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Abstract

The thesis proposes an approach to the image re-synthesis problem where the target

transformation is described by a dataset of pairs of input images and corresponding

outputs. The approach is based on a warping field concept: pixels of the output image

are sampled from the input. The warping field predictor is learned from a dataset of

examples. The new approach is applicable to image re-synthesis problems, where the

transformations can be well approximated by warping, in particular where dis-occlusion

and global color changes are minimal. The suggested methods are illustrated and evalu-

ated on a gaze redirection task. Such learning-based re-synthesis can achieve convincing

gaze redirection based on monocular input and that the learned systems generalize well

to people and imaging conditions unseen during training.

Four methods of learning a warping field predictor are described and compared. The

first system is based on efficient decision forest predictors and redirects the gaze by

a fixed angle in real time (on a single CPU), which is particularly suitable for the

videoconferencing gaze correction. The second system is based on a deep architecture,

allowing gaze redirection by a range of angles. The second system achieves higher

photorealism, while being several times slower. The third system is based on real-time

decision forests at test time, while using the supervision from a teacher deep network

during training. The third system approaches the quality of the teacher network in our

experiments and thus provides a highly realistic real-time monocular solution to the

gaze correction problem. The fourth system is based on a pair of deep networks where

the first network maps eye images to a latent space, whereas the second maps pairs of

latent representations to warping fields implementing the transformation between the

pair of original images. Both networks are trained in an unsupervised manner, while the

gaze-annotated images are only used to estimate displacements in the latent space that

are characteristic of certain gaze redirections. In-depth assessment and comparisons of

the proposed systems based on quantitative measurements and a user study is presented.
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Chapter 1

Introduction

1.1 Image re-synthesis

Image re-synthesis is about transforming the input image in a certain way. The examples

of applying of image re-synthesis in computer vision include, but are not limited to

changing facial features (Figure 1.1), video interpolation (Figure 1.2), image super-

resolution (Figure 1.3) and gaze redirection (Section 1.2).

The image re-synthesis task is related to both computer graphics and computer vision.

In computer graphics, image synthesis, or rendering, is a process of generating a photo-

realistic image from a physical model [20]. All attributes of the scene are given in this

model. In computer vision, on the contrary, the image is given and the physical model

is unknown. Understanding the scene is thus one of the main problems of computer vi-

sion, with the different tasks of recognition, segmentation, 3D reconstruction and others,

remaining unsolved in their general form.

Recovering the physical model using computer vision and then obtaining its photore-

alistic rendering using computer graphics is one way to handle the image re-synthesis

problem. For example, [13] uses physically-based face rendering and [9] a physical model

of the eye to solve the gaze redirection problem (Figure 1.13). However, a model that

meets the requirements of rendering is not always possible to recover. Moreover, such a

complex approach would not work if either the computer vision model is not accurate

enough or the rendering step fails. Finally, building complex multi-parametric physical

models is often slow.

An alternative way to define the target transformation is through a database of trans-

formation examples. They may vary from one database to another, featuring different

images with and without a certain attribute to be changed, for instance, smiling and

1
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Figure 1.1: Adding different attributes to the same person. Top: older, mouth open,
eyes open. Bottom: smiling, facial hair, glasses. Figure taken from [1].

Figure 1.2: Video interpolation on the KITTI dataset. The middle frame is predicted
from left and right frames. Figure taken from [2].

Figure 1.3: Image super-resolution. The resolution of the left image is enhanced
on the fight one. The method utilizes the Generative Adversarial Networks approach

(Section 1.1.1). Figure taken from [3].

Figure 1.4: Examples of re-synthesis problem.
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non-smiling faces from the CelebA dataset [21]. In some situations, aligned sets of ex-

amples of a different type can be obtained if ground-truth images are provided. In [2],

for example, two input frames and the middle ground-truth image are picked from the

UCF101 dataset [22]. This alternative way is an instance of the machine learning ap-

proach where a model does not consist of a fixed set of attributes, as opposed to a

physical model, but is relatively free to learn any dependencies in the training data.

While even a complex physical model is always a simplification of the real world, the

machine learning model, if perfectly trained on a large training dataset, has the poten-

tial to model all the necessary data variations in more precise manner and ensure higher

photorealism.

Several approaches to learning-based image re-synthesis are getting increasingly popular,

with neural-network-based image synthesis receiving growing attention [4, 23–29]. More

closely related to this work are the methods that learn to transform in. These methods

proceed by learning internal compact representations of images using encoder-decoder

(autoencoder) architectures, and then transforming the images by changing their internal

representation in a certain way that can be trained from examples (for a more detailed

review of [18, 19] see Section 6.1). This approach can be combined with several ideas

that have been reported to improve the result (convolutional and up-convolutional layers

[4, 30], adversarial loss [24], variational autoencoders [5], perceptual loss [29]). The recent

paper [28] addresses the problem using a new cross-convolutional layer that models

both correlation between motion and image content and uncertainty of the motion field.

The network then encodes the input image pyramid into multiple feature maps and

convolves these maps with different kernels. As discussed in more detail below, the

existing approaches to re-synthesis, such as those based on auto-encoders and adversarial

networks, often fail to produce fully realistic images at high resolution.

In my work, I concentrate on the scenario, when the target transformation is defined by

providing the pairs of inputs and corresponding outputs. To overcome the problems of

existing approaches with generating photorealistic images, I suggest the warping field

based method. The idea of the method is that pixels of the output image are sampled

from the input image in places, defined by the warping field. The learning task is

therefore reduces to learning the warping field predictor from the training pairs of images.

As there is no ground truth warping fields in the dataset, this is an instance of a weakly-

supervised problem. I illustrate and evaluate suggested methods for predicting the

warping field on the gaze redirection task. Before introducing further details on the

proposed approach, I discuss the related works in recent literature.
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Figure 1.5: Illustration of upsampling (left) and upsampling+convolution (right) as
used in the generative network. Figure taken from [4].

1.1.1 Related work on image re-synthesis via regression of target image

Generally, the class of image synthesis problems under review is related to manifold

learning algorithms. It is hard to learn functions with interesting variations in high-

dimensional image space. Manifold learning algorithms suggest that most of the space

consists of invalid inputs and that interesting inputs appear along a collection of mani-

folds only.

The class of manifold learning models at hand is generative models that transform sam-

ples of latent variables z to target samples x or to the parametric distribution over x

using a differentiable function g(z) which is usually represented by a neural network.

Typically, generative models are learned in an unsupervised scenario, with only a dataset

of real samples x given. The paper [4], however, considers a case where the correspon-

dence between z and x is given. Computer-rendered images of chairs are used as training

data, and z denotes the parameters given to the rendering engine (type of chair, view-

point and distance to the chair). The network architecture is a deep convolutional

network with unpooling layers (Figure 1.5). Each pixel in the feature map is replaced

by a patch with one non-zero value. Followed by convolution, this operation could be

regarded as the opposite of convolution+pooling in the standard CNN. A combination

of the segmented-out chair image loss reconstruction and the segmentation mask as an

objective is used for training a generative network.

1.1.1.1 Variational Autoencoders

An interesting example of manifold learning and generative models is Variational Au-

toencoders [5, 31] (VAEs) that use a latent representation space Z too. The sam-

ple x is also generated by a generator network g(z), where z ∈ Z is a sample from

a distribution pmodel(z) in the latent space. Thus, x is sampled for a distribution

pmodel(x; g(z)) = pmodel(x|z). During training on an unlabeled dataset with examples

x ∈ RN , the encoder network q(z|x) is used to map the inputs to the latent space Z,

and the generator is viewed as a decoder.
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Figure 1.6: Examples of generated images using VAEs with 2D codes. Figure taken
from [5].

VAEs are trained by maximizing the variational lower bound

L(q) = Ez∼q(z|x) log pmodel(x|z)−DKL(q(z|x)||pmodel(z)). (1.1)

The first summand is a reconstruction log-likelihood loss, and the second is Kullback-

Leibler divergence [32]. KL divergence pushes the model prior on latent variables

pmodel(z) and posterior distribution of latent variables q(z|x) close to each other. The

idea of VAEs is to train the encoder, which outputs the parameters of distribution q(z|x).

Although VAEs are capable of producing fairly photorealistic results based on learn-

ing natural images manifolds (Figure 1.6), their drawback is that samples tends to be

blurry [33]. The possible reason behind that is training a VAE with maximum likeli-

hood loss DKL(pdata||pmodel) is similar to training a traditional autoencoder with mean

squared error, in the sense that it tends to ignore high frequency features (that occupy

few pixels).

1.1.1.2 Generative Adversarial Networks

Another type of models used for manifold learning and image generation are Generative

Adversarial Networks. Discriminative models learn the conditional distribution P (y|x)

in direct manner, i.e. they learn a function which maps the input data x to some desired

output label y. Generative models, by contrast, learn the joint probability of input data

and class label P (x, y). Generative models can learn the input data structure even in

an unsupervised scenario. The idea of GANs was first presented in [24] as a minimax
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game between two neural networks:

min
G

max
D∈D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))], (1.2)

where pdata(x) is true data distribution and pz(z) is some simple distribution (e.g.

N (0, 1)). The first network called “generator” generates samples from the noise. The

second called “discriminator” learns to distinguish between samples from the generator

and from the training set. The two summands in (1.2) are a standard cross-entropy

loss, corresponding to training a binary classifier with a sigmoid output. The classifier

is trained to distinguish examples coming from the generator and from the real dataset.

Two mini-batches of data are used: the label is 1 for all the examples from the dataset

and the label is 0 for all the examples from the generator. The discriminator is trained

using both terms and the generator using only one.

The error from the discriminator is backpropagated through the generator. Thus during

such simultaneous optimization, both networks learn to perform their task better and

better until the generator finally learns to produce samples indistinguishable from real

data. In other words, the generator learns to model a manifold of natural images.

Several applications for art creation [6] and photo modifications [7, 34] are based on

GAN idea.

Interactive generative adversarial networks (iGAN) were developed in [6]. The network

outputs a realistic image similar to a rough sketch drawn by the user. The user sketch

and the manifold of natural images are typically very dissimilar. The generator learned

by GAN is used as a constraint on the output of the users manipulations with an image,

ensuring that the results lie on the learned manifold. A random vector z ∈ Z is drawn

from a multivariate uniform distribution Unif [−1, 1]d and the learned generator is used

as an approximation of an ideal image manifold M ≈ M̃ = {G(z)|z ∈ Z}. An Euclidean

distance between the images in this latent space is defined:

L(G(z1), G(z2)) ≈ ||z1 − z2||2.

Thus linear interpolation in this latent space serves as a way of traversing the manifold.

For a given real photo x0, the work [6] suggests to first project it on the approximation

of the image manifold using the perception loss [35] between intermediate deep neural

network activations as a measure of closeness between the generated image and the real

photo. Either direct optimization is used or a special projection feedforward neural

network is trained. The projection yields the latent vector z0 of the closest image G(z0).

After that, the image is modified while meeting the constraint of staying within the
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Figure 1.7: Image editing on the natural image manifold. The original photo is
projected onto a low-dimensional latent vector representation, the color and shape of
the generated image are modified, and the same modifications are applied to the original

image. Figure taken from [6].

manifold (Figure 1.7) and the image G(z1) with latent vector z1 is obtained. Having

two latent vectors enables generating the complete manifold curve [G(zt)]
N
t=0 between

G(z0) and G(z1) with linearly interpolated latent vectors

zt =

(
1− t

N

)
z0 +

t

N
z1.

The optical flow from G(z0) to G(z1) is estimated using that curve and is applied to the

initial image x0, to obtain the final result x1.

An image-to-image translation concept was suggested in [34]. It covers a lot of different

transformations of an image: sketch to photorealistic image, satellite photo to map, and

others. In general it is suitable for any pixel-to-pixel transformation. It makes use of

conditional GANs [36], with the objective having the form

min
G

max
D

Ex,y∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x),y∼pz(z)[log(1−D(x,G(x, z)))].

The difference from traditional GANs is that conditional GANs observe both the random

noise vector and the image x and learn the mapping G : {x, z} → y.

The problem with using simpler L2 or L1 loss instead of complicated GAN structure

is that it produces blurry results in image generation tasks. However, it can model

low frequencies fairly well. Thus [34, 37] also suggest using Markovian discriminator

(PatchGAN), which is a combination of GAN discriminator and a standard L1 loss. The

discriminator is restricted to capture only high frequencies, by penalizing only structure

at the scale of patches. This discriminator tries to classify each NN patch in an image

as a real or a fake one.
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Figure 1.8: Photo editing in Neural Photo Editor. Top, left to right: Reconstruc-
tion, reconstruction error, original image. Bottom: Modified reconstruction, difference

between modified reconstruction and X̂, output. Figure taken from [7].

An interface called Neural Photo Editor, where the user is able to manipulate the models

latent variables in an interpretable way, was created in [7]. The user paints rough

modifications to a photo and the network turns these rough paints into a photorealistic

image matching the users desires (Figure 1.8). The user paints on the output image,

and instead of changing individual pixels, the interface back-propagates the difference

between the local image patch and the requested color and takes a gradient descent step

in the latent space to minimize that difference. Thus both the image X̂ reconstructed

from the latent code and the code itself are changing simultaneously. The target input

image X is changed and the output Y is produced using a special mask M provides

a smoothed and truncated version of the difference between input and reconstruction.

The output image is a masked average of the reconstruction, the requested pixel-wise

change ∆ and the reconstruction error:

Y = X̂ +M∆ + (1−M)(X − X̂).

In its Neural Photo Editor [7] uses a model applying both VAE and GAN approaches:

Introspective Adversarial Networks. In this approach, the encoder and discriminator are

combined into a single network. Four losses are used: `1 reconstruction loss, VAEs KL

divergence in the latent space (1.1), ternary adversarial loss and feature-wise perceptual

loss. Ternary adversarial loss, in contrast to standard GAN approach, classifies between

the real, generated or reconstructed image, instead of binary real vs. generated classifi-

cation. Feature-wise perceptual loss is the `2 difference between the original image and

reconstruction in the space of the discriminators hidden layer.
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The same perceptual loss was suggested earlier in [29]. In particular, the distance

between two images x, y ∈ RW×H×C in their model is

L(x, y) = ||C(x)− C(y)||22,

where C : RW×H×C → RF is a differentiable comparator, typically a neural network.

The best variety of comparator in their experiments was an AlexNet [38] network trained

on the image classification task.

The work [39] concentrates on editing face images, and, apart from adversarial loss, uses

additional guidance for a network: priors on a number of intrinsic face properties, such

as a morphable model-driven prior on the geometry, a Retinex-based (see [40]) prior

on the albedo and an assumption of low-frequency spherical harmonics-based lighting

model [41, 42]. The face is separated from the background to traverse the face manifold

in the latent space and not to influence the background.

However, the attempts to apply conventional manifold learning with generative architec-

tures to gaze redirection show noticeable sharpness degradation (Figure 1.9). Autoen-

coders with a combination of `2 and GAN [24] losses are trained on the Skoltech gaze

correction dataset (Section 2.3). The best model has a 200-dimensional latent space

and consists of several convolutional and fully-connected layers in the encoder and the

decoder. The results do not provide enough perceptual quality and do not meet the

needs of gaze manipulation applications. More examples comparing warping to direct

re-synthesis are illustrated in Figure 2.2 and Figure 2.3.

1.1.2 Related work on image re-synthesis via warping

To overcome blurriness occurring in traditional generative models, this work focuses

on the model utilizing the warping approach (Section 2.1). The idea to do image re-

synthesis via warping goes back at least as far as [44]. However, it is only recently that

some literary publications suggested obtaining a warping through machine learning. As

the work on this thesis was underway, similar ideas started to be discussed in literature.

Thus the models suggested here fall within the scope of these discussions. Several papers

present a related approach with a deep network predicting warping fields (flow) for image

editing.

The authors of [8] exploit the same idea based on the warping field (Section 2.1). They

applied idea, similar to the one presented in this work (Chapter 4, Chapter 6), to the

task of learning novel view synthesis. The inputs to the network are image and viewpoint

transformation coordinates and the output is a warping field applied to the input via
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Figure 1.9: Examples of reconstructions produced by an encoder-decoder architecture
that combines reconstruction `2 and GAN losses (following the approach in [18, 19, 24,
43]) trained on the Skoltech dataset (Section 2.3). In each pair, the left image is the
input and the right is the output. Due to a noticeable loss of fine-scale details and
regression-to-mean effect, the result is not good enough for most gaze manipulation

applications. Similar issues are observed in [18, 19, 24, 43].

a bilinear sampler. This makes the method similar to the one presented in Chapter 4.

However, their encoder-decoder architecture is more similar to the one presented in

Chapter 6, where the task is different: having two images, generate warping field from

one to another. [8] is yet another work that suggests an approach to learning a manifold

of different viewpoints of the same object. The authors generalize the idea of novel

view synthesis from a single input to several input images (Figure 1.10). The network

called a single view CNN with shared weights is applied to all the input images, and a

novel view image is generated from each of them. Aside from the novel view image, the

network also generates a confidence mask of the same size as the image, which evaluates

the pixel-wise prediction accuracy using this particular input view. The final image

is generated as a weighted average of the single novel view, with weights coming from

normalizing all masks to sum to one at each pixel location.

[45] suggests synthesizing the flow fields that manipulate the facial expression. The au-

thors use VAE-based architecture with regularization on the latent space representation.

Apart from the flow field, they predict a confidence mask for its flow predictions in order

to combine multiple source images to generate one output image. Their loss consists of

three parts: reconstruction loss, smoothness in the latent space and coherence in the

flow space. The flow coherence loss penalizes large flow deviations for close pixels, unless
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Figure 1.10: Multi-view network architecture (⊗: per-pixel product, ⊕: per-pixel
normalized sum). Shared-weights CNN generates a novel view and confidence mask for
each input image. The output is the average of the novel views weighted with masks’

values. Figure taken from [8].

there are large deviations in pixel intensities:

Lflow =
∑
i

∑
j

||Fi − Fj||22 exp(−(α||Ti −Tj||22 + ||i− j||22)),

where Fi,Ti are flow and intensity at pixel i. They perform expression manipulation

using analogies and interpolation in the latent space. In particular, they calculate the

mean change in the latent space on the training database and apply the same change

on the latent representation of the query image. They also make the same observation

that was found in this work, that upsampling in the flow domain gives sharper results

than upsampling in the pixel domain.

The warping flow idea is used for predicting the missed frame in a video sequence in [2].

The training data are triplets of consecutive video frames, two being inputs and the third

being a ground-truth which can be in between the frame or the next frame. The warping

field and the mask are predicted by selecting between two input frames. The training

objective is the combination of the reconstruction loss and total variation regularizers

on the flow field and the mask.

The work [2] also puts forward a multi-scale approach to flow prediction. The series of

autoencoders works on different scales and produces a series of warping fields, capturing

flow on different scales from coarse to fine. The final warping field is obtained by

uspampling, concatenation and further convolution of the multi-scale flow fields.

In [46], the warping flow is used to fill in disoccluded pixels, based on the prediction of

the visibility map. The authors consider the problem of a novel view synthesis. Firstly,

their Disocclusion-aware Appearance Flow Network predicts a warping field as well as a

visibility map, which encodes the parts that need to be removed due to occlusion. After
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Figure 1.11: Eye-to-eye contact cannot be maintained during a videoconference due
to a vertical gap between the camera and conference window on the screen. As a result,
the person on the screen seems to be looking down while in fact they are looking at

your face on their screen.

that, the completion network hallucinates disoccluded regions. They use a combination

of reconstruction, adversarial and perceptual loss as an objective.

1.2 Gaze redirection

In this work I concentrated the evaluation of suggested techniques to image synthesis

on the problem of gaze redirection. Gaze correction in videoconferencing appears as an

essential gaze redirection issue that has been the particular concern of researchers and

engineers for a long time. The problem manifests itself as the inability of the people

engaged in videoconferencing (the proverbial Alice and Bob) to maintain eye contact,

the lack of which is due to the disparity between Bobs camera and the image of Alices

face on Bobs screen (and vice versa) (Figure 1.11). Talking to Alices image on the

screen, Bob is looking her in the eye, whereas to Alice, he seems to be looking down,

because the camera is located above the screen). Gaze correction then refers to the

process of altering Bobs video stream in a realistic and real-time way, so that Bobs gaze

direction as seen by Alice is changed (e.g. redirected upwards) and the eye contact is

established (Figure 1.12).

Apart from videoconferencing, there are other important scenarios, where the appear-

ance of the eyes needs to be digitally altered in a way to change the apparent gaze

direction. These include talking head-type videos where a speaker reads the text ap-

pearing alongside the camera but should redirect their gaze into the camera. Another

example is editing photos (e.g. group photos) and movies (e.g. during post-production),

making gaze direction consistent with the ideas of the photographer or the movie direc-

tor (Figure 1.13).
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Input Desired output

Figure 1.12: Gaze correction in videoconferencing: transformation examples. Top
row – gaze redirection by 10◦, bottom row – by 15◦. A typical angular mismatch is 15◦

during a videoconference through a consumer laptop with the camera above the screen
and with the user sitting at a comfortable distance from the screen.

The solution to the gaze correction problem in videoconferencing would be useful for a

broad user audience, including but not limited to designers, filmmakers, HR specialists

and job applicants, psychotherapists, language tutors, and TV presenters. Patents on

gaze correction and related solutions are held by such companies as Microsoft, Cisco,

Samsung, Siemens, NEC, AT&T, Alcatel and others. There has been a substantial

commercial demand for gaze correction solutions for decades.

Psychological research has yielded multiple reports underscoring the importance of eye

contact. C. Kleinke wrote in his report [47] on eye contact: ”Authors of [48] reported

a positive correlation between an interviewee’s eye contact with an interviewer and

estimates made by observers of the interviewee’s intelligence. Women rated male dating

partners as silent, passive, and inattentive when they gave low levels of gaze during a

role-playing interaction [49]. British college students rated a same-sex peer they met

in an experiment as more pleasant and less nervous when the person gazed at them

continuously rather than not at all [50].” Few image parts have such a dramatic effect

on the perception of an image like regions depicting eyes of a person in this image.

Humans (and even non-humans [51]) can infer a lot of information about the owner

of the eyes, their intent, mood and the world around from the appearance of the eyes
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Figure 1.13: Gaze redirection for image and video post-processing. Top row: gaze
correcting camera for the group of people. Bottom row: post-production of a movie
after adding visual effects. CGI character is changed and the actor’s gaze is adjusted
accordingly. The method is based on constructing a complicated physical model of the

eye. Figure taken from [9].

and, in particular, from the direction of the gaze. Overall, the role of gaze in human

communication has long been known to be very high [47]. Thus meeting the requirement

of realism is particularly difficult due to the well-known uncanny valley effect [52], i.e.

the sense of irritation evoked by realistic renderings of humans with noticeable visual

artifacts, which stems from the particular acuteness of the human visual system towards

the appearance of other humans and human faces in particular.

The image re-synthesis methods proposed in the past usually tackle the re-synthesis

problem in a general form, striving for universality. In this work I take an opposite

approach, focusing on gaze manipulation as a very specific image re-synthesis problem

and considering some important real-life applications.

So far, the most successful gaze correction solutions have been relying on additional

hardware such as semi-transparent mirrors/screens [10, 53], stereo cameras [54, 55], or

RGB-D cameras [11, 56]. Because of the extra hardware dependence, such solutions

mostly remain within the realm of high-end conferencing systems and/or research pro-

totypes. Despite decades of research, finding a monocular solution that would rely on the
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laptop/portable device camera as the only image acquisition hardware remains an open

question. The challenge is multi-faceted and involves meeting a host of requirements:

• realism: in order to be applicable in practice, the results should not be perceived

by humans as synthetic images;

• having gaze direction/viewpoint position altered sufficiently for re-establishing the

gaze contact: Figure 1.12 gives an idea of how much the gaze should be altered,

however 2− 3◦ of error out of 15◦ are generally indiscernible by human users;

• real-time performance: several systems suggested in the literature require addi-

tional hardware such as a GPU to run in real time; to cater to a broad audience,

the system should be capable of operating in real time on a CPU-based consumer

laptop and ideally, on portable devices too, and should not require a lot of memory

and computational resources.

1.2.1 Previous work on gaze redirection

Fixing the gaze problem in videoconferencing (gaze correction) is the most popular use

case of gaze redirection. A number of systems solve the gaze problem using a hardware-

driven approach that relies on semi-transparent mirrors/screens [10, 53]. The most

popular software-driven approach to gaze correction in videoconferencing amounts to

synthesizing 3D rotated views of either the entire scene [54, 55] or the face (which is

subsequently blended into the unrotated head) [11, 17]. A two-step mixed software/hard-

ware solution is the most common technique in this category. First, a dense depth map

is estimated either through stereo matching [54, 55] or using RGB-D cameras [11, 56].

Then a new synthetic view corresponding to a virtual camera located behind the screen

is created in real time. Filling disoccluded regions is a common difficulty encountered

in novel view synthesis. As discussed above, reliance on additional hardware represents

an obvious obstacle to the adaptation of these techniques.

Although a certain number of purely software-based monocular gaze correction ap-

proaches have been suggested [57, 58], most of them have been generally unable to

synthesize realistic images and to alter the perceived gaze direction to the extent re-

quired. The exceptions are the systems [12, 59] that first pre-record a sequence of

frames with a person looking into the camera, and then, at the conference time, replace

the eye region with that taken from one of the pre-recorded frames.

Among recent papers, while this study was under way, [13] suggests a similar approach

to replace closed eyes with open eyes for photo editing. The work [9] uses a 3D eye

model to generate realistic eye images with adjusted gaze.
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Paper Monocular
Does not

require GPU
Real-time

Does not require
pre-calibration

[11] (2012) - - + +
[17] (2014) + - + -
[12] (2010) + + + -
[55] (2003) - + ∼+ +
[54] (2002) - + - -
[57] (2002) + + - +
[58] (2003) + + - -
[56] (2011) - + - +
[59] (2015) + - + -
[9] (2017) + - - +

Table 1.1: Comparison of related gaze redirection works’ characteristics.

Figure 1.14: (Left) a setup for remote participant: the structured light scanning
system (120Hz video projector and camera) and large 2D video feed screen. (Right) a
setup for audience: the two-sided display surface, high-speed video projector, frontal
beam splitter, and 2D video and face tracking camera. Crossed polarizers prevent the

video feed camera from seeing past the beam splitter. Figure taken from [10]

.

The table Table 1.1 summarizes some technical aspects of the related software-driven

approaches, such as whether a solution is monocular, require GPU, works in real time or

require pre-calibration before each session. I do not include in the table the comparison of

the performance of the methods because in many cases it is a contentious issue. However,

below I describe methods in more detail and give comments on their advantages and

drawbacks, including the comments about their performance.

Let us consider some of the systems for gaze correction in more details. Hardware-based

approaches are often too complicated and expensive to be used by a wide audience.

The system in [10] is designed for. A 3D scanning system scans the remote participant,

whose image is shown using a 3D display, and a 2D video system is used for the remote

participant to see the audience (Figure 1.14).
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1.2.1.1 Gaze correction via 3D view synthesizing

A pair of calibrated stereo cameras located at the top and bottom of the monitor are

used in [54]. The method involves pose tracking, view matching and view synthesis. The

system initialization requires about 15 minutes of human interaction, which includes

horizontally aligning the symmetric facial features such as lips and eyes and using a

face modelling tool [60] to acquire a personalized user face model. Pose tracking means

tracking a triplet S = {p,q,m} for each frame, where p and q are points in the camera

images and m is their respective points in the face model. Tracked in its neighborhood

are points with salient textures, except for feature points in the non-rigid parts of the

face, such as the mouth region. Points p,q must satisfy the epipolar constraint [61]:

pFq = 0,

where F is the fundamental matrix, corresponding to the epipolar geometry between the

two images. The points are tracked using the KLT tracker [62].

To represent the head pose, a 3 × 3 rotational matrix R and a 3D translation vector t

are used. The objective is the sum of re-projection errors of m to p and q:

e =
∑
i

||pi − φ(A0(Rmi + t))||2 + ||qi − φ(A1[R10(Rmi + t) + t10])||2. (1.3)

Here φ() is the pinhole projection, (R10, t10) are the rotation and translation from

the second cameras coordinate system to that of the first camera, and A0 and A1

are the cameras intrinsic parameters. Reprojection error (1.3) is minimized using the

Levenberg-Marquardt algorithm.

A set of good matches in the rigid part of the face is obtained as a result of the 3D

head pose tracking. More points and line matching over the entire foreground images

are found using several stereo view matching approaches. After that, the novel view

is generated based either on view morphing [44] or on hardware-assisted multitexture

blending.

The work [55] suggests generating a cyclopean view from two cameras located to the left

and right of the screen. The authors develop a stereo matching approach and propose

a way to deal with occlusions and hole filling without explicitly constructing a scene

3D model. They generate disparities using a dynamic programming approach, finding

the path through a three-plane graph. New labels and cost function are introduced to

correctly identify and group occlusions, format the occlusions at the boundaries of fore-

ground objects and ensure inter scanline consistency. Due to different possible camera

locations on the screen, they also introduce the way of min-cost surface projection to
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Figure 1.15: a) Input color and depth images. b) Top: synthesized image. Bottom:
transfer with the use of an ellipse stencil; visible artifacts. c) Seam is optimized; much

fewer artifacts. d) Final blending. Figure taken from [11]

.

generate virtual views from arbitrary located cameras directly from the minimum-cost

surface obtained during the DP process. Temporal background model construction is ap-

plied to decrease temporal artifacts. The gaps on the current frame due to disocclusions

can be filled in with values which might be available in previous frames.

The paper [56] suggests a system composed of a time-of-flight depth sensor and a tra-

ditional stereo. The depth map from the stereo matching of two images and the depth

image from a time-of-flight sensor are joined and refined using the methods from [63, 64].

View morphing [44] in case of a dense correspondence is performed through linear in-

terpolation of projection matrices. A texture splatting technique [65] is used to fill the

holes emerging from matching, projection and rounding errors.

The work [11] suggests generat a novel view of the face using an RGB-D image from

Kinect (Figure 1.15). Still, some parameters, such as the persons height, need to be

manually set before the conference. The user is also advised to refine the result of the

2D placement of the corrected face in the original image (as opposed to initial automatic

placement based on coinciding facial features of the two face images, such as eye and

mouth positions).

One drawback of this approach is the artifacts resulting from the large size of the face

region to repaint and large size of occlusions in this region. The authors suggest applying

seam optimization to deal with the issue. A polygonal seam is optimized and made

similar in the source and corrected images, so that it appears smoother after blending.

The paper mentions another technique named temporal stabilization of discontinuities
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in the Kinect geometry. The pitfall of the approach suggested in [11] is the necessity to

use Kinect sensor and GPU to compute fast enough for real-time performance.

This approach is further developed in [17] where the novel view is generated using a

single web camera with no depth image taken. Instead the method uses monocular

real-time approximate fitting of the head model fitted using the facial features extracted

from the input image. Before the videoconference, the user should manually relate the

feature points to the 3D mesh vertices. During the videoconference, the head mesh is

rebuilt based on the facial landmark tracker output [66]. Conversion between the 2D

landmark and 3D world coordinate systems is performed using the Laplacian deforma-

tion technique [67]. The method uses a similar but slightly enhanced seam optimization

technique. Before the session begins, the user is asked to look straight in the camera to

record the static texture of the face and correct gaze direction. The texture is then used

to fill the occluded vertices of the seam. However, the method proposed in [17] has some

limitations, due to multi-perspective nature of the output images, and the availability

of a GPU for real-time operation. Pre-recording heavily occluded head parts (under the

chin) before each video conference creates further limitations for practical usage of the

system.

Monocular setting is also considered in [57] which uses a reference pair of images with

target transformation and epipolar geometry for rigid body motion to project the trans-

formation on the input image. Work [58] suggests applying transformation to the ge-

ometry without knowing 3D coordinates, but with two different kinds of rotation and

eyelids correction post-processing. However, the results presented in these papers fall

short of the goal in terms of realism of the generated faces.

1.2.1.2 Gaze correction via eye replacement

The general idea of [12] is to find an accurate position of the eye and to replace it with a

pre-recorded image of the eye of the same person with a proper gaze direction (e.g. gaze

in the camera). Initial eye detection is performed using an offline database of images

with eyes annotated manually according to the model shown in Figure 1.16, which was

first suggested in [68].

Once the images with a gaze pointed at the camera have been pre-recorded, eye pa-

rameters are found independently for each image. This is done by first localizing the

eye corners using the method from [69] and then extracting the SIFT descriptor from

the localized region of interest. After that, eye parameters are approximated using the

model trained on an offline database (Nearest Neighbor and Support Vector Regression

models were used).
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Figure 1.16: Eye model consisting of 6 parameters. Figure taken from [12]

.

Next, the 6-parameter space is searched locally to refine the model. For each new pa-

rameter value, the closest eye in the offline database is translated, rotated and stretched

in accordance with the difference in the parameters. At test-time, the closest matches

to straight-looking eyes are found using the cross-correlation measure. Local search in

the space of 6 parameters is also used to adjust the eye model for consecutive frames

and for blending the eyes found.

The downside of [12] is that while the obtained images achieve sufficient realism, the

gaze in the synthesized image remains “locked”, staring unnaturally into the camera

irrespective of the actual movement of the eyes. Although initially the problem boils

down to lack of eye contact, we do not want eye-to-eye contact to be permanent, for

fixed gaze would be unnatural in live communication. The only goal is to make up for

the vertical gap between the camera and the videoconference window on the screen. A

related drawback is that the system needs to pre-record a sufficient number of diverse

images of the persons eyes. The systems suggested in this work have none of these

limitations.

Another method suggested in [59] is based on replacing the eyes with those looking di-

rectly into the camera. Similarly to other techniques, it involves pre-recording a sequence

of frames with a person looking directly into the camera and blending the eyes with those

from one of the previously taken frames. Thus the method shares the drawbacks of [12]:

the gaze is unnaturally directed at the camera all the time and each videoconferencing

session requires a set of additional preparatory operations. Face alignment [70] is used

to localize eye regions and warp these regions from the destination image to the target

one. In order to correct the gaze vertically, the corresponding direction is enlarged by

some ratio. Afterwards, post-processing steps are applied, such as reillumination and

Laplacian pyramid blending.
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1.2.2 Recent work on gaze redirection

Published more recently, [13] suggests an approach similar to that addressed in [12]

and replacing closed eyes with open eyes for photo editing (Figure 1.17). The idea is

to replace the eyes in the target image with the eyes from the reference image. The

authors start with fitting face models to both images, fitting a 3D face model using

Principle Component Analysis on a 3D face shape dataset and tracking 2D facial land-

marks [66]. Assuming a weak perspective projection, they optimize for a projection

matrix and weights in the PCA decomposition using the fitting algorithm [71]. The

reconstructed projection is also used to warp a reference image in such a way that the

eyes are roughly aligned with the eyes in the target. Then they perform image rectifica-

tion in terms of lighting, local contrast and overall skin tones using multi-dimensional

histogram matching and finally robustly blend the eye regions into the target image.

Another paper, [9] was published after the experimental part of this study had already

been complete. Work [9] models the eye region in 3D, recovering the shape and pose

of the eyes [72], updates the model parameters in iterative manner, generates a cor-

responding synthetic eye region image and calculates new updates for the parameters,

comparing the synthetic eye region to the observed one. The comparing objective con-

sists of image and landmark similarity terms, as well as of terms corresponding to the

eye model (penalizing unlikely eye pose and shape).

The gaze redirection step relies on the fitted eye model. The model parameters are

modified to represent the redirected gaze and the optical flow is calculated from these

two sets of parameters. The optical flow is used to warp the eyelids. The eyeballs

are rendered directly from the new set of parameters. Application to image and video

post-processing is illustrated in Figure 1.13.

The objective optimization step in [9] is a complicated high-dimensional non-convex

problem, thus a GPU is needed to perform Gauss-Newton iterations. Still, the complete

algorithm does not have real-time capability because of the cumbersome model-fitting

step.

1.3 Contributions and scope

Chapter 2 describes a general approach to image re-synthesis. The warping field concept

with the output image pixels sampled from the input image is introduced. The warping

field predictor is learned from the dataset of image pairs describing the target transfor-

mation. As regards gaze redirection, I suggest repainting only the vicinity of the eyes,
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Figure 1.17: Eye-editing approach [13]. Steps applied to transfer the eyes: face fitting,
eyes’ registration via warping, color adjustment, blending. Figure taken from [13].

emulating only the change of gaze direction and keeping the head pose unchanged. A

review of facial alignment methods is also given in Section 2.3.1.

Chapters 3-6 deal with four image re-synthesis systems and their application to gaze

redirection. The first system [73] described in Chapter 3 is based on a special kind

of randomized decision tree ensembles called warping flow forests that are learned in

a weakly-supervised manner. For a gaze redirection task, at training time this system

observes pairs of input and output images, where each pair contains the face of the same

person with a fixed angular difference in the gaze direction. It then learns to synthesize

the second image in a pair from the first one by predicting a warping flow field. After

learning, the system acquires the ability to redirect the gaze of a previously unseen person

by the same angular difference as in the training set. The system synthesizes realistic

views with a gaze systematically redirected by 10−30 degrees in the experiments. At test

time, the system accomplishes gaze correction using simple pixel replacement operations

that are localized in the vicinity of the persons eyes, thus achieving high computational

efficiency. My implementation runs in real time on a single core of a laptop. Although

the results are of high perceptual quality (see Section 5.3.4), the system still leaves some
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room for improvement and artifact reduction. Although less critical, another deficiency

of the system is a relatively large memory footprint of the learned models.

The second system (Chapter 4, [74]) is based on a deep feed-forward architecture that

combines several principles of operation (coarse-to-fine processing, image warping and

intensity multiplication). The architecture is trained end-to-end in a supervised way

using a specifically collected dataset that depicts the change of appearance that occurs

as the gaze is redirected by different angles. Qualitative and quantitative evaluation

demonstrates that the suggested deep architecture can synthesize very high-quality eye

images, as required by the nature of the applications, and does so at several frames

per second. The quality of the results is higher than that in the first system, but the

efficiency falls short of real-time CPU operation, making the method impractical for

video-conferencing with most commonly used consumer devices. Such approach is still

useful for image and video-editing application scenarios outlined above. The system also

contributes to an actively-developing field of image generation with deep models.

The third system (Chapter 5, [75]) combines the advantages of the previous two. Sim-

ilarly to the first system, it is based on a randomized decision forest which in this case

is trained in a traditional fully-supervised manner. To obtain such supervision, I use an

output of the second system to effectively have the deep architecture teach the random

forest. At training time, the new system observes images and the corresponding warping

flow that is estimated by the deep model and learns to produce the flow for previously

unseen images using a regression random forest. At test time, the system outputs a

result by applying the flow predicted by the random forest to the input image. As

shown by the experiments described in Section 5.3, the trained forest attains nearly the

same quality as the teacher network, outperforming a weakly-supervised random forest

(from the first system). At the same time, this system runs in real time on a single

core of a CPU. Moreover, the resulting models have a much smaller memory footprint

as compared to the weakly-supervised forest.

All the three systems are trained in a supervised case, based on a large dataset of images

labeled with a gaze direction angle. Acquiring of such a database is comparatively ex-

pensive, as it requires significant time per user, adherence of proper instructions, and still

contains some noise in labels (Section 2.3). The fourth system (Chapter 6) is dedicated

to unsupervised and semi-supervised scenarios. In this case the first model learning step

is unsupervised. A large dataset of unlabeled images is utilized, which are sampled from

sequences of eye images of different people with varying and unknown gaze directions.

Such data is much easier to get (Section 2.3). The goal of unsupervised learning is to

train a decoder network which maps input images to a shallow representation space,

and a decoder network which learns to construct a warping field from the first image in
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Method Inputs Training data
Computational

demands
Quality of results

Weakly-supervised
Random Forest
(Chapter 3, [73])

Image and
landmarks,
image is
processed at
native
resolution, gaze
is changed in
fixed direction

Pairs (input + ground
truth) of images with fixed
gaze direction difference,
landmarks for input image

Real-time
performance on
a consumer
laptop
(≈ 40 FPS),
≈ 100 Mb RAM
on storing a
model

Beats the baseline by a
large margin, worse
than other methods,
but performance is still
good in User study

Deep Warp
(Chapter 4, [74])

Image,
landmarks and
redirection
angle, image is
processed on
fixed training
spatial scale

Pairs (input +
ground-truth) of images
and gaze direction
difference between them
(angles along x and y
directions), landmarks for
input image

Performance up
to 20 FPS on a
GPU

The best results in
quantitative
comparison and User
Study

Random Forest
supervised by
Neural Network
(Chapter 5), [75]

Image and
landmarks,
image is
processed at
native
resolution, gaze
is changed in
fixed direction

Input images with
landmarks, flow fields
corresponding to
redirection of input images
by some fixed angle

Real-time
performance on
a consumer
laptop
(≈ 40 FPS),
2− 3 Mb RAM
on storing a
model

Very close to the results
of a teacher Deep Warp
model in both User
study and quantitative
comparison

Semi-supervised
Neural Network
(Chapter 6)

Image,
landmarks and
redirection
angle, image is
processed on
fixed training
spatial scale

Pairs of images without
known difference in gaze
direction at training time;
input image and analogy
pairs from labeled part of
dataset with target
difference in gaze direction
at runtime

Performance up
to 20 FPS on a
GPU

Outperforms Deep
Warp approach given
large unlabeled dataset
with small labeled part

Table 1.2: Comparative analysis of gaze redirection systems suggested in this work.

the pair to the second based on their representations. Having the encoder and decoder

learned, the system can redirect the gaze of a previously unseen eye in a semi-supervised

way, based on a relatively small collection of eyes with gaze direction labels. The labeled

part of the dataset is used to pick up analogy images. The latent representation of a

test eye is modified additively based on the representation of analogies. After this, the

decoder network will be able to estimate a warping field from the test eye to an unknown

target eye with a redirected gaze.

Table 1.2 compares the four methods in terms of inputs, training data, speed and quality.

Each Chapter gives a review of the related work: Random Forests and their application

in Computer Vision in Section 3.1, Neural Networks in Section 4.1, teacher-student

architectures in Section 5.1 and analogy models in Section 6.1. Chapter 7 offers some

final comments about the key aspects of the work presented.
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1.4 Work overview

1.4.1 Contributions and scientific novelty

The key contributions of the work are the approach to image re-synthesis based on

the warping field and four methods for solving this problem in different scenarios. In

particular, the authors personal contributions are detailed below:

• The approach to image re-synthesis is formulated as the task of learning the warp-

ing field predictor from the dataset of examples. The warping model is applicable

to problems without large dis-occlusions or changing colors from input to the out-

put so that warping model is capable to model the target transformation.

• Several methods of learning a warping field predictor are suggested:

– weakly-supervised random forest;

– fully supervised random forest;

– semi-supervised neural network for embedding learning.

• Quantitative and qualitative comparisons of the methods are performed on the

gaze redirection task, including the user study.

• A method for collecting and preprocessing the dataset for gaze redirection is sug-

gested. The dataset consists of pairs of images describing the gaze redirection and

used for the learning of suggested methods.

The novelty of the general approach to image re-synthesis lies in the learning of the

warping field of displacement vectors for gaze redirection from the dataset of images.

The idea to do image re-synthesis via warping goes back as far as [44]. However, the

warping field in [44] and similar works is constructed from two basis views of a static scene

using geometrical projection properties. No references to the use of machine learning

for obtaining the warping field have been found in the literature published prior to this

work which suggests new methods for learning a warping field predictor.

Warping field prediction as such pertains to learning tasks with a structured output.

Section 3.1.3 describes a series of works that apply random forests to predict the struc-

tured output in a computer vision application. The work [76] predicts the optimal filters

in the tree leaves. The novelty of the weakly-supervised forest suggested in Chapter 3

is that error distribution over all warping vectors and not only a single optimal warping

vector can be stored in the leaves. Another novelty is that ensembling of several trees

in the forest is based on summing up these distributions.
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The novelty of the DeepWarp approach is that deep architecture is learned from a

dataset of input-output image pairs to produce a warping field. By the time the work

was published, only direct regression of the target image pixels had been reported in the

literature (see Section 1.1.1).

The teacher-student approach was used to train a faster neural network from large and

slow models: a larger neural network [77], or an ensemble of networks [78, 79]. The

architecture suggested in Chapter 5 offers a novel teacher-student combination, with

the weakly-supervised neural network acting as the teacher and the random forest as

the student. The neural networks representation power helps to achieve high accuracy,

while the random forest is an architecture capable of fast operation at test time, which

makes it suitable for real-time implementation on a CPU

The work [18] suggests a deep-analogy-making model. However, the gaze redirection

model suggested in Chapter 6 uses deep embedding learning and does not require the

knowledge of transformations in the form of analogy-forming quadruplets. The novel

nature of the method is that it uses a combination of unsupervised training on pairs of

images without gaze labels and image analogy making in the latent space as applied to

realistic image re-synthesis.

1.4.2 Academic and non-academic impact

Practical value. The suggested methods are useful for the image synthesis tasks

where the target transformation is described by a training set of input-output pairs

of images, for example, changing facial features or video interpolation. As applied to

gaze redirection, the forest-based methods are suitable for real-time monocular gaze

correction in videoconferencing, where eye-to-eye communication is impossible because

of the vertical gap between the camera and the eyes of the person on the screen. Other

applications include post-processing of images and video for photo-editing and movie

post-production, teleprompting and TV presenting, where gaze redirection can be used

to ease the process of using text notes.

Approbation, publications and personal contribution. The results of this work

were presented at multiple conferences and scientific seminars:

1. Computer Vision and Pattern Recognition Conference, 2015, Boston, poster and

demo;

2. European Conference on Computer Vision, 2016, Amsterdam, poster and demo;
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3. Seminar of the Laboratory 11, Institute for Information Transmission Problems

RAS, 2016, Moscow;

4. Seminar named after M.R. Shura-Bura, Keldysh Institute of Applied Mathematics

RAS, 2017, Moscow;

5. Computer Vision seminars, Yandex School of Data Analysis, 2014, 2015, 2016,

Moscow;

6. SkoltechOn conference, Skolkovo Institute of Science and Technology, 2015, Moscow;

7. Machines Can See, Computer Vision conference, 2017, Moscow, demo;

8. Open Innovations Forum 2015, Moscow, demo;

9. Skolkovo.ai conference, 2016, Moscow, demo.

The results were published in the following papers:

1. Kononenko, D., Lempitsky, V. (2015). Learning to look up: Realtime monocular

gaze correction using machine learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (pp. 4667-4675).

The idea of gaze redirection by re-synthesis of eye vicinity using the warping field

and the setting for the dataset collection, described in Chapter 2, are suggested by

the author. Also, the author suggested the ideas of learning method, implemented

the method and conducted the computational experiments on weakly-supervised

forest, described in Chapter 3.

2. Ganin, Y., Kononenko, D., Sungatullina, D., Lempitsky, V. (2016). DeepWarp:

Photorealistic image re-synthesis for gaze manipulation. In European Conference

on Computer Vision (pp. 311-326). Springer International Publishing.

The authors personal contributions include an experimental setup and data prepa-

ration for the DeepWarp approaches, comparison of the DeepWarp and forest-

based approaches, and setup and implementation of the user study described in

Chapter 4.

3. Kononenko, D., Ganin, Y., Sungatullina, D., Lempitsky, V. (2017). Photorealis-

tic Monocular Gaze Redirection Using Machine Learning. IEEE Transactions on

Pattern Analysis and Machine Intelligence (Epub ahead of print).

The authors personal contributions are the teacher-student architecture, its im-

plementation, computational experiments and user study, described in Chapter 5.
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Along with the papers listed above, the authors further contributions include the

semi-supervised flow learning concept, implementation and computational experi-

ments described in Chapter 6.

The following patent was obtained:

• Daniil Kononenko, Victor Lempitsky, Method for correction of eye images using

machine learning. RU Patent 2596062 , August 8, 2016.

The license for the developed technology was purchased by the RealD company [80].



Chapter 2

Machine-learning-based image

re-synthesis

All the suggested systems use some form of supervised learning, as the training proceeds

by observing multiple pairs of input and output images. The main challenge of such

approach is to devise learning methods that can generalize to instances and imaging

conditions unseen during training, and all the systems that I discuss below achieve such

generalization by learning to predict the warping field rather than the output image

directly. The second system (Chapter 4) corrects the warped output with per-pixel

brightness modification (while still trying to achieve the redirection mostly by warping).

I will now discuss the elements common to all the systems

2.1 Image re-synthesis by pixel-wise replacement

The target transformation is defined by a dataset of training image pairs

{Ii(x, y, k), Oi(x, y, k)}Li=1, x ∈ 1, . . . ,M, y ∈ {1, . . . , N}, k ∈ {1, 2, 3}. (2.1)

The method needs to alter pixels of input image to emulate transformation. I rely on

machine learning to accomplish this. The approach of direct regression of pixels of

output image have problems with synthesizing high-resolution images ([18, 19, 24, 43],

Figure 1.9, Figure 2.2, Figure 2.3). Thus, the warping-based approach is suggested in

this work. A 2D offset vector (u(x, y), v(x, y)) is obtained for each pixel (x, y). The final

value of the pixel O(x, y) in the output image O is then computed using the following

simple formula:

O(x, y) = I (x+ u(x, y), y + v(x, y)) . (2.2)

29
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In other words, the pixel value at (x, y) is “copy-pasted” from another location deter-

mined by the warping flow vector (u, v). In case of color RGB image, the operation is

performed channel-wise:

O(x, y, c) = I (x+ u(x, y), y + v(x, y), c) ∀c. (2.3)

The operation could be easily generalized to a case when offsets are non-integer numbers.

I define a warping field, consisting of two maps, corresponding to the set of 2D offset

vectors for the whole image:

F(x, y) = (u(x, y), v(x, y)) . (2.4)

The operation, which samples an image I in (possibly non-integer) offset coordinates,

resulting in the output image O, is denoted as

O = S(I,F). (2.5)

The values in non-integer coordinates are interpolated, given all pixel intensities. One

of the common interpolation methods is a bilinear interpolation [81]. The value of the

intensity is interpolated depends on the distance to four closest point in pixel grid Fig-

ure 2.1. If we denote x̃ = x + u(x, y), ỹ = y + v(x, y), x1 = bx̃c, x2 = dx̃e, y1 = ỹc,
y2 = ỹe, then the value of interpolated intensity is

O(x, y) =I (x+ u(x, y), y + v(x, y)) ≈

(x2 − x̃)(y2 − ỹ)I(x1, y1) + (x̃− x1)(y2 − ỹ)I(x2, y1)+

(x2 − x̃)(ỹ − y1)I(x1, y2) + (x̃− x1)(ỹ − y1)I(x2, y2).

(2.6)

A bilinear sampler (a sampler (2.5), using bilinear interpolation (2.6)) is piece-wise

differentiable [82]. Thus it could be incorporated into deep architecture with end-to-end

training based on gradient descent. It is further discussed in Chapter 4 and Chapter 6.

The methods presented in this work in the following chapters are trained at a fixed

spatial scale. At test time, some of them can be applied on the native resolution of the

input image (forest-based methods), while other require the same fixed spatial scale, as

during training (neural network-based methods) – see table 1.2 for comparison. Thus, for

neural network-based methods the input is rescaled to match the resolution at training

time. The standard approach after the pass through the neural network would be to

upsample the result. However, having the warping field, instead of upsampling the result

itself, I upsample the resulting warping flow using bilinear interpolation (2.6), and apply
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Figure 2.1: Visualization of bilinear interpolation. The value at the black spot is the
sum of the value at each coloured spot multiplied by the area of the rectangle of the

same colour, divided by the total area of all four rectangles. Image taken from [14].

the upsampled flow to the input image in native resolution (2.5). Such approach results

in more sharp images.

A warping “copy-pasting” procedure (2.2) is a restriction on the transformation family.

It introduces natural regularization in suggested method. This approach ensures that

the pixels of the output are copied from the input rather than “invented”. I present the

example comparison of warping approach versus direct regression on a gaze redirection

task in Figure 2.2 and Figure 2.3. While unregularized model suffers from noticeable

fine-scale details dropping and regression-to-mean effect, warping approach produces

photorealistic results. Also, warping model shows comparable results on training and

testing sets, while non-warping model suffers from overfitting. The model and descrip-

tion of training process used in this comparison are fully described in Chapter 6. I refer

reader to this chapter for the details, describing the model briefly here.

Both warping and not-warping models are trained on pairs of eyes of the same person

with different unknown gaze direction. Both eyes are encoded into low-dimensional

space, and the encodings are stacked together. The warping model is then learned to

produce the warping field from the first eye to the second from these stack of encodings,
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Figure 2.2: The comparison of warping and non-warping approaches, training set.
Columns from left to right: input image, ground-truth image, the result of warping
model, the result of non-warping model. Significant effects of dropping fine details,

noise and regression-to-mean are decreased using a warping-based approach (2.2)

.

while non-warping model directly outputs the second eye from its encoding, being thus

a conventional autoencoder.

However, in some cases the warping field is not enough to reproduce the ground-truth

image because of the lack of necessary pixels in the input image Figure 4.3. These cases

and a solution are further discussed in Section 4.4.

The warping field approach makes the learning problem weakly-supervised, because we

do not have the warping field (2.4) for the training pairs. Thus, the learning method

should be developed to handle such weak supervision. Examples of warping fields for

gaze redirection are visualized in the Figure 5.1.
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Figure 2.3: The comparison of warping and non-warping approaches, testing set.
Columns from left to right: input image, ground-truth image, the result of warping
model, the result of non-warping model. In comparison to train results Figure 2.2,

not-warping model exhibits significant overfitting.

.

2.1.1 General pipeline for image re-synthesis

Based on the warping field approach, the following pipeline for image re-synthesis prob-

lem is suggested:
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1. The target transformation is described by a set of training pairs {Ii, Oi}Li=1 (2.1).

2. Learn a warping field predictor:

p : M ×N × 3→M ×N × 2.

The methods to learn such a predictor, suggested in Chapter 3, Chapter 4, Chap-

ter 5, Chapter 6, are the main topic of discussion of this work.

3. At test time for a new image predict the warping field F = p(I).

4. Generate new image via bilinear sampling of input image O = S(I,F) (2.2).

In the rest of my thesis I concentrated on the task of gaze redirection, however, all

suggested methods to learn a predictor are applicable to this general image re-synthesis

pipeline. The restriction on the image re-synthesis problem where the warping is appli-

cable, is that pixels of the output image are contained in the input so that the family of

warping transformations is rich enough to model the target transformation.

2.2 Gaze redirection by re-synthesis of eyes vicinity

For an input image frame, most previous systems for gaze correction synthesize a novel

view of a scene from a virtual viewpoint co-located with the screen [54, 55, 57, 58].

Alternatively, a virtual view restricted to the face region is synthesized and stitched

into the original video stream [11, 17]. Novel view synthesis is however a challenging

task, even in constrained conditions, due to such effects as (dis)-occlusion and geometry

estimation uncertainties Figure 1.15. Stitching real and synthetic views can alleviate

some of these problems, but often results in distortions due to the multiperspective

nature of the stitched images.

I suggest not to attempt to synthesize a view for a virtual camera. Instead, methods

which are described in this work emulate the change in the appearance resulting from

a person changing her/his gaze direction by a certain angle (e.g. ten degrees upwards),

while keeping the head pose unchanged (Figure 2.4). Emulating such gaze redirection is

also challenging, as it is associated with

• complex non-rigid motion of eye muscles, eyelids, and eyeballs,

• complex occlusion/dis-occlusion of the eyeballs by the eyelids,
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Input Desired output My output

Figure 2.4: The setting for monocular gaze redirection. Left – an input frame with
the gaze directed below the camera. Middle – a “ground truth” frame with the gaze
directed 15 degrees higher than in the input. Given an input image and the desired
change in angle and direction (“15 degrees higher”) my method aims to produce an
image that for human perception is as close to ground truth as possible.The result of
one of the proposed systems is shown on the right. The top row is the example of
system proposed in Chapter 3 applied to an image from a Columbia Gaze dataset [83].
The bottom row is the example of system from Chapter 5 applied to an image from
a Skoltech dataset Section 2.3. In this particular example, the computation time of
the method is 8ms for the top row and 5 ms for a bottom row on a single laptop
core (excluding feature point localization). Such speed makes both systems suitable for

real-time use in videoconferencing.

• change in illumination patterns due to the complex changes in normal orientation.

The key insight is that while the local appearance change associated with gaze redirection

is complex, it can still be learned from a reasonable amount of training data. An

additional, rather obvious advantage of gaze redirection as compared to view synthesis,

is that gaze redirection can be performed locally in the vicinity of each eye and thus

affects a small proportion of pixels in the image. At runtime all suggested methods

localize each eye and then perform local operations with eye regions pixels to accomplish

gaze redirection.

2.3 Database collection and eye localization

The publicly available Columbia Gaze dataset [83] for gaze tracking application includes

56 persons and five different head poses (0◦, ±15◦, ±30◦ horizontally). For each subject

and each head pose, there are 21 different gaze directions: the combinations of seven

horizontal ones (0◦, ±5◦, ±10◦, ±15◦) and three vertical ones (0◦, ±10◦). Taking the
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Figure 2.5: Dataset collection process. A person is asked to follow the point on the
screen with the eyes only, without head movements. To minimize possible head shaking,
a special stand is used. (Left top): the setting, (right top): the point is moving, (left
bottom): on the borders the point is stationary for a few seconds, so that a person can
blink; (right bottom): when the point passes behind the camera, the image of point is

enlarged.

pairs with the same parameters except for the vertical gaze direction, I draw training

samples for learning to correct gaze by 10 degrees.

However, there are several limitations with Columbia Gaze dataset. The first one is

the poor variety in vertical redirection angles. The main testbed for gaze correction

in videoconference is redirection on 15◦ upwards Figure 1.12, and no such examples

could be drawn from Columbia dataset. Also, images in this dataset are only loosely

registered, which ntroduces an additional error and add a need for additional registration

procedures Section 3.2.4. And finally, there are not enough training examples to learn

a fully generalizable model.

To avoid these limitations, a Skoltech Dataset of videos of around 150 people was col-

lected. During recording, to minimize head movement, a person places her head on a

special stand and follows with her gaze a moving point on the screen in front of the

stand. The sequence of frames synchronized with the point position, from which we can

deduce the gaze direction, is recorded using a webcam mounted in the middle of the

screen Figure 2.5. The examples from the one sequence in the dataset are presented

in Figure 2.6.

About 200 frames for one video sequence are recorded. The angular range is 36◦ in

vertical direction and 60◦ in horizontal direction. I manually exclude bad shots, where a

person is blinking, not changing gaze direction monotonically as anticipated or moving
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Figure 2.6: Examples from the dataset. A data where a person is changing gaze
direction only with the eyes, without head movements, is collected.

head. For each person I record 2 − 10 sequences (500 sequences total), changing the

head pose and lighting conditions between different sequences. From each sequence, one

can draw about 50− 80 training pairs for a certain angular difference in gaze directions.

Each training pair can be regarded as a training example for supervised learning.

All systems suggested in this work start by localizing the eye regions and then achieving

redirection by localized processing. Training samples are cropped using the eye local-

ization procedure. The eye localization step within my system is standard, as I use an

off-the-shelf real-time face alignment library (e.g. [70, 84, 85]) to localize facial feature

points. As the gaze-related appearance change is essentially local to the eye regions, all

further operations are performed in the two areas surrounding the two eyes.

For each eye, I thus focus on the landmark points l1 = (lx1 , l
y
1), l2 = (lx2 , l

y
2) . . . lN =

(lxN , l
y
N ) corresponding to that eye (in the case of [84] there are N = 7 feature points).

I compute a tight axis-aligned bounding box B′ of those points. After this, I define the

final bounding box B having the same center as B′ and having the width W and height

H that are proportional to some characteristic radius ∆ (i.e. W = α∆, H = β∆ for

certain constants α, β). The bounding box B is thus covariant with the scale and the

location of the eye, and has a fixed aspect ratio α : β. This makes it sufficient to use

the same distance to the camera for all dataset images.

I suggest two variants of defining characteristic radius ∆:
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Figure 2.7: Illustration of eye localization (variant (2.8)). Blue: eye landmarks, red:
tight bounding box around landmarks, green: bounding box, enlarged proportionally
to the distance between corner landmarks, to which suggested approach restricts all

modifications.

• square root of square of tight bounding box B′:

∆ =
√

Area(B′); (2.7)

• the width of the tight bounding box, which equals the distance between the corners

of an eye:

∆ = ||lx1 − lx4 ||. (2.8)

An example of the localization process (for the second variant) is shown in Figure 2.7.

In general, the second variant (2.8) results in more uniform eye scaling. In Chapter 3

I provide results for the first variant (2.7), and in the next chapters – for the second

variant.

I incorporate left and right eyes into one dataset, mirroring right eyes. At test time, the

same predictor could be used for left and right eyes, mirroring the results. Examples of

training image pairs are shown in Figure 2.8.

Using the eye tracker could benefit the data collection. It can validate that user actually

followed the point on the screen, and, otherwise, the bad shots could be removed from the

training data. Eye tracker was not used in this work, therefore the process of removing

outliers was more complicated, including manually looking through images with high

training error.
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Figure 2.8: Examples of training data.

2.3.1 Related work on Facial Alignment

To crop eye images from training examples, I use facial alignment software [70, 84, 85].

I also use tracked landmarks as additional features for a training model. At this section,

I give a review of a related work on facial alignment methods.

The work [70] considers facial alignment as a Nonlinear Least Squares problem and

adapts Newton’s to solve it. Using the training data, they learn a series of parameter

updates, minimizing the objective. These updates are decomposed into the person-

specific components and generic descent directions. The method learns average descent
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Figure 2.9: Landmark estimates at different levels of the cascade. Figure taken
from [15].

directions during training. In testing, given an image of unseen person, an update is

generated by projecting person-specific components onto the learned generic directions.

The work [15] also treats the task as a regression problem and suggests to track facial

features with an ensemble of regression trees. Let S = (lT1 , . . . , l
T
p ) ∈ R2p be coordinates

of p facial landmarks. The regressors’ cascade successively refines estimated coordinates

(Figure 2.9):

Ŝ(t+1) = Ŝ(t) + rt(I, Ŝ
(t)),

where I is an image, t and (t + 1) are indexes in the cascade, rt(I,S is an update

given by the regressor in the cascade. Initial shape is the mean landmark position along

training data, which is centered and scaled based on the bounding box output of a

face detector. During training, initial shape is picked up randomly from training data

for data augmentation purposes. In order to have shape invariant split tests, during

training, image is warped to the mean shape based on the current shape estimate at

each iteration. A generalization to the case of missing labels is suggested. The approach

works superior to real-time up to 1000 FPS.
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The work [86] also adapts the cascaded pose regression. They learn the local binary

features with random forest for each facial landmark independently. The obtained local

binary features are used to jointly learn a linear regression for the final output.

The work [85] presents the Constrained Local Neural Field model for facial landmark

detection. They proposed a probabilistic patch expert (landmark detector) that can

learn non-linear and spatial relationships between the input pixels and the probability

of a landmark being aligned. To fit the model a Non-uniform Regularized Landmark

Mean-Shift optimization technique which takes into account the reliabilities of each patch

expert was used.

2.4 General system for gaze redirection

Although suggested system differs in many aspects, such as the training data, actual

type of predictor used, etc., there are number of standard steps, which all of the systems

follow when processing the new face image. For the details, which are specific for different

systems (different predictors), I refer reader to the comparison table 1.2 and to the

following chapters. This is a concretization of the general pipeline for image re-synthesis

Section 2.1.1 in application to a gaze redirection problem.

1. Having face image as the input, first a facial alignment software is applied (cur-

rently I use [84, 85]). It outputs facial landmarks (the example is in Figure 2.9),

from which landmarks ll and lr are chosen, corresponding to the left and right

eyes. If there are more than one person at the image (and all systems rely on fa-

cial landmark software to detect all faces), the next steps are applied successively

to all of them.

2. Eyes are cropped using the eye localization described in Section 2.3. Right eye is

mirrored, and all the next steps up to blending eyes back to the output image are

applied for both eyes independently.

3. Depending on the type of predictor, eye image I and its landmarks l are possibly

downsampled to the fixed scale, on which the predictor was trained. This operation

is needed for predictors based on Neural Network, while Random Forest could

process image on the native resolution.

4. Flow field is predicted

F = p(I, l).
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The procedure here is specific for each system, because different systems have

different inputs (possibly redirection angle or analogy pairs of images are additional

inputs).

5. Depending on the type of predictor, warping field is possibly upsampled using

bilinear interpolation (2.6) (again, for predictors based on Neural Networks).

6. The flow field F is linearly decreased to zeros near the border. Typically, for image

size about 80× 100 the border layer of thickness 5 is changed.

7. The output image of the eye is obtained, applying the flow field on the native

resolution:

O = S(I,F).

8. Right eye is mirrored back, and both eye are pasted back to get the output image.

As eye images are cropped from the input face images, in order to blend the result

back without stitching artifacts, the flow maps are linearly decreased to zeros near

the border of the cropped eye.

The procedure above outlines the general approach, however it does not address the

way how the flow field F = p(I, l) is predicted. The next chapters will describe several

systems that detail and expand on the general approach outlined in this section. These

systems utilize different methods to learn the predictor from the dataset.

2.4.1 Assessment methods

One of the main components of developing methods for predicting the warping field is

the assessment of the results. The assessment of the results of image re-synthesis should

address two questions:

1. Was the image transformed in an intended way? In the context of gaze redirection,

it means whether the gaze was redirected by a desired angle.

2. Is re-synthesized image photorealistic?

This work suggests three quantitative assessment methods. All of them evaluate the

output image, i.e. the result of warping using the predicted warping field.

The first method is Mean Squared Error between the output and the ground truth image.

The MSE measure is the most natural and easily estimated assessment method. The

closeness to the ground truth intends the positive answer to both questions. However,
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the MSE is an integral characteristic of the image, therefore, it could be not sensitive

enough to some local changes. These local changes could both spoil the effect of the

intended transformation and introduce artifacts, which decrease the photorealism of the

result.

In order to measure whether the gaze was redirected by a desired angle, the additional

model, which estimates the gaze difference between two images, is trained. As this

model could itself be not perfect, the following assessment protocol is used: model

error distribution of re-synthesized images is compared with model error distribution of

ground-truth images for some fixed redirection angle. This assessment method answers

only the first question because the trained model could be invariant to some non-realism

in the images. The details on the method could be find in Section 5.3.2.

As the photorealism of the result is finally a subjective opinion of a user, the user study

is suggested to answer the second question. Users could be asked in a different manner,

possibly the simplest is to show them an image and to ask, whether it is photo-realistic.

In this work, it was chosen to show user four images, one of each is re-synthesized, and

three other are ground-truth and ask to find the one, which seems the most unrealistic.

Analyzing the guess ratio, some conclusions about photorealism of the results could be

drawn. The best guess ratio should be 25% – the performance of the random guess.

Typically, users tend to determine the synthesized image more often. This assessment

method does not address the question, whether the gaze was redirected by a desired

angle, because a trivial method that produces zero warping field would get the perfect

score. The details on the method and its two variants could be found in Section 4.6.2.1

and Section 5.3.4.

The experiments in Section 4.6 and Section 5.3 showed the strong correlation between the

MSE measure and two other assessment methods, as well as with qualitative assessment

of the results. Therefore, MSE measure is considered to be the most universal and is

used in all quantitative experiments in the first place.



Chapter 3

Weakly-supervised random forest

for image re-synthesis

Here, I present a new system for learning a warping field predictor for image re-synthesis.

The synthesis is based on supervised machine learning, for which a large number of

image pairs describing the the target transformation is collected and processed. The

more advanced version of the system is based on a special kind of randomized decision

tree ensembles called warping flow forests. The current implementation runs in real-time

on a single core of a laptop with a clear potential for a real-time performance on tablet

computers.

The system is illustrated and evaluated for a task of monocular gaze correction in video-

conference. The system synthesizes realistic views with a gaze systematically redirected

upwards (10 or 15 degrees in my experiments). At test-time, the system accomplishes

gaze correction using simple pixel replacement operations that are localized to the vicin-

ity of person’s eyes, thus achieving high computational efficiency.

3.1 Overview of Random Forests

A data sample is denoted as x = (x1, x2, . . . , xd) ∈ Rd, xi represent features. Their

nature depends on application. For example, the usual case in computer vision is when x

stands for some pixel p, and features xi – for chosen pixels in the particular neighborhood

of p. For example, xi could be difference in intensities in a chosen channel between some

pixel from neighborhood and pixel p.

A decision tree is a tree graph (graph without cycles), whose nodes are divided into two

groups: split nodes and leaf nodes. Split nodes are all internal (not leaf) nodes of the

44
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graph. Each split node j is associated with a split (or test) function:

h(x, θj) : Rd × T → {0, 1}, (3.1)

where θj ∈ T are the parameters of node j, T is parameter space. For each data point,

tree is traversed from the root to leaf, and at each split node result of a test function

determines, whether the data point proceeds to the left or to the right child of this split

node. The common choice in random forest applications are decision stumps – data is

splitted by thresholding one of the features:

h(x; i, τ) = [xi < τ ]. (3.2)

In a supervised scenario a training point s is a pair (x,y) of a data sample and some

ground truth label, y ∈ Y. For example, Y = {0, 1} for a binary classification task, or

Y = Rn for a multivariate regression problem. In unsupervised scenario a training point

s = x. I also write (3.1) as h(s, θj), meaning that either s = (x,y) or s = x and h(s, θj)

= h(x, θj). A set of training points in the root of the tree is denoted as S0. In each split

node j an incoming set Sj is recursively divided:

Sj = SLj ∪ SLj ,

SLj = {s ∈ Sj | h(s, θj) = 0}, SRj = {s ∈ Sj | h(s, θj) = 1}.

Left and right subsets are incoming for new nodes: SLj = S2j+1, SRj = S2j+2.

In test time new query sample x is traversed in the same recursive way, until it reaches

a leaf node. Each leaf node contains a predictor, which associates a sample x with a

target label y ∈ Y (3.9).

3.1.1 Training a Decision Tree

Learning of a split function (3.1), e.g. assigning some value to a set of parameters θj is

a core question in applying decision trees. It is often done by optimizing some objective

function:

θj = arg max
θ∈T

I(Sj , θ). (3.3)

The optimization and splitting of the initial training set is often performed in a greed

recursive manner from root to leaves. Training begins at the root node, j = 0. A training

set is divided into two disjoint subsets in the two child nodes. Recursively applying this

procedure to all successively constructed nodes, we continue the training phase until a
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stopping criterion is met. Different stopping criteria are possible. The most common

are:

• a maximum depth of the tree D has been reached;

• some minimum threshold value of the information is gained (3.4), which means

that intended attributes of training point are the same across all samples in current

node, or at least dividing samples in current node into two new sets does not give

enough information gain;

• current node contains some minimum threshold amount of samples.

The common choice of an objective function in (3.3) is an information gain from splitting

a node into two new nodes:

I = H(Sj)−
∑

i∈{L,R}

|Sij |
|Sj |

H(Sij). (3.4)

Here H(S) is some measure of compatibility of set S. For example, Shannon entropy is

a possible choice for a classification problem:

H(S) = −
∑
c∈C

p(c)log(p(c)). (3.5)

Here C is the set of all classes, and p(c) is the empirical distribution over classes in the

set S. Another popular choice of H(S) in classification problems is Gini impurity:

H(S) =
∑
c∈C

p(c)2 ∗ (1− (p(c)). (3.6)

The standard choice for regression problem is error of fit:

H(S) =
1

|S|
∑
s∈S

(y − ȳ)2, (3.7)

where ȳ is the mean of all points in the node.

After learning phase in supervised problem, each leaf node l contains a subset of labeled

training data. In general cases the leaf statistics defines a distribution

pl(y|x), (3.8)

which can be, for cases of classification and regression, conditional distribution of cate-

gorical label p(c|x) or continuous label p(y|x). During testing a query point is traversed

through the tree until the leaf is reached. The tree is constructed in such a way, that the
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new query point would probably finish up in a leaf, containing similar training points.

Thus, the reasonable assumption for labeling of this new test point is to put label, sim-

ilar to the training points in that leaf. For example, Maximium-A-Posteriori of the leaf

label statistics could be used:

ŷ = argmax
y
p(y|x). (3.9)

In case of classification it corresponds to picking a class with a highest frequency, in case

of regression – mean of all training points, falling into particular leaf.

3.1.2 Random Forests

Random Forest is an ensemble of several Decision Trees. It was introduced in [87, 88]

Randomness could be injected in two main ways:

• random sampling of training set for each tree in forest (e.g. bagging);

• random optimizing of splits (3.3).

Bagging was introduced in [88, 89] as a method to reduce overfitting. Each tree in

forest is trained on a random subset of the whole training set. Such method increases

generalization, avoiding all trees from specialization to a single dataset. Training of each

tree also becomes faster with this strategy.

The optimization problem written in form (3.3) is rarely tractable in practice, because

space of all possible parameters T is very large. Thus each split is optimized over some

small random subset of parameters Tj ⊂ T .

θj = arg max
θ∈Tj

I(Sj , θ).

Typically, the optimization is done via brute force search over the set Tj . For a typical

case of decision stumps (3.2), one could wish to randomize either both feature number

i and threshold τ , or only one of them. For example, in work [90] some small numbers

of features is considered for each split train. All subset of samples in the node is sorted

according to the chosen feature value, and thus an optimal value of threshold is found

linearly of the subsample size.

More detailed definition of abstract Decision Tree and Random Forest models could be

found in [91].
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3.1.3 Application of Random Forests in Computer Vision

The variant of the gaze correction system presented in this chapter continues the long

line of real-time computer vision systems based on randomized decision trees [87, 88]

that includes real-time object pose estimation [92], head pose estimation [93], human

body pose estimation [16], background segmentation [94], etc.

Authors of work [92] consider such problems as object detection and pose estimation.

They match keypoints from the input image with the ones on a target object. They

formulate the point matching as classification problem and use random forests to solve

it. Formally, at train time they select a set K of cardinality K of keypoints int he object

model. At test-time the select a patch, centering it around a found keypoint. The task is

to determine whether it matches one of K keypoints in K or not, i.e. solve a classification

problem with K + 1 labels {−1, 1, 2, . . . ,K}, where −1 stands for a situation where a

keypoint does not belong to K. The suggested difference of pixels intensities taken in the

neighborhood of the keypoint as a binary node tests (3.1) in classification trees. They

compare two techniques for growing a tree. The first one is an approach described above:

picking of several tests at random and greed choosing of the best among them according

to the information gain (3.4). The number of picked up tests was 10 at the root node

and 100d for a node at depth d, d ≥ 2. The second is called extremely randomized trees.

In this approach, only one test is picked up at random, without any optimization at all.

This approach significantly decreases training time with a small loss of quality.

In paper [16] authors suggest two approaches for human body pose estimation: body

part classification (BPC) and offset joint regression (OJR). Both approaches make use of

random forest, which is applied individually to each pixel of a depth image. BPC predicts

body parts labels for each pixel of the image. A density over 3D world space could be

calculated by reprojecting per-pixel label probabilities, knowing the depth image and

calibration of the depth camera. OJR instead directly predicts a set of 3D offset votes

from each pixel to the body joints using a regression forest Figure 3.1. The split tests

employed at internal nodes (3.1) are differences between two pixels in the neighborhood

of a query pixel. 2D offsets are normalized by the depth value to make features depth

invariant. Authors choose approximately half of tests in such a way, that one of two

compared pixels is a query pixel itself.

While classical random forests are trained to do classification or regression, the trees in

my method predict some (unnormalized) distributions. My method is thus related to

other methods that use structured-output random forests (e.g. [90, 95]).

A Hough-transform-based object detection method is suggested in work [95]. They sug-

gest to train a forest to map the appearance of an image patch into its Hough vote,
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Figure 3.1: Body part classification (BPC) first predicts a (color-coded) body part
label at each pixel, and then uses these inferred labels to localize the body joints.
Offset joint regression (OJR) instead directly regresses the joint positions. Figure is

taken from [16]

.

incorporating it in the decision forest framework. Object detection problem is decom-

posed into classifying patches belonging to an object or a background and regressing the

offset vector of the patch v to the centroid of the object. Thus, the leaf statistics (3.8) in

Hough forests capture both categorical class label p(c|v) and continuous offset p(y|c,v).

However, they are not independent: the continuous offset y depends on the categorical

label c. Unifying two distributions, the statistics on the leaf will show the probability of

an object of a particular class c to appear in a patch with appearance v at the relative

location y:

p(y, c|v) = p(y|c,v)p(c|v).

Both classification (3.5) and regression (3.7) measures of compatibility are used. At each

node, a random decision is made whether to optimize split based on one or another with

equal probabilities.

The work [90] applied structured random forests to edge detection. In their approach,

y ∈ Y is some structured image annotation, e.g. edge mask. The idea is to map all

examples fallen in the given node to a discrete set of labels C = {1, . . . , k}, in such a

way that similar labels y ∈ Y are mapped to the same label. After that, the standard

information criterion for classification ((3.5), (3.6)) could be used to train a split.

Firstly [90] uses intermediate mapping Π : Y → Z to some Euclidean space Z. Then

they use some clusterization technique to to obtain discrete labels C = {1, . . . , k}. In
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application to edge detection, y ∈ Y are 16 × 16 segmentation masks and z ∈ Z are

binary vectors, defining whether each pair of pixel is in the same or different vectors.

In practice, they sample only subset of m = 256 dimensions of this binary vectors, and

further reduce to 5 dimensions by PCA.

Their ensemble model of combining a set of n labels y1, . . . ,yn ∈ Y into a single predic-

tion is again to use mapping Π : Y → Z to go to Euclidean space and then to choose a

medoid sample, i.e. among zk = Π(yk) they choose such k, that zk gives the minimum

to the sum of distances to all other zi. The ensemble model is necessary for both setting

the label in the leaf node and uniting prediction from several trees into the single one.

The trees in my method are trained under weak supervision, and this relates my work

to such methods as [76]. The suggested filter forests learns to assign optimal filters w

to inputs xi ∈ X to learn some mapping fw : X → Y, fw(xi) = xTi w. The forest

is weakly-supervised in the sense that the training data (xi,yi) (where yi ∈ Y is the

appearance of the patch after filter, e.g. denoised patch) does not contain target filters.

They define compatibility measure as

H(S) = ||Y −Xw∗||2,

where (X,Y) consists of all samples in the node, and w∗ is the optimal filter in the

node, which is learned using the same `2 loss with some data-dependent regularizing

term. The similar approach for learning optimal warping flow vectors is applied in the

method suggested in this paper (Section 3.2.3). However, in addition to this idea, in the

context of weak supervision the non-standard way of ensembling the trees is suggested

(Section 3.2.2).

3.2 Warping flow forest

As described in Section 2.1 the suggested approach is to predict the warping field for

the input image. As we do not have the warping field (2.4) for the training pairs, at this

section I describe the system based on weakly-supervised random forests (warping flow

forests).

3.2.1 Image-independent warping field

Under my approach, I can propose a very simple baseline that suggests a fixed warping

field (2.4), i.e. independent of the test image content and based solely on the relative

position in the estimated bounding box, i.e. u = u(x/∆, y/∆) and v = v(x/∆, y/∆),
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Figure 3.2: Processing of a pixel (green square) at test time in an warping
flow tree. The pixel is passed through an warping flow tree by applying a sequence
of tests that compare the position of the pixels w.r.t. the feature points (red crosses)
or compare the differences in intensity with adjacent pixels (bluish squares) with some
threshold. Once a leaf is reached, this leaf defines a matching of an input pixel with
other pixels in the training data. The leaf stores the map of the compatibilities between
such pixels and warping flow vectors. The system then takes the optimal warping flow
vector (yellow square minus green square) and uses it to copy-paste an appropriately-
displaced pixel in place of the input pixel into the output image. Here, a one tree
version is shown for clarity, the actual system would sum up the compatibility scores
coming from several trees before making the decision about the warping flow vector to

use.

where the values of u and v for a given relative location (x/∆, y/∆) are learned on

training data as discussed below.

3.2.2 Architecture of warping flow forest

At test time, this system matches a pixel at (x, y) to a group of similar pixels in training

data and finds the most appropriate warping flow vector for this kind of pixels. To

achieve this effect, a pixel is passed through a set of specially-trained ensemble of ran-

domized decision trees (warping flow trees). When a pixel (x, y) is passed through an

warping flow tree, a sequence of simple tests of two kinds are applied to it. A test of the

first kind (an appearance test) is determined by a small displacement (dx, dy), a color

channel c ∈ {R,G,B}, and a threshold τ and compares the difference of two pixel values

in that color channel with the threshold:

I(x+ dx, y + dy)[c]− I(x, y)[c] ≷ τ (3.10)

A test of the second kind (a location test) is determined by the number of the feature

point i ∈ {1, . . . N}, li = (lxi , l
y
i ) and a threshold τ and compares either x− lxi or y − lyi

with τ :

x− lxi ≷ τ y − lyi ≷ τ (3.11)
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Through the sequence of tests, the tree is traversed till a leaf node is reached. Given an

ensemble of T warping flow trees, a pixel is thus matched to T leaves.

Each of the leaves contain an unnormalized distribution of compatibility score (3.12)

over the warping flow vectors (u, v) for the training examples that fell into that leaf at

learning stage Figure 3.2. I then sum the T distributions corresponding to T leaves,

and pick (u, v) that minimizes the aggregated distribution. This (u, v) is used for the

copy-paste operation (2.2).

Handling scale variations. To make matching and replacement operations covari-

ant with the changes of scale, a special care has to be taken. For this, I rescale all

training samples to have the same characteristic radius ∆0. During gaze redirection at

test time, for an eye with the characteristic radius ∆ I work at the native resolution

of the input image. However, when descending an warping flow tree, I multiply the

displacements (dx, dy) in (3.10) and the τ value in (3.11) by the ratio ∆/∆0. Likewise,

during copy-paste operations, I multiply the warping flow vector (u, v) taken from the

image-independent field or inferred by the forest by the same ratio. To avoid the time-

consuming interpolation operations, all values (except for τ) are rounded to the nearest

integer after the multiplication.

3.2.3 Learning

I assume that a set of training image pairs (Ij , Oj) is given. I assume that within each

pair, the images correspond to the same head pose of the same person, same imaging

conditions, etc., and differ only in the gaze direction (Figure 2.8). I further assume that

the difference in gaze direction is the same for all training pairs (separate predictor needs

to be trained for every angular difference). As discussed above, I also rescale all pairs

based on the characteristic radius of the eye in the input image.

For each pixel (x, y), our goal is to turn the color of the pixel Ij(x, y) into the color

given by Oj(x, y) by applying the operation (2.2). Therefore, each pixel (x, y) within

the bounding box B specifies a training tuple S = {(x, y), I, {li}, O(x, y)}, which includes

the position (x, y) of the pixel, the input image I it is sampled from, eye feature points

{li)} in the input image, and finally the color O(x, y) of the pixel in the output image.

The trees or the image-independent flow field are then trained based on the sets of the

training tuples (training samples).

As discussed above, unlike most other decision trees, warping flow trees have to be

trained in a weakly-supervised manner. This is because each training sample does not

include the target flow field F(x, y) = (u(x, y), v(x, y)) that the tree is designed to
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predict. Instead, only the desired output color O(x, y) is known, while same colors

can often be obtained through different offsets and adjustments making the supervision

“weak”.

The goal of the training is then to build a tree that splits the space of training examples

into regions, so that for each region replacement (2.2) with the same warping flow vector

(u, v) produces good result for all training samples that fall into that region. Given a

set of training samples S = {S1,S2, . . . ,SK}, I define the compatibility score H of this

set with the warping flow (u, v) in the following natural way:

H
(
S, (u, v)

)
=

K∑
k=1

∑
c=R,G,B

∣∣∣Ik(xk + u, yk + v)[c]−Ok(xk, yk)[c]
∣∣∣ . (3.12)

Here, the superscript k denotes the characteristics of the training sample Sk, Ik and Ok

denote the input and the output images corresponding to the kth training sample in

the group S, and c iterates over color channels. Overall, the compatibility E(S, (u, v))

measures the disparity between the target colors Ok(xk, yk) and the colors that the

replacement process (2.2) produces.

Given the compatibility score (3.12) I define the coherence score H̃ of a set of training

samples S = {S1,S2, . . . ,SK} as:

H̃(S) = min
(u,v)∈Q

H
(
S, (u, v)

)
, (3.13)

Here, Q denotes the search range for (u, v), which is taken to be a square [−R, . . . R]⊗
[−R, . . . R] sampled at integer points. Overall, the coherence score is small as long as

the set of training examples is compatible with some warping flow vector (u, v) ∈ Q, i.e.

replacement (2.2) with this flow vector produces colors that are similar to the desired

ones.

The coherence score (3.13) then allows us to proceed with the top-down growing of the

tree. As is done commonly, the construction of the tree proceeds recursively. At each

step, given a set of training samples S, a large number of tests (3.10),(3.11) are sampled.

Each test is then applied to all samples in the group, thus splitting S into two subgroups

S1 and S2. A quality of the split (S1,S2) is then defined as:

I(S1,S2) =
|S1|
|S|

H̃(S1) +
|S2|
|S|

H̃(S2) + λ
∣∣|S1| − |S2|

∣∣ , (3.14)

where the last term penalizes the unbalanced splits proportionally to the difference in the

size of the subgroups. This term typically guides the learning through the initial stages

near the top of the tree, when the coherence scores (3.13) are all “bad” and becomes
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relatively less important towards the leaves. After all generated tests are scored using

(3.14), the test that has the best (minimal) score is chosen and the corresponding node

V is inserted into the tree. The construction procedure then recurses to the sets S1 and

S2 associated with the selected test, and the resulting nodes become the children of V

in the tree.

The recursion stops when the size of the training sample set S reaching the node falls

below the threshold τS or the coherence H̃(S) of this set falls below the threshold

τC , at which point a leaf node is created. In this leaf node, the compatibility scores

E(S, (u, v)) for all (u, v) from Q are recorded. As is done conventionally, different trees

in the ensemble are trained on random subsets of the training data, which increases

randomization between the obtained trees.

Learning the image-independent warping field is much easier than training warp-

ing flow trees. For this, I consider all training examples for a given location (x, y) and

evaluate the compatibility scores (3.12) for every offset (u, v) ∈ Q. The offset minimizing

the compatibility score is then recorded into the field for the given (x, y).

Discussion of the learning. By predicting the warping flow (u(x, y), v(x, y)) I do

not aim to recover the apparent motion of a pixel (x, y). Indeed, while recovering the

apparent motion might be possible for some pixels, apparent motion vectors are not

defined for dis-occluded pixels, which inevitably appear due to the relative motion of

an eyeball and a lower eyelid. Instead, the learned predictors simply exploit statistical

dependencies between the pixels in the input and the output images. As is demonstrated

in Section 3.3, recovering such dependencies using discriminative learning and exploiting

them allows to produce sufficiently realistic emulations of gaze redirection.

3.2.4 Implementation details

Learning the forest. When learning each split in a node of a tree, I first draw randomly

several tests without specifying thresholds. Namely, for each test I first randomly sample

a type of the test, choosing between the appearance test and the location test with equal

probability. I then sample parameters of test uniformly from a certain range. Thus I

sample dx, dy (from the 9 × 9 neighborhood) and a channel c for appearance tests

(3.10), or the number of the feature point for location tests (3.11). I then learn an

optimal threshold for each of the drawn test. In more detail, denote as h the left-

hand-sides of expressions (3.10), (3.11), and h1, . . . , hK — all the data sorted by this

expression. I then sort all thresholds of the form hi+hi+1

2 and probe them one-by-one

(using an efficient update of the coherence scores (3.13) and the quality score (3.14) as
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inspired by [90]). I set the probabilities of choosing a test for split in such a way that

approximately half of tests are appearance tests and half are location tests.

To randomize the trees and speed up training, I learn each tree on random part of the

data. Afterwards I “repopulate” each tree using the whole training data, i.e. I pass all

training samples through the tree and update the distributions of replacement error in

the leaves. Thus, the structure of each tree is learned on random part of the data but

the leaves contain the error distribution of all data.

After picking up and summing of unnormalized compatibility score distributions from

T trees, a minimizing flow vector could be found with a sub-pixel accuracy [96]. The

distribution in the neighborhood of the minimizing pixel is approximated with a parabola

using values in the pixel and its 4 neighbours. The minimum of the parabola is thus the

estimated minimum of the distribution with a sub-pixel accuracy. If i is x-coordinate

of the minimum of the discrete distribution H(x) and H(i − 1) 6= H(i + 1) (otherwise

minimum is exactly at x = i), then the coordinate of the sub-pixel minimum is

x∗ = i+
H(i− 1)−H(i+ 1)

2(H(i− 1) +H(i+ 1)− 2H(i))
, (3.15)

and similarly for y-coordinate.

The warping flow forest system is trained for a specific angular difference. If needed,

multiple separate models for different discretized angular differences could be trained.

For example, for a video conference setup one can use 10, 15, 20, 25, 30 degrees depending

on the distance between the face and the screen. However, I found that the 15◦ vertical

redirection produce convincing results for a typical distance between a person and a

laptop and a typical laptop sizes, so I focus on this angular difference in the experiments.

The images in the Columbia dataset [83] are only loosely registered. Therefore, to

perfectly match cropped eyes, I apply multistage registration procedure to images from

this database. Firstly, before cropping an eye, I fit the similarity transformation based

on all facial feature points except those corresponding to eyes. In the case of [70] there

are totally 49 points and 6 of them corresponds to each eye, so I match similarity based

on 37 points. I then crop roughly registered set of samples S1 = (Ij1 , O
j
1), learn warping

flow forest on S1, apply it to the set {Ij1} and get the resulting set {Ôj1}. At the second

stage I register images {Oj1} with {Ôj1} by translation (at one pixel resolution), by

finding the shift that maximize the correlation of the Laplacian-filtered versions of the

images. I exclude the dilated convex hull of eye features from the computation of the

correlation, thus basing the alignment of external structures such as eye brows. I apply

the optimal shifts to the output images in each pair, getting the second set of samples

S2 = (Ij2 = Ij1 , O
j
2).
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At the final stage of registration I learn an warping flow forest S2, apply it to each of the

input images {Ij2} and get the output image {Ôj2}. I then register images {Oj2} and {Ôj2}
in the same way as during the second stage, except that I do not exclude any pixels this

time. This produces the final training set S = (Ij , Oj). At the end I manually throw

away all training samples where the multistage registration failed.

Face registration slightly decreases both training and validation error on a Columbia

dataset, where images are worse registered. However, this effect was not noticed on the

Skoltech dataset, so face registration is not applied in the final variant of the method.

Numerical parameters. In the current implementation I rescale all cropped eyes to

the resolution 50× 40. I take the parameters of the bounding box α = 2.0, β = 1.6, the

parameter λ = 10, R = 4 and learn a forest of six trees. I stop learning splits and make

a new leaf if one of the stopping criteria is satisfied: either coherence score (3.13) in the

node is less than 1300 or the number of samples in the node is less than 128. Typically

trees have around 2000 leaves and the depth around 12.

The bounding box parameters were chosen in such a way, that the whole region of the

eye image, which is changing during the gaze redirection, is inside the bounding box,

with several pixels width gap in reserve. The regularization weight λ and stopping

parameters were optimized by training models for parameters values taken uniformly

from some range. The criterion was a validation error, similar to the one presented in

the experimental section (Figure 3.3). The size of the patch was chosen as a trade-off

between the representation power of the model (resulting in lower validation error) and

the memory required to store the model.

3.3 Experiments

In this section I provide computational experiments, illustrating the suggested approach

for learning warping flow forest. Both quantitative and qualitative results are given.

More results could be found in comparisons with other methods in the following chapters

(Section 4.6 and Section 5.3).

Quantitative evaluation. I provide a quantitative assess of suggested method on the

Columbia gaze dataset [83]. I sample image pairs applying the same preprocessing steps

as when preparing data for learning. I make an eight-fold cross validation experiment: I

split the initial set of 56 subjects, taking 7 as the test set and leaving 49 in the training

set. I compare several methods that was applied to the input image of each pair, and

then compute the mean square error (MSE) between the synthesized and the output

images. I normalize the MSE error by the mean squared difference between the input
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Figure 3.3: Quantitative evaluation on the testing sets in the eight-fold experiment:
ordered normed MSE errors between the result and the “ground-truth”. I compare
the one tree version of suggested method (red), the six trees (black), one tree with
repopulation (magenta), and the image-independent flow field version of the system
(green). Increasing the tree number from six to ten or repopulating six trees does
not give an improvement. For each method the normalized errors are sorted in the

ascending order and then used to produce the curve.

and the output image. At each split i I compute the mean error ei. To compare two

methods, I evaluate the differences between their means and the standard deviation of

these differences over the eight splits (Table 3.1).

For each method, I also sort the normalized errors in the ascending order and plot them

on a graph (Figure 3.3). The quantitative evaluation shows the advantage of the tree-

based versions of suggested method over the image-independent field variant. Full forest

variants perform better than those based on a single tree. It is nevertheless interesting

to see that the image-independent field performs well, thus verifying the general idea

of attacking the gaze correction problem using a data-driven learning-based approach.

Also, repopulation increases results for a single tree, but not for the full forest. Ten trees

does not give significant improvement over six trees.
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Figure 3.4: Randomly sampled results on the Columbia Gaze dataset. In each triplet,
the left is the input, the middle example is the “ground truth” (same person looking
10 degrees higher). The right image is the output of warping flow forest. A stable

performance of the method across demographics variations can be observed.
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pair of methods mean σ

6 trees forest vs image inde-
pendent

−0.079 0.0066

6 trees forest vs single tree −0.038 0.0059

single tree repopulated vs sin-
gle tree no repopulation

−0.015 0.0022

6 trees forest vs 10 trees forest 0.0036 0.0015

6 trees no repopulation vs 6
trees repopulated

0.00073 0.0017

single tree vs image indepen-
dent

−0.055 0.0098

Table 3.1: The differences of mean errors between pairs of methods and standard
deviations of these differences in the 8-fold cross validation test. Negative mean value

means that first method in pair has a smaller mean error (works better).

Qualitative evaluation. Due to the nature of the application, the best way for

the qualitative evaluation is watching the supplementary video at the project web-

page [97] that demonstrates the operation of the method (six warping flow trees). Here,

I also show the random subset of the results on the hold out part of the Columbia gaze

dataset (10 degrees redirection) in Figure 3.4 and on the hold out part of the Skoltech

gaze dataset (15 degrees redirection) in Figure 3.5. While the number of people in the

training datasets was limited, one can observe that the system is able to learn to redi-

rect the gaze of unseen people rather reliably obtaining a close match with the “ground

truth” in the case of ten degree redirection (Figure 3.4).

One crucial type of failure is insufficient eye “expansion”, which gives an impression

of the gaze redirected on an angle less than required. Other types of artifacts include

unstructured noise and structured mistakes on glass rims (which is partially explained

by a small number of training examples with glasses in this split). Examples of failure

cases are presented on Figure 3.6.

I further show the cutouts from the screenshots of the system (six warping flow trees)

running live on a stream from a laptop webcam Figure 3.7. I use the same forest learned

on the training part of the Columbia gaze dataset. Several sessions corresponding to

different people of different demographics as well as different lighting conditions are

represented.

Computation speed. The main testbed is a standard 640×480 streams from a laptop

camera. On top of the feature tracking time, the forest-based version of the method

requires between 3 to 30 ms to perform the remaining operations (querying the forest,

picking optimal warping flow vectors and performing replacements). And the feature

tracking time is very fast using modern methods, typically about 1 ms (Section 2.3.1).
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Figure 3.5: Randomly-sampled results on the Skoltech dataset (redirection by 15
degrees). In each tuple: (1) the input image, (2) the “ground truth”, (3) the output of
warping flow forest, (4) the output of image-independent field. Zoom-in recommended
in order to assess the difference between the two variants of the method. The following
types of failures are observed: insufficient eye expansion (bottom-left), noise artifacts,
artifacts on glass rims (caused by a small number of people with glasses in the training

set).

The large variability is due to the fact that the bulk of operation is linear in the number

of pixels we need to process, so the 30 ms figure correspond to the situation with the

face spanning the whole vertical dimension of the frame. Further trade-offs between the

speed and the quality can be made if needed (e.g. reducing the number of trees from

six to three will bring only very minor degradation in quality and almost a two-fold

speedup).

Temporal stability. The temporal stability of the method could not be better than

the temporal stability of the facial alignment method used because it affects both the
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Figure 3.6: Failure cases on the Skoltech dataset (redirection by 15 degrees). In each
quad: input image, the “ground truth”, the output of warping flow forest, the output
of image-independent field. The following types of failures are observed: insufficient

eye expansion, noise artifacts, artifacts on glass rims.

Figure 3.7: Qualitative examples of suggested system (based on six trees) showing
the cutout of the frames of a video stream coming from a webcam (left – input, right –
output). In the first two rows gaze is redirected by 10 degrees upwards, in the third —
by 15 degrees. The system induces subtle changes that result in gaze redirection. Note
that the subjects, the camera, the lighting, and the viewing angles were all different
from the training datasets. The result of the method on a painting further demonstrates

the generalization ability.
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bounding box and the input features. Qualitative testing showed that with particu-

lar facial alignment method used in the work the temporal stability of the method is

satisfactory for use in practice.



Chapter 4

Image re-synthesis using deep

warping architecture

In this chapter, I proceed to the discussion of the second system (deep warp). As in

the forest-based approach, the bulk of image re-synthesis is accomplished via warping

the input image (Figure 4.1). The task of the network is therefore the prediction of the

warping field. This field is predicted in two stages in a coarse-to-fine manner, where the

decisions at the fine scale are being informed by the result of the coarse stage. Beyond

coarse-to-fine warping, the photorealism of the result is improved by performing pixel-

wise correction of the brightness where the amount of correction is again predicted by

the network (Figure 4.4). All operations outlined above are implemented in a single

feed-forward architecture and are trained jointly end-to-end.

Unlike the warping flow forest system, the deep warp system is trained on pairs of

images corresponding to eye appearance before and after the redirection by different

angles. The redirection angle serves as an additional input parameter that is provided

both during training and at test time. A significant amount of the work, presented in this

chapter, was done by my collaborator Yaroslav Ganin. The personal contributions of the

thesis author are the experimental setup and the data preparation for the Deep Warp

approaches, the comparison of the Deep Warp approach and the forest-based approach,

the setup and the implementation of the user study.

4.1 Overview of Deep Learning

Let the data be given by a set (xi, f(xi). Typically, x is high-dimensional and f(x) is

in {0, 1} or R. The goal is to learn how to make accurate predictions in new points, i.e.

63
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f∗ – an approximation to f , which is close to f in the given data points.

Following the parametric statistics approach, in deep learning the approximation is from

a family if functions f(x; θ), where θ is a high-dimensional parameter. The goal now

is to find θ∗ such that f(x; θ∗) is close to f . The neural network is a composition of

functions:

f(x, θ) = f (d)(·, θ) ◦ · · · ◦ f (1)(·, θ). (4.1)

This functions are called layers of the network. Most of them are high-dimensional and

depends only of the some subset of the parameters. Components of the vector-valued

function f (i) are h
(i)
1 , . . . , h

(i)
ni .

Typically, the layers are rather simple functions, ”close” to linear. However, the com-

position of linear functions is also a linear function. A common design motivated by a

neuroscience is a linear function with some non-linear activation:

h(i) = g(W(i)T x + b(i)). (4.2)

Here g is the coordinate-wise application of some non-linear function one-dimensional

function. Typical choice of activations are:

• RELU (rectified linear units) g(z) = max(0, z);

• sigmoid function g(z) = 1
1+e−z ;

• hyperbolic tangent g(z) = tanh(z).

The exception is the top layer, which activation unit often has some statistical inter-

pretation. This choice is tightly coupled with the choice of the cost function, i.e. the

criteria used to optimize for parameters. The most typical approach is to train using

maximum likelihood, minimizing

J(θ) = E log pmodel(y|x), (4.3)

where the expectation is taken over the data. Thus, the linear function in the top linear

(constant activation unit) corresponds to a conditional Gaussian distribution. Choice of

a sigmoid function implies thinking of the output as a probability of a Bernoulli trial.

The more general softmax output unit

softmax(z)i =
ezi∑
jezj

implies Multinoulli Output Distribution.
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Peculiar properties of the optimization problem (4.3) are high dimensionality, large data

set, non-convex cost function and possible overfitting. A common approach to optimiza-

tion is a gradient descent. In the particular case of the composition-like structure of a

neural network (4.1), an efficient way to do gradient descent is a back-propagation [98],

a method that involves clever bookkeeping of partial derivatives by dynamic program-

ming. Because of the large dataset to overcome redundant computations another stan-

dard approach is stochastic gradient descent (in particular, mini-batch gradient descent),

performing updates only for some small subsets of data at a time. Useful improvements

over a vanilla gradient exploit ideas of the second-order methods: Nesterov accelerated

gradient [99], Adaptive Moment Estimation [100].

The strategies designed to reduce the test error, possibly at the expense of increased

training error, are called regularization. Instead of optimizing J(θ) (4.3), we optimize

over

J̃(θ) = J(θ) + Ω(θ).

Ω often introduces a penalty for complicated or large parameters. For example, L2

penalty implies a weight decay technique in a gradient descent.

One key type of neural networks are convolutional networks. They can be applied to

a data which have a special grid-like topology, for example to images, making them

extremely useful in computer vision [38, 101]. Convolutional networks are the neural

networks, where at least in one of the layers convolution is used instead of a general

matrix multiplication. In comparison with fully connected layer (4.2), convolutional

layer has much less parameters, because parameters of convolution depend only on the

layer, not on the particular place in the feature map. This both reduces overfitting

and makes network to learn useful local features. A common additional ingredient in

convolutional networks is pooling, in which, after convolving we replace the result with

the average or maximum in a neighborhood. It provides independence of small shifts in

the input.

In this work I use batch normalization layer [102]. It is a reparametrization, which

is targeted at reducing the problem of coordinating updates across many layers. At

training time, each mini-batch of activations of the layer is normalized subtracting mean

and dividing on standard deviation. Importantly, the back-propagation is done through

these normalizing operations at training time. This means that the gradient descent

will not simply increase the standard deviation or mean. At test time, running average

mean and deviation from the training time are used.

The work [82] suggests an attention mechanism based on Spatial Transformer Networks.

In their method, special part of the network produces the grid, at which input image
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or feature maps are further sampled. In the case of pixel-wise replacement approach

suggested at this work (Section 2.1), the warping field (2.4) is the grid with the same

functions. The work [82] shows how this operation could be implemented in a differen-

tiable layer. An operation with some interpolation kernel k with parameters Φ is written

as

V c
i =

H∑
n

W∑
m

U cnmk(xsi −m; Φx)k(ysi − n; Φy) ∀i ∈ [1 . . . H ′W ′] ∀c ∈ [1 . . . C],

where (xsi , y
s
i ) are coordinates of the pixel number i in the sampling grid, U and V are

input and output maps, c is a channel number. Interest for this work is a special case

of a bilinear kernel (2.6), which reduces the equation above reduces to

V c
i =

H∑
n

W∑
m

U cnm max(0, 1− |xsi −m|) max(0, 1− |ysi − n|).

Although the summation over the whole grid is written, for each particular pixel i only

4 members are nonzero – those that correspond to neighbor integer points of the point

(xsi , y
s
i ). Therefore, the equation reduces to the simple form of bilinear interpolation

(see (2.6), Figure 2.1). However, the equation in the form of a complicated sum is useful

for calculating partial derivatives, which are necessary for backpropagation through the

sampling mechanism:

∂V c
i

∂U cnm
=

H∑
n

W∑
m

max(0, 1− |xsi −m|) max(0, 1− |ysi − n|),

∂V c
i

∂xsi
=

H∑
n

W∑
m

U cnm max(0, 1− |ysi − n|)


0, if |xsi −m| ≥ 1;

1, if m ≥ xsi ;

−1, if m < xsi .

and similarly for
∂V c

i
∂ysi

.

4.2 Coarse-to-fine warping

The warping modules takes as an input the image, the position of the feature points,

and the redirection angle. All inputs are expressed as maps as discussed below, and

the architecture of the warping modules is thus “fully-convolutional”, including several

convolutional layers interleaved with Batch Normalization layers [102] and ReLU nonlin-

earities (the actual configuration is shown in Figure 4.2(c)). To preserve the resolution of
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Figure 4.1: The deep warp system takes an input eye region, feature points (anchors)
as well as a correction angle α and sends them to the multiscale neural network (see
Section 4.2) predicting a flow field. The flow field is then applied to the input image
to produce an image of a redirected eye. Finally, the output is enhanced by processing

with the lightness correction neural network (see Section 4.4).
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(c) Convolutional layers

Figure 4.2: The architecture of the two warping modules: (process 0.5×-scale
4.2(a) and process 1×-scale 4.2(b)) predicting and applying pixel-flow to the input
image; 4.2(c) represents a fully convolutional sequence of layers inside warping modules.

the input image, the ‘same’-mode convolutions (with zero padding) are used, all strides

are set to one, and max-pooling is avoided.

The resulting flow is obtained using coarse-to-fine two-stage warping. Firstly, the first

part (stage) of the network estimates the coarse flow at half resolution. Then, the second

stage of the network performs additive rectification at full scale, using the upsampled

coarse flow as well as the feature maps computed by the first-stage. The details are

provided below.

Coarse warping. The last convolutional layer of the first (half-scale) warping module

(Figure 4.2(a)) produces a pixel-flow field (a two-channel map), which is then upsampled

Fcoarse(I, α) and applied to warp the input image by means of a bilinear sampler S [82]
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that finds the coarse estimate:

Ocoarse = S (I,Fcoarse(I, α)) .

Here, the sampling procedure S samples the pixels of Ocoarse at pixels determined by

the flow field (the procedure described in Section 2.1, (2.3), (2.5)).

Fine warping. In the fine warping module (Figure 4.2(b)), the rough image estimate

Ocoarse and the upsampled low-resolution flow Fcoarse(I, α) are concatenated with the

input data (the image, the angle encoding, and the feature point encoding) at the original

scale and sent to the 1×-scale network which predicts another two-channel flow Fres that

amends the half-scale pixel-flow (additively [103]):

F(I, α) = Fcoarse(I, α) + Fres(I, α,Ocoarse,Fcoarse(I, α)) ,

the amended flow is used to obtain the final output (again, via bilinear sampler):

O = S (I,F(I, α)) .

The purpose of coarse-to-fine processing is two-fold. The half-scale (coarse) module

effectively increases the receptive field of the model resulting in a flow that moves larger

structures in a more coherent way. Secondly, the coarse module gives a rough estimate

of how a redirected eye would look like. This is useful for locating problematic regions

which can only be fixed at a finer scale.

4.3 Input embedding

Alongside the raw input image, the warping modules also receive the information about

the desired redirection angle and feature points also encoded as image-sized feature

maps.

Embedding the angle. Similarly to [43], the correction angle is treated as an attribute

and is embedded into a higher dimensional space using a multilayer perceptron Fangle(α)

with ReLU nonlinearities. The precise architecture is FC(16)→ ReLU→ FC(16)→ ReLU.

Unlike [43], separate features are not outputted for each spatial location but rather opt

for a single position-independent 16-dimensional vector. The vector is then expressed as

16 constant maps that are concatenated into the input map stack. During learning, the

embedding of the angle parameter is also updated by backpropagation.
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Input CFW + LCM Mask GT

Figure 4.3: Visualization of three challenging redirection cases where the Lightness
Correction Module helps considerably compared to the system based solely on coarse-
to-fine warping (CFW), which is having difficulties with expanding the area to the left of
the iris. The ‘Mask’ column shows the soft mask corresponding to parts where lightness
is increased. Lightness correction fixes problems with dis-occluded eye-white, and also

emphasizes the specular highlight increasing the perceived realism of the result.

Embedding the feature points. Although in theory a convolutional neural network

of an appropriate architecture should be able to extract necessary features from the

raw input pixels, it is beneficial to further augment 3 color channels with additional 14

feature maps containing information about the eye anchor points.

In order to get the anchor maps, for each previously obtained feature point located at

li = (lxi , l
y
i ), a pair of maps is computed:

∆i
x[x, y] = x− lxi ,

∆i
y[x, y] = y − lyi ,

∀(x, y) ∈ {0, . . . ,W} × {0, . . . ,H},

where W,H are width and height of the input image respectively. The embedding give

the network “local” access to similar features as used by decision trees.

Ultimately, the input map stack consists of 33 maps (RGB + 16 angle embedding maps

+ 14 feature point embedding maps).

4.4 Lightness correction module

While the bulk of appearance changes associated with gaze redirection can be modeled

using warping, some subtle but important transformations are more photometric than
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Figure 4.4: 4.4(a) – The architecture of the Lightness Correction Module. The output
of the lightness correction module is a weighted sum of the image created by the warping
modules and the palette (which in this paper is taken to be a single white colour). The
mixing weights predicted by the network are passed through the softmax activation
and therefore sum to one at each pixel. The module takes the features computed by

the coarse and the fine warping modules (from Figure 4.4(b)) as input.

geometric and require a more general transformation. In addition, the warping approach

can struggle to fill in dis-occluded areas in some cases (Figure 4.3).

To increase the generality of the transformation that can be handled by the deep warp

architecture, the final lightness adjustment module is added (Figure 4.4(a)). The module

takes as input the features computed within the coarse warping and the fine warping

modules (specifically, the activations of the third convolutional layer), as well as the

overall image resulting from the warping. The output of the module is a single map M

of the same size as the output image that is used to modify the brightness of the output

O using a simple element-wise transform:

Ofinal(x, y, c) = O(x, y, c) · (1−M(x, y)) +M(x, y), (4.4)

assuming that the brightness in each channel is encoded between zero and one. The

resulting pixel colors can thus be regarded as blends between the colors of the warped

pixels and the white color. The actual architecture for the lightness correction module

in experiments is shown in Figure 4.4(b).
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4.5 Training procedure

A regular `2-distance between the synthesized output Ooutput and the ground-truth Ogt

is used as the objective function. The model was trained end-to-end on 128-sized batches

using Adam optimizer [100]. Biasing the selection process for more difficult and unusual

head poses and bigger redirection angles improved the results. For this reason, the

following sampling scheme aimed at reducing the dataset imbalance is used:

• Split all possible correction angles (that is, the range between −30◦ and 30◦) into

15 bins.

• A set of samples falling into a bin is further divided into “easy” and “hard” subsets

depending on the input’s tilt angle (an angle between the segment connecting

two most distant eye feature points and the horizontal baseline). A sample is

considered to be “hard” if its tilt is > 8◦. his subdivision helps to identify training

pairs corresponding to the rare head poses. A training batch is formed by picking

4 correction angle bins uniformly at random and sampling 24 “easy” and 8 “hard”

examples for each of the chosen bins.

4.6 Experiments

In this section computational experiments, illustrating the suggested Deep Warp ap-

proach, are provided. Both quantitative and qualitative results are given. More results

could be found in comparisons with other methods in the following chapters (Section 5.3

and Section 6.4).

4.6.1 Quantitative evaluation

Experiments are performed on a Skoltech dataset, described in Section 2.3. The initial

set of subjects is randomly splitted into a development (26 persons) and a test (7 persons)

sets. Several methods were compared using the mean square error (MSE) between the

synthesized and the ground-truth images extracted using the procedure described in

(2.8).

4.6.1.1 Models.

Six different models are considered:
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(1) A system based on weakly-supervised Random Forests (RF ) described in Chap-

ter 3.

(2) A single-scale (SS (15◦ only)) version of DeepWarp method with a single warping

module operating on the original image scale that is trained for 15◦ redirection

only. Single-scale here denotes, that a model does not exploit the coarse-to-fine

idea, but only produces one warping field on the original image scale. Lightness

correction module is also not used. This model is similar to the one presented in

Figure 4.2(a), but without downsampling and upsampling.

(3) A single-scale (SS ) version of DeepWarp method with a single warping module

operating on the original image scale.

(4) A multiscale (MS ) network without coarse warping. In this variation, the coarse

warping is not amended on a fine scale, but features from both scales, collected

independently, are used to predict the warping field. Lightness correction module

is also not used.

(5) A coarse-to-fine warping-based system described in Section 4.2 (CFW ).

(6) A coarse-to-fine warping-based system with a lightness correction module (CFW

+ LCM ).

The latter four models are trained for the task of vertical gaze redirection in the range.

Such models are called unified (as opposed to single angle correction systems).

4.6.1.2 15◦ correction.

In order to have the common ground with the forest-based system, this comparison is

restricted to the case of 15◦ gaze correction. Following the same approach as in Sec-

tion 3.3, a graph of sorted normalized errors (Figure 4.5) is presented, where all errors

are divided by the MSE obtained by an input image and then the errors on the test set

are sorted for each model.

It can be seen that the unified multiscale models are, in general, comparable or superior

to the RF-based approach in Chapter 3. Interestingly, the lightness adjustment extension

(Section 4.4) is able to show quite significant improvements for the samples with low

MSE. Those are are mostly cases similar to shown in Figure 4.3. It is also worth

noting that the single-scale model trained for this specific correction angle consistently

outperforms Chapter 3, demonstrating the power of the proposed architecture. However,

one should note that results of the methods can be improved using additional registration

procedure, one example of which is described in Section 4.6.3.
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Figure 4.5: Ordered errors for 15◦ redirection. Multiscale models (MS, CFW, CFW
+ LCM) show results that are comparable or superior the Random Forests (RF) Chap-

ter 3.

4.6.1.3 Arbitrary vertical redirection.

In Figure 4.6 different variants of unified networks are compared and the error distri-

bution over different redirection angles is plotted. The neural network models in this

comparison are trained for the task of vertical gaze redirection in the range from −30◦

to 30◦. For small angles, all the methods demonstrate roughly the same performance,

but as the amount of correction is increased, the task becomes much harder (which

is reflected by the growing error) revealing the difference between the models. Again,

the best results are achieved by the palette model, which is followed by the multiscale

networks making use of coarse warping.

4.6.2 Perceptual quality

The results of redirection on 15 degrees upwards are demonstrated in (Figure 4.7). CFW-

based systems produces the results visually closer to ground truth, than RF. The effect

of the lightness correctness is pronounced: on the input image with the lack of white

Random Forest and CFW fail to get output with sufficient eye-white and copy-paste



74

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

5

10

15

20

25

Correction angle

M
S

E

SS
MS
CFW
CFW + LCM

Figure 4.6: Distribution of errors over different correction angles.

red pixels instead, whereas CFW+LCM achieve good correspondence with the ground-

truth. However, the downside effect of LCM could be blurring/lower contrast because

of the multiplication procedure (4.4).

4.6.2.1 User study

To confirm the improvement corresponding to different aspects of the proposed models,

which may not be adequately reflected by an `2-measure, I perform an informal user

study enrolling 16 subjects unrelated to computer vision and comparing four methods

(RF, SS, CFW, CFW+LCM). Each user was shown 160 quadruplets of images, and in

each quadruplet one of the images was obtained by re-synthesis with one of the methods,

while the remaining three were unprocessed real images of eyes. 40 randomly sampled

results from each of the compared methods were thus embedded. When a quadruplet

was shown, the task of the subject was to click on the artificial (re-synthesized) image

as quickly as possible. For each method, I then recorded the number of correct guesses

out of 40 (for an ideal method the expected number would be 10, and for a very poor

one it would be 40). I also recorded the time that the subject took to decide on each

quadruplet (better method would take a longer time for spotting). Table 4.1 shows

results of the experiment. Notably, here the gap between methods is much wider then it
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Input RF CFW +LCM GT

Figure 4.7: Sample results on a hold-out. The full version of DeepWarp model
(CFW+LCM) outperforms other methods.
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Random Forest Single Scale CFW CFW+LCM

Correctly guessed (out of 40)

Mean 36.1 33.8 28.8 25.3

Median 37 35 29 25

Max 40 39 38 34

Min 26 22 20 16

Correctly guessed within 2 seconds (out of 40)

Mean 26.4 21.1 11.7 8.0

Median 28.5 20.5 10 8

Max 35 33 23 17

Min 13 11 3 0

Correctly guessed within 1 second (out of 40)

Mean 8.1 4.4 1.6 1.1

Median 6 3 1 1

Max 20 15 7 5

Min 0 0 0 0

Mean time to make a guess

Mean time, sec 1.89 2.30 3.60 3.96

Table 4.1: User assessment for the photorealism of the results for the four
methods. During the session, each of the 16 test subjects observed 40 instances of
results of each method embedded within 3 real eye images. The participants were asked
to click on the resynthesized image in as little time as they could. The first three parts
of the table specify the number of correct guesses (the smaller the better). The last
line indicates the mean time needed to make a guess (the larger the better). The full
system (coarse-to-fine warping and lightness correction) dominated the performance.

might seem from the MSE-based comparisons, with CFW+LCM method outperforming

others very considerably, especially when taking into account the timings.

4.6.2.2 Continuous gaze redirection.

The deep warp model is capable of a redirection by a 2D family of angles, as stated, as

the input angle is embedded in the architecture Figure 4.1. In Figure 4.8 and Figure 4.9,

qualitative results of CFW+LCM for vertical and horizontal redirection are provided.

Some examples showing the limitations of the method are given. The limitations are

concerned with cases with severe dis-occlusions, where large areas have to be filled by

the network.

4.6.3 Incorporating registration.

Results can be further perceptually improved if the objective is slightly modified to

take into account misalignment between inputs and ground-truth images. To that end,

enlarge the bounding-box B which was used to extract the output image of a training
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Figure 4.8: Gaze redirection with deep warp model trained for vertical gaze redirec-
tion. The model takes an input image (middle row) and the desired redirection angle
(here varying between -15 and +15 degrees) and re-synthesize the new image with the
new gaze direction. Note the preservation of fine details including specular highlights

in the resynthesized images.

pair by k = 3 pixels in all the directions. Given that now Ogt has the size of (H + 2k)×
(W + 2k), the new objective is defined as:

L(Ooutput, Ogt) = min
i,j

dist (Ooutput, Ogt[i : i+H, j : j +W ]) ,

where dist(·) can be either `2 or `1-distance (the latter giving slightly sharper results),

and Ogt[i : i + H, j : j + W ] corresponds to a H ×W crop of Ogt with top left cor-

ner at the position (i, j). This procedure is an alternative to the offline registration of

input/ground-truth pairs described in Section 3.2.4. In case of redirection on an arbi-

trary angle that procedure is computationally intractable for a large database, because

number of training pairs from each training sequence (which should be registered) de-

pends quadratically on the sequence size. This dependence is linear in case when only

training pairs with some fixed angular difference are taken, i.e. 15◦. The suggested

approach is computationally cheap and increases robustness of the training procedure

against small misalignments in a training set.
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Figure 4.9: Horizontal redirection with a model trained for both vertical and hori-
zontal gaze redirection. For the first six rows the angle varies from −15◦ to 15◦ relative
to the central (input) image. The last two rows push the redirection to extreme angles

(up to 45◦) breaking the model down.



Chapter 5

Regression random forest using

neural network supervision

The quality of the results of suggested in Chapter 4 deep warping system compares fa-

vorably with the results of the warping flow forest-based system, presented in Chapter 3.

One more drawback of this system is its big memory footprint. This is because storing

the distributions of the compatibility score (3.12) in the leaves requires the amount of

memory proportional to the patch size. In my implementation, training warping flow

forests with several trees and 9-by-9 patches leads to the size of the resulting model up

to 200Mb.

The better quality of the deep warp results come at the cost of the much higher compu-

tation time (few frames per second on GPU). At this chapter I suggest the system based

on neural network-supervised forests. It aims at combining the speed of the forest-based

system with the quality of the deep warp system. This is achieved by training regression

forests to emulate the predictions of the deep warp system at each pixel. Assuming

that during training, the prediction of deep warp are treated as pseudo ground truth,

the regression forests can be trained in a traditional fully-supervised manner discussed

below.

5.1 Related work on teacher-student architectures

Training a regression forests to emulate the predictions of the neural network relates

this work to several recent papers with similar teacher-student architectures. The idea

to use output of very precise but large and slow model as a supervision for a faster

architecture goes back to at least [78]. They have shown that the model ensemble could

79
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be compressed into a single much faster model. A different kind of training is often

needed to transfer the knowledge from the teacher model to a small model. The idea is

to pass unlabeled data through the large, accurate model to collect the scores produced

by that model. A fast and compact model does not overfit approximates well the target

function, provided enough pseudo data by high performing model ensemble. Work [78]

suggests several ways to generate a new pseudo data, estimating the joint distribution

of attributes in the original training set for large model and drawing points from this

generative model trained on the original training set.

An alternative way is to train the smaller model only on the original training points, but

train it to copy other features of the model, such as its posterior distribution over the

full set of classes [79]. They suggested to train a “student” network, from the softened

output of an ensemble of wider networks (“teacher” networks), allowing the student

network to capture not only the information provided by the true labels, but also the

finer structure learned by the teacher network. In such a way an ensemble of deep

networks is compressed into a student network of similar depth. In particular, they use

a softened version of softmax teacher output

qi =
e

zi
T∑

j
e

zj
T

(5.1)

with temperature T > 1 (the case T = 1 corresponds to the usual softmax). They train

the student network on a weighted average of two different objective functions. The first

objective function is the cross entropy with the soft targets (5.1). This cross entropy is

also modified using the same high temperature in the softmax of the distilled model as

was used for generating the soft targets from the teacher model. The second objective

function is the cross entropy with the correct labels. This cross entropy is computed

using the normal softmax at a temperature of 1.

This idea was further developed in [77] that uses activations of several hidden layers

of the teacher network as a guidance for the student network. In this approach the

teacher network has low enough depth and great enough width to be easy to train.

The student network is much deeper and thinner. Activations of several hidden layers,

provided for optimization, simplify the optimization problem. Additional layer is added

to the student network, which goal is to regress the middle layer of the teacher network

from the middle layer of the student network. The corresponding error gradient in this

architecture influence only the lower layers of the student network. Thus they have two

objectives: to help the higher layers of the student network to predict the label, and

to model the intermediate layer of the teacher network. It is shown in the experiments
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Figure 5.1: The output flow of warping modules (Section 4.2) on random samples
from a training set. The coarse-to-fine model without lightness correction was trained
on a task of 15◦ redirection upwards. This data is used to train a neural network-
supervised regression random forest. The bottom figure is a color pattern, explaining
how the direction of the flow vector is encoded with the color of the pixel. The more

intense the pixel is, the longer the flow vector in this pixel is.

that such hints on middle layers improves the results of student network (which learns

very poorly without hints) both on train and test set.

5.2 Learning

To learn the system, I fix the desired redirection angle and use the sum of the coarse

and the fine flow predicted by a deep warp system (the teacher) for the given angle as

ground-truth data, thus directly predicting the warping field (2.4). The examples of

such training data are shown in Figure 5.1.

The input data to the NN-supervised regression forests is the same as to the weakly

supervised warping flow forests, i.e. an image of the eye and its landmark locations. The

regression forests apply the same appearance and location tests ((3.10) and (3.11)) as

the warping flow forests. A set of training samples is S = {S1,S2, . . . ,SK}, where each

sample is a tuple S = {(x, y), I, {li)}, (dx, dy)} with dx and dy being the prediction of

the deep warp system. The quality of the split of S into two subsets S1 and S2 is the
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common objective for regression problems ((3.4), (3.7)):

I(S1,S2) = H(S)−
(
|S1|
|S|

H(S1) +
|S2|
|S|

H(S2)

)
, (5.2)

where compatibility scores are

H(Si) = Hx(Si) +Hy(Si) =
∑
s∈Si

(dxs − dxi)2 +
∑
s∈Si

(dys − dyi)2,

with dxi and dyi being the means of dx and dy flow in the subset Si.

At test time, a pixel is passed down the tree, and the mean 2D flow vector (across the

training examples, which fell to the corresponding leaf) is picked. The flows coming

from different trees in a forest are averaged to get the final result. As the range of

flow is limited, only two bytes are sufficient to store a flow vector in each leaf, which

is much smaller compared to weakly supervised forest. The reduction in memory is

thus (w2 − 2) bytes for each leaf, where w is the size of the width of the patch in the

weakly-supervised warping flow forest system (Figure 3.2). Moreover, as the supervised

task is easier to learn, the depth and the number of leaves can be made lower, resulting

in typical memory demand for trained forests of only three megabytes.

The prediction of the lightness correction module Section 4.4 can be incorporated using

the second forest, which is applied to the output images after applying the warping pre-

dicted by the first NN-supervised forest. The train set for the second forest is the output

of the lightness correction module of the neural network and images {Îj}, which are ob-

tained from original set {Ij} by applying the first forest and warping procedure (2.2).

The splitting criterion is the same as (5.2), except that output in this case is a one-

dimensional vector.

So, the computational speed of weakly supervised in nn-supervised tree of the same

depth would be roughly the same. However, while weakly supervised forest learns to

predict the flow, having only the output image as a supervision, the nn-supervised uses

target flow directly as an output of neural network warping layers. If the student forest

would be able to approach the precision of the teacher neural network model, then it

will take benefits of both approaches: real-time computational speed from a random

forest approach and high quality of the results of a teacher network, both in terms of

quantitative `2 measure and a perceptual quality. In Section 5.3 I provide the comparison

showing that the ability of the regression forest to learn from a teacher is high enough

to approach its quality and to outperform a quality of a weakly supervised forest.



83

5.3 Experiments

In this section I compare the performance of neural network-supervised forests with

weakly-supervised forest form Chapter 3 and deep warping approach from Chapter 4.

5.3.1 Evaluation using Mean Squared Error

I evaluate the methods on a Skoltech dataset. I randomly split the initial set of sub-

jects into the training and the testing sets. I sample image pairs applying the same

preprocessing steps as when preparing data for learning (Section 2.3).

15◦ correction. First I provide a comparison of MSE errors in case of 15◦ vertical gaze

redirection. For this comparison the following models are considered:

1. A system based on weakly supervised warping flow random forests (EFF ), de-

scribed in Chapter 3. The score of this model is what random forest could achieve

without supervision from neural network.

2. A coarse-to-fine warping-based system described in Chapter 4 (CFW ) without

lightness correction trained for 15◦ vertical gaze redirection. The results of this

model are the gold standard for the student forest.

3. A neural network supervised random forest (NNSF ), described in this chapter

in Section 5.2, which predicts the output flow of a coarse-to-fine warping-based

system without lightness correction. The teacher for the method is CFW (the

resulting flow on train set).

4. A deep warp coarse-to-fine warping-based system with a lightness correction mod-

ule trained for 15◦ vertical gaze redirection (CFW + LCM ) (Section 4.4) – to test

the effect of lightness correction model on the score.

5. A simple baseline – image independent flow field (Section 3.2.1), where the flow is

based solely on the relative position of the pixel (IIF ). The score of this model is

in some sense the basic score of warping approach – what we can get without any

grouping of similar pixels or representation learning.

In Figure 5.2 I present a graph of sorted normalized errors, where all errors are divided

by the MSE obtained by an input image taken as an output. For each method, the

errors on the test set are sorted. It can be seen, that NN-supervised forest performs

comparably to the warping flow forest. What is more important, this improvement is

quite visible in terms of noise and artifacts (Figure 5.4). However, there is still a gap
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Figure 5.2: Ordered errors for 15◦ vertical gaze redirection (see text for more dis-
cussion of the error metric). The best performance is shown by the full coarse-to-fine

architecture with the lightness correction module.

between the NN-supervised forest and its teacher, the multiscale model without the

lightness correction module. The lightness adjustment extension (Section 4.4) is able

to show quite significant improvements. Those are mostly cases similar to shown in

Figure 4.3. Unified multiscale models trained to handle different angles (not included in

this comparison) are, in general, comparable with the one specialized for 15◦ redirection.

It is also worth noting that even a single-scale model trained for this specific correction

angle consistently outperforms warping flow forest, demonstrating the superiority of

deep learning.

5.3.2 Was the gaze actually redirected?

The low error between output and ground truth does not fully answer the question,

whether the gaze difference between input image and output equals requested angle.

One could imagine the example (possibly degenerate), when the `2 error is low and the

results are realistic, but the gaze was not redirected or was redirected by a smaller angle

than the requested. Thus, I provide additional assessment on evaluating the redirection

angle on the test set.
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Firstly, the tool for evaluating the redirection angle should be developed. I use the

evaluation model E, trained to determine the angular difference between two input

images of eyes. In order to increase the accuracy of this model, I consider only vertical

redirections. The model is parametrized as deep neural network. The inputs to network

are two images of the eye, and the output is the angular gaze difference. The network

was trained with MSE loss on pairs of images of same eyes with different vertical gaze

directions, picked up from the training part of the dataset. For each training example,

the sequence and the horizontal gaze direction in this sequence were picked up randomly.

Then, two vertical gaze directions were chosen randomly (the maximum vertical gaze

difference in the database is 36◦, Section 2.3). The mean RMSE on the training set is

0.8◦, and on the validation set is 1.1◦.

The architecture of the network E consists of two parts. I denote conv(m, k) a convolu-

tional layer with m maps and kernel size k, and FC(m) a fully connected layer with m

maps, both precede the RELU activation. The first part is convolutional network with

max-pooling, which is applied to both input images with shared weights:

conv(48, 3)→ conv(48, 3)→ MaxPool→ conv(48, 3)→ conv(48, 3)→ MaxPool.

Then the maps corresponding to two inputs are concatenated, and the second part is

applied:

conv(96, 3)→ conv(96, 3)→ MaxPool→ conv(96, 3)→ conv(96, 3)→ MaxPool

→ FC(1000)→ FC(250)→ FC(1),

where the last activation is linear.

Using this model, the results of 15◦ upwards redirection on the testing set were evaluated.

For each input image I, the resulting image Om with gaze redirected 15◦ upwards was

obtained by each method. Then, the actual redirection angle was estimated as α ≈
E(I,Om). The results of this assessment are presented in Figure 5.3. The distribution

of the outputs of evaluation model E are plotted for each method. For reference, I

also plot the distribution for the ground truth images. The mean of the distribution

for the ground truth images is exactly at 15◦, but the variance is quite significant.

This variance is explained by the inaccuracy in dataset labels and imperfection of the

evaluation network. The mean of distributions for all models come quite close to 15◦,

while the variance does not exceed the variance of the distribution corresponding to the

ground truth pairs. Thus, I conclude that all methods performed well in this test, which

suggests that the methods should be compared primarily based on the realism of their

results. Interestingly, the best performance was shown by the Deep Warp model without

lightness correction module, although LCM decreases the `2 error. The means of forest
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based models are slightly less than 15◦, while the mean of CFW+LCM model is slightly

higher than 15◦.

5.3.3 Qualitative evaluation

To qualitatively compare the systems, I show a random subset of results of redirection by

15 degrees upwards in Figure 5.4. All methods were trained for 15◦ vertical redirection.

One can observe that the system is able to learn to redirect the gaze of unseen people

rather reliably obtaining a close match with the ground truth. Deep warp systems

produce the results visually closer to the ground truth, than forest-based systems. The

effect of lightness correction is pronounced: on the input image with the invisible sclera

in one corner, the system with lightness correction performs clearly better. However,

the downside effect of lightness correction could be blurring/lower contrast because of

the multiplication procedure (4.4).

Examples of predicted warping field are also shown in Figure 5.5. To determine the

inherent dimensionality of the warping fields manifold, the following experiment was

conducted. Warping fields predicted on the validation set were resized to the same size

of 80× 100 pixels, aligned to vectors, and the PCA model was learned. For the learned

model, the dependence of the percentage of explained variance on the number of PCA

components is plotted in Figure 5.6. Almost 95% of the variance is described by 100

components out of 80 × 100 × 2 = 16000, and all components after number 1000 have

less than 0.001% contribution. It can be viewed as a confirmation, that the predictor

had learned the inner structure of a transformation.

Lower resolution images. In Figure 5.7 I provide results of the NNSF-system for lower

input resolutions on randomly sampled images from a test set. For that, I downsample

images from the original size of 80× 100, to 10× 12, 20× 25, 40× 50 correspondingly.

The NNSF-system is then applied to the downsampled versions. The effect of gaze

redirection is noticeable even for very low resolutions.

Comparison with the previous work on Gaze Correction. In Figure 5.8 I show

the side-by-side comparison with the system [17], which also performs monocular gaze

correction for the videoconferencing scenario. The difference in the approaches is clearly

visible. Suggested method redirects gaze and confines the changes to the eye region,

while keeping the head pose unchanged. On the contrast, the system [17] synthesizes

the novel view for the facial part then blending the new face area into the input image.

The latter approach results in certain distortion of face proportions. Moreover, [17]
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The distribution corresponding to
the pairs with 15◦ difference ac-
cording to the data collection pro-
cedure. Mean = 15.1◦, std = 2.6◦.

The weakly supervised random for-
est (Chapter 3). Mean = 13.8◦,
std = 2.1◦.

The coarse-to-fine warping-based
system (Chapter 4). Mean = 15.2◦,
std = 2.7◦.

The random forest supervised by a
neural network (Chapter 5). Mean
= 14.2◦, std = 2.2◦.

The Deep Warp coarse-to-fine
warping-based system with a light-
ness correction module (Chap-
ter 4). Mean = 16.0◦, std = 2.6◦.

Figure 5.3: The assessment of the redirection angles. Hold-out pairs with gaze dif-
ference of 15 degrees were submitted to the network, trained to determine the vertical
angular difference. The distribution of the redirection angle, as predicted by the net-
work, is plotted. For the reference, the distribution for the ground truth images is
shown in the top row. Means of distributions for all models come quite close to 15◦,
while the variance does not exceed the variance of the reference distribution. The best

results are shown by Deep Warp architecture without lightness correction model.
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(a) (b) (c) (d) (e) (f)

Figure 5.4: Results on a random subset of the hold-out test set. From left to right: (a)
Input, (b) Warping flow forests, (c) Neural network supervised forests, (d) Coarse-to-
fine warping with the lightness correction module, (e) Coarse-to-fine warping without
the lightness correction module, (f) Ground truth. The full variant (CFW + LCM) of

deep warp system (e) generally performs the best.
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Figure 5.5: Examples of warping field taken randomly from a validation set. In each
pair, the left image is the input and the right one is the predicted warping field. The

color pattern is the same as in Figure 5.1.

Figure 5.6: Inherent dimensionality of the warping fields manifold. The dependence
of the percentage of explained variance on the number of PCA components is plotted.
The scale of the x-axis is logarithmic. One hundred components describe almost 95%

of the variance.
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Figure 5.7: The results of NNSF system for the 15◦ upwards redirection with input
images of lower resolutions (the downsampling factors are shown at the top). Gaze

redirection is persistent even for very low resolution images.

requires a simple per-person pre calibration step and requires a (low-end) GPU for real-

time operation (whereas my method achieves more than 30 fps on a single core of an

Intel Core-i5 CPU).

Finally, the supplementary video [104] demonstrates a real-time screencast of NNSRF

system running on a variety of people under a variety of conditions typical for telecon-

ferencing scenario.

5.3.4 User study

To confirm the perceptual improvement in the results, I performed a user study similar to

one presented in Section 4.6.2.1. Here I changed the setup to showing the full face image,

while still instructing the users that only eye region will be resynthesized. Showing full

face was motivated by more direct measurement of users’ perception of the overall realism

of the resulting images.

User study includes 41 subjects unrelated to computer vision, comparing four methods

(EFF, NNSF, CFW, CFW+LCM). Each user was shown 80 quadruplets of images,

and in each quadruplet one of the images was obtained by re-synthesis with one of the

methods, while the remaining three were unprocessed real face images. The example

screen-shot from the user study interface is shown in Figure 5.9.

https://youtu.be/sw31vBxQUNs
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Figure 5.8: Comparison with monocular gaze correction method from [17]. Left –
the input video frame (taken from [17]). Right top – the output of suggested NNSF
system. Right bottom – the result of [17]. While both systems achieve convincing
redirection effect, NNSF system avoids the distortion of facial proportions (especially
in the forehead and the chin regions), while also not requiring GPU to achieve real-time

performance.

Twenty randomly sampled results from each of the compared methods were embedded in

the set of quadruplets shown to each participant. The ordering of the methods and the

position of the right answer were randomized. When a quadruplet was shown, the task

of the subject was to click on the artificial (re-synthesized) image as quickly as possible.

For each method, I then recorded the number of correct guesses out of 20 (for an ideal

method the expected number would be 5, and for a very poor one it would be 20). I also

recorded the time that the subject took to decide on each quadruplet (better method

would take a longer time for spotting). Table 5.1 shows results of the experiment.

In general, all methods performed very well, approaching the best performance, which

is 25% (the performance of random guess). The performances of the NN-supervised

random forest and the full deep warp system are comparable, while the other two systems

(warping flow forest and coarse-to-fine warping without lightness correction) performed a
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EFF NNSF CFW CFW+LCM

Correctly guessed (out of 20)

Mean 7.12 5.68 6.16 5.58

Std 0.87 0.98 0.92 1.10

Median 6 6 6 6

Max 13 10 10 9

Min 4 2 1 2

Correctly guessed within 4 seconds (out of 20)

Mean 1.9 1.66 1.98 1.85

Std 0.54 0.67 0.59 0.62

Median 1 1 2 0

Max 6 7 6 5

Min 0 0 0 0

Correctly guessed within 2 seconds (out of 20)

Mean 0.56 0.80 1.09 0.96

Std 0.69 0.55 0.48 0.46

Median 0 0 0 0

Max 4 6 5 4

Min 0 0 0 0

Mean time to make a guess

Mean time, sec 7.7 7.3 9.1 9.7

Std, sec 1.9 2.5 2.0 2.2

Table 5.1: User assessment for the photorealism of the results for the four
methods. During the session, each user observed 20 instances of results of each
method embedded within 3 real images. The participants were asked to click on the
re-synthesized image in as little time as they could. The first three parts of the table
specify the number of correct guesses (the smaller the better). The last line indicates
the mean time needed to make a guess (the larger the better). The performance is
not far from the performance of a random guess, thus, re-synthesized images could be

hardly distinguished from the real ones.

little worse. However, if considering only fast (confident) clicks, neural networks become

slightly worse in comparison to warping flow forest, as well as to NN-supervised forest.

Such performance of the deep architecture is explained by the fact, that it works on the

fixed basic resolution, while the forest based methods could process images at the eye on

native resolution of the cropped image. For a few examples, the users were apparently

able to quickly notice the interpolation artifacts or the artifacts near the border in the

deep warp system results. As a result, the teacher CFW method performs a bit worse

than the student NNSF in these metrics. In terms of mean time that a user took for

making a guess, deep warp architectures outperformed forest-based, because of the big

contribution of the hardest samples, where users got stuck for a long time. However,

one should take into consideration, that the variance in the users results is very high:

some people are much attentive than other. Increasing the number of people does not

solve the problem, because there is still a significant amount of very good and very bad

results. Only the very large number of tests for each user could potentially help, but it’s
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Figure 5.9: The screen-shot from the user study interface. User was instructed, that
one of the four images is not real, and was asked to click on the one, which seems
unnatural, spending not much time (trying not to exceed 5 seconds). In this example,

the top left image is the right answer.

hopeless to ask users for several hours of testing without proper motivation. Thus, for

example, applying statistical tests to analyze results is difficult.

I also present some comparisons for pairs of methods. At the plots on Figure 5.10 red

bar is how many users were fooled more frequently by the first method, green bar by

the second method, blue bar draw. NN-supervised random forest is the best method in

this comparison.

5.3.5 Computational speed and memory demands

The main testbed for video-conferencing is a standard 640 × 480 stream from a laptop

camera. Facial alignment takes a few milliseconds per frame. On top of the feature

tracking time, the warping flow forest method requires from 3 to 30 ms to perform

the remaining operations like querying the forest, picking optimal warping flow vectors,

and performing replacements. The large variability is due to the fact that the bulk

of operation is linear in the number of pixels we need to process, so the 30 ms figure
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Figure 5.10: Results of user study for pairs of methods. Red bar is how many users
were fooled more frequently by the first method, green bar by the second method,
blue bar draw. For example, in the middle plot forest, supervised by neural network,

outperformed weakly-supervised forest.

corresponds to the situation with the face spanning the whole vertical dimension of the

frame. Further trade-offs between the speed and the quality can be made if needed (e.g.

reducing the number of trees twice will bring only very minor degradation in quality

and almost two-fold speedup).

The neural network supervised forest method performs comparably to the warping flow

forest, requiring 3 − 30 ms per frame on single core of a CPU (Intel Core i5 2.6GHz).

In fact, it is typically slightly faster than warping flow forest, because of the smaller

tree depth, however this difference is not crucial in my implementations. The significant

improvement is in memory consumption: warping flow forest method typically requires

100 − 200 Mb, which should be stored in RAM memory at test-time, while the neural

network supervised forest requires only 1.5 − 3 Mb. The big difference in memory

requirements occurs because of error distributions stored in leaves in the former case

(Section 3.2) and only two-dimensional flow vector in the latter (Section 5.2).

The computational performance of the deep warp method is up to 20 fps on a mid-range

laptop GPU (NVIDIA GeForce-750M), and typically 3 − 5 times slower on a CPU.

A model for the deep warp method is much more compact than for the forest-based

one (only 250 Kb in experiments), while also being universal, i.e. not tied to a specific

redirection angle.



Chapter 6

Semi-supervised gaze redirection

using deep embedding learning

The approaches described in Chapter 3, Chapter 4, Chapter 5 have demonstrated that

realistic gaze redirection is possible in monocular setting, i.e. without any additional

hardware other than a single camera that is used to acquire the images or videos. The

suggested warping-based model however relies heavily on supervised machine learning,

and in particular requires a considerable amount of eye images labeled with gaze di-

rection. Acquiring such images is tedious and requires imaging of multiple people in

constrained setting (in a literal sense – c.f. Figure 2.5, Figure 2.6).

Here, I extend the warping-based model to unsupervised and semi-supervised settings,

where most of the learning happens in an unsupervised way using sequences of eye

images of different people with varying and unknown gaze direction. The collection of

such data is much easier than in the fully-supervised case. In more detail, the model that

is presented here, uses unsupervised manifold learning in order to construct the deep

embedding of eye images into a low-dimensional latent space (the encoder network) and

to learn a decoder network that constructs a warping flow field based on the latent

representation of two eyes from the same sequence.

Once the unsupervised training is accomplished, the system can redirect gaze of an

arbitrary eye image by traversing the manifold in a latent space. In particular, image is

mapped to latent space and then latent representation is modified by adding a certain

vector in order to estimate the latent representation of the target image. The decoder

network can then be used to estimate the warping between the source and the unknown

target images. The presented model is similar to the visual analogy making of [18] though

it predicts the warping fields rather than the target images directly. The model can use

a small amount of supervised data (e.g. a single pair of eye images with known difference

95
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in gaze direction) to estimate the displacements in latent space that are characteristics

to certain gaze redirections (e.g. lifting the gaze by 15 degrees upwards as is practical

to the videoconferencing scenario).

As I show in the experiments (Section 6.4), the resulting semi-supervised solution

achieves convincing gaze redirection, which outperforms in visual quality the fully super-

vised solution of fully supervised deep warping method Chapter 4 in shortage of training

data. Compared to the model of [18], using warping rather than direct re-synthesis en-

sures high realism of the resulting images and avoids the loss of high-frequency details.

Prior to that, in Section 6.1 I discuss related approaches, in Section 6.2 I discuss the

bulk of the model and how it can be trained on unsupervised data, and in Section 6.3 I

discuss how the training of the model can use a small amount of eye images with known

absolute or relative gaze direction.

6.1 Related work

The idea of image analogies goes back to at least [105]. The analogy is defined as a

relationship A : B :: C : D, spoken as ”A is to B as C is to D”. The task is

to synthesize an unknown image D, given A,B,C. Their approach is first to compute

Gaussian Pyramids for given images. Then they construct a pyramid for D in such a way

that neighborhoods are similar as the on generated from B, and at the same time have

similar multiresolution appearances at corresponding locations in A and C. They apply

this approach t0 image filtering, texture synthesis and transferring, super-resolution.

My model is related to the more general deep-analogy making model of [18]. The

work is utilizing the ability of analogy-making by addition and subtraction Figure 6.1,

which was applied to word embeddings in [106, 107]. The model in [18] is trained

on tuples (a, b, c, d), such as a ? b :: c ? d, in test-time their model is capable to

produce an unknown d – the result of applying the transformation a : b to c. Encoder

f : RD → RK and decoder g : RK → RD are parametrized as deep convolutional

neural networks, trained end-to-end in the whole architecture. The idea is to represent

the target transformation by vector (f(b) − f(a)) in the embedding space. Applying

transformation to a query c is represented by addition this transformation vector to

f(c).

The suggested objective for addition-based analogy making is

Ladd =
∑
a,b,c,d

||d− g(f(b)− f(a) + f(c))||22. (6.1)
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Figure 6.1: The concept of visual analogy making. An encoder function f maps
both query image and an analogy pair into an analogy-making space. In this space
analogy is some simple operation (e.g.) summation. Decoder retrieves the result back

to image space. Figure taken from [18].

As vector-addition approach is sometimes not capable to model all necessary transfor-

mations (e.g. rotation: adding the same vector multiple times will not return to the

original embedding vector), [18] also suggests multiplicative and deep model:

Lmul =
∑
a,b,c,d

||d− g(W ×1 [f(b)− f(a)]×2 f(c) + f(c))||22, (6.2)

Ldeep =
∑
a,b,c,d

||d− g(h([f(b)− f(a); f(c)]) + f(c))||22, (6.3)

where W ∈ RK×K×K is a 3-way tensor and h : R2K → RK is an MLP. For accurate

traversing image manifolds an the embedding space, [18] suggests a regularization,

which compares the difference of embeddings of prediction and query f(d)− f(c) to the

predicted increment vector in embedding space T (f(a), f(b), f(c)):

R =
∑
a,b,c,d

||f(d)− f(c)− T (f(a), f(b), f(c))||22,

where increment T (f(a), f(b), f(c)) is one of the three chosen models: additive (6.1),

multiplicative (6.2) or deep (6.3).

Authors of [18] also suggest a method to incorporate features disentangling into the

analogy model. The model is learned on three-image tuples (a, b, c): the first and the

second to extract hidden units in latent representation, and the third one is a ground-

truth image. Disentangling is implemented by introducing the binary vector of switches

s ∈ {0, 1}K . It represents whether to take the corresponding feature from the embedding

of the first image or the second one.
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In comparison to my work, the model [18] requires the knowledge of transformations that

needs to be provided in the form of analogy-forming quadruplets, which is not required

by my model. A more similar to my model at train time is the inverse graphics model

of [19], which can be trained with a similar level of supervision to the system suggested

here, i.e. with subsets of images where some factors of variations are fixed while others

are varying arbitrarily. Authors also makes use of autoencoder-like architecture with

image embedding latent space. They present an approach for learning interpretable

latent space representations for out-of-plane rotations and lighting variations. Their

training procedure is constructed to encourage each group of variables in the hidden

representation to distinctly represent some specific transformation.

The latent space is divided into extrinsic variables (elevation angle, azimuth angle, angle

of the light source) and intrinsic properties, which describes the identity, shape, expres-

sion, etc. The data is organized into mini-batches in such a way, that only one of the

extrinsic variables is changing across the mini-batch, all other extrinsic and intrinsic

variable being fixed, e.g. rotation of the same object. The training procedure is as

follows.

1. Randomly select an extrinsic variable ztrain and a mini-batch in which only this

variable changes.

2. Get the latent representation of each example in the mini-batch using the encoder

network.

3. Calculate the mean of those representation vectors over the mini-batch.

4. For all examples in the mini-batch replace all latent variables except chosen ztrain

with the average across the mini-batch.

5. Project mini-batch back to the image space using the decoder, calculate recon-

struction error and backpropagate it through the decoder.

6. Replace the gradients for all latent variables except chosen ztrain with the difference

between the values of variables and their mean value across the mini-batch.

7. Backpropagate through the encoder.

In this procedure, step 3 ensures that all the variation in the chosen factor is kept in the

only one chosen variable ztrain. Step 6 makes all the other variables be the same across

the mini-batch.

Both [18] and [19] however tend to produce blurry non-photorealistic images that are

not suitable for the application scenarios of gaze redirection Figure 6.2. This is overcome

in the model suggested in this chapter by using warping instead of direct re-synthesis.
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Figure 6.2: Manipulation rotation results from [19]. Each row was generated
by encoding the input image (leftmost) with the encoder, then traversing the manifold
by changing the value of a single latent and putting this modified encoding through the
decoder. Despite the rotation is quite convincing, obvious blurring and a loss of fine
details are the drawbacks of the suggested approach in comparison to a warping model

(as well as in Figure 2.2, Figure 2.3).

6.2 Unsupervised training of gaze redirection

The process of supervised data collection and eye localization is described in Section 2.3.

For an eye localization, I use definition (2.8). As discussed below, located eye landmarks

are also embedded in the architecture as additional features in the same way, as in Deep

Warp architecture. Thus, all input images I mentioned here are actually not 3 RGB

maps, but 17 maps, 14 of which come from landmarks (details are given in Section 4.3).

The one exception is final warping, which is applied to an RGB image.

For the unlabeled part of dataset the process is significantly simplified. The person is

instructed to keep the head approximately still and to quickly move the gaze along the

screen for about 10 seconds. This recording time is comfortable for not blinking and not

shaking head, while sufficiently long for a person to gaze at different parts of the screen.

This scenario also eliminates the problems with the person not following the dot on the

screen as prescribed, which I found out to be a recurrent problem.

Model architecture. I now discuss the architecture of the suggested approach (Fig-

ure 6.3) as well as the training of the encoder and the decoder networks, which, as
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Figure 6.3: Architecture of unsupervised gaze redirection training. Two images of the
same eye with different gaze direction are passed to the encoder network that outputs
their latent representations. These representations are then concatenated and passed
to the decoder network that outputs the predicted flow from the first image to the
second one. The flow can be used by the bilinear sampler. The architecture is trained

by minimizing the disparity between the output image and the second image.

discussed above, happens in unsupervised mode and utilizes only image sequences with

varying but unknown gaze direction.

In general, similarly to approaches in previous chapters, the gaze redirection is performed

by warping the input eye images. At the core of suggested system is the ability to model

the change of appearance within the pair of the eye images (I1, I2) from the same video

sequence using warping. Such warping is determined by the latent representations of

the images h1 = E(I1;ψ), h2 = E(I2;ψ), where E denotes a feed-forward encoder

network with learnable parameters ψ. The latent representations live in low-to-medium

dimensional space (up to 500 dimensions in experiments, which is much smaller than

the dimensionality of the original images).

Given the latent representations of the images, a decoder network D with learnable

parameters ω is applied to the stacked latent representations of the image pair and

outputs the warping field, corresponding to the transformation of image I1 into I2:

F = D(h1, h2;ω).

Finally, the standard bilinear sampling layer S as defined in [82] outputs the result,

which is the prediction Î2 of image I2. Overall, the warping process can be written as:

Î2(I1;ψ, ω) = S(I1,D(E(I1;ψ),E(I2;ψ);ω))). (6.4)

The training objective then naturally corresponds to minimizing the disparity between

the true image I2 and its predicted version (6.4). The training process then corresponds

to sampling pairs (I1; I2) and optimizing the parameters for the encoder and the decoder
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networks by minimizing the following `2-loss:

L(ψ, ω) =
∑

(I1,I2)

‖Î2(I1;ψ, ω)− I2‖2 ,

where the summation is taken over all training pairs of eye images that correspond to

the same sequences.

Notably, the training process does not require gaze annotation, and, as will be verified

below, learns meaningful latent representations that are consistent across eye sequences

in the following sense. Let a visual analogy be quadruplet (I1, I2, I3, I4), in which I1

and I2 correspond to one eye sequence, and I3 and I4 correspond to other eye sequence

(corresponding to a potentially different person and/or different lighting etc.), and where

the change of gaze direction from I1 to I2 and from I3 to I4 are similar Figure 6.5. The

learned embeddings possess the property of having similar displacement vectors across

the two pairs:

E(I1;ψ)−E(I2;ψ) ≈ E(I3;ψ)−E(I4;ψ) (6.5)

The property (6.5) facilitates easy semi-supervised training of the overall system with

limited amount of gaze-annotated data.

Details of the architectures.

To describe the specific architectures, I denote conv(m, k, s) a convolutional layer with

m maps, kernel size k and size of the stride s, and FC(m) a fully connected layer with

m maps, both precede the RELU activation. The architecture of the encoder I used in

experiments is the following:

conv(48, 5, 1)→ conv(48, 5, 2)→ conv(96, 5, 2)→ conv(96, 3, 2)→ FC(800)→ FC(50).

The decoder mirrors the architecture of the encoder, except for the input (which is the

vector of length 100, being a concatenation of two representations of length 50) and the

output, which are two maps of the warping field used in (6.4). The model is trained

using Adam optimizer [100]. Each batch contains 128 randomly sampled pairs of images,

each pair consisting of the input and output eye from the same sequence.

6.3 Semi-supervised learning and analogies

The architecture discussed above trains on pairs of eye images, and treat each of the

images in the pair similarly. At test time, however, the goal is to compute the warping

field without knowing the second image (which itself is the unknown that one wish to
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estimate). Fortunately, the analogy property (6.5) possessed by the embeddings allows

us to estimate characteristic displacements in the latent space given some amount of

gaze direction-annotated data obtained with the time-consuming process.

I consider the following test-time gaze redirection problem: given the query image Iq,

obtain the image Oq corresponding to the same eye under the same imaging condition,

with the gaze redirected by a given angle αq = (αxq , α
y
q). As the angle αq is given,

we can query the direction-annotated part of the dataset for the set of pairs P (αq) =

{(I1
1 , I

1
2 ), . . . , (In1 , I

n
2 )} that would form an analogy with Iq and Oq, i.e. the pairs with

the difference in the gaze direction within each pair approximately equal αq (in practice

I use a hard threshold ε to determine whether some angular difference is close enough

to αq).

I then consider two methods of computing Oq given the set of pairs P (αq). The first

(baseline) method is to use the mean warping field of the set of analogy pairs. Here, for

each pair I calculate the predicted warping field from the first image in the pair to the

second, and then apply the averaged warping field F̄ to the query image:

Ôq = S(Iq, F̄), where

F̄ =
1

n

n∑
i=1

D(E(Ii1;ψ),E(Ii2;ψ);ω).
(6.6)

However, the clear drawback of this method is that the same warping field F̄ will be ap-

plied to all query images with the same desired angular redirection αq, being independent

from the content of the query Iq.

The second method that directly relies on the analogy property (6.5) computes the mean

latent vector displacement corresponding to angle αq (Figure 6.4):

∆h(αq) =
1

n

n∑
i=1

(E(Ii2;ψ)−E(Ii1;ψ)).

Such precomputed vector can be used to estimate the desired output image as:

Ôq = S(Iq, D (E(Iq;ψ), E(Iq;ψ) + ∆h(αq);ω) ). (6.7)

All latent representations for labeled part of the dataset could be precomputed in ad-

vance and stored. Thus, performing the redirection following (6.7) requires only a single

pass through the encoder and the decoder network at test time, which opens up a pos-

sibility for real-time gaze manipulation (on a device with a GPU).
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Figure 6.4: Image analogy-making in test-time. In test time we do not know second
image, we want to produce it. Thus, we do not have its representation for the encoder.
The solution is to approximate the unknown representation in the latent space. The
estimate of the unknown embedding is the known representation plus mean increment,

which we get from the labeled part of the dataset.

6.4 Experiments

I perform experiments using the dataset that consists of 640 sequences, each containing

images of the same eye from one video (under the same lightning conditions, head pose,

etc.) with different known gaze directions. Each sequence contains 100 − 220 images.

I use 500 sequences for training and validation, leaving 140 for testing (the train and

the test sets do not contain sequences of the same people). The angular tolerance ε for

picking up analogies from the labeled part of dataset was set to 0.5◦.

Qualitative evaluation of unsupervised learning via analogies. I first qualita-

tively demonstrate the analogy property (6.5) in Figure 6.5. For each input query image

and a query redirection angle, one analogy quadruplet with the similar angular differ-

ence was picked up at random. The fourth image of the quadruplet was then obtained

using the method that modifies the representation in latent space (6.7) by warping the

third image and using the first two images as the only reference pair. The obtained

results mostly look plausible and similar to the ground truth, confirming the analogy

consistency of the learned embedding. Note, that except for angular difference in gaze

direction, all other properties could be different between the two pairs. This includes the

absolute gaze direction, the identity of the person, the lightning conditions, the presence

of glasses, etc.

Quantitative evaluation of semi-supervised learning. I then perform quantitative

evaluation for the task of fixed redirection angle 15◦ upwards. I consider the following

methods:
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Figure 6.5: Demonstration of analogy property of the learned embedding.
The three left-most columns alongside the right-most one form analogy quadruplets (the
difference in gaze direction between the first two columns is approximately the same
as the difference in gaze direction between the third and the last columns). ’Results
50’ and ’Results 500’ demonstrate the warped images obtained using modification in
latent space (as discussed in the text), after the encoder and the decoder are trained
in an unsupervised setting on 50 or 500 eye sequences respectively. Failure cases with
dramatical eyeball deformations are presented at bottom rows. Overall, training on

more unsupervised data (500 sequences) leads to better and more robust result.
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• The unsupervised system trained on different amount of unlabeled sequences, as

discussed in Section 6.2, with two approaches for test-time prediction:

1. Based on mean displacement vector in representation space (6.7), denoted as

“code”.

2. Based on mean warping field (6.6), denoted as “flow”.

• The single-scale DeepWarp system (2), denoted as “SS”. I use the single scale ver-

sion as a baseline since the architecture of the flow-predicting network in single-

scale DeepWarp is similar to encoder-decoder network suggested here in complex-

ity. Note that the encoder-decoder network architectures presented here also allow

multiscale extensions.

During training time, all methods were trained for the task of redirection by an arbitrary

angle (the redirection angle was fixed for the testing only). I vary the amount of labeled

sequences shown to the methods. The unsupervised models were trained for 150 epochs

on the unlabeled datasets containing either 100 or 500 sequences. For images from test

set, I pick all possible analogies from given labeled sequences, and vary the number

of sequences in this labeled part. The DeepWarp system requires full supervision and

therefore was trained only on the labeled part of the dataset for 150 epochs. The

quantitative comparison is represented in Figure 6.6. I evaluate the mean (over pixels)

sum of squared errors across channels (referring to it as MSE). The semi-supervised

models outperform the DeepWarp model, which does not exploit the unlabeled data,

and, as expected, the advantage is bigger when the amount of labeled data is smaller and

when the size of the unlabeled dataset used within the semi-supervised model is bigger.

Increasing the number of unlabeled sequences improves the performance of the model.

The method based on latent representation (6.7) better exploits the trained unsupervised

model, than the baseline which averages the warping flows. The performance of semi-

supervised methods saturate after seeing approximately 15 labeled sequences.

For the reference, I also measured the MSE of two more baselines. The Unsupervised

oracle baseline corresponds to the unsupervised model that knows the latent represen-

tation of the ground truth and uses it to estimate the warping field. This oracle baseline

bounds the performance of semi-supervised methods from below and achieves the MSE

0.0033 for 100 sequences of unlabeled data and 0.0025 for 500 sequences. On the other

hand, the MSE of leaving the input image unmodified was 0.0073.

Qualitative evaluation of semi-supervised learning. Finally, I demonstrate the

qualitative results of redirection on arbitrary angles in Figure 6.7. All systems use

15 labeled data sequences. The semi-supervised model is trained on 500 sequences of

unlabeled data. Performing analogies in the latent representation space allows to get a
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Figure 6.6: Quantitative comparison of methods: errors for redirection on
15 degrees upwards. Horizontal axis shows the number of sequences labeled with
gaze direction provided to the methods. All methods are trained for arbitrary redirec-
tion angle, but applied to a testing setting with 15 degrees vertical redirection. “Code”
corresponds to estimating the warped image latent representation (6.7), “flow” corre-
sponds to warping the input image using mean flow (6.6). 100/500 corresponds to the
number of unlabeled sequences used to train the encoder-decoder model. “SS” stands
for the single scale DeepWarp system that does not use unlabeled data. Semi-supervised
system performing analogies in latent representation space outperforms other methods,
and training this method on more unlabeled data helps a lot irrespective the amount

of labeled data.

substantial perceptual improvement over the results of supervised model in the lack of

training data.

I also present the results of a vertical redirection for the range of angles in Figure 6.8 for

the semi-supervised method based on analogies in the latent representation space (6.7)

trained on 500 unlabeled sequences and using 15 labeled sequences for performing

analogy-making.
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Input GT SS Flow Code Input GT SS Flow Code 

Figure 6.7: Sample results on the hold-out set. Columns from left to right:
the input image, the ground truth, the results of single scale deep warp system, the
result of the semi-supervised model that uses mean warping field, the result of the
semi-supervised model that uses mean difference in latent representation space. With
limited labeled data the perceptual quality of the results is significantly improved using
large dataset of unlabeled data. Failure cases with very extreme redirection angles and

glasses damage are presented in six bottom examples.
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Figure 6.8: Vertical redirection. The redirection angle ranges from −15◦ to 15◦

relative to the central input image. In all columns the image in the center row is the
input. Convincing continuous gaze redirection is achieved.



Chapter 7

Conclusions and summary

The thesis has presented the warping-based approach to image re-synthesis task, where

the target transformation is defined by a dataset of input-output examples, and its

application to the gaze redirection task. This approach increases the photorealism of

the results in comparison to the direct regression of output pixels, which has problems

with synthesizing high-resolution images. The work [44] and similar works suggested to

construct the warping field based on geometrical projection properties, but the idea of

learning the warping field from the dataset of examples to the best of my knowledge was

not presented until this work [73].

The four methods for learning a warping field predictor are suggested. Below, I once

again summarize the suggested methods, and state their novelty compared to the most

similar preceding works in the literature. The three of the methods learn to predict the

warping field in a weakly supervised setting. The first system (Chapter 3, [73]) is based

on a special kind of weakly supervised random forest with structured output. The novelty

compared to the preceding work [76] is that not only the optimal warping vector, but the

distribution of the replacement error depending on the warping vector is stored in the

leaves of the tree. Storing these distributions also allows more robust tree ensembling

by summing up distributions coming from different trees. Also, the split evaluation

criterion is new and specific to the newly proposed type of random forest. The second

system (Chapter 4, [74]) predicts the warping field using a deep convolutional network

with coarse-to-fine architecture of warping modules and embeds the desired redirection

angle and feature points as image-sized maps. In addition to warping, photorealism is

increased using the lightness correction module. The third system (Chapter 5, [75]) can

be regarded as a hybrid of the first two, as it essentially condenses the neural network into

a random forest, achieving high-quality results, fast operation, and very compact models.
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The novelty of the suggested architecture compared to the preceding work on teacher-

student architectures [77–79] is in the particular teacher-student combination, where the

teacher is a weakly supervised neural network, and the student is a random forest. Such

combination allows to combine the representation power of the deep neural network in

the fast forest model. The fourth system (Chapter 6) is motivated by the hardness of

collecting labeled database and is working in a semi-supervised scenario, requiring only

small labeled part in the dataset. It is based on learning the embedding of images into a

low-dimensional latent space and analogy making in this latent space. The novelty of the

method in comparison to work [18] is in using the combination of unsupervised training

on pairs of images without gaze labels, instead of requiring analogy-forming quadruplets,

and image analogy making at test time. Another peculiarity of suggested method is that

the result of analogy-making is a warping-field rather than a re-synthesized image itself.

This, once again, allows to boost the photorealism of the result.

In application to gaze redirection, the common approach of all methods is to resynthesize

the area of eyes in order to emulate the change in gaze direction without changing the

head pose. The two forest-based systems redirects the gaze by a fixed angle and runs

in real-time on a single CPU core. The Deep Warp system take a redirection angle

as an input and thus allows to change gaze continuously in a certain range, while also

obtaining the higher quality result. The semi-supervised system also redirects gaze by

an arbitrary input angle.

The learned model, applied to some image re-synthesis task, is capable to choose the

appropriate transformation from some family, provided there is one, which is capable

to transform input image to output. In application to warping, this means, that pixels

of the output image should be contained in the input image. The gaze redirection task

almost satisfies this requirement. The only issue is the lack of white, and the lightness

correcting module (Section 4.4) addresses this issue. For image re-synthesis tasks with

more serious color changes from input to output image, a probable approach could be to

develop more sophisticated refinement network, than brightness correction. The general

case is to add refinement without any restrictions. However, depending on the special

task, some restricted refinement could be useful, such as the lightness correction module

only could increase the brightness of pixels. In the case of gaze redirection, this limited

capacity was mostly sufficient for modeling what was not possible to model with warping.

7.1 Discussion

The proposed approaches have some common limitations. The initial idea of resynthe-

sizing the eye vicinity could fail for a very large angles – imagine redirection by 90◦ – any
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attempt to do it only with the ones’ eyes without turning the head would look unnatural.

However, for small angles, at least in the range ±30◦, the results looks photorealistic

provided the eye regions were synthesized naturally.

The collection of the large database allows to rely on machine learning in order to learn

a target transformation, which was not presented in the literature on gaze correction

before this work. One of the crucial choice in all models was the direct re-synthesis

versus the warping based approach. The first approach is to regress pixels of the target

image directly. In the experiments with gaze correction data this approach leads to

significant blurriness and the loss of fine details. These conclusions correlate with the

results reported in the papers [18, 19, 24, 43]. In general, warping-based re-synthesis

allows to obtain sharp images. It is however limited in its ability to synthesize realistic

dis-occluded areas. The key insight of this thesis is that such warping field can be

predicted using a predictor trained in a weakly-supervised or semi-supervised fashion.

While being possibly too restrictive for some applications, the warping-based approach

happens to work better than the direct re-synthesis in the gaze redirection application.

The dis-occluded regions could be also refined by some post-processing models, such

as those proposed in this thesis and the one that appeared in the paper published

simultaneously with this work [46].

The two types of predictors used in this work are random forests and convolutional

neural networks. In general, neural networks obtain better results, both quantitatively

and qualitatively, due to their representation power. It coincides with recent advances of

convolutional neural networks in the whole computer vision domain. However, random

forests are faster predictors due to their ”divide and conquer” approach. The methods

based on random forests are therefore easy to implement in real time on a single CPU

core. ”Teaching” a random forest architecture by a neural network allows to obtain

the same speed and approach the quality of the network-based model. I consider this

solution to be the most suitable for gaze correction in videoconferencing among all

solutions proposed in this work

The key advantages of the proposed methods is their ability to work with a monocular

input and in real-time on consumer-grade devices. The suggested systems are reasonably

robust in the presence of head pose variation and deal correctly with the situations where

a person wears glasses.

The drawback of forest-based methods the way they are realized now is the fixed redi-

rection angle. The neural network models, in contrast, take redirection angle as an ad-

ditional input and are thus capable to produce images with gaze in different directions.

The limitation of forest-based models is not critical for a videoconference application,



112

where a single correction angle which compensates for the vertical gap between the cam-

era and the screen is typically enough. Several models with a range of vertical redirection

angles working for different distances from a person to the screen are also a possible so-

lution if flexibility in redirection angle is needed, which one could implement with a

real-time performance on a consumer device without a GPU much easier, than design-

ing a fast neural network architecture that can run at multiple frames-per-second on a

CPU. However, for other applications, like image and video post-processing, one should

be able to redirect gaze by an arbitrary angle. On the other hand, in such applications

the requirements on the running speed are less stringent. Thus, for this applications,

the Deep Warp system based on deep neural networks is a preferred solution.

The models mentioned above require dataset with fully labeled gaze redirection. Such

dataset is difficult to collect. Therefore, the semi-supervised approach for training a

neural network model was suggested. In the presence of large amount of such unlabeled

data it shows significant improvement over purely supervised models that ignored eye

images with unknown gaze direction. The process of data labelling is often the most

expensive in computer vision applications. In the particular case of data collection for

this work, the necessity for labeled data was the major obstacle. Thus, the opportunity

to switch to semi-supervised approach is very useful for large datasets.

Finally I note that reconstruction error is not enough to make a fully justified conclusion

about the perceptual quality of the results and can not replace user studies in problems

like gaze redirection. Some methods that showed slightly worse results in terms of the `2

reconstruction error are still perceptually good enough for users. The user study showed

the high photorealism of suggested methods, as the guess ratio is close to a random

guess. In general, the user studies show the ability of the proposed methods to produce

sufficiently realistic results despite the very high standards imposed on the realism of

face and eye images by the human visual perception system. The suggested methods

were recognized both in the academic society, resulting in several publications, and in

the industry, with the commercialization process ongoing and the license purchased by

a major company.
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