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FIG. 2: Des Cloizeaux’s e↵ective Hamiltonians for studied systems. The energies are shifted to
produce a zero trace.

FIG. 3: Left: Convergence of J constant with respect to the chain size. Orange color corresponds
to bidentate chain. Blue color represents a value of the J constant of the chain with 4 copper
atoms near the end of the chain. Black color denotes monodentate chain. Dashed line denoted
extrapolated result to 4 copper atoms. Right: Decay of the exchange constant beyond nearest-
neighbor approximation. Is the right graph needed or it is exessive?

center. For the bidentate chain, |J | drops more than by two orders of magnitude. Therefore,

the nearest-neighbor approximation is valid for this system.

E↵ective exchange constants computed for chains of di↵erent sizes converge very fast

with respect to the number of copper atoms. Figure 3 shows how J changes with respect

to the chain size. Bidentate chain shows nearly linear dependence, which can be explained

through the edge e↵ects. The chain with three copper centers fills one of the edges, and

4-copper chain fills both edges. An additional confirmation of this explanation comes from
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Outline
1. Spin-orbit coupling: What is it and why do we care? 
2. What makes a magnet?  
3. Theoretical tools for treating magnetic systems:       

      - How to handle electron correlation;  
      - How to compute SOCs; 
      - How to make sense out of numbers: Quantitative molecular orbital theory 
of spin-forbidden transitions; 
      - How to compute macroscopic properties. 
4. From molecules to materials: Coarse-graining strong correlation. 
5. Conclusions. 
 

Analysis: Extended NTOs

Example: tris(pyrrolylmethyl)amine Fe(II) complex,
quintet-quintet transition, EOM-EA-MP2

ω=0.87

cm�1 NTO integrals ⇥! Reduced matrix elements (exact)
hS||HSO

L�
||Si �31.79 + 224.48i �32.07 + 228.23i

hS||HSO
L0

||Si 0.04i 0.07i
hS||HSO

L+
||Si �31.79� 224.44i �32.07� 228.23i
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Spin in non-relativistic quantum mechanics

• Fermionic statistics leads to Pauli principle 
• Spin determines spatial part of the wfn and affects energies/properties: 

singlets are different from triplets

- +
Singlet Triplet

<Sz>=0 
<S2>=0

<Sz>=1 
<S2>=2

<Sz>=0 
<S2>=2

<Sz>=-1 
<S2>=2

�(x1, x2, . . . , xn) = ��(x2, x1, . . . , xn) = . . .
<latexit sha1_base64="UlMugwnm5xAvh82MbUnIchA3QQ0=">AAACKXicbVDNS8MwHE39nPOr6tFLcAgT6miroBdh6MXjBPcB6yhpmm1haVqSVDbG/h0v/iteFBT16j9iuvWgmw8CL++9H8nvBQmjUtn2p7G0vLK6tl7YKG5ube/smnv7DRmnApM6jlksWgGShFFO6ooqRlqJICgKGGkGg5vMbz4QIWnM79UoIZ0I9TjtUoyUlnyz6tX6tDz0HWvou5bHwlhJCw59fgKv4CnMXdfKEnPu7OqbJbtiTwEXiZOTEshR881XL4xxGhGuMENSth07UZ0xEopiRiZFL5UkQXiAeqStKUcRkZ3xdNMJPNZKCLux0IcrOFV/T4xRJOUoCnQyQqov571M/M9rp6p72RlTnqSKcDx7qJsyqGKY1QZDKghWbKQJwoLqv0LcRwJhpcst6hKc+ZUXScOtOGcV9+68VL3O6yiAQ3AEysABF6AKbkEN1AEGj+AZvIF348l4MT6Mr1l0ychnDsAfGN8/LZ+jjA==</latexit>

• States of different multiplicities cannot interact, e.g., transitions between 
singlets and triplets, are forbidden; 

• Different components of a multiplet are degenerate.



Spin-orbit coupling (SOC):

• Describes interaction of the magnetic moment of the moving electron with 
the orbital motion and the field due to the nucleus; 

• Is relatively weak in light elements, but:   
         - Splits the degeneracy within multiplets; 
         - Couples the states of different multiplicity causing intensity borrowing 
and spin-forbidden transitions; 
         - Creates barrier for reorienting spins (molecular magnetism). 

When relativity is turned on: Spin can interact with 
charge 

⇠ Z(r⇥ p) · s
|r|3 =

Z

|r3| (L · s)
<latexit sha1_base64="M8N/c43nA6kYXG/EpeXhuUKSvSU="></latexit>



Spin-orbit enables phenomena exploited in 

- Many spectroscopies;  
- Sensors and magneto-reception in birds;  
- Combustion (reactions with oxygen) and catalysis; 
- Photosensitezation, production of ROS (photodynamic therapy); 
- Photovoltaics (OLEDs);  
- Molecular magnetism.

OLED’s function depends on SOC 
between singlet and triplet excited 
states.
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Direct evidence of quantum coherence in a single-molecule magnet in a frozen solution is reported with

coherence times as long as T2 ¼ 630" 30 ns. We can strongly increase the coherence time by modifying

the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the

proton nuclear spins of both the molecule itself and, interestingly, also to those of the solvent. The clear

observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential

prerequisite for performing quantum computations.
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The key concept in quantum information processing is
that a quantum bit (qubit) may be not just 0 or 1, as in
ordinary computer bits, but an arbitrary superposition of 0
and 1. This means that any two-level system, that can be
put into a superposition state, is a qubit candidate [1]. The
required superposition state is created by electromagnetic
radiation pulses with a frequency corresponding to the
energy splitting between the two levels [Fig. 1(c)]. The
contribution of each of the two levels to the superposition
state has a cyclic dependence on the pulse length, leading
to so-called Rabi oscillations [1]. The observation of such
oscillations is a proof-of-principle for the viability of per-
forming quantum computations with a particular system.
Quantum computers will probably not be realized from
single atoms but will most likely utilize solid state devices,
such as superconducting junctions, semiconductor struc-
tures, or molecular magnets [1,2]. For these large systems
the quantum coherence decays fast, which drastically
shortens the time available for quantum computation.

Molecular magnets have been considered as qubits be-
cause they can be easily organized into large-scale ordered
arrays by surface self-assembly [3], and because they
possess excited electronic-spin states required for two-
qubit gate operations [4,5]. Single-molecule magnets
(SMMs) are exchange-coupled clusters with high-spin
ground states [6]. The Ising-type anisotropy creates an en-
ergy barrier toward magnetization relaxation [Fig. 1(b)],
and many fascinating quantum phenomena have been ob-
served in these systems, such as quantum tunneling of the
magnetization and quantum phase interference [6]. The
large splitting of the two lowest states of SMMs in zero
field (in principle) allows performing coherent spin ma-
nipulations without external magnetic field, which simpli-
fies any practical implementation. SMMs have also been
proposed for the implementation of Grover’s algorithm [2]
allowing numbers between 0 and 22S#2 to be stored in a
single molecule.

The long coherence time is a crucial first step towards
successful implementation of SMMs as qubits [1].

Therefore, recent years have seen a great deal of activity
in trying to determine the quantum coherence times in
SMMs, which was estimated to be of the order of 10 ns
[7–10]. In several cases, energy gaps between superposi-
tion states have been reported that are larger than the
expected decoherence energy scale [9,11,12]. The phase
memory or decoherence time of SMMs remains unre-
solved, although magnetization detected ESR studies using
pulsed microwave irradiation gave some indication of the
spin dynamics [13,14]. In the low-spin system ferritin, on
the other hand, there is evidence of quantum coherence
[15]. Using pulsed electron-spin resonance [16], spin-spin
relaxation or coherence times (denoted T2) were deter-
mined in several molecular magnets and metalloproteins
with S ¼ 1

2 ground states. In iron-sulfur clusters, for in-
stance, T2 is several hundreds of nanoseconds [17–19],
while in the Cr7Ni and Cr7Mn antiferromagnetic rings,
T2 $ 400 ns at 4.5 K, increasing to 3:8 !s for deuterated

FIG. 1 (color online). (a) Crystal structure of Fe4 with iron
ions depicted as large orange spheres. The arrows denote the
relative orientations of the magnetic moments of each iron ion in
the S ¼ 5 ground state. (b) Double-well potential energy dia-
gram depicting the energy barrier between spin-up and spin-
down. (c) Resonant photon-spin interaction (Rabi cycle) between
magnetic sublevels.
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Fe4 (S=5)  SMM as a qubit.



Single-molecule magnets and anti-ferromagnets 

Applications: Spintronics, high-density memory storage, quantum information 
science (qubits)



Examples of SMMs
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FIG. 3: Top: Structure of (tpa)Fe (C15N4H15Fe) in the hextet neutral state. Iron is shown in red,
nitrogens in blue, carbons in gray, and hydrogens in white. Bottom: The lowest spin-split levels
of quintet anionic (tpa)Fe�, showing a spin-reversal barrier U (the energy gap between the lowest
and the highest spin-split states within the ground state multiplet).

figurations of the two-dimensional irrep[101]. For example, the quintet anion (tpa)Fe� has

doubly degenerate states in C3 structures. Unlike C3v group, C3 group does not have planes

of symmetry, which would split a two-dimensional irrep into a symmetric and antisymmet-

ric irrep with respect to the plane. Therefore, the two Jahn–Teller states would not fall

into two di↵erent irreps, as it happens in the majority of symmetry-imposed degenerate

states[59, 71, 96–99]. The only Abelian subgroup of C3 is C1, therefore the two degenerate

states belong to the same irrep, giving rise to general conical intersection problem. As docu-

mented numerically[102] and theoretically[100], the description of true conical intersections

is problematic in EOM-CC due to the non-Hermitian nature of the theory. In our case

this leads to issues with finding left vectors at the symmetric geometry. To circumvent this

problem, we carried out calculations at slightly asymmetric geometry, coming from DFT

optimization (given in the SI). Although this geometry is asymmetric only within the mag-

nitude of a symmetry threshold, it leads to a small artificial energy splitting (⇠ 0.01 eV in

the EOM-EA calculation from a neutral reference) of the states that should be degenerate.

This artifact is small enough to be neglected in typical photochemical applications, but it

a↵ects the magnitude of spin–orbit splitting. To mitigate this issue, we average the energies

Fe(II) 



SMM with the largest ground-state spin

and FeIII. But even when employing all symmetries, this large spin
system with a Hilbert space dimension of 6.5 × 1016 cannot be
treated with any existing exact method.24,25 The theoretical
problem appears to be a challenge on its own. We thus explored
four approximations to model the system, namely (1) High-
Temperature Series Expansion (HTE), (2) Quantum Monte-Carlo
(QMC), (3) Classical Monte-Carlo (CMC) and (4) the Finite-
Temperature Lanczos Method (FTLM). None of these methods
alone is capable of modelling the thermodynamic behaviour of all
observables, but combined we can draw definitive conclusions.

DISCUSSION
The most recent HTE code of sixth order for mixed spin systems26–
28 yields exchange interactions J1= 1.0 K between Fe and Gd ions
and J2=−0.65 K between adjacent Fe ions. If one considers the
exchange between adjacent Gd ions, it turns out to be virtually
zero. Dipolar interactions do not play a role for temperatures T ≥
2.0 K.29 The resulting fit to the susceptibility is depicted by a black
solid curve in Fig. 2a. The HTE diverges for smaller temperatures
since the power series in 1/T terminates at some power, here six.
QMC calculations,30,31 on the other hand, can deliver thermo-
dynamic functions of huge spin systems as long as these systems
are not frustrated. If a system is geometrically frustrated, as in the
present case, QMC still works for high enough temperatures.
Therefore, we compared our QMC results with those from HTE as
well as with the data. As can be seen in Fig. 2a, the blue curve for
QMC exactly matches the HTE curve above about 15 K. For lower T
the QMC results do not converge, and are thus not shown. Also
CMC calculations should yield good results since the spin
quantum numbers of 5/2 for FeIII and 7/2 for GdIII are large and

thus a classical approximation is appropriate. The red curve in Fig.
2a demonstrates that this expectation is indeed met. In addition to
this good approximation at high temperatures, the maximum as
well as the low-temperature susceptibility are also nicely
reproduced with the same exchange constants. At the low
temperatures at which the magnetization was measured, high-
temperature methods are not applicable and CMC fails since
classical spins have a length of √(s(s+ 1)), which is not compatible
with the saturation magnetization. QMC, although limited due to
frustration, can be applied for high-enough magnetic fields since
in the presence of Zeeman splitting only a few low-lying levels are
accessible. The blue curves in Fig. 2b show that the parameteriza-
tion in terms of J1 and J2 indeed goes through the data points for
2 and 4 K, and for 4 K even to smaller fields since the higher
temperature improves convergence.
The opposite is true in terms of a modelling with the Finite-

Temperature Lanczos Method (FTLM).32,33 The method provides
very good approximations for thermodynamic functions up to
Hilbert space dimensions of 1010. So far, the largest system treated
using this approach was a GdIII12 cluster.34 However, for 1 the
Hilbert space is much larger and thus we only included subspaces
with total magnetic quantum number |M| > 45. This works well at
low enough temperatures and large enough fields, since the large
ferromagnetic ground state with S= 60 and the Boltzmann factor
both favour an improvement in the approximation. The result is
depicted by the red curves in Fig. 2b. The horizontal dotted line
marks the lowest magnetization down to which the calculation is
approximately still valid. FTLM does not work for χT vs T, since one
would need to consider all M-subspaces in this case.
The final result of our endeavour is that in 1 the exchange

interactions are J1= 1.00 K between neighbouring Fe and Gd ions
and J2=−0.65 K between adjacent Fe ions with an estimated
uncertainty of ±0.02 K. This immediately results in a ground state
with the maximal possible total spin of S= 60, as shown in the
scheme of low-lying levels (Supplementary Figure S4). The reason
for the large ground state spin is that the net interaction is
ferromagnetic. This might not seem immediately obvious, but can
be understood in terms of the quantum phase transition we now
describe. For a ferromagnetic J1 > 0 and J2= 0 it is obvious that all
spins must be aligned to the maximum possible total spin (Fig. 4).
However, with a competing J2 < 0 that is increasing in magnitude

Fig. 3 Scheme of the exchange pathways assumed for the Fe10Gd10
ring: Fe ions are displayed by blue, Gd ions by red bullets. Red
dashed lines show Fe–Gd interactions J1, blue lines mark Fe–Fe
interactions J2; Gd–Gd interactions turn out to be zero. The structure
corresponds to the one-dimensional delta or sawtooth-chain, that in
the case of Fe10Gd10 has a finite length of 10 with periodic boundary
conditions

Fig. 2 Magnetic susceptibility (a) and magnetization (b) for 1.
Symbols mark experimental data; curves reflect theoretical calcula-
tions, see text
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Fe10Gd10 magnet with S=60
RESULTS
Synthesis and structure
This cyclic coordination cluster system is synthesised from racemic
N,N-bis-(2-hydroxyethyl)amino-2-propanol (Me-teaH3), Fe(NO3)3
and Gd(NO3)3. The structures of some of these {Fe10Ln10}
compounds have been published and described previously.12,13

Ten {FeGd(Me-tea)(Me-teaH)(NO3)} units (Supplementary Figure
S1) are linked by pairs of alkoxo bridges to form the 20-membered
elliptical nano-torus in 1 (Fig. 1a), in which the FeGd units are
displaced alternately above and below the mean plane of the ring,
describing a wave-like chain structure reminiscent of a Bohr closed
standing wave (Fig. 1b). This nano-ellipse has a major diameter of
28.4 Å and minor diameter of 26.3 Å, and is 12.7 Å thick, based on
the van der Waals surfaces of the atoms (Fig. 1c). In other words, it
represents a molecular realisation of a well-defined nanoparticle
within the 1–3 nm size range.
Within each FeGd unit, the ligand chelating the GdIII ion retains

the hydroxyl proton on its methyl substituted arm, whereas the
ligand chelating the FeIII ion does not, resulting in strong H-
bonding between the two ligands (e.g., between O(3) and O(6) in
Supplementary Figure S1). This forces the two ligands within such
a unit to be of the same chirality, and in turn results in the ten
ligands over one face of the ellipse to be of the R enantiomer,
while those on the other side of the mean plane are S.12 This
arrangement of the enantiomeric forms of the ligands means that
the methyl groups can easily snuggle between the rest of the
organic parts of the ligands to give a rather rigid ligand shell (Fig.
1c).

Magnetic properties
The χT product for 1 (Fig. 2a, χ=M/B) at 300 K is consistent with
the value for 10+10 non-interacting FeIII (sFe= 5/2) and GdIII (sGd
= 7/2) ions with g≈2.0. For 1 the monotonic increase of the
susceptibility down to 3 K suggests the presence of ferromagnetic
interactions between FeIII and GdIII. In addition, the maximum of
the temperature dependence of the in-phase susceptibility (χ'T) of
745 cm3K/mol observed in 1 (Supplementary Figure S2) suggests a
ground state with a large total spin S of at least 38, assuming g =
2. The field dependence of the magnetization (Fig. 2b) at low
temperatures supports that the exchange interactions are
ferromagnetic. However, the magnetization curve at fields lower
than 20 kOe is offset compared with the Brillouin function
calculated for a single spin S= 60 with g = 2.0. This is in line
with the observation for the diamagnetic YIII system 2 that there is
a weak antiferromagnetic coupling between the FeIII centres,
which obviously only becomes significant at low temperatures
and small fields, compare Supplementary Figure S3.

Theoretical calculations and interpretation
The structure of the metal skeleton together with the possible
magnetic exchange interactions between the metal ions is
depicted in Fig. 3. We denote the nearest-neighbour exchange
interactions between each Gd and its adjacent Fe centres as J1 and
the next-nearest-neighbour interactions between adjacent Fe ions
as J2. The next-nearest-neighbour Gd–Gd interactions are approxi-
mated as zero, which appears reasonable for distant f-elements
and a posteriori turns out to be compatible with all observables. In
this configuration the iron atoms constitute the basal spins of the
delta chain, compare Fig. 3, whereas the Gd atoms play the role of
the apical spins. Depending on the sign and ratio of the two
exchange interactions, the delta chain can exhibit several very
unusual properties such as flat energy bands, extended magne-
tization plateaus, giant magnetization jumps as well as a quantum
phase transition along with pronounced magnetocaloric effects—
all driven by geometric frustration.14–22

Before discussing what makes the present compound so special
we set out to fit the magnetic observables with the following
Hamiltonian containing two Heisenberg terms describing the
interactions between the magnetic ions and a Zeeman term which
models the interaction with the external magnetic field.

Ĥ ¼ "2J1
P
i
~sGd ;i # ð~sFe;i"1þ ~sFe;iÞ

"2J2
P
i
~sFe;i #~sFe;iþ 1þ μBB

P
i
ðg Gd szGd ;i þ g FeszFe;iÞ

(1)

Although both FeIII and GdIII have half-filled electron shells they
might nevertheless possess non-vanishing single-ion anisotropy
tensors depending on their coordination. In the present case these
tensors circle around the ring structure and thus cancel to a large
extent.23 This is experimentally supported by the fact that no
hysteresis or ac signal has been found. Along this line, and in order
to keep the numerically favourable SU(2) symmetry, we assume
g Gd= g Fe= 2, which is a reasonable approximation both for GdIII

Fig. 1 a Structure of 1 (organic H-atoms omitted), b the 'standing-
wave' core (blue lines between Fe and Gd atoms to guide the eye, c
two space filling views of the Fe10Gd10 nano-torus. Colour scheme:
Fe= green, Gd= crimson, O= red, N= blue, C= dark grey, H= light
grey; H-bonds dashed pale blue lines, bonds between Fe and Gd to
bridging O orange

High spin cycles...
A Baniodeh et al.
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What makes an SMM?

Need to be able to be magnetized and retain magnetic state for some time 

• non-zero ground-state spin  
• magnetic anisotropy (non-degenerate components of a multiplet)

Quintet state: s=2 mz=-2,-1,0,1,2

No anisotropy (not a magnet) With anisotropy (can be a magnet)



mz      -2      -1       0      1      2

Fe(II) SMM (quintet state)

SOC

Magnetic field (Zeeman) H(Lz + gSz)
<latexit sha1_base64="G+WOZRP5+9m4nrptNP24+T24SXw=">AAACHHicbVDLSsNAFJ3UV42vqEs3g0WoCCVpBV0W3XThoqJ9QBvKZDpph04ezEyEGuJ/uPFX3LhQxI0Lwb9x0gYfrQcGzpxzL/fe44SMCmman1puYXFpeSW/qq+tb2xuGds7TRFEHJMGDljA2w4ShFGfNCSVjLRDTpDnMNJyRuep37ohXNDAv5bjkNgeGvjUpRhJJfWMyh2Mux6SQ8eFtQQWvz8XSe8WHsHBj32llEMIdb1nFMySOQGcJ1ZGCiBDvWe8d/sBjjziS8yQEB3LDKUdIy4pZiTRu5EgIcIjNCAdRX3kEWHHk+MSeKCUPnQDrp4v4UT93REjT4ix56jKdFEx66Xif14nku6pHVM/jCTx8XSQGzEoA5gmBfuUEyzZWBGEOVW7QjxEHGGp8kxDsGZPnifNcsmqlMqXx4XqWRZHHuyBfVAEFjgBVVADddAAGNyDR/AMXrQH7Ul71d6mpTkt69kFf6B9fAHdZZ9N</latexit>

L · S
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Zero-field splitting of multiplet 



Methodological challenges and solutions   

1. Robust and accurate black-box treatment of open-shell 
species: 

         - EOM-CC methods, Spin-Flip, RAS-SF, SF-DFT. 
2. Compute and analyze spin-related properties:  
         - method-agnostic theory for computing SOC; 
         - quantitative molecular orbital theory distilled from 
many-body calculations; 
          - framework for macroscopic properties. 
3. From molecules to materials:  
          - effective Hamiltonian approach for coarse-graining 
strong correlation.



-� +�

-+

Strong correlation: Bi-copper SMM example 

Degenerate frontier orbitals result in multi-configurational  
wave functions

Possible Ms=0 states: 

Spin-Flip method treats multi-configurational wfns in single-
reference formalism:

High-spin (Ms=1) reference state Low-spin (Ms=0) target states

RSF

Krylov, CPL 338 375  (2001); Krylov, Acc. Chem. Res. 39 83 (2006); Casanova, Krylov, PCCP 22 4326 (2020).



SF methods for SMMs

applicability of the HDvV model for the SMMs from our

benchmark set.

To investigate the electronic structure pattern of the Fe(III) ion in

a ligand field of various strength, we begin by considering three model

single-center Fe(III) systems: [Fe(Cl)6]
3!, ABI-m, and [Fe(CN)6]

3!. [Fe

(Cl)6]
3! and [Fe(CN)6]

3! represent weak- and strong-field cases,

respectively. Starting with a high-spin hextet reference state, we per-

form SF-TDDFT calculations (using ωPBEh/6-31G(d,p)) and analyze

the manifold of the computed S! 1 electronic states. The choice of

the level of theory (functional/basis set) is justified by our benchmark

calculations described below (Section 4.2). Here, our aim is to verify

the applicability of our SF protocol to describe the electronic structure

of the Fe(III) complexes within the strong field regime, where non-

Hund configurations appear at low energy, spoiling the HDvV model,

and to determine, on the basis of the NO analysis, whether the

ABIZOA complex (and other complexes shown in Figure 3) fall in the

weak field or the strong field category.

Table 1 shows energy gaps (ΔE), the number of effectively

unpaired electrons (nu,nl), and the expectation value of the bS
2
operator

(⟨bS
2
⟩) for the SF states of each model system (energy gaps are

reported with respect to the lowest SF state). The occupations of the

five frontier NOs (ni) for the lowest hextet and quartet states are

reported in Table 2. The respective NOs are shown in Figures S3–S5

in the SI (we show spin-orbitals). [Fe(Cl)6]
3! and [Fe(CN)6]

3! exhibit

two threefold degeneracies of the quartet states due to Oh symmetry.

As expected from the crystal-field theory, the hextet state with 5

unpaired electrons is the lowest SF state in [Fe(Cl)6]
3!. In contrast, in

[Fe(CN)6]
3! the quartet state appears 1.6 eV below the hextet state.

These patterns represent weak- and strong-field cases, respectively.

The ABI-m model system clearly shows a weak-field pattern, with the

F IGURE 3 Crystal structures of the binuclear (1–12) and tetranuclear (13–16) complexes with Fe(III) centers investigated in this study with
their Cambridge structural database names. Color code: Fe, orange; Cl, green; S, yellow; N, blue; C, gray; and O, red. Hydrogen atoms are not
shown.
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methods, provides a robust way of validating the applicability of
the HDvV model (and the Landé interval rule) for describing this
family of MM candidates.

III. Computational details
Fig. 3 and Fig. S1 (ESI†) show the experimental structures used
in calculations of singlet–triplet gaps of benchmark systems.
Table 1 provides their associated experimental exchange
coupling constants. Counterions were removed from all struc-
tures. The ferrocene group in the experimental PATFIA complex
was also removed (as in previous studies46,58), unless otherwise
specified.

Experimental geometries are used in all EOM-SF-CCSD and
SF-TDDFT calculations, unless otherwise specified. To test
possible effects of uncertainty of the structure, we also con-
sidered optimized structures of the high-spin triplet states of
BISDOW, PATFIA (without the ferrocene group), and CITLAT.
These optimizations were performed using the oB97X-D78

functional and all-electron cc-pVTZ basis. The results for
optimized structures are presented in ESI.†

In the tables below, we report singlet–triplet gaps, DEST,
defined as:

DEST = ES ! ET. (9)

within the HDvV model, DEST = J, by virtue of eqn (6).
We compared the following DFT functionals in the

SF-TDDFT calculations of DEST: LDA (with Slater exchange and
VWN correlation), several members of the Becke-exchange/LYP
correlation family: BLYP,79,80 B3LYP,81 and B5050LYP
(50% Hartree–Fock + 8% Slater + 42% Becke for exchange
and 19% VWN + 81% LYP for correlation).35 Of the P86
correlation (with Becke exchange) and PW91 families, we chose
the BP86, B3P86,82,83 PW91, and B3PW91 functionals.84–87

From the PBE family, we selected the PBE, PBE0 (75% PBE
and 25% Hartree–Fock exchange, 100% PBE correlation),
PBE50 (50% PBE and 50% Hartree–Fock exchange and 100%
PBE correlation), and oPBEh (80% PBE, 20% short-range
Hartree–Fock exchange and 100% long-range Hartree–Fock
exchange, PBE correlation) functionals.88,89 Of the Minnesota
family of functionals, we chose M06 (hybrid with 27% Hartree–
Fock exchange),90 M06-L (meta-GGA),90 GAM (GGA),91 MN15-L
(meta-GGA),92 and MN15 (hybrid with 44% Hartree–Fock
exchange and MN15 correlation).93 All of these functionals
(with the exception of GAM, MN15-L and MN15, which are
recent additions to the Minnesota family) have been extensively
benchmarked with SF-TDDFT for organic polyradicals, wherein
hybrid functionals such as PBE50, B5050LYP, and PBE0 were
shown to produce relative state energies approaching chemical
accuracy.34,35 In this paper, we present a similar error analysis
of collinear and non-collinear SF-TDDFT with the above
functionals in calculating energy gaps of binuclear copper
complexes.

We also present EOM-SF-CCSD/cc-pVDZ energy splittings for
selected complexes. The core electrons were frozen in all EOM
calculations. For all SF-TDDFT and EOM-SF-CCSD calculations,
we report only electronic energy separations between the singlet
and Ms = 0 triplet states (DEST).60 Because of the similarity of the

Table 1 Experimental exchange-coupling constants for eight binuclear
copper diradicals shown in Fig. 3

Complex J (cm!1) Ref.

BISDOW !382 50
CUAQAC02 !286 51
CAVXUS !19 52 and 53
PATFIA !11 54
Cu2Cl6

2! 0, !40 55
XAMBUI 2 56
YAFZOU 111 57
CITLAT 113 49

Fig. 3 Eight binuclear copper complexes included in this study. Structures are denoted with their Cambridge Structural Database names.107,108

Complexes 1, 3, 4, 6, and 7 have a charge of 2+; complex 2 is neutral; complex 5 has a charge of 2!; and complex 8 has a charge of 1+. The respective
Lewis structures are shown in Fig. S1 in ESI.†
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electronic structure of the singlet and triplet states in the case
of very weakly interacting electrons, we expect that both the
structures and vibrational frequencies of the two states are
very close.

We performed density and wave function analysis using the
libwfamodule44 contained in the Q-Chem electronic structure
package.94,95 We analyzed singlet and triplet states of all eight
benchmark complexes at the PBE50/cc-pVDZ level of theory,
and six of the eight complexes (BISDOW, CUAQAC02, Cu2Cl6

!,
XAMBUI, YAFZOU, and CITLAT) at the EOM-SF-CCSD/cc-pVDZ
level of theory. PBE50, B97, and LDA functionals were used with
the non-collinear SF-TDDFT kernel35,96,97 in the analysis of
CUAQAC02. Collinear SF-TDDFT with the B5050LYP functional,
which was recommended in the original SF-TDDFT paper,34

was also used in the density analysis of CUAQAC02. We also
present frontier natural orbitals of the full experimental struc-
ture of the PATFIA complex, which includes a ferrocene group,
at the collinear SF-TDDFT/cc-pVDZ level with the B5050LYP
functional. We compare these results to those obtained from
the simplified structure without the ferrocene group.

We compared the performance of Dunning’s cc-pVDZ and
cc-pVTZ all-electron basis sets for all eight complexes and
several functionals. Table S1 in the ESI† provides an atom-by-
atom description of the effective core potentials (ECPs) and
matching basis functions used in our study. Included are
LANL2DZ (a non-relativistic ECP calibrated with Hartree–Fock
total energies),98 SRSC (a relativistic ECP fitted with all electron-
eigenvalues and charges),99 and CRENBL (a relativistic ECP
fitted with Hartree–Fock valence orbital energies).100,101 Also
included is the ECP10MDF pseudopotential,102,103 a relativistic
ECP designed to reproduce valence energy spectra. ECP10MDF
has been shown to perform well in the EOM-CCSD analysis of
small copper compounds.104,105

We performed all calculations with the Q-Chem electronic
structure package.94,95 Molecular orbitals were rendered using
IQmol106 and natural orbitals were rendered using Jmol.

IV. Results and discussion
A. The comparison of singlet–triplet gaps computed by
different methods

We begin by comparing computed singlet–triplet gaps against
experimentally derived exchange-coupling constants. Mean absolute
errors (MAEs) for each DFT functional and EOM-SF-CCSD are
presented in Fig. 4. Tabulated mean errors (ME), mean absolute
errors (DMAE), and standard deviations of the error (DSTD) are
provided in the ESI† for the non-collinear kernel, the PBE0,
PBE50, and B5050LYP functionals, and various all-electron basis
sets and ECPs.

Hybrid functionals—in particular, LRC-oPBEh, PBE0,
PBE50, and B5050LYP—outperform LDA and GGA functionals
and approach the accuracy of EOM-SF-CCSD. As will be shown
in subsequent sections, errors against the experiment are non-
uniform among antiferromagnetic (AF) and ferromagnetic (F)
complexes and the functionals and kernels that yield the
closest agreement with experiment and EOM-SF-CCSD vary
depending on the sign of J (i.e., whether the complex exhibits
a singlet or triplet ground state). Although the lowest MAE is
observed for the MN15 functional, energy differences between
the high-spin triplet reference and the Ms = 0 component of the
triplet state are often large (on the order of 2 eV, in contrast
with typical values of 0.1–0.2 observed for other functionals,
see, for example, Table S2 in ESI†) and spin-contamination of
target states high, ranging between 0.01 and 0.33, whereas
for other functionals such as B5050LYP and PBE50, spin-
contamination is typically within 0.01–0.02. M06 shows larger
errors relative to MN15. Compared to B5050LYP, M06 MAE is
almost three times larger, likely because of a too-small fraction
of the exact exchange (27%).

The non-collinear kernel outperforms the collinear
SF-TDDFT kernel for all functionals, with the exception of
hybrids PBE50 and B5050LYP, where the collinear kernel shows
modest improvement. For GGA functionals, use of the collinear

Fig. 4 Mean absolute error (MAE) in the singlet–triplet gap for the eight copper benchmark systems. Error relative to experimental values of the
exchange-coupling constant, J, are presented for 18 density functionals and EOM-SF-CCSD. The all-electron cc-pVDZ basis set was used for all atoms.
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unpaired electrons in nearly degenerate orbitals, and multi-

configurational character of the resulting spin states. For these rea-

sons, accurate determination of exchange constants is important,

because small differences can change the ground state spin of the

molecule.99 The combination of a reliable SF-DFT method with a low-

cost post-processing tool for extracting all J-values allows us to inves-

tigate the multi-configurational character of the spin states and to

capture the nature of the magnetic exchange interactions between

the metal centers.

As described in Section 3, we follow the framework developed by

Mayhall and Head-Gordon.39 First, we perform a single SF calculation

(with ωPBEh/6-31G(d,p)) using a high-spin reference (S = 10). The cal-

culation yields S = 9 states whose ⟨bS
2
⟩ values are close to 90 showing

small spin contamination (between 0.02 and 0.38). Second, we project

the eigenstates onto the neutral determinant basis and construct an

effective Hamiltonian from the 4 lowest single spin-flipped states and

their energies. Third, we extract exchange constants by mapping the

effective Hamiltonian to the HDvV model. Additional details on May-

hall's approach (translated into a post-processing Python script) and a

sample input for running Q-Chem calculations when combined with

the parameterization of the HDvV Hamiltonian are given in the SI.

Complexes 13 and 14 have star-like structures (left panel of

Figure 8) and the experimental fits81,82 show a predominant exchange

interaction between the central and three peripheral irons. Complexes

15 and 16 feature a butterfly-like core (right panel of Figure 8) with

four dominant wing-body interactions (Jwb) and two much smaller

interactions—one body-body (Jbb) and one wing-wing (Jww).
83,84 In the

fitting of the experimental susceptibility data to the HDvV model, sim-

plified spin Hamiltonians were adopted in which all dominant

exchange interactions were constrained to the same value. For exam-

ple, for butterfly-like SMMs, Jww-couplings were assumed to be zero

and all Jwb were constrained to have the same value.83,84 In contrast,

our procedure enables the determination of all individual exchange

interactions without assuming simplified HDvV models.

For the lowest target S = 9 states, the occupations of the frontier

NOs is close to 1 and the deviation of the number of unpaired elec-

trons (nu,nl) from 20 is small, that is, less than 0.04, consistent with the

low exchange interaction regime for which the HDvV model is a good

approximation. These examples illustrate the utility of such calcula-

tions and the NOs analysis in validating the simplified HDvV models

used for fitting macroscopic properties of multi-nuclear transition-

metal complexes.

It is cumbersome to visualize and analyze the large number of fron-

tier natural orbitals (20α and 20β NOs) involved in these systems. Thus,

F IGURE 5 Mean absolute error (MAE) of J-couplings calculated
using different functionals relative to experimental values for
12 binuclear Fe(III) systems. The 6-31G(d,p) basis set was used for all
atoms.

F IGURE 6 Theoretical versus experimental J-couplings for
functionals with MAE < 10 cm!1. The black line shows the perfect
match.

F IGURE 7 MAE of the J-couplings computed using different basis
sets with the ωPBEh functional for the 12 iron (III) binuclear systems.
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• SF-TDDFT is robust and yields accurate J-couplings 
(energy gaps) and densities 

• wPBEh functional consistently delivers the best 
performance 



Methodological challenges and solutions   

1. Robust and accurate black-box treatment of open-shell 
species: 

         - EOM-CC methods, Spin-Flip, RAS-SF, SF-DFT. 
2. Compute and analyze spin-related properties:  
         - method-agnostic theory for computing SOC; 
         - quantitative molecular orbital theory distilled from 
many-body calculations; 
          - framework for macroscopic properties. 
3. From molecules to materials:  
          - effective Hamiltonian approach for coarse-graining 
strong correlation.



Theory of SOCs: State-interaction approach   

Breit-Pauli Hamiltonian:

8

though the standard formulation of EOM-CC[51] does not involve explicit spin-adaptation,

the CC/EOM-CC states are spin pure when closed-shell reference is used. For example,

EOM-IP/EA wave-functions of doublet states are naturally spin-adapted, even when spin

symmetry is not explicitly enforced. For closed-shell references, even in in spin-orbital im-

plementations, the spin-symmetry can be exploited in the same fashion as permutational

or point-group symmetries, at the level of tensor library[72]. Only when open-shell refer-

ences are used in EOM calculations, for example, in spin-flip calculations or in EOM-EE

calculations using doublet references, spin contamination becomes an issue[71]. Recently, we

discussed the impact of spin contamination on SOCs between the singlet and triplet states

of the Cvetanovič diradicals[73]. By using an approximate a posteriori spin-projection tech-

nique, we have shown[73] that in these species the impact of spin contamination on SOCCs

is small, i.e., less than 1 cm�1.

B. Spin properties of operators

In wave function approaches spin is usually described as a property of the wave function.

However, one can consider properties of a spin operator Ŝ alone. It has three Cartesian

components and transforms under rotations as a vector. Operators involving spin may obey

other transformation rules. For example, the Ŝ2 operator, formed as a dot product of the

two spin operators, is a scalar operator: it has only one component and it does not change

upon the rotation of the coordinate frame. The spin–orbit operator of the BP Hamiltonian

is

HSO

BP
=

1

2c2

 
X

i

h
SO(i) · s(i)�

X

i 6=j

h
SOO(i, j) · (s(i) + 2s(j)

!
, (8)

h
SO =

X

K

ZK(ri �RK)⇥ pi

|ri �RK |3
=
X

K

Zk

r3
iK

(riK ⇥ pi), (9)

h
SOO(i, j) =

(ri � rj)⇥ pi

|ri � rj|3
=
X

i 6=j

1

r3
ij

(rij ⇥ pi), (10)

where the coordinates and momenta of electron i are denoted by ri and pi, the charge and

coordinates of nucleusK are denoted by ZK andRK , and the relative coordinates of electron

i and electron j or nucleus K are denoted by rij and riK . Because of the dot product, the
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Figure 3: Splitting of the quintet ground state of Fe[C(SiMe3)3]2 under the SO coupling effects.

Magnetization and Susceptibility

We compute magnetization for a field H oriented parallel and perpendicular to the C3 rotational

axis. Powder magnetization (Mav) is computed using the REPULSION integration scheme.7

Fig. 4 shows calculated field-dependent magnetization plots. The saturation magnetization is

3.24 µb, as determined from magnetization data collected at 1.8 K and 7 T in Ref. [1], which

is in reasonable agreement with the calculated value of 3.07 µb.

Figure 4: Calculated M versus H/T plots at low temperature (T = 1.8 K). Magnetization is in Bohr

magneton (µb) units.

Fig. 5 illustrates magnetization curves that are obtained for a fixed field (H from 1 to 7 T) by

varying the temperature (from 2 to 5 K). Both experimental (right panel of Fig. 5 from Ref. [1])

and calculated data of this work (left panel of Fig. 5) exhibit a certain separation between the

isofield curves, indicative of magnetic anisotropy.

We compute main susceptibility values (�
Xm

, �
Ym

, and �
Zm

) by diagonalization of the suscep-

HBP Spin-orbit-
perturbed 
states 

non-relativistic 
zero-order 
states

Epifanovsky, Klein, Stopkowicz, Gauss, Krylov, JCP 143 064102 (2015);  Pokhilko, Epifanovsky, Krylov, JCP 151 034106 
(2019); Pokhilko, Krylov, JPCL 10 4857 (2019);  Krylov, JCP 153 080901 (2020); Kotaru, Pokhilko, Krylov, JCP 157 
224110 (2022). 

Our implementation is based 
on Wigner theorem, reduced 
density matrices,  and natural 
orbitals: 
      - ansatz-agnostic;  
      - rigorous molecular 
orbital picture distilled from 
many-body calculations. 
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FIG. 3: Top: Structure of (tpa)Fe (C15N4H15Fe) in the hextet neutral state. Iron is shown in red,
nitrogens in blue, carbons in gray, and hydrogens in white. Bottom: The lowest spin-split levels
of quintet anionic (tpa)Fe�, showing a spin-reversal barrier U (the energy gap between the lowest
and the highest spin-split states within the ground state multiplet).

figurations of the two-dimensional irrep[101]. For example, the quintet anion (tpa)Fe� has

doubly degenerate states in C3 structures. Unlike C3v group, C3 group does not have planes

of symmetry, which would split a two-dimensional irrep into a symmetric and antisymmet-

ric irrep with respect to the plane. Therefore, the two Jahn–Teller states would not fall

into two di↵erent irreps, as it happens in the majority of symmetry-imposed degenerate

states[59, 71, 96–99]. The only Abelian subgroup of C3 is C1, therefore the two degenerate

states belong to the same irrep, giving rise to general conical intersection problem. As docu-

mented numerically[102] and theoretically[100], the description of true conical intersections

is problematic in EOM-CC due to the non-Hermitian nature of the theory. In our case

this leads to issues with finding left vectors at the symmetric geometry. To circumvent this

problem, we carried out calculations at slightly asymmetric geometry, coming from DFT

optimization (given in the SI). Although this geometry is asymmetric only within the mag-

nitude of a symmetry threshold, it leads to a small artificial energy splitting (⇠ 0.01 eV in

the EOM-EA calculation from a neutral reference) of the states that should be degenerate.

This artifact is small enough to be neglected in typical photochemical applications, but it

a↵ects the magnitude of spin–orbit splitting. To mitigate this issue, we average the energies

Examples: Fe(II) SMMs with large spin-reversal 
barriers

Dr. Pavel Pokhilko Dr. Maristella Alessio

Pokhilko, Epifanovsky, Krylov, JCP 151 034106 (2019); Alessio, Krylov, JCTC  17 4225  (2021).
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figurations of the two-dimensional irrep[101]. For example, the quintet anion (tpa)Fe� has

doubly degenerate states in C3 structures. Unlike C3v group, C3 group does not have planes

of symmetry, which would split a two-dimensional irrep into a symmetric and antisymmet-

ric irrep with respect to the plane. Therefore, the two Jahn–Teller states would not fall

into two di↵erent irreps, as it happens in the majority of symmetry-imposed degenerate

states[59, 71, 96–99]. The only Abelian subgroup of C3 is C1, therefore the two degenerate

states belong to the same irrep, giving rise to general conical intersection problem. As docu-

mented numerically[102] and theoretically[100], the description of true conical intersections

is problematic in EOM-CC due to the non-Hermitian nature of the theory. In our case

this leads to issues with finding left vectors at the symmetric geometry. To circumvent this

problem, we carried out calculations at slightly asymmetric geometry, coming from DFT

optimization (given in the SI). Although this geometry is asymmetric only within the mag-

nitude of a symmetry threshold, it leads to a small artificial energy splitting (⇠ 0.01 eV in

the EOM-EA calculation from a neutral reference) of the states that should be degenerate.

This artifact is small enough to be neglected in typical photochemical applications, but it

a↵ects the magnitude of spin–orbit splitting. To mitigate this issue, we average the energies

22

U

E

S�2 �1 0 +1 +2

FIG. 3: Top: Structure of (tpa)Fe (C15N4H15Fe) in the hextet neutral state. Iron is shown in red,
nitrogens in blue, carbons in gray, and hydrogens in white. Bottom: The lowest spin-split levels
of quintet anionic (tpa)Fe�, showing a spin-reversal barrier U (the energy gap between the lowest
and the highest spin-split states within the ground state multiplet).

figurations of the two-dimensional irrep[101]. For example, the quintet anion (tpa)Fe� has

doubly degenerate states in C3 structures. Unlike C3v group, C3 group does not have planes

of symmetry, which would split a two-dimensional irrep into a symmetric and antisymmet-

ric irrep with respect to the plane. Therefore, the two Jahn–Teller states would not fall

into two di↵erent irreps, as it happens in the majority of symmetry-imposed degenerate

states[59, 71, 96–99]. The only Abelian subgroup of C3 is C1, therefore the two degenerate

states belong to the same irrep, giving rise to general conical intersection problem. As docu-

mented numerically[102] and theoretically[100], the description of true conical intersections

is problematic in EOM-CC due to the non-Hermitian nature of the theory. In our case

this leads to issues with finding left vectors at the symmetric geometry. To circumvent this

problem, we carried out calculations at slightly asymmetric geometry, coming from DFT

optimization (given in the SI). Although this geometry is asymmetric only within the mag-

nitude of a symmetry threshold, it leads to a small artificial energy splitting (⇠ 0.01 eV in

the EOM-EA calculation from a neutral reference) of the states that should be degenerate.

This artifact is small enough to be neglected in typical photochemical applications, but it

a↵ects the magnitude of spin–orbit splitting. To mitigate this issue, we average the energies

Experiment: Freedman, Harman, Harris, Long, Chang, Long, JACS 132 1224 (2010). 

Fe(II) SMM

Fe(II):  d6

Method: EOM-EA-MP2/cc-pVDZ

El. multiplets Barrier, cm-1

2 173

3 158

5 157

Experiment: 158 cm-1

8

and spin-flip[? ? ] (EOM-SF-CCSD) variants, R̂ comprises 1h1p (one-hole-one-particle)

and 2h2p (two-holes-two-particles) operators. In the ionization[? ? ] (EOM-IP-CCSD)

and electron-attached[? ] (EOM-EA-CCSD) variants, R̂ comprises 1h, 2h1p and 1p, 1h2p

operators, respectively.

8

states of methylethylgalium were described by EOM-EA-CCSD from the closed-shell cationic

reference; these calculations were carried out at the doublet state geometry optimized with

!B97X-D (given in SI).

(1) (2)

(3)

FIG. 1: Top, left: schematic picture of the hextet reference of (tpa)Fe. Electron attachment is
shown by dashed lines. The attachments to the orbitals (1) and (2) generate the leading configura-
tions of the doubly degenerate quintet ground state of the anion, (tpa)Fe�. These electronic states
are denoted as State 1 and State 2 later. The attachment to the orbital (3) gives the leading config-
uration of the non-degenerate State 3. Top, right: schematic picture of electron attachment to the
EtMeGa+ closed-shell reference, generating the leading configurations of the two lowest doublets
of the neutral EtMeGa molecule. Bottom: considered geometries of the considered systems.

We consider the three lowest quintet states of (tpa)Fe�. The generation of these states is

depicted schematically in Figure 1. The ground state quintet is doubly degenerate because of

point-group symmetry (C3); these states are denoted as State 1 and 2. The non-degenerate

quintet is denoted as State 3. We have shown [37] recently that taking into account only these

three states leads to the spin-reversal barrier, close to the experimental value [43]. Figure 2
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degenerate states. The singular values of the remaining NTOs are by two orders of magnitude

smaller than of those shown in Figure 2.

Table I illustrates how well the leading NTO pair represents the reduced spin–orbit matrix
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FIG. 1: Left: Structure of (tpa)Fe (C15N4H15Fe). Iron is shown in red, nitrogens in blue, carbons
in gray, and hydrogens in white. Right: Frontier MOs and electronic configuration of the d5 hextet
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gives rise to degenerate states 1 and 2 and attachment to the next MO gives rise to state 3.
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are denoted as State 1 and State 2 later. The attachment to the orbital (3) gives the leading config-
uration of the non-degenerate State 3. Top, right: schematic picture of electron attachment to the
EtMeGa+ closed-shell reference, generating the leading configurations of the two lowest doublets
of the neutral EtMeGa molecule. Bottom: considered geometries of the considered systems.
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FIG. 2: Left: Structure of the methylethylgalium (EtMeGa) radical (GaC3H8). Gallium is shown
in pink, carbons in gray, and hydrogens in white. Right: Electronic configuration of the closed-shell
cationic reference and relevant target states. The target states are obtained by electron attachment
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To illustrate the analysis, we consider tris(pyrrolylmethyl)amine Fe(II) complex (which we

hereafter denote as (tpa)Fe�), exhibiting a large spin-reversal barrier[? ], and methylethyl-

galium (EtMeGa) radical; their structures are shown in Figures 1 and 2, respectively. To

describe quintet states of (tpa)Fe�, we used EOM-EA-MP2/cc-pVDZ from d5 hextet refer-

ence (Fig. 1, right panel). In this calculation, we used the same geometry and followed the

same protocol as in Ref. [? ]. The relevant states of methylethylgalium were described by

EOM-EA-CCSD from the closed-shell cationic reference (Fig. 2, right panel); these calcula-

tions were carried out at the doublet state geometry optimized with !B97X-D (given in the

SI).

We consider the three lowest quintet states of (tpa)Fe�. The character of these states is

depicted schematically in Figure 1. The ground state state is a doubly degenerate quintet

because of point-group symmetry (C3); we refer to these states as State 1 and 2. The



Connection to macroscopic properties  

Magnetization: Response to external magnetic field H
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1.2 Magnetic Properties

When a sample is perturbed by an external field (H), its magnetization (M) is related to its

energy variation through

M = -
@E

@H
(2)

The magnetization is then related to the field though

� =
@M

@H
, (3)

where � is the susceptibility.

For a certain temperature T , energy levels EnH are populated according with the Boltzmann

distribution law. The molar magnetization is then obtained by summing each @EnH
@H weighted

by the Boltzmann factor pnH = e
EnH

/kT
/Z, which leads to

M = N

X

n

✓
-
@EnH

@H

◆
pnH , (4)

where Z is the partition function, equaling
P

n e
-EnH

/kT . Energies, Boltzmann factors, and

partition function depend on the field, e.g. in spherical coordinates Z = Z(H, ✓,').

We can now write:

@lnZ(H)

@H
=

1
kT

✓
-
@EnH

@H

◆
pnH (5)

which leads to

M(H) = NkT
@lnZ(H)

@H
, (6)

and

�(H) = NkT
@

2
lnZ(H)

@H2 (7)

We compute these derivatives numerically using finite central formula and �H = 0.001 T. One

can perform numerical differentiation with respect to each Cartesian component (H↵ with

↵ = x,y, z), and thus, derive magnetization vector and susceptibility tensor for a fixed field

orientation. Alternatively, one can compute them with respect to the field magnitude, which will

be useful for the powder averaging.
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Powder Magnetization and Susceptibility: [(tpa)Fe(II)]- Complex

This work computes magnetization vector and susceptibility tensor for a fixed magnetic field

orientation. In addition, we compute powder magnetization and susceptibility using the RE-

PULSION integration scheme.1 We apply our computational strategy on a mono-nuclear Fe(II)

complex for which both experimental2 and theoretical3–5 data exist.

1 Methods

Our starting point are zero-order states,  (0)
n and their energies E

0
n, which are obtained from

non-relativistic EOM-CC calculations. The energies E
0
n form a diagonal matrix of the unper-

turbed Hamiltonian (Ĥ0). We include the effect of spin-orbit (SO) coupling and compute the

matrix of the SO operator (ĤSO) following Pokhilko and Krylov’s protocol.4,5 Under the com-

bined action of SOC and external magnetic field, we solve the eigenvalue equation for the

perturbed Hamiltonian (Ĥ = Ĥ
0 + Ĥ

SO + Ĥ
Z), where Ĥ

Z is the Zeeman operator and will be

discussed in the next section.

1.1 Zeeman Perturbation

We consider an external field of magnitude H in the direction given by the vectors (nx,ny,nz):
~H = H(nx~ex+ny~ey+nz~ez). In spherical coordinates: nx = sin(✓)cos('), ny = sin(✓)cos('),

and nz = cos(✓). Using these equations, we can evaluate (nx,ny,nz) for any pair of ✓ and ',

which allows derivation of angular dependent magnetization and susceptibility, M(H, ✓,') and

�(H, ✓,'), and will be useful for the averaging procedure.

For the so-defined external field ~H, the Zeeman operator is:

Ĥ
Z = µBH

�
nx

�
geŜx + L̂x

�
+ny

�
geŜy + L̂y

�
+nz

�
geŜz + L̂z

��
(1)

Using zero-order states, we compute matrix elements of the Zeeman operator, h (0)
n |ĤZ| 

(0)
n i,

and solve the eigen-problem for the perturbed Hamiltonian (Ĥ = Ĥ
0 + Ĥ

SO + Ĥ
Z). In practice,

we diagonalize the matrix of the perturbed Hamiltonian, which yields SO- and field-perturbed

eigenvalues (EnH) and eigenvectors (C).

page 2 of 7

1.2 Magnetic Properties

When a sample is perturbed by an external field (H), its magnetization (M) is related to its

energy variation through

M = -
@E

@H
(2)

The magnetization is then related to the field though

� =
@M

@H
, (3)

where � is the susceptibility.

For a certain temperature T , energy levels EnH are populated according with the Boltzmann

distribution law. The molar magnetization is then obtained by summing each @EnH
@H weighted

by the Boltzmann factor pnH = e
EnH

/kT
/Z, which leads to

M = N

X

n

✓
-
@EnH

@H

◆
pnH , (4)

where Z is the partition function, equaling
P

n e
-EnH

/kT . Energies, Boltzmann factors, and

partition function depend on the field, e.g. in spherical coordinates Z = Z(H, ✓,').

We can now write:

@lnZ(H)

@H
=

1
kT

✓
-
@EnH

@H

◆
pnH (5)

which leads to

M(H) = NkT
@lnZ(H)

@H
, (6)

and

�(H) = NkT
@

2
lnZ(H)

@H2 (7)

We compute these derivatives numerically using finite central formula and �H = 0.001 T. One

can perform numerical differentiation with respect to each Cartesian component (H↵ with

↵ = x,y, z), and thus, derive magnetization vector and susceptibility tensor for a fixed field

orientation. Alternatively, one can compute them with respect to the field magnitude, which will

be useful for the powder averaging.

E is energy of the system perturbed by 
the field

1. Solve                                           with

to find perturbed state energies EnH 

2. Compute Boltzmann populations 

 3. Take derivative:
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4. Average as appropriate.

and partition  function Z=

Ĥ
Z
= µBH(geŜ+ L̂)
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Powder Magnetization and Susceptibility by Numerical Integration

1 Partition function and its derivative

Z =
X
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e
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H
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The derivative of a logarithmic function, f(x) = ln[g(x)], is df(x)/dx = dln[g(x)]/dx = (1/g(x))dg(x)/dx.
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From microscopic properties to macroscopic 
observables: Fe(II) SMM

Atanasov, Ganyushin, Pantazis, Sivalingam, Neese, Inorg. Chem. 50 7460 (2011);  
Freedman, Harman, Harris, Long, Chang, Long, JACS 132 1224 (2010). 

Black: our calculations 
(EOM-EA-MP2) 
Red: experiment 
Other: Neese and co-
workers (NEVPT2)
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FIG. 3: Top: Structure of (tpa)Fe (C15N4H15Fe) in the hextet neutral state. Iron is shown in red,
nitrogens in blue, carbons in gray, and hydrogens in white. Bottom: The lowest spin-split levels
of quintet anionic (tpa)Fe�, showing a spin-reversal barrier U (the energy gap between the lowest
and the highest spin-split states within the ground state multiplet).

figurations of the two-dimensional irrep[101]. For example, the quintet anion (tpa)Fe� has

doubly degenerate states in C3 structures. Unlike C3v group, C3 group does not have planes

of symmetry, which would split a two-dimensional irrep into a symmetric and antisymmet-

ric irrep with respect to the plane. Therefore, the two Jahn–Teller states would not fall

into two di↵erent irreps, as it happens in the majority of symmetry-imposed degenerate

states[59, 71, 96–99]. The only Abelian subgroup of C3 is C1, therefore the two degenerate

states belong to the same irrep, giving rise to general conical intersection problem. As docu-

mented numerically[102] and theoretically[100], the description of true conical intersections

is problematic in EOM-CC due to the non-Hermitian nature of the theory. In our case

this leads to issues with finding left vectors at the symmetric geometry. To circumvent this

problem, we carried out calculations at slightly asymmetric geometry, coming from DFT

optimization (given in the SI). Although this geometry is asymmetric only within the mag-

nitude of a symmetry threshold, it leads to a small artificial energy splitting (⇠ 0.01 eV in

the EOM-EA calculation from a neutral reference) of the states that should be degenerate.

This artifact is small enough to be neglected in typical photochemical applications, but it

a↵ects the magnitude of spin–orbit splitting. To mitigate this issue, we average the energies
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Using magnetic NTOs to understand trends in spin-
reversal barriers in Fe(II) SMMs

U=173 cm-1 U=346 cm-1

Why the barriers are so different?  
Look at NTOs connecting spin-orbit coupled states to 
understand different magnitude SOCs. 



Magnetic NTOs in Fe(II) SMMs

• NTOs show different change in angular momentum - different SOC; 
• Quantitative MO picture of the SOC: El-Sayed rules distilled from 

many-body wave-functions (EOM-EA-MP2) explain difference in spin-
reversal barriers.

[ ( 3)3]2

•
• [ ( 3)3]

+
2

5

• [ ( 3)3]2 6

State 1, hole (d     ) x2-y2 State 2, particle (dxy) 

4

Analysis: Extended NTOs

Example: tris(pyrrolylmethyl)amine Fe(II) complex,
quintet-quintet transition, EOM-EA-MP2

ω=0.87

cm�1 NTO integrals ⇥! Reduced matrix elements (exact)
hS||HSO

L�
||Si �31.79 + 224.48i �32.07 + 228.23i

hS||HSO
L0

||Si 0.04i 0.07i
hS||HSO

L+
||Si �31.79� 224.44i �32.07� 228.23i
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U=173 cm-1

U=346 cm-1

�L ⇡ 1
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(1972). 

⇠ Z(r⇥ p) · s
|r|3 =

Z

|r3| (L · s)
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SOC

El-Sayed rules: large SOC is 
achieved when the orientation of 
p-orbitals changes, e.g. px → pz. 



Summary:
1. Ansatz-agnostic formalism and implementation of SOC:  can be used 
for any method that can produce one-particle transition DM for one 
multiplet component.  

         - Available for all EOM-CC/MP2, CVS-EOM, RASCI, (SF)-TDDFT; 
         - Includes 2-el part via SOMF (cheap and accurate). 
  2. Analysis of SOCs in terms of spinless DMs and their NTOs - 
molecular orbital picture and insight.  

3. Protocol for computing macroscopic observables - direct connection 
with the experiments.

Pokhilko, Epifanovsky, Krylov, JCP 151 034106 (2019); Vidal, Pokhilko, Krylov, Coriani, JPCL 11 
8314 (2020); Carreras, Jiang, Pokhilko, Krylov, Zimmerman, Casanova, JCP 153 214107 (2020); 
Alessio, Krylov, JCTC  17 4225  (2021).
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Methodological challenges and solutions   

1. Robust and accurate black-box treatment of open-shell 
species: 

         - EOM-CC methods, Spin-Flip, RAS-SF, SF-DFT. 
2. Compute and analyze spin-related properties:  
         - method-agnostic theory for computing SOC; 
         - quantitative molecular orbital theory distilled from 
many-body calculations; 
          - framework for macroscopic properties. 
3. From molecules to materials:  
          - effective Hamiltonian approach for coarse-graining 
strong correlation.



How do we tackle systems with more than 3 unpaired 
electrons?

1. Use multiple spin-flips: Works, but leads to cost/scaling increase.  
2. Mayhall and Head-Gordon approach: Use single spin-flip calculation to 
parameterize a  model  Hamiltonian (e.g., Heisenberg) and solve  
coarse grained problem to find the entire manifold of states.

where SA is the total spin (half of the number of unpaired
electrons) on site A.
Note that because each JAB parameter is obtained from a

distinct effective Hamiltonian matrix element, the sign can be
either positive or negative, permitting application to ferromag-
netic, antiferromagnetic, or mixed ferro/antiferromagnetic
systems. In Figure 1, a schematic representation is provided for
the steps described above. An Octave51 script that takes the raw
data provided by the ab initio calculations to extract the JAB values
is provided in the Supporting Information (along with two sets of
data files). All ab initio spin−flip calculations have been
performed using a development version of QChem.52 BS-DFT
calculations have been performed starting from the molecular
orbital guesses provided by the “Fragmo” guess in QChem.53 As
the goal of this Letter is to demonstrate the efficient description
of static correlation and not dynamical correlation, which is
known to converge slowly with one-electron basis set size, we
have used the relatively small Ahlrich’s VDZ basis set for the
results in this Letter.54

In a recent experimental study investigating the synthesis and
characterization of molecular examples of finite one-dimensional
spin segments, Baker et al.55 measured the exchange coupling
constants of a family of molecular chains. These systems involve a
quasi-one-dimensional curved chain of Cr(III) atoms, taking the
shape of a “horseshoe”.
As depicted in Figure 2, there are six Cr(III) atoms, each with

three unpaired electrons. Thus, a direct ab initio calculation of
the ground state would be extremely expensive, requiring nine
spin−flips to treat 18 strongly correlated electrons. Alternatively,
following the procedure demonstrated above and in Figure 1, we
can obtained JAB values from only a simple 1SF calculation and
starting from the single configurational high-spin (19-et)
Hartree−Fock reference.
As mentioned above, the strategy being described is general for

any 1SF method. For demonstrative purposes, we will use our
recently developed active-space-based spin−flip methods, SF-
CAS, SF-CAS(h,p), and SF-CAS(S).41,42 The first method,

spin−flip complete active space (SF-CAS), is simply an nSF-CI
method (where n is the number of spin−flips) for which all
excitations occur only in an orbital active space (i.e., the singly
occupied ROHF orbitals). The second and third methods, SF-
CAS(h,p) and SF-CAS(S), are methods that include perturbative
corrections to SF-CAS. SF-CAS(h,p) includes single excitations
into (hole excitations) and out of (particle excitations) the active-
space.41 SF-CAS(S) includes these as well as all possible single
excitations including the direct promotions from doubly
occupied orbitals to virtual orbitals.42 Although the SF-CAS-
based methods are capable of performing n spin−flips, our
present implementation would not be tractable for nine spin−
flips. Therefore, the 1SF strategy introduced here is vital to
permit this application.

Figure 1. Schematic representation of the procedure for extracting exchange coupling constants from 1SF calculations for a molecule. (a) Start with the
Boys localized ROHF orbitals. (b) After projection onto b̃N, the three original 1SF eigenstates are now linear combinations of nine electronic
configurations. (c) After block-diagonalization, the three original 1SF eigenstates are now linear combinations of threeMs configurations of local quartet
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eigenstate basis, the effective Hamiltonian is now full-rank and contains the exchange coupling constants, JAB, as off-diagonal elements divided by
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Figure 2. Molecular structure for the Cr(III) horseshoe complex.
Chromium atoms are numbered clockwise starting from the bottom left.
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To answer this question, we consider a relatively simple system
for which the full ab initio calculation can be performed. In Figure
3a, an organometallic complex is shown that has a nickel−cubane

core consisting of four Ni(II) centers, each with two unpaired
electrons (3b). Because there are eight unpaired electrons, the
high-spin ROHF reference state is the single-configuration nonet
state. In order to access the full ab initio low-energy spectrum, a
four spin−flip calculation (4SF-CI) is necessary. To diagonalize
the 1SF parametrized ĤHDvV Hamiltonian, we used the open-
source Fit-Mart software, which was downloaded from ref 60.
In Figure 3c, a comparison is made between the state energies

of the fully ab initio 4SF-CAS(S) calculation and the
diagonalization of the 1SF-CAS(S) parametrized ĤHDvV

Hamiltonian. No discernible difference can be seen between
the two data sets. This tells us two things:
(1) The procedure for extracting the JAB constants is reliable.
(2) This particular complex is well-described by a ĤHDvV

Hamiltonian.
While the approach outlined in this Letter has been

demonstrated to provide an extremely efficient alternative to
the direct multiple spin−flip calculation, a number of limitations
exist. First and foremost, the current approach is clearly only
applicable for systems that are well described by a Heisenberg
Hamiltonian. As a result, only molecules containing well-defined
oxidation states and highly localized spin densities can be studied.
Furthermore, because the Heisenberg model assumes that each
site has only a single electronic configuration that contributes to
the complete electronic structure (each radical site is in its local
ground state), if any radical site has low-lying local excited states,
the simple Heisenberg model becomes suspect, and a biquadratic

form must be considered.61−63 Finally, as with any model
Hamiltonian, any physical processes lying outside of the model
will not be described and could lead to qualitative failures. A
detailed analysis of many-body effects in magnetic systems has
been conducted by Malrieu and co-workers and is nicely
summarized in ref 10. However, as the effective Hamiltonians are
constructed by projecting ab initio wave functions onto a model
space, one can monitor the relevance of the Heisenberg
Hamiltonian by ensuring that the norms of the projected wave
functions are close to one. Small norms act as a useful diagnostic,
indicating that the model space is insufficient.
A second limitation is not related to the JAB extraction

procedure but rather to the underlying ab initio method. First, for
any 1SF method to be useful, the high-spin reference state must
be well described. While this is very often true, Hartree−Fock
sometimes does not provide a suitable set of orbitals for
performing the subsequent SF-CI calculations. (Because the
essence of the spin−flip approach assumes that a high-spin
reference exists that is well described by a single configuration, a
heavily spin-contaminated high-spin references or the presence
of low-energy higher spin states are both harbingers of a poor
reference state.) DFT can be used to improve the situation
because the dynamical correlation provides a better set of high-
spin orbitals. However, SF-DFT (both in the original45 and
noncollinear46,57 variants) is sensitive to the chosen functional.
In conclusion, this Letter serves to illustrate a very simple

procedure for calculating exchange coupling constants for
complexes containing several metal centers (or, more generally,
several radical sites). It is shown that even with only single spin−
flipping excitations, 1SF methods can be used to compute all
exchange coupling constants in a molecule, regardless of both the
total number of radical sites and total number of unpaired
electrons per radical site. Thus, using rather inexpensive ab initio
calcultions, it is possible to obtain completely spin-pure exchange
coupling constants for molecules following Heisenberg physics.
Diagonalizing the resulting Heisenberg Hamiltonian gives
explicit expressions for the energy levels (and their properties)
of all lower spin states. The results obtained in this Letter provide
fresh motivation for a new class of spin−flip methods that are
spin-pure, permit arbitrary numbers of unpaired electrons, and
include dynamical correlation. Work in this direction is currently
underway.
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Figure 3. (a) Structure of the nickel complex. (b) Nickel−cubane core.
(c) Comparison of the low-energy spectrum taken from direct ab initio
4SF-CAS(S) calculations (gray) and the 1SF-CAS(S) + Heisenberg
diagonalization (black). The y-axis is the Δ energy from ground state in
cm−1. The x-axis is the ⟨S2⟩ for each state.
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Fig. 5: Examples of molecular magnets. Left: Molecular structure of a Cr(III) horseshoe complex.
Each of the six chromium atoms has three unpaired electrons. Right: Structure of a nickel
complex with the nickel-cubane core (Ni4O8). Each of the four nickel atoms has two unpaired
electrons. Reproduced with permission from Ref. 5. Copyright 2015 American Chemical Society.

achieve. In this Chapter, we describe the challenges posed by open-shell species
to quantum chemistry methodology and provide a guide for practical calcula-
tions. We will discuss both wave function based methods and density functional
theory (DFT). Since open-shell species are vastly diverse, the problems and, con-
sequently, the appropriate theoretical approaches vary. We will begin by sum-
marizing standard quantum chemistry methods, outlining their scope of applica-
bility, and explaining why open-shell species require special treatment. We will
then discuss several topics relevant to open-shell systems: spin and spin contam-
ination, Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) e↵ects. The following
section will discuss the electronic structure of high-spin states and contrast cases
with and without electronic degeneracies. Methods designed to tackle various
types of open-shell electronic structure (simple high-spin states, charge-transfer
systems, diradicals and triradicals, excited states of open-shell molecules) will be
introduced, and their applications will be illustrated by examples. We will then
discuss calculations of molecular properties relevant to spectroscopy and excited-
state processes. We hope that this Chapter will provide a practical guide for
computational chemists interested in open-shell systems.

Quantum Chemistry Methods for Open- and Closed-Shell Species

Quantum chemistry o↵ers practical methods for solving the electronic Schrödinger
equation.6,7 The exact wave function is represented by a linear combination of
all possible Slater determinants that can be generated for a given orbital basis.

5
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Organic-based molecular magnets 

Organic radicals and high spin polyradicals are the building blocks for the molecular magnets. 

Metal free, organic magnets provide tunability not available with inorganic magnets because of 

the bonding diversity available in carbon chemistry. Magnets based on organic building blocks 

have soft magnetic properties, which in turns minimize the energy loss when involved in 

interaction with electromagnetic radiation. Organic polyradicals being mostly reactive makes the 

selection of reasonable candidate among whole bunch of polyradicals, more important and those 

selected polyradicals must be high-spin ground state molecule with energetically well separated 

excited states. 

  The key factors in designing an organic molecule based magnet are the multiplicity of the 

ground state and the energy gap between ground state and lowest excited state ����. Magnetic 

coupling between unpaired spins depends on energy difference between the states. The main 

intension being the designing of high spin ground state polyradicals with maximum possible 

energy gap between the high spin ground state and the low spin excited state. Such large high 

spin-low spin energy gap is very crucial in designing the organic molecular magnets because 

when we incorporate those polyradicals in larger molecules, as a consequence of the connectivity 

(e.g. resonance delocalization) the energy gap will be eventually reduced. The theoretical study 

is important in this respect, in terms of reliably predicting the energy gaps in advance to direct 

the experiments in more fruitful way, saving a lot of money and time. For our purposes for the 

class project we mainly focus on few selected diradical including the di-copper centered Ziegler 

complexes.   

 

Exchange coupling 

In the framework of Heisenberg model for weakly interacting spins, the energy splitting is 

determined by the exchange coupling constant J, 

�	 � ������
��
�
��

 

 The energy splitting is related to the exchange coupling constant for diradicals as following,  



Effective Hamiltonians approach: A way to coarse-
grain strong correlation

Fig. 1 Detailed information about a many-body system, such as a complete description of a cat, with all its hairs and whiskers, can be
compressed into a compact form describing a subset of physical properties of the system—an effective cat theory that describes important
cat behaviors and inform us when to feed the cat, when to take it to the vet, or how to play with it. This mapping can be done
either exactly or approximately. The coarse-grained, effective representation of a cat can be used as a starting point for including more
fine-grained descriptions of the system (more nuanced cat behaviors) or for building up the complexity, all the way up to multiple cats
interacting dynamically.

lation). Alternatively, mean-field theory can be used as a
starting point for more approximated treatments, such as
Hückel or Pariser-Parr-Pople models.

This idea is illustrated in Figure 1, where a detailed cat
theory, including whiskers and all, is replaced by an effec-
tive cat theory that can provide sufficiently accurate de-
scription of the cat’s behavior. This effective description
can be used as a stepping stone to build a more detailed
description of the cat or as a building block of a theory
describing many cats. That is, an effective cat model can
be used to construct a product space describing multiple
cats, and used to capture their interactions and dynamics
(time dependence). This is an example of the bottom-up
coarse-graining in which the model is rigorously derived
from a more detailed description; however one can also
construct the model top-down by matching relevant experi-
mental observables.12 For example, one can attempt to cre-
ate an effective cat model phenomenologically by requiring
that the model correctly predicts selected cat behaviors.

Coarse-graining of complexity can be carried out in a
variety of ways: by hierarchical improvements in cor-
relation treatment by including clusters of higher exci-
tations (as in coupled-cluster theory13) iteratively com-
pressing/expanding the Hilbert space (as in density matrix
renormalization group and other adaptive configuration in-
teraction schemes), by using a Bloch formalism to construct
effective Hamiltonians mapping the many-electron prob-
lem onto a small number of effective spins (as in treat-

ments of magnetic phenomena14), or by introducing more
drastic shortcuts connecting the target (energy and prop-
erties) with the input (information about nuclei and elec-
trons). A famous example from the latter category is den-
sity functional theory (DFT), which avoids the correlated
many-body wave function altogether and instead operates
with an energy functional, a mathematical device that can
yield the energy directly from the electron density. The
success of DFT11 is grounded in the fact that such exact
mapping between the density and energy exists, as proven
mathematically by the Hohenberg-Kohn theorems, or more
vividly, by Wilson’s deduction. Since one can determine
from the election density the number of electrons (by in-
tegrating the density), the types and positions of the nu-
clei (from the cusps), then one can write the Hamilto-
nian, solve the resulting Schrödiner equation, and obtain
the exact energy. Although the existence of such a map-
ping does not provide a practical workable recipe, it justi-
fies an empirical approach to the problem, that is, build-
ing the unknown functional by fitting its form and param-
eters to satisfy known exact properties of real or ideal-
ized systems (e.g., the uniform electron gas, helium atom),
or to directly reproduce experimental data. In the same
spirit, semi-empirical theories (tight-binding, SCC-DFTB,
MNDO, INDO, CODA, PM3, AM1, Hubbard’s and Heisen-
berg Hamiltonians, classical force-fields)15–28 coarse-grain
the complexity by representing the full interacting system
of nuclei and electrons by much more compact effective

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–25 | 3
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Bloch theory

Generalized Bloch equation

H⌦P0 = ⌦P0H
e↵P0 (7)

Meaning:

LHS: | ̃µi
⌦�! | µi

H�! Eµ | µi (8)

RHS: | ̃µi
He↵

��! Eµ | ̃µi
P0�! Eµ | ̃µi

⌦�! Eµ | µi

(9)

Too general, need some constraints
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The structure of this paper is as follows: In Sec. II, we pro-
vide an overview of the EOM-CC theory and Bloch’s formalism. We
then apply Bloch’s formalism to the EOM-CC wave functions and
derive the working expressions. Next, we consider several molecules
for which we discuss Hubbard’s and Heisenberg’s Hamiltonians rig-
orously constructed from the EOM-SF-CCSD solutions. Whenever
possible, we compare the results from extraction through the Landé
rule and from the effective Hamiltonians.

II. THEORY

A. Equation-of-motion coupled-cluster theory
Similar to CI, EOM-CC methods53–56 utilize linear parameteri-

zation of the wave function,

�ΨR
I � = R̂I �Φ0�, (3)

�ΨL
I � = �Φ0�L̂†

I , (4)

where ΨI is a EOM target state, R̂ and L̂ are general excitation
operators, and Φ0 is the reference determinant, which defines the
separation between occupied and virtual orbital spaces. The equa-
tions for the amplitudes of the EOM operators are derived vari-
ationally, leading to a CI-like eigenproblem.57 In contrast to CI,
the EOM theory employs a (non-Hermitian) similarity-transformed
Hamiltonian,

Ĥ = e−T̂ĤeT̂ , (5)

where T̂ is an excitation operator. BecauseĤ has the same spectrum
as the bare Hamiltonian regardless of the choice of T̂, solving the
EOM eigenproblem in the full configurational space, i.e., when R̂
includes all possible excitations, recovers the exact (full CI or FCI)
limit. In practical calculations, these operators are truncated, most
often to single and double excitations, giving rise to EOM-CCSD
ansatz, and the choice of the operator T̂ becomes important. For
example, choosing T̂ = 1̂ leads to plain CISD (CI with singles and
doubles), but taking T̂ from the coupled-cluster equations for the
reference state amounts to including correlation effects and ensures
size-intensivity. Most often, T̂ is truncated at the same level as R̂; for
example, in EOM-CCSD, one uses

T̂ =�
ia
tai a

†i +
1
4�ijab t

ab
ij a

†b†ji + . . . , (6)

where i, j, . . . and a, b, . . . denote occupied and virtual (with
respect to Φ0) orbitals. When T̂ satisfies the CC equations, then the
reference determinant Φ0 is also an eigen-state of H.

Because Ĥ is non-Hermitian, the left and right EOM eigenstates
are not Hermitian conjugates of each other,

ĤR̂I �Φ0� = EIR̂I �Φ0�, (7)

�Φ0�L̂†
I Ĥ = �Φ0�L̂†

I EI , (8)

but are often chosen to form a biorthogonal set,

�Φ0�L̂†
I R̂J �Φ0� = δIJ . (9)

Because the excitation operators T̂ and R̂ commute, one can
also write the EOM states as

�ΨR
I � = R̂I �ΨCC�, (10)

where
�ΨCC� = eT̂ �Φ0�. (11)

This form shows clearly that the EOM-CC states include higher exci-
tations than the respective CI states by virtue of the wave operator
eT̂ and that the EOM states are excited states with respect to the
reference-state CC wave function. Note that in the derivations below
we use EOM states as defined by Eqs. (3) and (4) rather than (10)
and (11).

Different choices of R̂ allow access to different manifolds of
target states, giving rise to a variety of EOM-CCmethods.53–56 Com-
mon choices include excitation,58 spin-flip,59–61 ionization,62,63 or
electron-attachment64 operators. For example, spin-flip operators
are

R̂SF =�
ia
rai a

†i +
1
4�ijab r

ab
ij a

†b†ji + . . . , (12)

L̂SF =�
ia
lai a

†i +
1
4�ijab l

ab
ij a

†b†ji + . . . , (13)

where the number of creation operators corresponding to α orbitals
is not equal to the number of annihilation operators corresponding
to α orbitals, giving rise to a non-zeroMS (spin-projection) of R̂ (in
contrast, the EOM-EE operators are of theMS = 0 type).

B. Effective Hamiltonians

1. General formalism
Effective theories operate with target (large) and model (small)

spaces, as illustrated in Fig. 2. Both spaces describe the same set
of eigenstates, but using different sets of configurations. The target
space contains long multiconfigurational expansions, i.e., it can be a
full Hilbert space of a many-body system. The model space contains
expansions over a small set of configurations.

FIG. 2. Target and model spaces are connected through a wave operator Ω. The
target space can be the full configurational (i.e., Hilbert) space of the system, while
the model space is a subspace of the full configurational space.
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Effective Hamiltonians derived from equation-of-
motion coupled-cluster wave-functions
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FIG. 1. Configurations entering three-electron-in-three-centers model Hamiltoni-
ans. Each center (or site) is represented by one localized orbital. The configu-
rations are built from different distributions of three electrons on three localized
orbitals (numbered 1, 2, and 3 and colored with yellow, green, and violet circles,
respectively). Each box represents one configuration. Heisenberg’s model space
includes only open-shell configurations in which the orbitals are singly occupied.
A half-filled (i.e., three-electrons-in-three orbitals) Hubbard’s model space also
includes ionic configurations in which localized orbitals can host two electrons.

as direct exchange terms that couple first three configurations from
Fig. 1. Although Hubbard’s model parameterizes only one-particle
interactions between the configurations, it includes the Coulomb
repulsion U between the conducting (active) electrons, making it
sufficiently flexible to describe non-trivial physical phenomena, such
as Mott–Hubbard’s phase transition.12

Heisenberg’s model8–10 describes the interaction between
open-shell configurations in terms of local spin (an effective quan-
tity that we discuss below). This model is most commonly used
to describe magnetic properties of solids.12 It can be written
as

HHeis = −�
A<B JABSASB, (2)

where A, B enumerate radical (or magnetic) centers, JAB is an effec-
tive exchange constant, and SI is an effective localized spin operator
associated with center I. Heisenberg’s Hamiltonian can be derived
from Hubbard’s Hamiltonian through degenerate13 and canonical
perturbation theories;14 thus, it can be considered an effective the-
ory with respect to Hubbard’s model. Although Heisenberg’s model
space does not admit ionic configurations, their effect is folded into
the effective exchange parameters.

Effective Hamiltonian theory provides a powerful frame-
work for a rigorous construction of effective Hamiltonians from
multiconfigurational many-electron wave functions computed ab
initio. Pioneering works of Kato,15 Ôkubo,16 Bloch,17 and des
Cloizeaux18 have established the foundations of the operator
effective Hamiltonian theory. Further development came from

Löwdin’s partitioning19 technique, Feshbach’s formalism,20 and
generalizations.21–24 The history and recent developments of effec-
tive Hamiltonian theories are summarized in comprehensive
reviews.25,26

Effective theories fulfill a dual role. On one hand, they can be
used to develop new electronic structure methods with the system-
atically improved description of effective Hamiltonians. For exam-
ple, perturbative construction of the wave operator and effective
Hamiltonians has been exploited in the development of variousmul-
tireference perturbative27–29 and coupled-cluster30–32 methods. On
the other hand, effective theories can be used as an interpretation
tool by providing an essential description of the complex electronic
structure.

The distinction between using effective Hamiltonians for anal-
ysis of the electronic structure and method development is not
always binary. For example, introduction of Hubbard’s repulsion
term U into a density functional expression allowed Anisimov and
co-workers to develop a widely used DFT+U method.33–35 Mayhall
and Head-Gordon noted that effective exchange couplings J from a
single spin-flip (SF) calculation agree with the couplings extracted
from more computationally expensive n-SF calculations,36 which
led to the development of an effective computational scheme for
strongly correlated systems exploiting a coarse-graining idea.37 In
Mayhall’s protocol, a single spin-flip calculation is performed first.
Then, under the assumption of Heisenberg’s physics, the exchange
couplings are extracted, and an effective Hamiltonian is constructed
to compute the spin states that are not accessible in the single
spin-flip calculation.

The parameters of effective Hamiltonians also can be obtained
indirectly. Experimentally, exchange couplings can be extracted
from the temperature dependence of magnetic susceptibility,
electron paramagnetic resonance, and neutron scattering experi-
ments.38–44 Theoretically, if there are known relations between the
states of interest, such as the Landé interval rule,45 advanced elec-
tronic structure methods can be easily applied.46 Even more indi-
rectly, exchange couplings can be extracted from contaminated
solutions47 obtained in broken-symmetry density functional theory
(BS-DFT) or broken-symmetry coupled-cluster48 calculations.

Numerous studies49–52 have used Bloch’s and des Cloizeaux’s
formalisms to build Heisenberg’s and Hubbard’s effective Hamil-
tonians from configuration interaction (CI) wave functions. In this
contribution, we apply Bloch’s formalism to the equation-of-motion
coupled-cluster (EOM-CC) wave functions to rigorously derive
effective Hamiltonians in Bloch’s and des Cloizeaux’s forms. We
report the key equations and illustrate the theory by examples of
systems with several unpaired electrons, giving rise to electronic
states of covalent and ionic characters. Our goal is to establish a
rigorous mapping between the EOM-CC solutions and effective
Hamiltonians and to provide a theoretical basis for the extraction of
effective parameters from the EOM-CC calculations. These param-
eters can be directly compared with the parameters extracted from
experimental measurements, facilitating unambiguous comparison
between the theory and experiment. In addition, such a mapping
provides physical insights into the complex electronic structure of
strongly correlated systems. Finally, the theoretical developments
presented here serve as a stepping stone toward the development
of coarse-grained models of electron correlation in large systems,
following Mayhall’s and Head-Gordon’s ideas.36,37
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II. NUMERICAL EXAMPLES, DISCUSSION, AND RESULTS

Cu C O H

FIG. 1: Left: Crystal structure of copper oxalate (8x8x8x cell). Right: clusters with 2, 3, and 4
copper atoms of two types occurring in the crystal.

Probably need to simplify certain explanations. Which degree of preparation

should we expect from the reader? To which extent should we explain correlation

concepts?

We started investigation of copper oxalate (CuC2O4) from analysis of its crystal structure

shown in Figure 1. It is composed of copper oxalate chains with bidentate orientation of

oxalate ligands. We considered truncated versions of these chains (Figure 1, right). To fill

the valencies, we put hydrogen atoms to the ends of the chains. The e↵ective Hamiltonians

FIG. 2: Des Cloizeaux’s e↵ective Hamiltonian for chain with 4 copper centers. The energies are
shifted to produce a zero trace.

(Figure 2) built from high-quality EOM-SF-CCSD calculations in localized orbitals uncover

antiferromagnetic nature of the spin interaction. Bloch’s and des Cloizeaux’s versions of

e↵ective Hamiltonians are consistent with each other and predict nearly the same values of

e↵ective exchange constants J .

Copper oxalate crystal

Pokhilko, Bezrukov, Krylov, JPCC 125 7502  (2021).

Example: Thermodynamic properties of 
strongly correlated infinite spin chains from 
first principles 
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Figure S1: Bloch’s (B) and des Cloizeaux’s (C) e↵ective Hamiltonians for the bi- and trinuclear
fragment. The energies are shifted to produce a zero trace.
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Thermodynamic properties of strongly correlated spin chains

from first principles

Pavel Pokhilkoa and Anna I. Krylova

a Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482

Heisenberg model has been successfully used to explain magnetic interactions in

antiferromagnetic systems. The electronic structure of these strongly correlated sys-

tems is often complicated, requiring highly accurate ab initio calculations to establish

the validity of the Heisenberg model and to predict the interaction strength. Here,

we use spin-flip and double ionization equation-of-motion coupled-cluster calcula-

tions to validate the Heisenberg model applied to the two types of infinite chains

in copper oxalate. Our results reveal that both strong and weak electron correla-

tion are important. Finally, we calculate magnetic susceptibility and reinterpret the

experimental findings with the new theoretical results.

I. INTRODUCTION

Strongly correlated materials exhibit unusual properties, finding its way in emerging

applications such as spintronics[1]. Electronic structure of such materials is complicated

and is often described by simplified models with adjustable parameters. In particular, an

infinite chain of spins can be treated within XXX Heisenberg Hamiltonian

H = �J

X

i

SiSi+1, (1)

where Si are local spins and J is the e↵ective exchange constant. If the e↵ective exchange

constant is negative, the system has the antiferromagnetic singlet ground state, which has the

opposite spin orientation of the adjacent neighbor magnetic centers. The case of S = 1/2 is

one of the very few known quantum integrable models, meaning that it is solvable. Its exact

solution is given by Bethe ansatz[2], which facilitated the development of solid-state physics

and mathematics of integrable systems. The thermodynamic properties of this model are

well-known, explaining experimental observables of real materials, containing, for instance,

- Nearest-neighbor Heisenberg Hamiltonian can be used:

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. Configurations entering three-electron-in-three-centers model Hamiltoni-
ans. Each center (or site) is represented by one localized orbital. The configu-
rations are built from different distributions of three electrons on three localized
orbitals (numbered 1, 2, and 3 and colored with yellow, green, and violet circles,
respectively). Each box represents one configuration. Heisenberg’s model space
includes only open-shell configurations in which the orbitals are singly occupied.
A half-filled (i.e., three-electrons-in-three orbitals) Hubbard’s model space also
includes ionic configurations in which localized orbitals can host two electrons.

as direct exchange terms that couple first three configurations from
Fig. 1. Although Hubbard’s model parameterizes only one-particle
interactions between the configurations, it includes the Coulomb
repulsion U between the conducting (active) electrons, making it
sufficiently flexible to describe non-trivial physical phenomena, such
as Mott–Hubbard’s phase transition.12

Heisenberg’s model8–10 describes the interaction between
open-shell configurations in terms of local spin (an effective quan-
tity that we discuss below). This model is most commonly used
to describe magnetic properties of solids.12 It can be written
as

HHeis = −�
A<B JABSASB, (2)

where A, B enumerate radical (or magnetic) centers, JAB is an effec-
tive exchange constant, and SI is an effective localized spin operator
associated with center I. Heisenberg’s Hamiltonian can be derived
from Hubbard’s Hamiltonian through degenerate13 and canonical
perturbation theories;14 thus, it can be considered an effective the-
ory with respect to Hubbard’s model. Although Heisenberg’s model
space does not admit ionic configurations, their effect is folded into
the effective exchange parameters.

Effective Hamiltonian theory provides a powerful frame-
work for a rigorous construction of effective Hamiltonians from
multiconfigurational many-electron wave functions computed ab
initio. Pioneering works of Kato,15 Ôkubo,16 Bloch,17 and des
Cloizeaux18 have established the foundations of the operator
effective Hamiltonian theory. Further development came from

Löwdin’s partitioning19 technique, Feshbach’s formalism,20 and
generalizations.21–24 The history and recent developments of effec-
tive Hamiltonian theories are summarized in comprehensive
reviews.25,26

Effective theories fulfill a dual role. On one hand, they can be
used to develop new electronic structure methods with the system-
atically improved description of effective Hamiltonians. For exam-
ple, perturbative construction of the wave operator and effective
Hamiltonians has been exploited in the development of variousmul-
tireference perturbative27–29 and coupled-cluster30–32 methods. On
the other hand, effective theories can be used as an interpretation
tool by providing an essential description of the complex electronic
structure.

The distinction between using effective Hamiltonians for anal-
ysis of the electronic structure and method development is not
always binary. For example, introduction of Hubbard’s repulsion
term U into a density functional expression allowed Anisimov and
co-workers to develop a widely used DFT+U method.33–35 Mayhall
and Head-Gordon noted that effective exchange couplings J from a
single spin-flip (SF) calculation agree with the couplings extracted
from more computationally expensive n-SF calculations,36 which
led to the development of an effective computational scheme for
strongly correlated systems exploiting a coarse-graining idea.37 In
Mayhall’s protocol, a single spin-flip calculation is performed first.
Then, under the assumption of Heisenberg’s physics, the exchange
couplings are extracted, and an effective Hamiltonian is constructed
to compute the spin states that are not accessible in the single
spin-flip calculation.

The parameters of effective Hamiltonians also can be obtained
indirectly. Experimentally, exchange couplings can be extracted
from the temperature dependence of magnetic susceptibility,
electron paramagnetic resonance, and neutron scattering experi-
ments.38–44 Theoretically, if there are known relations between the
states of interest, such as the Landé interval rule,45 advanced elec-
tronic structure methods can be easily applied.46 Even more indi-
rectly, exchange couplings can be extracted from contaminated
solutions47 obtained in broken-symmetry density functional theory
(BS-DFT) or broken-symmetry coupled-cluster48 calculations.

Numerous studies49–52 have used Bloch’s and des Cloizeaux’s
formalisms to build Heisenberg’s and Hubbard’s effective Hamil-
tonians from configuration interaction (CI) wave functions. In this
contribution, we apply Bloch’s formalism to the equation-of-motion
coupled-cluster (EOM-CC) wave functions to rigorously derive
effective Hamiltonians in Bloch’s and des Cloizeaux’s forms. We
report the key equations and illustrate the theory by examples of
systems with several unpaired electrons, giving rise to electronic
states of covalent and ionic characters. Our goal is to establish a
rigorous mapping between the EOM-CC solutions and effective
Hamiltonians and to provide a theoretical basis for the extraction of
effective parameters from the EOM-CC calculations. These param-
eters can be directly compared with the parameters extracted from
experimental measurements, facilitating unambiguous comparison
between the theory and experiment. In addition, such a mapping
provides physical insights into the complex electronic structure of
strongly correlated systems. Finally, the theoretical developments
presented here serve as a stepping stone toward the development
of coarse-grained models of electron correlation in large systems,
following Mayhall’s and Head-Gordon’s ideas.36,37
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- Effective J converges fast: two-center model is sufficient. 



Spin chains in copper oxalate

Delta J |J|, cm-1

2-Cu 177.0

3-Cu -0.1 176.9

4-Cu 1.2 178.1

triples 42.7 220.8

SOC 32.0 252.8

basis -8.5 244.3

Methods: Energies by EOM-SF-CCSD/cc-pVDZ; SOCs by EOM-DIP-CCSD; 
Basis: cc-pVDZ->cc-pVTZ.

- Both strong and week 
correlations are important; 

- SOC gives substantial 
contributions.
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Excellent agreement with experiment!

7

The analytical solution of the �(T ) exists for the case of a classical linear spin chain with

nearest-neighbor approximation under assumption of uniformness, meaning that Ji,i+1 and

gi are the same for all local spins. The solution has the following form:

�(T ) =
N(gcl)2�2

12kT

1 + u(K)

1 � u(K)
, (4)

u(K) = cothK � (1/K), (5)

K =
J
cl
/2

kT
(6)

This expression predicts a maximum on the susceptibility curve:

�max/�(0) ⇡ 1.2045, (7)

�(0) =
N(gcl)2�2

12|J cl| , (8)

kTmax/|J cl| = 0.2382 (9)

The analytical expression for quantum susceptibility is not known, but there are Padé

approximants[? ], fitted to numerical curves with high quality. We used such curve (Fit 1

in Table I in the Ref. [? ]) for calculation of quantum magnetic susceptibility.

FIG. 4: Classical (left) and quantum (right) magnetic susceptibility.

Dubicki, Harris, Kokot, Inorg. Chem. 5 93 (1966). 
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Spin chains in copper oxalate

Systematic convergence: Right answer for the right reason!



Conclusions
1. SF approach treats strong correlation in a single-reference framework. 
2. NOs and NTOs: A vehicle for understanding complex electronic 
structure. 
3. Effective Hamiltonians extend the SF approach to large (and even 
infinite) systems. 
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