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“Solid and hard” “Wet and soft”

(biological systems,

polymers, liquids, etc.)

Objectives of modern material science
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Tree main contributions of polymer physics:

1. N monomers connected into united linear molecule, units can not 

move independently any more.

2. Number of monomer units is large, N >> 1.

3. Polymer chains are flexible and coiled.
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Because of connected units polymer molecule has reduced translational entropy. 

That is the fundamental reason for polymers self-assembly: even small changes 

in energy could leads to great changes in conformation.

Ideal gas Freely-jointed chain 4

Polymers lack of entropy! 
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What is most simple (and most complicated) polymer?

1933 LDPE. Spontaneous polycondensation of ethylene gas, at elevated 
temperature and pressure. Randomly branched molecules with large free 
volume and good film-forming properties.

1953 HDPE. Zigler and Natta: metallozene catalysis polyolefin 
polymerization. Nobel Prize in 1963.

1960 UHMWPE, MW > 1 mln g/mol

1970 UHMWPE fibers, 4-10 GPа. DSM (Netherlands)

2000 Homogeneous catalysis.
…
2022 Only a few world companies
produce UHMWPE  fibers, none in Russia.

Why?
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UHMWPE main property – the longest molecules (except DNA)

> 3 mln. g/mol (~100 000 monomer units)

Specific strength + softness
Chemical resistivity

Instant viscosity

Slipping
That is because molecules length and orientation !



Polymer fiber – orientationaly ordered material.

7Very different fibers have same orientation feature. But it induced by various techniques.



How to make oriented polymer fibers?

8The main idea is very simple – mechanical transformation of chain conformations.

напр. 
циклогексан



Intermolecular interactions

Too strong –
hardly oriented

Too small –
fiber disintegration
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What prevents to obtain good fibers in an easy “from the melt” way?



Kevlar example – polymer with very strong interchain 
interactions

The only way to orient Kevlar molecules – great solvent excess. 10

>400С



UHMWPE – polymer without strong interchain interactions, 
looks like can be oriented without solvent great excess.

What are the entanglements?

Main interactions – entanglements and crystallization.

That’s because of entanglements it cannot be easily drawn!
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Untraceable and uncatchable entanglemets
They are not fixed in time and space, do not have 
specific spectroscopic signature, that is polymer 
material topological property!
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«Entanglements length»
Typical values around 
50-100 units.

Most entanglements 
formed during 
polymerization process!

Ne almost impossible to measure in experiments, hardly possible to describe in theory, but can be computed in 
simulations: Kroger, M. Comput. Phys. Commun. 2005, 168, 209.



How to manage entanglements?
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Dissolution in a small concentration after 
synthesis: expensive and environmentally 

sensitive

Entanglements control during 
polymerization process

NB: topoisomerase – Nature’s way to solve entanglements problem in DNA. 

First 
entanglement



Rastogi et al, Macromolecules 2016, 49, 7497
Lab experiments
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CG-MD:
up to ~10 μm
up to ~1  ms 

What level of simulations should be selected to model UHMWPE?

Particle-based model
+ Large space and time scale
= coarse-grained MD
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miai(t) = Fi(t)  [mass  acceleration = force]
ai(t) = dvi(t)/dt = d2ri(t)/dt2, Fi(t) = –U(r1,…, rN)/ri

Molecular Dynamics

Algorithm:
1. Calculate all particles positions 

(centers of applied force).
2. Calculate all forces.
3. Move particles.
4. Goto 1

БЭСМ-6, ВМК, 1970

Ломоносов-1, ВМК, 2010
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B.AlderA.Chertovich

European Conference on Computational Physics CCP 2001, Aachen (Germany)



Luo, Chuanfu, and Jens-Uwe Sommer. "Coding coarse grained polymer model for 
LAMMPS and its application to polymer crystallization." Computer Physics 
Communications 180.8 (2009): 1382

Meyer, Hendrik, and Florian Müller-Plathe. "Formation of chain-folded 
structures in supercooled polymer melts examined by MD simulations." 
Macromolecules 35.4 (2002): 1241

Coarse grained model of Polyethylene:
+ bending potential = isomerization and crystallization
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Part 1. polymerization.

Время

1,3 ∗ 109 steps, N = 8,9 ∗ 104

Conversion 89%
4 ∗ 105 steps, N = 1,9 ∗ 102

Conversion 0,19%
1,6 ∗ 106 steps, N = 7,9 ∗ 102

Conversion 0,79%
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Petrov, Kos, Rudyak, Chertovich, 
Macromolecules 53, 6796 (2020).



Analytical model
Independent growth: N < 𝑁𝑐(𝑟, 𝑐)

Here 𝑁𝑒 ≡ 𝑁 (no entanglements)

Growth with entanglements: N > 𝑁𝑐(𝑟, 𝑐)

Here 𝑁𝑒~𝑁𝑐
1+𝑘𝑁−𝑘

Chains growth without entanglements in the beginning.
As soon as growth up to 𝑁𝑐 𝑟, 𝑐 - entanglements starts to appear.

Local collapse
(fast rate)

Global collapse
(slow rate)
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First 
entanglement

New entanglements

Active growing end



Reaction conditions allow to control 𝑁𝑐. If we know 𝑁𝑐(𝑟, 𝑐) – we know 𝑁𝑒(𝑁, 𝑟, 𝑐).
Mission completed: we can manage entanglements (in homogeneous polymerization).

Results for critical chain length 𝑁𝑐(𝑟, 𝑐)
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Analitycal theory vs. direct simulations

22Theory is in a good agreement with 𝑁𝑒 calculations!
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Part 2. Deformations.
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NVT ensemble (ε=0.5), 10% of solvent (conversion 90%), 

Slow deformation, Tglass < T < Tcryst (“cold drawing”)

Petrov, Rudyak, Chertovich, 
Macromolecules, 55, 6493 (2022)

Uniaxial deformation



Classical stress-strain deformation curve

Most oriented and strong fiber

What is the reason?
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Too small entanglements –
fiber starts to flow..

Stress–strain curve typical of a low carbon steel (wikipedia)

Record values of maximum elongation λmax > 30



Disintegration trigger – regime of entanglements duty
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Long chains:
no disentangling

Short chains: constant 
disentangling process



Analytical model of polymer melt deformation

𝑠~𝑁𝑒

Undeformed sample

Maximum deformation

𝑅𝑚𝑎𝑥~𝑁𝑒

𝑠~𝑁𝑒

𝑅0~𝑁𝑒
1/3

λ𝑚𝑎𝑥~
𝑅𝑚𝑎𝑥

𝑅0
~𝑁𝑒

2/3

No disentangling

Optimum point – no disentangling with minimum entanglements!
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…

Z = 0Z = 𝑍0 − 1

Disentangling 
event

disintegration

Constant disentangling

λ𝑚𝑎𝑥~𝑁/𝑁𝑒



Optimum entanglements per chain:

Balance between disentangling and entanglements
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Dependence on a chain length

𝑁𝑒
2/3

=
𝑁

𝑁𝑒

𝑁𝑒
𝑜𝑝𝑡

~𝑁3/5
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There is a great potential to increase fiber orientation!
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Individual chains conformations
R(s) – distance in space vs. distance along the chain, 
sliding window averaging.

R = s1 – stiff or stretched chain, “rod-like”
R = s0.5 – random walk – Flory theorem
R = s0.3 – Crumpled or “fractal” globule
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Overall microscopy + 2DSAXS

A kind of shish-kebab only at elevated temperatures
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Conclusions:

1. UHMWPE probably could be drawn into a well oriented fiber directly from the melt. For 

that one should learn how to control entanglements in a melt.

2. There is some optimal entanglements value 𝑁𝑒 = 𝑁3/5, which allow to obtain maximum 

oriented fibers. For typical UHMWPE (N=105) it is around Ne=103 (100 entanglements 

per 1 chain).

3. Nowadays samples are far away from that optimum value, so there is a prospect for 

further UHMWPE fiber strength improvement. 

Publications:
1. Petrov, Kos, Rudyak, Chertovich, Macromolecules 53, 6796 (2020).
2. Petrov, Rudyak, Chertovich, Macromolecules, 55, 6493 (2022)
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What next?

Open questions:

1. How deformations depends on temperature and pressure.

2. How orientation depends on deformation speed and boundary condition 
(Poisson ratio and simulation ensemble)

Possible tasks for next projects:

1. To create “hybrid” regime of drawing: disentangling of a sample exactly up to the 
optimal Ne.

2. To develop methodology of UHMWPE SLS: to predict optimal sintering conditions 
for a given N and Ne.



Vladimir RudyakArtem Petrov
www.mspslab.com
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