Chemical Bonding, LOBSTER, and all that...

Richard Dronskowski

Overlap Populations in Molecules and Solids, COOP and COHP Tellurium, Iron, Phase-Change Materials Linear-Muffin-Tin Orbital Theory (LMTO) and Pseudopotentials **Bonding Information projected from Plane Waves** The **LOBSTER** computer program

C & Nanotube & Ti & amorphous GeTe & GeO₂ surfaces & H bonding & CuN₃ & TiO & MnNCN/MnO & Ge₄Se₃Te & Carbons & Na₂He

H₂: Population Analysis by Robert S. Mulliken

$$\int \psi^* \psi d\tau = \int \frac{\psi^2 d\tau}{12\pi} = c_1^2 \int \frac{\phi_1^2 d\tau}{12\pi} + c_2^2 \int \frac{\phi_2^2 d\tau}{12\pi} + 2c_1 c_2 \int \frac{\phi_1 \phi_2 d\tau}{12\pi}$$

R. S. Mulliken, *J. Chem. Phys.* **1955**, *23*, 1833

... plus population analyses by Roby, Löwdin, Davidson, Jug, Ahlrichs, and others...

Simplest Population Analysis for σ_g -MO of H₂

the two hydrogen atoms share 0.78 electrons

1dim H-chain: Band Structure, DOS, COOP

without any doubt (I guess) the icon of solid-state quantum chemistry:

Crystal Orbital Overlap Population, COOP

Chair of Solid-Sta

$$N = \int_{A}^{\varepsilon_{\rm F}} \sum_{\substack{\mu \in A \\ \mu \in A}} \sum_{\substack{\mu \in A \\ \mu \in A}} P_{\mu\mu}(E) dE + \int_{A}^{\varepsilon_{\rm F}} 2 \sum_{\substack{\mu \in A \\ \mu \in A}} \sum_{\substack{\mu \in A \\ \mu \in A}} \sum_{\substack{\nu \in B \\ \nu \in B}} \operatorname{Re}[P_{\mu\nu}(E)S_{\mu\nu}] dE,$$

overlap populations
$$= \int_{A}^{\varepsilon_{\rm F}} \sum_{\substack{\mu \in A \\ \mu \in A}} \left(P_{\mu\mu}(E) + \sum_{\substack{B \neq A \\ \nu \in B}} \sum_{\substack{\nu \in B \\ \nu \in B}} \operatorname{Re}[P_{\mu\nu}(E)S_{\mu\nu}] \right) dE,$$

gross populations
$$= \int_{A}^{\varepsilon_{\rm F}} \sum_{\substack{\mu \in A \\ \mu \in A}} \sum_{\substack{B \\ \nu \in B}} \sum_{\substack{\nu \in B \\ \nu \in B}} P_{\mu\nu}(E)S_{\mu\nu} dE.$$

Schrödinger's Equation in the Solid State

$\hat{\mathbf{H}} \Psi(\boldsymbol{k},\boldsymbol{r}) = E \Psi(\boldsymbol{k},\boldsymbol{r})$

atomic-like

Bloch function of a one-dimensional Na crystal at the **X** point of reciprocal space

Richard Dronskowski

Computational Chemistry of Solid State Materials

WILEY-VCH

A Guide for Materials Scientists, Chemists, Physicists and others

DFT: Crystal Orbital Hamilton Population, COHP

$$= \int_{A}^{e_{\rm F}} \sum_{\substack{\mu \in A \\ \mu \in A}} P_{\mu\mu}(E) H_{\mu\mu}(E) dE +$$

net atomic energies
$$\int_{A}^{e_{\rm F}} 2\sum_{\substack{\mu \in A \\ \mu \in A}} \sum_{\substack{\nu \in B \\ \nu \in B}} \operatorname{Re}[P_{\mu\nu}(E) H_{\mu\nu}(E)] dE$$

bonding energies

050

partitioning the energy, not the electrons, between the atoms and the bonds... **Skoltech**

DFT: COHP for Diamond

Example I: sc Tellurium is Peierls-unstable

A. Decker, G. A. Landrum, R. Dronskowski, Z. Anorg. Allg. Chem. **2002**, 628, 295

Example II: body-centered cubic Fe

and its corresponding non-realistic LDA band structure without spin-polarization, on purpose:

Spin Polarization: Chemical Bonding

magnetic moment: 2.27 μ_B $(exp.: 2.21 \mu_B)$ majority spin orbitals contract minority spin orbitals expand lowering of total energy by about 0.43 eV strengthening of iron-iron bonding by about 5% minority spins roughly twice as strongly bonding as *majority* spins

Skoltech

G. A. Landrum, R. Dronskowski, *Angew. Chem. Int. Ed.* **2000**, *39*, 1560

Example III: Ge–Sb–Te Phase-change Materials

e.g., $Ge_2Sb_2Te_4$ with lots of Ge vacancies ($\approx 20\%$) – **why?** switching mechanism = *f*(vacancy nature)

Phase-change Materials: First COHP study

antibonding Ge–Te and Sb–Te interactions in the highest bands; germanium vacancies annihilate antibonding states

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen, R. Dronskowski, *Nature Mater*. **2007**, *6*, 122

Wigner–Seitz, Muffin-Tin, Atomic-Spheres

Tight-Binding Linear-Muffin-Tin Orbitals using the Atomic-Spheres-Approximation (ASA)

probably the most influential (among the chemists) periodic **orbital-based** electronic-structure method

Machinery: "Linear Methods" LAPW and LMTO

 $r_{\rm MT}$

O. K. Andersen, *Phys. Rev. B* **1975**, *12*, 3060

Hans Hellmann, J. Chem. Phys. <u>1935</u>, 3, 61

Emigration to the Soviet Union

Chair of Solid-State a **Quantum Chemistry**

The World's First Quantum-Chemistry Textbooks

Chair of

Solid-State and Quantum Chemistry

Retrieving the Chemistry

Traditionally: Tight-Binding LMTO-ASA (= densely packed atomic spheres)

Modern: countless program packages with plane waves (e.g., VASP)

Idea: local auxiliary basis set as template

LOBSTER does it for you...

Chair of Solid-State and Quantum Chemistry freely available at www.cohp.de

www.cohp.de

LOBSTER: A Tool to Extract Chemical Bonding from Plane-Wave Based DFT

Stefan Maintz,^[a] Volker L. Deringer,^[a] Andrei L. Tchougréeff,^[a,b,c] and Richard Dronskowski^{*[a,d]}

Skoltech

OPEN ACCESS

F

First LOBSTER school in 2017 by CECAM

Titanium (hcp): Comparison with LMTO

S. Maintz, V. L. Deringer,
A. L. Tchougréeff,
R. Dronskowski,
J. Comput. Chem. 2013, 34, 2557

Graphite and Nanotube Density-of-States

closely packed graphite: easy job for LMTO and other local-orbital methods

Chemical Bonding in the Carbon Nanotube

S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. **2016**, 37, 1030

... and in the Carbon Buckyball

Skoltech

"double" bond ca. 9% stronger than the "single" bond

LOBSTER extended basis sets (e.g, for beryllium)

Isosurfaces (in $Å^{-3}$) at 65% of the differences between the ABINIT-based PAW densities and the LOBSTER-projected densities for the fourth band of β -Be at Γ

1s, 2s

1s, 2s, 2p

available since LOBSTER 2.1.0

Lanthanide 58 46.12 59 469 460 42 46 1 140 70 136 60 142 6 1 140 70 156 60 142 6 10 140 70 156 64 1578 65 148.0

GeTe, a Phase-change Prototype

Synthesis: W. Klemm, G. Frischmuth, Z. Anorg. Allg. Chem. **1934**, 218, 249 Structure: K. Schubert, H. Fricke, Z. Naturforsch. **1951**, 6a, 781; J. Goldak, C. S. Barrett, D. Innes, W. Youdelis, J. Chem. Phys. **1966**, 44, 3323; T. Chattopadhyay, J. X. Boucherle, H. G. von Schnering, J. Phys. C: Solid State Phys. **1987**, 20, 1431

GeTe: crystalline and amorphous states

Why are there homopolar Ge–Ge Bonds?

V. L. Deringer, W. Zhang, M. Lumeij, S. Maintz, M. Wuttig, R. Mazzarello, R. Dronskowski, *Angew. Chem. Int. Ed.* **2014**, *53*, 10817

GeO₂ Surface Structures

Surface Energies (meV Å⁻²)

	Cleaved	Reconstructed
(001)	138	31
$(100)_{\alpha}$	114	26
$(100)_{\beta}$	135	74
(101)	110	42

Chair of

GeO₂ Surface Energies = f (Chemical Bonding)

Explosive copper azide

Acta Cryst. (1948). 1, 115 Die Kristallstruktur des einwertigen Kupferazids, CuN₃

VON HEINZ WILSDORF Institut für allgemeine Metallkunde, Göttingen, Deutschland

Solved and refined using estimated (!) X-ray intensities of the powder... $I4_1/a$, a = 8.653(1), c = 5.594(1) Å $Cu-N = 2 \times 2.23(1)$ & $2 \times 2.30(1)$ Å N-N = 1.17(1) Å with $D_{\infty h}$ shape **BOS(Cu) = 0.68**

A new explosive copper azide (β), graphene-like

Cmcm, a = 3.3635(7), b = 10.669(2), $c = 5.5547(11) \text{ Å}, R_1(I) = 0.025$ $Cu-N = 2 \times 1.999(2) \text{ \& } 1.910(4) \text{ Å}$ $N-N = 1.140(6) \text{ \& } 1.203(6) \text{ Å}, C_{\infty V}$

BOS(Cu) = 1.14

Calorimetry with a *very* **small sample ③**

X. Liu, J. George, S. Maintz, R. Dronskowski, Angew. Chem. Int. Ed. 2015, 54, 1954

ε-TiO, a never-seen-before Polymorph

Angewandte

GDCh

Communications

Polymorphism Hot Paper

International Edition: DOI: 10.1002/anie.201510479 German Edition: DOI: 10.1002/ange.201510479

ε-TiO, a Novel Stable Polymorph of Titanium Monoxide

Shinsaku Amano, Dimitri Bogdanovski, Hisanori Yamane,* Masami Terauchi, and Richard Dronskowski*

Angewandte

 α -TiO (monoclinic, defect rocksalt type) considered as ground state since mid 1960s; ϵ -TiO (hexagonal, ca. 4% more dense) grown from Bi melt

ε-TiO: DOS, total energy, and COHP

 α -TiO ϵ -TiO $E(eV)^{0}$ fio fio

 ε -TiO shows smaller DOS at Fermi level but no imaginary frequencies, favored by $\Delta H = 8 \text{ kJ mol}^{-1}$ vs. α -TiO; ε -TiO has **no** antibonding Ti–O levels, hence stronger Ti–O but weaker Ti–Ti bonds: ε -TiO = more salt-like, more stable oxide

Skoltech

S. Amano, D. Bogdanovski, H. Yamane, M. Terauchi, R. Dronskowski, *Angew. Chem. Int. Ed.* **2016**, *55*, 1652

Correlated Stuff: MnO and MnNCN

Mn₁

AFM2

W. L. Roth,

1958, *110*, 1333

Phys. Rev.

AFM charge densities based on GGA+U

obvious differences in "spheridicity" mirror chemistry

Mn–O versus Mn–N bonding: AFM case

contracted majority spin orbitals bond less strongly than the diffuse minority spin orbitals; carbodiimide more covalent by ca. 23% (band width); integrated COHP correctly indicates the true magnetic state

> R. Nelson, P. M. Konze, R. Dronskowski, *J. Phys. Chem. A* **2017**, 121, 7778

GeSe_{1-x}Te_x: Transport with GeI₄ at 400 °C

J. A. Muir, R. J. Cashman, Bull. Am. Phys. Soc. **1966**, *8*, 34

Chair of

Solid-State and Quantum Chemistry

Ge₄Se₃Te, Structure & TEM: Ge–Ge = 2.94 Å

Chair of

Solid-State and

Ge₄Se₃Te: layers & forces (DFT+dispersion)

nd mistry

Ge₄Se₃Te: pCOHP & DOE

M. Küpers, P. M. Konze, S. Maintz, S. Steinberg, A. M. Mio, O. Cojocaru-Mirédin, M. Zhu, M. Müller, M. Luysberg, J. Mayer, M. Wuttig, R. Dronskowski, *Angew. Chem. Int. Ed.* **2017**, *56*, 10204

$p > 100 \text{ GPa: } Na_2He = (Na^+)_2He(e^-)_2$

X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, V. L. Deringer, R. Dronskowski, X.-F. Zhou, V. Prakapenka, Z. Konôpková, I. Popov, A. I. Boldyrev, H.-T. Wang, *Nature Chem.* **2017**, *9*, 440

Summary

Population analysis: crystal-orbital overlap populations (COOP) & crystal-orbital Hamilton populations (COHP) well established

a) Crystal structure of Te is bonding-driven, a 3D Peierls distortion

 b) Itinerant magnets in "nonmagnetic" view: antibonding states yield ferromagnets; nonbonding states yield antiferromagnets – c) Bonding of phase-change materials determines their stoichiometry

Chemical-bonding information can eventually be projected from plane-wave calculations using an exact analytic algorithm, programmed into LOBSTER

Crystal defects, surfaces, molecular crystals, nanomaterials etc. can all be quantum-chemically studied, including C & Nanotube & Ti & amorphous GeTe & GeO₂ surfaces & H bonding & CuN₃ & TiO & MnNCN/MnO & Ge₄Se₃Te & carbons & Na₂He and so forth

(Inorganic) Solid State Chemistry

- I. Materials and Structure of Solids
- II. Synthesis
 III. Characterization
 IV. Nano and Hybrid Materials
 V. Theoretical Description
 VI. Functional Materials

WILEY-VCH

Edited by Richard Dronskowski, Shinichi Kikkawa, and Andreas Stein

Handbook of Solid State Chemistry

Volume 1–6

Happy Theorists & Experimentalists

Chair o

Emperor Karl and the Aachen Cathedral

