meeting demand profile $L_{k}, k=1, \ldots, n$. Hint: introduce a unit production cost as you find fit.
2. Extend the formulation, additionally requiring that
(a) No more than half of the total power $\sum_{k=1}^{n} L_{k}$ is provided by any $\ell \sim m / 10$ generators;
(b) No more than half generators are on $\left(P_{j}>0\right)$.
3. Does adding constraint (a) or constraint (b), or both (a) and (b), leads to optimization problems that are significantly more complex to solve than the original formulation?
