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Abstract

Learning from a collective behavior of crowds to predict individual user prefer-

ences is one of the major tasks in recommender systems. Among the key challenges

that make this task especially di�cult is the very fact that behavioral data is inherently

incomplete, which leaves the room for various assumptions. One of the core assump-

tions implicitly used by conventional collaborative �ltering models is that, despite

a largely missing data, it is still possible to uncover reliable patterns for generating

relevant recommendations. This, however, is not always the case and the resulting

models in practice tend to exhibit poor performance when the fraction of known user

preferences decreases.

In the light of this problem, we examine the shortcomings of a particular SVD-

based model, namely PureSVD, which in many cases outperforms other state-of-the-

art approaches and, most importantly, provides a number of practical advantages over

other solutions. In order to address its limitations, related to the lack of preference

data, without sacri�cing its key bene�ts, we revisit the problem of a low rank approx-

imation and derive several generalized formulations based on classical results from

linear and multilinear algebra. As a result, we propose three new methods that use

both matrix and tensor factorization techniques.

All proposed methods tackle the problem of insu�cient preference informa-

tion from di�erent angles. The �rst tensor-based approach improves the warm start

regime. The hybrid SVD-based approach is suitable for extremely sparse data, which is

a frequent problem in many domains. It also partially addresses the cold start problem.

As a combination of these two methods, the third method inherits the key advantages

of both predecessors and at the same time allows to compensate for their major pit-

falls: an increased susceptibility to a high degree of data sparsity in the tensor case

and an emergence of undesired spurious correlations in the matrix case.
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ix

We evaluate our models on several benchmark datasets commonly used by re-

searchers in recommender systems �eld. Based on experimental results we justify the

choice of each particular model depending on the usage scenario and the properties

of input data. All experiments are performed with the help a new open-source recom-

mendation framework named Polara, which is developed by the author of the thesis

to facilitate an in-depth quality evaluation, support quick model prototyping and to

ensure research reproducibility.
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Thesis outline

Signi�cance. The thesis is devoted to the development of new low rank models for

recommender systems. The work focuses on matrix- and tensor-based factorization

techniques [94, 54] widely used in industry. Matrices and tensors naturally arise in the

collaborative �ltering approach, where information about collective human behavior

is used to build a recommendation model. In these settings, low rank methods allow

to conveniently model interactions between users and items and compactly represent

them in terms of a small number of latent features. This allows providing scalable

solutions, capable of dealing with millions of users and items which is a common

requirement in modern systems. Another important aspect is the ability to work in

highly dynamic online environments where users expect an immediate response from

a system to their actions. Many factorization techniques help to address that problem

by the means of the so-called folding-in approach [49].

Although various factorization techniques have been already developed to date,

there are still certain scenarios where a simple well known SVD-based model called

PureSVD [38] and its derivatives [112] allow to outperform other state-of-the-art ap-

proaches. It provides many additional bene�ts, such as lower storage requirements

and simpli�ed model �ne-tuning; it is based on a stable algorithm with deterministic

output and gives an e�cient analytic solution for folding-in, which makes it espe-

cially attractive for practical applications. Moreover, the SVD algorithm has highly

optimized implementations in many programming languages. However, it also has

certain limitations and drawbacks.

First of all, as any standard matrix factorization-based model, PureSVD is sen-

sitive to input data. More speci�cally, the value of user feedback (e.g., rating) a�ects

the ability of the model to learn user interests: lower ratings will have a lower con-

tribution into the result, and the feedback with higher rating values will dominate.

xi
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However, low ratings may provide as a strong signal about actual user preferences as

high ratings and, therefore, should not be neglected. The inability to take that into ac-

count potentially leads to an increased rate of irrelevant recommendations. This may

play a crucial role, especially in the case when a new user has only started to interact

with the system and has not provided a su�cient amount of information about his or

her preferences yet. Too many irrelevant recommendations, in that case, lower the

credibility of the service and user may never want to use it again.

Secondly, PureSVD relies on collaborative information only and ignores any

side information such as user attributes or item features. Given that interaction data is

often very scarce, this may prevent the model from reliably learning intrinsic relations

within the data and lead to considerable degradation of recommendations’ quality. In

such cases side information may serve as a valuable source of additional relational

data and may help to reveal important patterns, making the model more resistant to

the lack of collaborative information. In addition to that, side information allows to

alleviate the cold start problem when interactions for a user or an item data are not

yet available. However, the question of generalizing the purely SVD-based approach

to include both collaborative and side information is still an open research problem.

The primary goal of the thesis work is to develop e�cient low rank factorization

methods, which inherit the key bene�ts of the PureSVD approach and do not su�er

from its major limitations induced by the lack of known user preferences.

Novelty. Three new methods based on matrix and tensor factorizations are pro-

posed in this work. The �rst method treats user feedback as an ordinal concept in

contrast to the commonly used real-valued representation. In this method, (user, item,

feedback) triplets are encoded into a third order tensor which is factorized with the

help of the Tucker decomposition. This allows to preserve orthogonality of factors

and, similarly to the PureSVD approach, leads to an analytic solution for folding-in.

More importantly, the model becomes equally sensitive to any user feedback and al-

lows to explicitly impose ordinal relations within the data which helps to generate

relevant recommendations even from negative-only feedback. This is especially im-

portant in the warm start, settings when only a little information about user prefer-

ences is known. In these settings, the model performs much better in terms of avoid-
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ing irrelevant recommendations and may help users �nd relevant content much faster.

Due to common positivity bias (the tendency to favor highly rated items) of both con-

ventional recommendation models and standard evaluation metrics, a new debiased

evaluation methodology is also proposed. It provides a more detailed view on the

quality of recommendations, which takes into account not only a user satisfaction but

also a potential user disappointment.

The second proposed method extends PureSVD model with side information.

While there exists a number of factorization techniques, which allow taking side in-

formation into account (the so-called hybrid approach), they use di�erent optimiza-

tion algorithms that do not provide the same set of bene�ts as SVD. In contrast, the

proposed approach allows to incorporate user attributes and item features directly

into the model while staying within the SVD-based computation paradigm. This is

achieved with the help of the generalized SVD formulation. An e�cient compu-

tational scheme involving Cholesky decomposition is proposed to make the model

suitable for large scale data. The method inherits all the advantages of the original

PureSVD approach, including an analytical form of folding-in, and resolves the prob-

lem of insu�cient preference data.

The third proposed method combines formulations of the previous two methods

into a single higher order factorization model. It incorporates the hybrid part of the

SVD-based approach into the Tucker decomposition. The corresponding new and

e�cient optimization technique, which takes the speci�c structure of the problem

into account, is provided. The combined approach inherits the key advantages of

both predecessors and at the same time allows to compensate for their major pitfalls:

an increased susceptibility to a high degree of data sparsity in the tensor case and an

emergence of undesired spurious correlations in the matrix case.

Practicality. Any recommendation system faces the limited preferences informa-

tion problem. Both cold start and warm start cases are the most frequent examples of

that. More globally, even information about known users and items in an established

system is sometimes insu�cient given that the variety of choice in a digital world may

grow far beyond human capabilities of exploring it. The problem may cause the so-

called “trust busters” e�ect when too many irrelevant recommendations make users

feel the service is not good enough. Disappointed users may stop using the service and
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never want to return to it again. The proposed approaches tackle this problem from

di�erent angles. The tensor-based approach focuses on avoiding irrelevant recom-

mendations by treating both positive and negative user feedback more appropriately.

The hybrid SVD-based approach employs side information and attempts to recover

possible unobserved relations even if no preference data is available at all. This also

allows to work with extremely sparse data, which is a frequent problem in the domains

with large item assortments (e.g., online retail stores). As a combination of these two

methods, the third tensor-based hybrid approach takes the best of their properties. It

aims to simultaneously increase the perceived quality of a recommendation service,

maintain high user satisfaction and ensure high user retention and user loyalty in the

long run.

Structure. The thesis is divided into three major parts consisting of one or several

chapters. The �rst part is introductory. It starts with a chapter on some general con-

cepts in the recommender systems �eld, followed by two chapters that provide an

overview of common matrix- and tensor-based factorization methods respectively.

The fourth chapter gives the necessary background on the main topic of this work

and presents a view on the current state of the �eld in this respect. The second part

includes three chapters that provide a detailed description of all three newly proposed

methods respectively. The third part focuses on software aspects and introduces a

new open-source recommendation framework Polara, developed by the author of the

thesis as a part of his research.
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Chapter 1

General concepts

We live in the era of data explosion and information overload. Managing it

would be impossible without the help of intelligent systems that can process and �lter

huge amounts of information much faster than humans. The need for such systems

was already recognized in late 1970s in the Usenet, a distributed discussion platform,

founded at Duke University. One of its goals was to help users to maintain numerous

posts by grouping them into newsgroups. However, an active research on the topic

of information �ltering started in 1990s. As it was noted in [4], the general term

Recommender Systems (RS) was brought to the academia in the mid-90’s with works

of Resnick, Hill, Shardanand and Maes and, according to [25], was preceded by several

famous projects: Tapestry, Lotus Notes, GroupLens. A signi�cant boost in RS research

started after a famous Net�ix prize competition with $1 million award for the winners,

announced back in 2006. This has not only attracted a lot of attention from scientists

and engineers, but also depicted the great interest from industry.

1.1 Recommender systems at a glance

Let us consider without loss of generality the task of product recommendations.

The main goal of this task is, given some prior information about users and items

(products), try to predict what particular items will be the most relevant to a selected

user. The relevance is measured with some relevance score (or utility) function fu and

can be schematically described as

fu : User× Item→ RelevanceScore, (1.1)

where User is a domain of all users and Item is a domain of all items.

2
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There are several ways how this utility can be estimated from real data: either

based on the observed user feedback or based on available characteristics of users and

items. Feedback data can be either explicit or implicit, depending on whether it is di-

rectly provided in the form of explicit user preferences (e.g. ratings, likes/dislikes) or

implicitly collected through an observation of user actions (e.g. page clicks, product

purchases). In turn, characteristics may consist of various intrinsic features and at-

tributes. For example, users can be described by an age, gender or other demographic

data, while items may belong to some category and be additionally characterized by

a list of key properties.

Availability of the described two types of prior information de�nes what class

of techniques will be used to generate recommendations. When only preference data

can be accessed, then this is a task for the so called collaborative �ltering (CF) ap-

proach. Alternatively, if only item properties and user attributes are available, then

the recommendation problem is solved with the content-based (CB) approach.

1.1.1 Content-based �ltering

The CB approach exploits knowledge about user attributes and item features in

order to �nd the best matching (user, item) pairs that can be used to generate the most

relevant recommendations. This approach relies on the assumption that user choice

is in�uenced by a combination of certain item properties and individual user features.

As a trivial example, users with a certain income may prefer products of a particular

category or brand. In practice, such relations may have much more complicated nature

and require good domain knowledge in order to take into account more intricate cases.

One of the main advantages of the CB approach is the ability to alleviate the

so called cold start problem (Sec. 1.2.1), where preference data is unavailable and CF

algorithms are simply inapplicable. As long as all the needed content information is

collected, recommendations can be produced instantly even in the case of items that

were never recommended to any user before.

The focus on content features, however, leads to a number of issues, such as

limited content analysis, over-specialization and high sensitivity to user input [4,

102], which decrease the perceived quality of recommendations. Beyond that, from

purely practical point of view, it can be quite challenging to get descriptive and reliable
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data, as users are not always motivated enough to provide comprehensive information

about themselves and items may have incomplete or corrupted descriptions.

More importantly, users’ decision making process typically has a multifaceted

nature and can be in�uenced by various internal and external aspects, which may

not necessarily be available for observation and may not align well with the collected

characteristic data. Therefore, the use of CB methods alone can be quite limiting.

On the other hand, while users interact with RS, they leave a “trace” of how actual

decisions are made. This information, if properly collected, can be used to uncover

some common patterns in user behavior that could potentially help to generate more

reasonable and relevant recommendations. This leads to the CF approach.

1.1.2 Collaborative �ltering

In contrast to CB �ltering, the CF approach does not require any speci�c knowl-

edge about users or items and only uses prior observation of collective user behavior

in order to generate new recommendations. It helps uncover general patterns from

collective behavior, even if it is governed by a set of unidenti�able e�ects, events, mo-

tives, etc. All CF methods are generally divided into two categories: memory-based

and model-based techniques. This classi�cation was initially proposed in [24] and

became standard in the �eld [21, 2].

Memory-based collaborative �ltering

A widely used and very popular approach in this category is based on the k

Nearest Neighbours (kNN) algorithm [73]. It �nds relevance scores for any (user, item)

pair by considering weighted contributions of its neighbors. The neighborhood is typ-

ically determined by a similarity between either users (user-based approach) or items

(item-based approach) [148] in terms of some pre-de�ned similarity measure. This is

also called a similarity-based approach. In its simplest implementation, the method re-

quires to store in memory all similarity coe�cients as well as prior information about

user-item interactions in order to make predictions.

Performance of the similarity-based models can be greatly impacted by a se-

lected measure of similarity (or a distance measure). Cosine similarity, Jaccard index,

Pearson correlation, Okapi BM25 [120] are a few examples of possible choices. Even
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though such models may give a good recommendation quality in some application

domains, factorization models (see next section) are better suited for large-scale prob-

lems often met in practice, providing high computational performance and delivering

high quality recommendations [92, 21].

Model-based collaborative �ltering

In the model-based approach a long enough history of observations is used to

build a predictive model �rst. Such models use collective behavior of a crowd (a “wis-

dom of crowds”) in order to extract general behavioral patterns and represent it in

a convenient, typically compact, form. Among the most successful model-based ap-

proaches are matrix factorization (MF), described in details in Chap. 2, and higher-

order tensor factorization (TF), described in Chap. 3.

The power of factorization models comes from the ability to embed users, items

and other entities involved in interactions between the former two as vectors in a

lower dimensional space of latent (also called hidden) features. These vectors not

only allow to describe the observed consumption patterns, but also help to predict

previously unseen user preferences and �nd new relevant items. For example, in the

matrix case the relevance score that corresponds to any user-item interaction can be

simply measured as an inner product between their vectors in the latent feature space.

1.1.3 Hybrid recommenders

Both CF and CB approaches tackle the problem of generating relevant recom-

mendations from very di�erent angles and have their own set of advantages and dis-

advantages. Many successful RS use hybrid approach [26] to accumulate strengths of

both methods within a single model and compensate for their disadvantages. This al-

lows to improve recommendations not only in standard cases, but also in such extreme

scenarios as cold start (Sec. 1.2.1).

Hybrid recommender systems are closely related to the �eld of ensemble anal-

ysis in standard classi�cation tasks. For example, you can treat collaborative �ltering

models as a generalization of classi�cation models. All ensemble systems in that re-

spect are hybrid models. The opposite, however, is not necessarily true. There are 3

top-level design patterns for building hybrid recommender systems.
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The �rst one is ensemble. In this setup pre-selected recommender systems are

used in the true “black-box” or “o�-the-shelf” fashion. Every model in the ensemble

produces scores in a uni�ed way so that all the models are interchangeable and their

outputs can be easily combined. As an example, one could combine predictions of the

latent factors and the neighborhood-based models.

The second type is monolithic systems that are designed for heterogenous se-

tups with di�erent sources of data or di�erent classes of recommender models fused

together. One cannot use them in a purely “black-box” mode, as they typically require

additional e�orts to process the input data and merge di�erent algorithmic parts. In

some cases it may not be even possible to have a clear distinction between these parts.

Finally, mixed systems simultaneously present the outputs of several recom-

mender models. As an example, consider an online shop with several blocks of rec-

ommendations displayed in di�erent locations of the web page. One block may be

responsible for current shopping trends, while the other one for more tailored recom-

mendations, based on a visitor’s purchase history.

This high-level taxonomy can be further divided into a number of more spe-

ci�c representative classes. Description of all the classes goes beyond the scope of

this work. However, we note one particular case of monolithic design based on the

feature combination pattern, where several heterogeneous data sources are combined

and then are used within a uni�ed recommendation model. This pattern can be found

in a variety of hybrid recommenders, including some factorization methods, and will

be also used in this work (see Chap. 6 and Chap. 7).

1.2 Challenges for recommender systems

Building high quality RS is a complex problem that involves not only a certain

level of scienti�c knowledge, but also greatly depends on practical experience, accu-

mulated in real world applications. This makes the topic of challenges very broad and

we will only brie�y discuss some of the most common aspects closely related to initial

model design and algorithmic implementations.
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1.2.1 Cold start

Cold start is the problem of handling new entities, i.e. users or items or, in the

most sever case of the system cold start – both at the same time [49]. For example,

when a new (or unrecognized) user is introduced to the system, information about

user preferences is yet unavailable, which makes it nearly impossible to predict any

interesting and relevant items. Similar problem arises when a new item appears in a

product catalog. If an item has no content description or it was not rated by any user

it will be impossible to build recommendations with this item.

Even after a few interactions, i.e. in the so called warm start case, predicting

preferences can still be quite a di�cult task prone to unintended biases. This, however,

gives more space for maneuver. Unlike the cold start case, where CF models are simply

inapplicable, knowing a few preferences allows to employ some sort of incremental

approach (e.g., folding-in, see Sec. 2.2.3) in order to quickly update a CF model with

new information and generate new recommendations.

1.2.2 Missing values

Users naturally engage with only a small subset of items and a considerable

amount of possible interactions stays unobserved. Collecting more data requires time

and e�orts and its availability depends on various factors related to the domain of

application and user habits, which makes the task quite di�cult. Excluding the trivial

case of the lack of interest in speci�c items, there can be many other reasons why

users do not interact with them. For instance, users can simply be unaware of ex-

isting alternatives for the items of their choice or just face interesting items not at

the right moment. Finding out such reasons helps to make better predictions. This

task, however, is accompanied with a high level of uncertainty, which may bring an

undesirable bias against unobserved data or even prevent recommender models from

learning representative patterns.

This is especially critical for the CF approach as it relies on the assumption that

collaborative information is su�cient, i.e. accommodates all important variations in

user behavior, so that intrinsic relations can be reliably learned solely from that data.

However, there is some evidence that when the observed user-item interactions are too
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scarce, CF models may fail to generalize well and tend to produce unreliable predictions

[198, 5].

There are several commonly used techniques that help to alleviate these issues

and improve RS quality. In the MF case, simple regularization may prevent undesired

biases. Another e�ective technique is to assign some non-zero weights to the missing

data, instead of completely ignoring it [82]. Hybrid models can take advantage of con-

tent information in order to pre-process observations and assign non-zero relevance

scores to some of the unobserved interactions, which is sometimes called sparsity

smoothing. Alternatively, content information can be used to add additional regular-

ization. Data clustering is another e�ective approach, which is typically used to split

the problem into a number of subproblems of a smaller size with a more connected

information within each cluster.

Nevertheless, when data sparsity is not too extreme, even simpler methods can

work quite well. In the case of MF methods based on Singular Value Decomposition

(SVD) [65], simply imputing zeros in place of unobserved values is sometimes su�-

cient [38, 96]. Additional smoothing can be achieved in that case with the help of a

kernel trick [154]. Other missing value imputation techniques based on various data

averaging and normalization methods are also possible [49].

1.2.3 Implicit feedback

In many real systems users are not motivated or not technically equipped to

provide any information about their actual experience after interacting with an item.

Hence, user preferences can only be inferred from an implicit feedback, which may

not necessarily re�ect the actual user taste or even tell with guarantees whether the

user likes an item or dislikes it [82].

1.2.4 Model evaluation

Without a well designed evaluation work�ow and an adequate quality measure

it is impossible to build a reliable RS model that behaves equally well in both labo-

ratory and production environments. Moreover, there are many aspects of a model

assessment beyond recommendation accuracy that are related to both user experience

and business goals. This includes metrics like coverage, diversity, novelty, serendipity
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[153], and indicators such as total generated revenue or average revenue per user ses-

sion. This is still an open and ongoing research problem as it is not totally clear what

are the most relevant and informative o�ine metrics and how to align them with the

real online performance.

The most reliable evaluation of RS performance is an online testing and user

studies. However, researchers typically do not have an access to production systems

so a number of o�ine metrics, mostly borrowed from IR �eld, became widely used

as an alternative. The most important among them are the relevance metrics: pre-

cision, recall, F1-score; and the ranking metrics: normalized discounted cumulative

gain (NDCG), mean average precision (MAP), mean reciprocal rank (MRR), area un-

der the ROC curve (AUC). These metrics may to some extent simulate a real environ-

ment, and in same cases have a direct correlation with business metrics (e.g., recall

and clickthrough rates (CTR) [78]).

It is also important to emphasize that while there are some real-world systems

that target a direct prediction of a relevance score (e.g., rating), in most cases the

main goal of RS is to build a good ranked list of items, which is known as the top-n

recommendation task. This imposes some constraints on the evaluation techniques

and model construction. It might be tempting to use and optimize for error-based

metrics like root mean squared error (RMSE) or mean absolute error (MAE) due to

their simplicity. However, good performance in terms of RMSE does not guarantee

equally good performance on generating a ranked list of top-n recommendations [49].

In other words, the predicted relevance score may not align well with the perceived

quality of recommendations.

1.2.5 Reproducible results

The problem of reproducibility is closely related to recommendations quality

evaluation. Careful design of evaluation procedures is critical for fair comparison

of various methods. However, independent studies show that in controlled environ-

ments it is problematic to get consistent evaluation results even for the same algo-

rithms on �xed datasets but within di�erent platforms [142].

Situation gets even worse, taking into account that many models tackle similar

problems, while using di�erent datasets (sometimes not even publicly available), dif-
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ferent data pre-processing techniques [45] or di�erent evaluation metrics. In order to

avoid unintended biases, we will focus mostly on the description of the key features

of existing methods rather than on a side-by-side comparison of quantitative results.

1.2.6 Real-time recommendations

High quality RS are expected not only to produce relevant recommendations but

also respond instantly to system updates, such as new (or unrecognized) users, new

items or new feedback [92]. Satisfying this requirement highly depends on implemen-

tation: predictive algorithms must have low computational complexity for producing

new recommendations and take into account a dynamic nature of real environments.

Recomputation of the full RS model in order to include the new entities may take

prohibitively long time and users may leave the system without actually seeing any

recommendations. This means that RS application should be capable of making incre-

mental updates and also be able to provide instant recommendations at a low compu-

tational cost outside of the full model computation cycle. A number of techniques has

been developed to ful�ll these requirements for the MF case [56, 193, 23]. As it will be

shown in Sec. 3.2.2, these ideas can be also applied in the TF case.

1.2.7 Incorporating context information

As has been already mentioned, in real world scenarios interactions between

users and items exhibit a multifaceted nature. User preferences are typically not �xed

and may change with respect to a speci�c situation. For example, buyers may prefer

di�erent goods depending on the season of the year or time of the day. A user may

prefer to watch di�erent movies when alone or when with a group of friends.

We will informally call these situational aspects that shape user behavior a con-

textual information or context for short (see Fig. 1.1). Some other examples of context

are location, day of week, mood, the type of a user’s electronic device, etc. Essentially,

it can be almost anything [13, 46].

Context-aware recommender systems (CARS) can be built with 3 distinct tech-

niques [3]: contextual pre�ltering, where a separate model is learned for every con-

text type; contextual post�ltering, where adjustments are performed after a general

context-unaware model was built; and contextual modelling, where context becomes



11

User

Time

Location

Companions

Morning Afternoon Night

Home Work Cinema

Alone Friends Family

Figure 1.1: Examples of contextual information.

an essential part of the training process. The �rst two techniques may lose infor-

mation about interrelations within a context itself. Contextual modelling, in turn,

extends the dimensionality of the problem and promotes multi-relational aspect into

it. Therefore it may help to achieve more accurate results [85]. Following Eq. (1.1), we

can formalize it as follows:

fu : User× Item×Context1 × . . .×ContextN → RelevanceScore, (1.2)

where Contexti denotes one ofN contextual domains and the overall dimensionality

of the model is N+2.

As we will see further, TF models �t perfectly into the concept of CARS. With

a very broad de�nition of context, tensor-based methods turn into a �exible tool that

allows to naturally model very interesting and non-trivial setups, where the concept

of context goes beyond a typical connotation.

1.2.8 Content vs. context

As a precaution, it should be noted that a nonspeci�ty of a context may lead to

interpretability problems. Using a general de�nition of a context, a content informa-

tion such as user pro�le attributes (e.g. age, gender) or items properties (e.g. movie

genre or product category) can also be regarded as some type of context (for example,

see [85], where age and gender are used to build new context dimensions). However,

in practice, especially for TF models, this mixing is typically avoided [184, 138]. One

possible reason is a deterministic nature of content information in contrast to what is
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usually denoted as a context. Similarly to MF techniques, TF reveals new unseen as-

sociations (see Sec. 3.1.3), which in the case of deterministic attributes can be di�cult

to interpret. It is easy to see in the following example.

For a triplet (user, movie, gender) the movie rating may be associated with only

one of two possible pairs of (user, gender), depending on the actual user’s gender.

However, once a reconstruction (with help of some TF technique) is made, a non-zero

value of rating may now pop-up for both values of gender. The interpretation of such

association may become tricky and highly depends on initial problem formulation.

1.3 Quick summary and outlook

Many advantages provided by the collaborative �ltering approach not only

make it a ubiquitous tool in real-world applications but also draw attention from

academia. A considerable part of this focus is speci�cally devoted to various matrix-

and tensor-based factorization methods due to their e�ciency, �exibility and relative

simplicity. Factorization methods constitute the central part of this thesis work as

well. We revisit the general problem formulation and propose several new modi�ca-

tions, which allow to at least partially address the challenges mentioned above.

For example, in Chap. 5 we demonstrate how to improve the warm start sce-

nario with the help of a higher order tensor-based model. The model allows to better

represent known user preferences, remove an undesired positivity bias and improve

the general user experience. The proposed formulation treats user feedback as an in-

dependent categorical variable encoded within its own new dimension. This in many

ways resembles the context-aware approach: interactions between users and movies

are considered in the context of a certain feedback value.

Furthermore, as it was noted in Sec. 1.2.2, an extreme prevalence of missing

data may drastically limit the quality of CF models. Introducing more dimensions

can make the problem even worse. The method proposed in Chap. 6 allows to better

handle such cases with the help of a new hybrid approach based on a generalization

of SVD. It uses side information as an additional source of knowledge for recovering

unseen relations. Due to the use of side information, the method is also potentially

applicable in the cold start scenario.
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In Chap. 7 we show how the previous two approaches can be combined into

a uni�ed factorization model. The model allows to preserve the key advantages of

both approaches and at the same time circumvents their main shortcomings. It also

follows the concept of the content versus context dichotomy, mentioned in Sec. 1.2.8.

The context part, drawn from user feedback in our experiments, is encoded within

a separate dimension and gets its own latent representation along with users and

items. In contrast, the content part is directly encapsulated into the latent feature

space of the corresponding entity (user, item or context), which not only respects

the aforementioned deterministic nature of real features but also allows to avoid the

explosion of the latent space, when the number of real features gets high.

Another important feature shared by all three models is that they o�er a

straightforward folding-in calculation based on an analytical formula. It, therefore,

allows to operate in highly dynamic environments and to almost instantly respond to

changes in the system without the need to perform expensive retraining of the models.

Finally, Chap. 8 introduces a new recommendation framework developed dur-

ing the course of this work. Through an abstraction level, it provides a set of conve-

nient tools for quick prototyping and evaluation of new models. It takes care of many

technical aspects, which makes exploration of new ideas a lot easier and also helps to

ensure reproducibility of experiments.

Before proceeding to the main part of the thesis, which provides more details

on each of the proposed methods, let us �rst give a broad overview of already existing

approaches and techniques, based on either matrix (Chap. 2) or tensor factorization

(Chap. 3).



Chapter 2

Matrix Factorization

Matrix factorization is one of the most successful and widely used collaborative

�ltering techniques. One of the key advantages of MF models is the ability to reduce

an initial problem’s complexity and provide a compact representation of interaction

data generated from observed collective human behavior. With this approach users

and items are embedded as vectors in a lower dimensional space of latent features.

This procedure is known as a dimensionality reduction task. As a result, both user

tastes and relevant item characteristics can be described by a relatively small set of

parameters.

With this representation, the relations between users and items follow general

linear algebra rules and vector arithmetic. The utility of a particular item to a partic-

ular user can be simply estimated via a scalar product of their vectors in the obtained

lower dimensional latent feature space. This is the key concept that connects various MF

models presented in this chapter. From the geometric point of view, the angle between

user and item vectors is smaller for relevant items and is larger for irrelevant ones

(see [94, Figure 2] for an illustration). This can be conveniently expressed in terms of

the cosine similarity measure and also used for building more e�cient neighborhood-

based models [2].

Unlike the neighborhood-based techniques, MF is less susceptible to the so-

called limited coverage problem [44]. For example, the lack of common preferences

information for a pair of users may lead to unreliable correlations in prediction mech-

anism for the neighborhood models. In contrast, MF models build a more meaningful

conceptual description of user interests in terms of latent features, which to a certain

extent allows alleviating that problem. A better expressiveness of the MF models also

14
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makes them less sensitive to the data sparsity problem, typically observed in many

real applications.

As has been already stated, the concept of utility, is one of the key ingredients of

MF models. Its purpose is to adequately represent an undetermined decision-making

process driven by hidden motives behind a particular user choice. The decision mak-

ing is indirectly observed via partially available interaction data, expressed in the form

of a feedback provided by users to some (not all) items. The goal of any MF approach

is, given that data, to estimate the corresponding utility function fu , as de�ned in 1.1,

which will not only agree with the observed part of user preferences but will also help

to make predictions on the unobserved part.

In the simplest case theRelevanceScore can be directly related to the user feed-

back. Consider a movie recommendation system, where users express how satis�ed

they are with a certain movie by providing an explicit rating value on some Likert

scale. The problem of �nding fu can then be transformed into a well studied matrix

completion problem, which has become especially popular in the recommender sys-

tems community after the famous Net�ix Prize competition
1
. Even though the rating

values are subjective in their nature [8], it is often neglected as the task of recover-

ing the unknown entries of the rating matrix enables many very practical and quite

e�cient methods of solving the problem of recommendations. A considerable part of

Sec. 2.3 is devoted to such methods not only because of their popularity but also as

it helps to provide the necessary background for an understanding of more elaborate

models.

Standard matrix completion, however, may not be the best choice in the implicit

case, where the feedback is not intentionally provided by users and is collected via an

indirect observation of their actions, such as clicks on product web-pages, amount of

product purchases, time spent reading a product description, etc. Note, that the lack

of feedback from a user for a particular item does not immediately imply a negative

preference, which holds for both explicit and implicit cases. However, in the implicit

case, the fact that a user has interacted with an item may not necessarily correspond

to a positive preference. Taking that into account requires a more thoughtful prob-

lem formulation, which may lead to an alternative de�nition of the RelevanceScore,

abstracted away from the observable feedback (see Sec. 2.3.3). Note that one of the

1
https://www.net�ixprize.com



16

corner cases of implicit feedback when it simply denotes the fact of interaction is

often referred to as One-Class Collaborative Filtering (OCCF) [117, 178].

In addition to that, in many practical applications, it is often more important

to return an ordered list of correctly ranked recommendations, rather than simply pre-

dict rating values. This is known as a top-n recommendation problem, where n is the

number of recommended items. At �rst glance, this may seem like a trivial task: once

the rating predictions are available, one can simply select the items with the high-

est predicted score. However, being able to recover rating values accurately does not

necessarily guarantee the best performance in terms of generating a ranked list of the

most relevant recommendations [92]. This opens the doors for the so-called learning

to rank models with a substantially di�erent objective (see Sec. 2.4), more coherent

with the task of top-n recommendations. Such models are typically not even suitable

for the completion task.

As the matrix completion models can be tuned and evaluated in terms of the

ranking problem as well, we will distinguish between the two major types of recom-

mendation tasks – the rating prediction and the top-n recommendation – and provide

a view on factorization models through the lens of this distinction where necessary.

2.1 Problem formulation

As has been already noted, the dimensionality reduction approach in recom-

mender systems allows to describe any user preferences and any item characteristics

in terms of a small set of model parameters. Along with a compact representation,

it also helps to uncover non-trivial patterns within the data and use them to gener-

ate meaningful recommendations. Generally speaking, this can be achieved with the

help of various methods, such as neural networks, markov decision processes, latent

dirichlet allocation and some others. However, in this chapter we focus speci�cally

on the matrix factorization approach.

Let us start from the matrix completion case as it provides a good illustration of

some major concepts and serves as a ground for further improvements and general-

izations to higher order cases (Chap. 3). Consider an imaginary scenario in which all

known users of some recommendation system have provided their preferences for all

available items. This can be conveniently represented in the form of a complete matrix
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of interactionsA ∈ RM×N . The rows of the matrix correspond to users and its columns

correspond to items. Its elements would correspond to some form of a feedback pro-

vided by users and this would represent a snapshot of a real “noisy” data. The “noise”

may have di�erent nature. It can be caused by variations in individuals’ behavior and

their tastes or by occasional changes in a context of an interaction, or it can be the

result of some other uncontrollable and mostly unpredictable factors. All of it leads to

a certain level of unavoidable randomness making the problem of recommendations

very complex.

Nevertheless, at a large scale the collective behavior may reveal some regular-

ities and exhibit some common patterns that could be potentially described with a

relatively small set of parameters. Therefore, while the dimensionality reduction may

lead to a loss of some information, it can still help to uncover and generalize at least

some of the hidden commonalities in users’ behavior. With this assumption the ob-

served data can be modelled as:

A = R+E,

where the matrix E denotes the “noise” and R is an approximate utility matrix which

accommodates the behavioral patterns and have a certain inner structure. The task of

building a recommendation model then translates into the task of recovering R.

The solution to this problem in the case of a matrix factorization approach can

be generally represented in the form of a matrix product:

R = PQT , (2.1)

where matrices P ∈ RM×r and Q ∈ RN×r
represent users and items respectively. Each

row pTi of the matrix P re�ects a preference vector of user i, described in terms of r

latent features. In other words it gives a representation of user i in the latent feature

space. Similarly, each row qTj of the matrix Q describes an association of item j with

those latent features, i.e. it gives a representation of an item in the latent feature space.

Vectors pi and qj are also called an embedding of users and items onto the latent

feature space. The utility function fu of an item j to a user i is, therefore, represented

by a scalar product pTi qj . The number of latent features r is called the rank of an

approximation. This number is typically much smaller than the number of items or

users. Such a representation of a matrix as a product of two other matrices of smaller
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sizes is also called a low rank approximation and the resulting matrix R is said to have

a low rank structure.

The �nal form of the matrices P and Q depends on the formulation of a corre-

sponding optimization problem described in terms of a speci�c loss functionL :

min
Θ
L (A, R(Θ)) , (2.2)

where Θ := {P ,Q} is a set of model parameters and L penalizes deviation of the

model from observations. Worth noting here, that the term deviation should be treated

in a broad sense. As we discussed in the introduction, a particular form of the function

L may go far beyond standard matrix completion formulation (see Sec. 2.4).

Also recall, that in the majority of real systems the observed interactions are

typically very scarce and the vast amount of data is missing, which makes the matrix

A overly incomplete. Therefore, the optimization problem described by Eq. (2.2) remains

ambiguous unless we explicitly de�ne how to deal with the missing values ofA or at least

de�ne in what sense a complete matrix R approximates an incomplete matrix A. Due

to this reason we prefer to avoid the commonly used and intuitive notation A ≈ R.

We also note, that in some cases an additional processing of the data may help

to create a better representation of the observed user behavior and potentially help to

improve the quality of recommendations. As an example, in a music recommendation

service the logarithmic scaling of a listening frequency (i.e. the number of times a user

has listened to a track) may help to generate more accurate recommendations com-

paring to a naive use of raw counts data as a measure of utility. There is a number of

transformation techniques such as data centering and normalization, value binariza-

tion, cutting by a threshold, tf-idf transformation and many others which may help to

build more accurate recommendation models.

Even in the systems with a �xed explicit feedback, such as a 5-star rating scale,

used in many movie recommendation services, a transformation of that scale may

improve recommendations. It has an intrinsic connection to a subjective nature of a

perceived utility of goods. For example, some users may assign a rating value of 3

to a movie they believe is “OK”, i.e. nothing special but still "watchable", whilst for

other users this can be a way to indicate that the movie is completely uninteresting,

a total waste of time. In addition to that, some empirical studies show that even for a

single user the perceived "distance" between di�erent ratings may vary and the uni-
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form rating scale from 1 to 5 used as a measure of a user enjoyment may not be that

accurate [8]. All of this, along with the fact that the unobserved data is missing not

at random (MNAR) [161, 151], may potentially introduce unintended biases in both

recommendation models and evaluation measures.

Both described aspects – the way missing data is handled and the choice of

a data preprocessing technique – create additional degrees of freedom for a model

construction. Sometimes it may directly a�ect an optimization procedure and lead to

very di�erent factorization algorithms. In other cases it may lead to several variations

of the same method. In order to explicitly signify the role of these degrees of freedom

we will formulate the optimization problem Eq. (2.2) not in terms of an approximation

of the matrix A, but rather as an approximation of some function of A:

min
Θ
L (T (A),R(Θ)) , (2.3)

where T (·) denotes a problem-dependent transformation of the data which may in-

clude missing values imputation and/or various data preprocessing steps. In the next

sections we will cover some of the most famous factorization models resulting from

a combination of di�erent data transformation techniques, various loss functions and

optimization algorithms.

2.2 SVD-based models

One of the �rst factorization algorithms used in the �eld of recommender sys-

tems is the singular value decomposition (SVD) [66]. It is a well-established compu-

tational tool with e�cient implementations in many programming languages, which

is included in many modern machine learning libraries and frameworks. SVD is used

within a wide range of applications in various domains of data analysis, information

retrieval and natural language processing.

Speaking about the latter, SVD has a straightforward relation to the latent se-

mantic indexing/analysis (LSI/LSA) [56, 42]. However, the task of revealing words’

semantics based on their occurrence in text documents is in some sense similar to the

task of �nding alike items based on users’ consumption patterns. Not surprisingly,

the �rst SVD-based technique for recommender systems was proposed already in the

late 90’s, just a few years after this vibrant research �eld emerged [49].
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Generally, early application of SVD in recommender systems had an enabling

role in a sense that it was used as an intermediate dimensionality reduction step and

in order to generate a �nal list of recommendations its output was fed into a di�er-

ent algorithm based on, for example, a neural network [19] or a nearest neighbors

approach [146]. The authors of the latter work also used SVD in a standalone regime

(with a certain preliminary data normalization) for the rating prediction task with a

little to no improvement over the competing CF algorithm. However, an even simpler

SVD-based model, named PureSVD [38], has been later demonstrated to outperform

some state-of-the-art algorithms in terms of the top-n recommendation task.

We �nd it necessary to also introduce here some formal de�nitions and common

results from linear algebra, which will help in further explanations. Any complete

matrix A ∈ RM×N can be represented in the form:

A =UΣV T ,

where U ∈ RM×M and V ∈ RN×N
are orthogonal matrices, their columns are called

the left and the right singular vectors respectively; Σ ∈ RM×N is a diagonal matrix

with non-negative elements σ1 ≥ . . . ≥ σK on its main diagonal called singular values;

K = min(M,N ) is a rank of SVD. According to the Eckart-Young theorem [48], the

truncated SVD of rank r < K with σr+1, . . . ,σK set to 0 gives the best rank-r approxi-

mation of the matrix A. NOTE In fact, even though the problem is non-convex, it can

be shown that all possible minima in that case are global [160].

2.2.1 PureSVD

Unfortunately, the result of the Eckart-Young theorem cannot be directly ap-

plied in recommender systems settings as SVD is unde�ned for incomplete matrices.

As a workaround the PureSVD model uses a simple imputation technique: to replace

the missing entries ofAwith zeroes. Hence, an incomplete matrixA is transformed into

a sparse matrix A0 with zero values inplace of the unknown elements, i.e. T (A) = A0.

The corresponding loss function can then be expressed as

L (T (A),R) = ‖A0 −R‖2F, (2.4)

where ‖ · ‖F denotes the Frobenius norm. As the loss function is now well de�ned, we

can apply the Eckart-Young theorem to �nd a globally optimal solution to the resulting
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optimization task de�ned by Eq. (2.3):

R =UrΣrV
T
r , (2.5)

where factor matrices Ur ∈ RM×r and Vr ∈ RN×r
have orthonormal columns and rep-

resent users and items in the reduced latent space with r �min(M,N ) distinct latent

features. Square diagonal matrix Σr ∈ Rr×r
has r largest singular values on its main

diagonal. U ∈ RM×r ,V ∈ RN×r are orthogonal factor matrices that embed users and

movies respectively onto a lower dimensional space of latent (or hidden) features, Σ

is a matrix of singular values σ1 ≥ . . . ≥ σr > 0 that de�ne the strength or the contri-

bution of every latent feature into resulting score. Equation (2.5) can be equivalently

rewritten in the form of Eq. (2.1) simply by allowing P =UrΣ
β
r andQ = VrΣ

1−β
r , where

β is some real number in the interval [0, 1], typically assigned to 1/2 or 1.

As was noticed by the authors of the PureSVD model, the orthonormality

of columns of the factor matrices allows to rewrite Eq. (2.5) in a more convenient

form. Assuming that A0 = UΣV T
is the full SVD of the completed matrix, we

have A0VrV
T
r = UΣV TVrV

T
r = UrΣrV

T
r . The last equality is due to the fact that

V TVr = [Ir 0]T , where Ir is the identity matrix of size r and 0 denotes a matrix of all

zeros with a conforming size. From here it reads:

R = A0VrV
T
r . (2.6)

This induces a natural geometrical interpretation: once the right singular vectors are

determined, every row of the prediction matrix R can be computed as an orthogonal

projection of the corresponding user preferences onto the latent feature space. Note, that

this eliminates the need for the matrix of user factors Ur , as it can be restored by the

means of UrΣr = A0Vr . This can be used to reduce both computational overhead and

storage requirements of the model. From now on for brevity we will omit the subscript

r in the equations for both matrix- and tensor-based factorizations (Chap. 3), always

assuming a low-rank approximation. In other words, we will denote a factor matrix

Ur simply as U and likewise for other factor matrices.

Taking into account that in many practical cases a typical sparsity of the ma-

trix is higher than 99%, setting zeros inplace of the missing data introduces a strong

bias of the model prediction towards zero values. This makes the model very bad

from the matrix completion perspective and totally unsuitable for the rating prediction
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task. Nevertheless, despite such a bias, the PureSVD approach is known to serve as a

strong baseline in the top-n recommendation problem outperforming even more elab-

orate state-of-the-art methods [38, 96]. Of course, it does not imply that PureSVD is

always an optimal choice. However, it should be considered by beginner practitioners

as a good starting model.

The truncated SVD can be computed with the help of an iterative Lanczos proce-

dure [66] which invokes a Krylov subspace method and internally uses e�cient bidiag-

onalization techniques supported by a Gram-Schmidt orthogonalization process. The

key bene�t of such approach is that in order to �nd r leading singular vectors and cor-

responding singular values it is only required to provide a rule of how to multiply an

interaction matrix by an arbitrary vector from the right and from the left. More specif-

ically, given the number of non-zero elements nnzA of the matrix A that corresponds

to the number of the observed interactions, the overall computational complexity of

the SVD algorithm can be estimated as O(nnzA · r) +O((M +N ) · r2) [71], where the

�rst term corresponds to the complexity of a sparse matrix-vector product and the

second term is related to an internal orthogonalization process.

2.2.2 Biases and custom data transformation

It has been already noted that user feedback is intrinsically subjective. One of

the ways to partially address that subjectivity at least in the rating-based systems is to

introduce the concept of the so called user and item bias. User bias captures a tendency

of a user to systematically assign higher (or lower) ratings depending on how critical

the user is in comparison with an average person. Likewise, item bias can be described

as a tendency of items to receive higher (or lower) ratings. In practice, it turns out that

the most part of an interaction “signal” (e.g. rating value) is accommodated by these

biases. This allows for even non-personalized recommendation models, called baseline

predictors, to demonstrate a fairly good prediction quality in the rating prediction task

[94].

These biases can be estimated with the help of simple statistics such as an aver-

age of user and item ratings calculated over the observed data sample. It is also possi-

ble to use more sophisticated estimation methods, e.g. averaging with value damping

or even gradient-based optimization [49]. An overall bias bij (i.e. baseline predictor)
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can be expressed as a combination of all systematic biases
2
:

bij = µ+ ti + fj , (2.7)

where µ is a global bias constant (e.g. global average rating); ti denotes a user bias or a

tendency to give higher or lower ratings; in turn fj re�ects an item bias, its favouredness

or in some sense quality (based on the opinions of raters).

In the PureSVD model these biases can be used as a replacement for the missing

data, which therefore reduces the distortion introduced by a straightforward zero-

based imputation step and allows to partially address the subjectivity of user prefer-

ences. In the simplest scenario one could use Eq. (2.7) to replace the missing entries

of Awith the corresponding values of the baseline predictor. In this case the transfor-

mation T of the data is trivial. It is su�cient to simply subtract the bias values from

the known entries of A. The unknown values can then be set to 0, preserving the

same sparsity pattern as in A0. After the preprocessing is done the standard PureSVD

model is built on top of the centered data. When generating recommendations the

bias term should be added back to the predicted scores of the model.

More elaborate data preprocessing techniques can also be supported without

sacri�cing the computational e�ciency. As an example, consider the case when the

missing elements of the rating matrix are �rst �lled-in with the values of item average

ratings f ∈ RN and then the resulting complete matrix is additionally normalized by

subtracting user average ratings t ∈ RM [146]. The elements of the obtained centered

matrix T (A) = Â can be expressed as:âij = aij − ti if aij is known,

âij = fj − ti otherwise.

By construction, the complete matrix Â is likely to be dense. However, it can be split

into the sum of a sparse matrix Ā with two rank-1 terms (outer products of vectors):

Â = Ā− teTN + eMf
T , (2.8)

2
The notation we use here slightly di�ers from what can be commonly seen in the literature – we assign di�erent letters

to user and item bias variables, as it helps to avoid an ambiguity in mathematical formulations which involve matrix-vector

operations.
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where eM ,eN denote vectors of all ones of a conforming size and the elements of Ā

are de�ned as follows: āij = aij − fj if aij is known,

āij = 0 otherwise.

Recall that in order to compute the truncated SVD it is only required to provide a

matrix-vector multiplication rule. Multiplying Eq. (2.8) by an arbitrary vector v gives:

Âv = Āv − t〈eN ,v〉+ eM〈f ,v〉, (2.9)

where 〈· , ·〉 stands for the scalar product of two vectors. Note, that the �rst term in

Eq. (2.9) has the same computational complexity as in the original PureSVD approach

as the matrix Ā by construction follows the sparsity pattern as A0. The last 2 terms

are linear with respect to the number of users and items, and therefore the added

complexity is onlyO(M +N ), which is negligible as it is dominated by the complexity

of the standard Lanczos procedure. Moreover, there is clearly no need to explicitly

form the dense matrix Â to compute SVD, which allows to avoid unnecessary memory

overhead. This technique can be further used for an iterative variant of SVD [88] for

achieving a better performance in terms of the rating prediction task.

2.2.3 Handling online updates

Many recommendation services aim to provide an instant engagement for both

known users and newcomers as well as quickly update the information about new

items in the assortment. In the modern online world with its highly dynamic en-

vironment and an overwhelming amount of information this requires the ability to

generate recommendations instantly. This, however, would be impossible for large

scale recommender systems if the only way to accomplish that would be to recom-

pute the whole model for every new (or unrecognized) user or a newly introduced

item.

One common technique designed to support an instant service is called folding-

in [49], which was initially proposed in the �eld of information retrieval for the se-

mantic document-term analysis [56]. As long as at least one interaction with a new

entity (i.e. user or item) is observed, it allows to approximately update the corre-

sponding latent representation and quickly generate recommendations for this new
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entity without the need for the whole model recomputation. Note, that this setting

is di�erent from the so called cold start regime (Sec. 1.2.1), where no interactions are

available.

One of the greatest advantages of the SVD-based approach is an analytical form

of the folding-in. Unlike many other MF methods it does not require any additional

optimization steps to calculate recommendations for a new user/item not present in

the training data. Once the latent factors are computed one can use the folding-in

formula to generate recommendations without recomputing the whole model. This

makes SVD-based models very plausible for use in highly dynamic online environ-

ments. For illustration purposes we will consider the new user scenario. New item

scenario is trivially obtained by analogy.

Assuming that the model is expressive enough, a new user can be represented

with high accuracy as a combination of previously seen users. Therefore, the prefer-

ence vector a of a new user (with imputed zeroes inplace of the unknowns) can be

approximated as aT ≈ uTΣV T
, where u is unknown. Multiplying from the right both

parts of this approximate equality by VΣ−1 and using the orthonormality property

V TV = I one arrives at the following expression:

uT ≈ aTVΣ−1. (2.10)

This represents an approximate embedding of a new user to the latent feature space.

The formula can be further used to directly generate recommendations. By the virtue

of Eq. (2.5) one could perform a reverse operation and restore the corresponding new

row for the matrix R, which after transposing the result reads:

r ≈ VV Ta, (2.11)

where r is a vector of predicted relevance scores. Provided that there are k items in

the preference vector a, the overall complexity of generating recommendations for a

single user isO(Nkr), which is the result of the chain of matrix-vector multiplications.

From the geometrical point of view, Eq. (2.11) can be treated as an orthogonal

projection of user preferences onto the space of latent features represented byV . Com-

paring this result to Eq. (2.6) suggests that it can be used to generate recommendations

for both known and new users. All it requires is a list of user preferences. This also

means that one can generate recommendations based on any combination of items
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even if it does not correspond to any particular known user. In the latter case it gives

an estimate of possible user preferences, implicitly relying on the assumption that the

learned model is expressive enough. In turn, for the known users it corresponds to

the exact prediction formula.

As a precaution remark, the folding-in approach is only approximate and leads

to the loss of orthogonality of factors. In the long run it accumulates an error and once

in a while it is advised to fully recalculate the model, especially if a lot of new data is

collected. Alternatively, incremental update techniques can be employed in order to

avoid expensive recomputations [17, 194, 23].

2.2.4 The family of eigendecomposition algorithms

The PureSVD model can be viewed as a member of a broader family of eigen-

decomposition algorithms. Consider an SVD-based approximation Ã ≈ UΣV T
for

some complete matrix Ã with standardized data. The corresponding correlation ma-

trix ÃT Ã ≈ VΣ2V T
would represent the well known PCA with principal components

given by ÃV = UΣ. The principal components can be then utilized to indicate simi-

larity between users (or items in the transposed case) and build a neighborhood-based

recommender system.

This path was initially explored by the authors of the Eigentaste model [64]

designed for the jokes recommendation system. The authors selected a subset (called

the gauge set) of the observed data, where only items rated by all users were present.

This has led to a complete dense matrix of ratings A. The only transformation T (A)

the authors used on top of it was the standardization of rating values, allowing to

build a Pearson correlation matrix and apply classical PCA. The authors used the �rst

2 principal components and a clustering technique in this lower dimensional space in

order to group like-minded users. In every group (or cluster) the rating for every non-

gauge item was estimated as a mean value averaged across those users of the group

who has provided rating for this item. As for the new users, they were requested to

�rstly provide ratings on the gauge items. After that the ratings were projected to the

lower dimensional space allowing to assign the newcomers to the known clusters and

generate averaging-based recommendations similarly to the known users.
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Note, that rating predictions generated by Eigentaste are not fully personalized

as they are assigned to a whole cluster of users at once. Moreover, the requirement

of the dense gauge set can be fully satis�ed only in speci�c environments with suf-

�ciently large amount of user feedback and/or relatively small number of items to

interact with (which is exactly the case with the jokes dataset used in the work). In

many real-world settings with very high sparsity of the data these can be di�cult or

even impossible to guarantee. However, it turns out, that at least in the case of top-n

recommendation task such restrictions can be alleviated. As shown by the authors of

the EIGENREC model [112], as long as the rating prediction is not one of the goals of

a recommender system, one could build a more �exible and more general approach

following the paradigm of PureSVD.

The authors make the following observation: PureSVD can be viewed as an eigen-

decomposition of a scaled user-based or item-based cosine similarity matrix. For in-

stance, in an item-based case it solves an eigendecomposition problem for the follow-

ing matrix cross-product:

AT0A0 ≡DCD ≈ VΣ2V T , (2.12)

where the scaling matrix D ∈ RM×M is diagonal with diagonal elements dii = ‖ai‖2
and ai denotes the ratings of the item i encoded within the i-th column of the matrix

A0. Each element cij of the symmetric matrixC ∈ RM×M equals to the cosine similarity

between item i and item j:

cij = cos(i, j) =
aTi aj
diidjj

. (2.13)

From here it follows, that by altering the scaling factors D and/or by replacing

C with some other inter-item proximity or correlation matrix S :

DCD→DpSDp,

one can obtain a new model with a di�erent inner structure of the latent space. Here

p is some real number (the authors used values in the range [-2, 2]) and S is a new

proximity matrix, which can be based on Pearson correlation, Jaccard index or many

other similarity measures. The authors emphasize, that in fact even the choice of a

scaling factor may have a signi�cant impact on the quality of recommendations. This
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scaling allows to control the sensitivity of the model to the popularity of items, and

therefore to some extent mitigates the problem of unbalanced observation data present

in the majority of recommender systems.

Similarly to PureSVD the authors use the Lanczos procedure in order to build an

orthogonal basis. They propose their own parallel and highly e�cient implementation

of it. Therefore, the EIGENREC approach allows to preserve the bene�ts of PureSVD

which include a good scalability and a quick way to generate recommendations ac-

cording to Eq. (2.11) for both known and newly introduced users. The approach also

gives more �exibility comparing to the standard PureSVD model and unlike the Eigen-

taste model allows to operate on the full assortment of items from the very beginning.

It provides an instrument for a more intricate tuning, potentially making it suitable

for a wider class of problems.

2.3 Weighted low-rank approximation

A straightforward data imputation is not the only way of dealing with missing

values. Alternatively, one could try to avoid making any strict assumptions on the

missing values and either ignore them completely or introduce some con�dence-based

description of it. Indeed, the fact that some interactions between users and items are

unobserved does not immediately suggest that these interactions will never happen.

For example, a user may never interact with an item simply due to inability to notice

it among many other similar items in a large assortment. On the other hand, if a user

consumes one item more often than another one, it may increase our con�dence that

the item is more relevant or more interesting for a user.

Hence, bringing the concept of a con�dence-based weighting for both observed

and unobserved interactions into a factorization model may help to create more accu-

rate recommender systems. A common way to express the corresponding loss func-

tion reads:

L (T (A),R) = ‖W ◦ (T (A)−R)‖2F , (2.14)

where W =
[√
wij

]
is a matrix of non-negative weights wij ≥ 0 and ◦ denotes

Hadamard product, i.e. an elementwise multiplication between two matrices. The

weight values of W typically depend on the observed data W =W (A). We take the

square root of weights wij in order to conform with an equivalent elementwise for-
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mulation of the loss function:

L (T (A),R) =
∑
i,j

wij(a
(T )
ij − rij)

2, (2.15)

where a
(T )
ij denotes an element of the matrix T (A) at the intersection of the i-th row

and j-th column.

One of the most popular choices of the weights is based on {0, 1} values simply

indicating the fact of interaction. The corresponding binary weight matrix W is then

de�ned by: wij = 1 if aij is known,

wij = 0 otherwise.
(2.16)

With this formulation, no data imputation is required as all missing elements of the ma-

trixA are simply ignored. More elaborate weighting schemes are discussed in Sec. 2.3.3.

Typically, the number of users and items is very large while at the same time the

number of observed interactions between them is very small. Therefore, the model

obtained as a result of minimization of the loss function de�ned by Eq. (2.14) is likely

to over�t and produce poor prediction quality on the unobserved part of the data. In

order to prevent this over�tting additional constraints are typically imposed on the

parameters of the model. Most commonly, a simple regularization is used for that

purpose leading to the following regularized optimization objective:

J (Θ) =L (Θ) +Ω(Θ), (2.17)

whereL (Θ) is de�ned by Eq. (2.14) (we omit the full notation of the input arguments

for brevity) and Ω(Θ) is some regularization function typically expressed in terms of

some vector or matrix norm. Many factorization models use a simple quadratic term,

allowing to penalize an undesired growth of the parameters’ values:

Ω(Θ) = λ
(
‖P ‖2F + ‖Q‖2F

)
, (2.18)

where λ > 0 is an additional model’s hyper-parameter called regularization coe�-

cient. In some cases a separate value is assigned to each factor matrix for more granu-

lar tuning of the model, which sometimes helps to achieve a better prediction quality.

Altering the regularization function may also help to induce a speci�c structure on

the resulting latent space, e.g. one could use l1 norm to obtain sparse latent factors. In
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some other cases, when the data is strictly non-negative, imposing a non-negativity

constraint on the factors helps to avoid meaningless predictions and may also improve

generalization. In the case of binary input data it has a meaning of soft clustering or

“fuzzy membership” [173].

2.3.1 Optimization techniques

A recommendation model is learned as a solution to the corresponding opti-

mization problem:

Θ∗ = argmin

Θ

J (Θ). (2.19)

This can no longer be directly solved with the help of classical SVD and alternative

optimization methods are required. Some of the most popular options are gradient-

based methods, especially the stochastic gradient descent (SGD) [22], and alternating

minimization methods such as alternating least squares (ALS) [201] and coordinate

descent (CD) [190].

In general, these methods no longer guarantee global convergence and, there-

fore, the optimization requires careful initialization and hyper-parameters tuning.

Nevertheless, the methods in practice exhibit fairly good convergence behavior which

makes them the main building blocks for many recommender models. More advanced

optimization techniques based on Riemannian optimization [177] also seem promising

in recommender systems settings, o�ering quick convergence and high scalability in

low-rank approximation tasks [190].

Gradient-based techniques

The main idea of the gradient-based approach (also called batch gradient) is

to iteratively make steps in the direction that is opposite to the gradient of the op-

timization objective. Each iteration step in its naive implementation is based on the

following sequential update rule for the model parameters:
pi← pi − η

∂J
∂pi

,

qj ← qj − η
∂J
∂qj

,
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where η is a step size also called learning rate; its value can be a constant real number

determined empirically with cross-validation or, in more advanced cases, depend on

iterations.

The algorithm makes a full pass through all observations, called epoch, in order

to perform a full update of matrices P and Q. Iterations continue until the maximum

number of epochs is reached or a convergence criteria is met. Note that �nding the

gradient at each iteration can be quite computationally demanding and su�ers from

many redundant calculations. At large scale this may lead to both slow convergence

and high memory load.

A more e�cient implementation, which is the essence of SGD, is to approximate

a full gradient with the gradient computed over a single observation or a small group

of them (called mini-batch). Such smaller updates are easier to �nd at the cost of a

less straightforward convergence. This allows to sweep through the entire dataset in

a single pass for the full update of parameters and has a very low memory footprint.

In the case of a single observation update, the update rules are as follows:pi← pi + η(eijqj −λpi),

qj ← qj + η(eijpi −λqj),
(2.20)

where eij = a
(T )
ij − rij measures how o� is the prediction of the model at the current

step from the ground-truth.

The method strongly depends on initialization of its parameters, performed at

the beginning. A quite common practice is to use a normal distribution with zero

mean and small deviation. It is also advised to shu�e the data prior to optimization

in order to avoid unintended biases in the resulting model. The overall complexity of

the approach is O(nnzA · r).
Note that SGD is inherently incremental, which gives an “out-of-the-box” equiv-

alent of the folding-in technique for the model updates. For example, in the case of a

newly introduced user with at least a few known preferences one can simply iterate

over these preferences with the �rst line of Eq. (2.20) until it converges. The other

parameters related to items stay �xed in that case. New items can be handled in a

similar fashion.
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Alternating minimization techniques

In turn, the ALS-based methods decompose the optimization task into the se-

quence of the least squares problems. Note that while the optimization problem de-

�ned by Eq. (2.19) is non-convex, it is bi-convex with respect to its parameters. In other

words, for �xed P it is convex in Q and for �xed Q it is convex in P . Moreover, the

optimization problem can be solved independently for every row of P and Q. There-

fore, one can iteratively minimize the objective function by switching between user

and item factors and updating their rows as follows:
pi← argmin

pi

J (Θ),

qj ← argmin

qj

J (Θ).
(2.21)

After each iteration the objective function is guaranteed not to increase. However,

unlike the unweighted case, there are no global guarantees for convergence in general.

In practice, the algorithm is reported to require only around 10 or slightly more epochs

to achieve a good approximation [14, 82].

In order to �nd the update rules for Eq. (2.21), it is convenient to rewrite both

L de�ned by Eq. (2.14) and Ω de�ned by Eq. (2.18) in the row-wise and column-wise

forms, corresponding to pi and qj respectively. For example, in the user-wise case it

reads:

J (Θ) =
∑
i

(ai −Qpi)
TW (i) (ai −Qpi) +λ

∑
i

pTi pi +λ‖Q‖
2
F, (2.22)

where W (i) = diag{wi1,wi2, . . . ,wiN } is a diagonal matrix of weights and ai is the i-th

row of the matrix T (A), i.e. it represents the preference vector of user i with respect to

all items. After �nding the derivative ∂J / ∂pi and setting it to zero one arrives at the

following equation for pi : (
QTW (i)Q+λI

)
pi =Q

TW (i)ai . (2.23)

This gives a standard linear system of equations with the r × r symmetric positive

de�nite matrix

(
QTW (i)Q+λI

)
. Direct solution of the system can be found in O(r3)

time, for example, by the means of Cholesky decomposition. The resulting expression

for the pi update reads:

pi←
(
QTW (i)Q+λI

)−1
QTW (i)ai . (2.24)
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Due to the symmetry of the objective function, in order to �nd an update rule for qj
one can simply replace Q,W (i)

and ai with their corresponding counterparts:

qj ←
(
P T W̄ (j)P +λI

)−1
P T W̄ (j)āj , (2.25)

where W̄ (j) = diag{w1j ,w2j , . . . ,wMj} and āj denotes the j-th column of the matrix

T (A), i.e. the preference vector of all users against item j . At each epoch the algorithm

updates all rows of the matrices P and Q, which can be done in parallel. As in the

SGD case, the iteration process repeats until either the number of epochs exceeds

some threshold value or the objective function ceases to decrease (with respect to a

prede�ned tolerance). The overall complexity of the algorithm is estimated asO(nnzA·
r2 + (M +N )r3) [124].

Note, that the same update rules can also be used to calculate approximate pre-

dictions for the new entities. Indeed, as every update is just the solution of the corre-

sponding least squares problem, one can replace ai or āj with the preference vector of

a newly introduced user or item respectively. This technique is similar to the folding-

in update used in PureSVD.

Another important consideration is that the time, required to solve Eq. (2.23),

can be further reduced with additional computational tricks. For example, the

straightforward application of the Sherman-Woodbury-Morrison formula gives an an-

alytic expression for incremental calculations of the matrix inverse at each iteration.

This, however, may not always provide a considerable speed-up and highly depends

on the data sparsity [124].

Alternatively, instead of the direct approach one could use iterative linear sys-

tem solvers in order to �nd an approximate solution. A worth noting candidate is the

conjugate gradient (CG) method [66], which is closely related to the Lanczos process

and similarly requires only matrix-vector multiplications for performing the task. The

method allows to reduce the complexity of the matrix inverse computation to O(r)

instead of O(r3) as in the original approach. It gives a decent trade-o� between the

accuracy of each individual update and the overall convergence speed [171] and works

quite well in practice
3
.

3
Its open-source implementation available at https://github.com/benfred/implicit is shown to provide a remarkable

speedup almost without the drop in quality.



34

Coordinate descent

Another iterative approach for performing the optimization task is to employ

the (block) coordinate descent method (CD) [18, Section 2.7]. In the context of the

low-rank approximation of complete matrices it was explored in [35], where the au-

thors additionally consider nonnegativity constraints. A few e�cient variations of the

method were also proposed for the missing value estimation in the recommender sys-

tems with explicit feedback [15, 124, 190]. Recently, several e�cient implementations

were also proposed for the OCCF case [189, 12].

Generally, instead of the bulk update of latent feature matrices performed in

ALS, CD successively updates either blocks of variables (e.g. rows or columns of the

factor matrices) or simply a single variable. Such formulation leads to a convex opti-

mization and avoids computation of a matrix inverse. For example, by declaring the

result of an update in the variable pik as θ one arrives at the following optimization

subproblem:

f (θ) =
∑
ij

wij
(
aij −

(
pTi qj − pikqjk

)
−θqjk

)2
+λθ2, (2.26)

where f (θ) is a univariate quadratic function. Its optimum value is then given by:

θ∗ =

∑
jwij

(
aij −pTi qj + pikqjk

)
qjk

λ+
∑
jwijq

2
jk

. (2.27)

Similar expression can be obtained for updates in the matrix Q. This approach also

o�ers a trade-o�. The algorithm may require more epochs to converge, however, each

iteration within every epoch becomes much cheaper. Despite being less popular than

ALS and SGD, CD o�ers a competitive quality of recommendations with a number of

computational advantages [190].

2.3.2 Biased matrix factorization

As was already noted in Sec. 2.2.2, the rating prediction quality can be improved

with the concept of biases, which absorb a signi�cant part of the feedback signal. A

similar data transformation procedure with manually crafted biases can be applied for

the weighted MF problem as well. However, unlike the SVD-based case, the weighted
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formulation of the problem is more �exible and allows to declare bias variables as

additional model parameters [121, 94].

With this approach, the predicted value of the rating rij assigned by user i to

item j is modelled as follows:

rij = µ+ ti + fj +pTi qj , (2.28)

where all bias variables {ti} and {fj} are learned along with other model parameters, i.e.

Θ = {t,f , P ,Q}. The global average µ is usually pre-estimated based on the known

values of ratings. One may conveniently rewrite the prediction formula in a compact

matrix form, following the outer product rule similarly to Eq. (2.8):

R = µE + P̄ Q̄T ,

where the block matrices P̄ = [t eM P ] and Q̄ = [eN f Q] have a particular form of the

�rst two columns comprised by the bias vectors and vectors of all ones; E = eMe
T
N is

an M ×N matrix of all ones.

Clearly, shifting the data values by µ would give similar to Eq. (2.1) form. How-

ever, the bias terms increase an overall rank of the solution by 2. Moreover, the result

does not correspond to an arbitrary unbiased MF model of rank r + 2 due to a cer-

tain structure of the �rst 2 columns in the factor matrices. In some sense biases can

be viewed as a speci�c constraint on the factors, which is used to re�ect the core

assumption about the underlying rating mechanism.

The SGD-based variation of this matrix factorization approach became popular

after it was published in the famous blog post
4

by Simon Funk, when he attended

the Net�ix Prize competition. Due to that, sometimes this algorithm is also called

FunkSVD. It has become an internal part of many other MF algorithms. The full update

rule, including additional bias updates, reads:

pi← pi + η(eijqj −λpi),

qj ← qj + η(eijpi −λqj),

ti← ti + η(eij −λti),

fj ← fj + η(eij −λfj).

4
http://sifter.org/simon/journal/20061211.html
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As a practical remark, such a representation via the bias terms also allows to

quickly estimate the rating values for previously unobserved items or users with no

associated ratings. In that case it falls back to the baseline value contained in the

corresponding bias term and there is no contribution of the factorization part. This

estimate can be further improved after at least one rating value is provided into the

system with the incremental approach similarly to the unbiased MF case.

2.3.3 Con�dence-based models

Another important example of the weighted matrix factorization approach is

based on a more �exible treatment of both observed and unobserved interactions.

Consider the case, where users exhibit di�erent behavior depending on how much

they like a particular item. For example, when a user plays a particular sound track

several times while skipping some other track just after listening to the �rst 10 sec-

onds, this would be a clear indication that the �rst track is more interesting for the

user. In other words, our con�dence that the user enjoys the music is higher in the

case of the �rst track. Likewise, the fact that user has never played some track does

not immediately suggest that the track is not interesting - the user may be simply

unaware of it. However, our con�dence in the relevance of the track is lower in this

case.

In order to account for such an uncertainty it seems reasonable to associate some

con�dence measure with every possible interaction. Instead of simply ignoring the

missing data and assigning constant weights to the known interactions as in Eq. (2.16)

we would like to change the weights of interactions depending on various conditions

and to treat both observed and unobserved data in a more thorough way. The general

form of a con�dence-based loss function is slightly di�erent from Eq. (2.14):

L (T (A),R) = ‖W (A) ◦ (S −R)‖2F. (2.29)

where the binary matrix S ∈ BM×N with elementssij = 1, if aij is known,

sij = 0, otherwise

(2.30)
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indicates whether a particular interaction has occurred. The weights matrix

W = [√wij] encodes a con�dence in the observed feedback and directly depends on

the values of A.

Note that this approach is not designed to predict an exact rating value. It rather

focuses on the prediction of a probability of a certain event taking into account an

additional information, be it a rating value, a browsing behavior or any other form of

an explicit or implicit feedback that allows to quantify the corresponding con�dence

level. A particular choice of the con�dence measure may signi�cantly impact the

performance of a recommendation model. A few di�erent techniques were proposed

independently by several research groups [82, 117]. The substantial di�erence in the

proposed models is in the way the weighting is applied.

The authors of the so called Weighted Regularized Matrix Factorization model

(WRMF) [82], sometimes also called implicit ALS or iALS, propose to assign constant

weight of 1 to the unobserved interactions, and increase the weight for any observed

interaction proportionally to a satisfaction of a user with an item estimated from the

expressed feedback:

wij = 1+αg
(
a
(T )
ij

)
, (2.31)

where α is an empirically determined coe�cient of proportionality. The estimation

function g is the most subjective part of the model and may vary depending on the

domain of application and the type of available data. The authors give a few examples

of it based on linear g(x) = x and logarithmic g(x) = log(1 + x
ε ) approximation (with

an extra tuning parameter ε), which work well in practice.

The authors propose to use ALS optimization as it allows to e�ciently handle

computations with complete matrices S andW . The general form of the solution stays

the same as in standard ALS:pi←
(
QTW (i)Q+λI

)−1
QTW (i)si ,

qj ←
(
P T W̄ (j)P +λI

)−1
P T W̄ (j)s̄j ,

(2.32)

where W (i) = diag{wi1,wi2, . . . ,wiN }, W̄ (j) = diag{w1j ,w2j , . . . ,wMj}; si is a binary

preference vector of user i with respect to all items, and s̄j is a binary preference

vector of all users against item j . The authors came up with an elegant computational

trick wich allows to avoid redundant computations making the algorithm highly scal-

able.
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Alternatively, the authors of the second approach, referred to as weighted ALS

or wALS [117], propose to assign the constant weight value of 1 for all known obser-

vations and in contrast to WRMF use alternate weighting schemes for the unobserved

part. The weighting scheme can be based either on small constant values in the range

[0, 1] or on some data aggregation which takes into account popularity e�ects. For

example, in the user oriented approach the weights for the unobserved data are pro-

portional to the number of ratings provided by user. The rationale behind is that the

higher is the number of ratings provided by user, the more likely it is that the remain-

ing non-rated items are irrelevant for that user. Likewise, in the item oriented case the

lower popularity of an item would increase the corresponding weights for negative

(unobserved) interactions.

2.3.4 Combined latent representations

A high level intuition behind latent features is often provided in terms of the

ability to capture intrinsic item properties as well as user motivation and interests.

Latent features are often treated as indicators of some user tastes and items’ a�nity

to them. However, in practice, it can be quite di�cult to directly map a single real

feature to its latent representation [174]. It is more likely that each latent feature will

instead characterize some tangled combination of various aspects.

Moreover, the number of these aspects can be large and they may have a com-

plicated, multifaceted nature making it hard to interpret them by a virtue of standard

parametrization. On the other hand, this information may play an important role in

the decision making process. Ignoring it may not only limit the expressiveness of a

recommendation model, but also hinder its ability to uncover valuable implicit rela-

tions within the observed data.

One of the ways to improve sensitivity of a model to a multi-aspect input is

to explicitly impose an aspect-based structure on the latent representation of users

and items. As an example, consider an online retail shop where customers tend to

purchase only a few items and rarely provide an explicit feedback. This would lead to

a very sparse interaction matrix and make the decision making process obscure for a

recommendation model.
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Meanwhile, it is typically possible to collect additional information such as what

pages users visit during their search for a product, what information they look for,

what products they consider together, etc. Including such information into a model

allows to increase an understanding of user interests, and therefore help to create a

better prediction model. With the �exibility of a weighted matrix factorization this

can be achieved directly by adjusting the optimization objective.

One of the earliest examples of such approach is the NSVD model [121], where

every user is characterized by a combination of items he or he interacted with. It can be

especially helpful in the case of extreme sparsity and the lack of any side information,

giving a more “smooth” representation of the data. The author of the model proposed

2 variations of such representation: based on binary vectors (simply denoting the fact

of interaction) and based on latent features of items. In the latter case the solution can

be sought in the following form:

R = SQQT
(2.33)

where S is a sparse matrix of aggregation coe�cients with binary elements de�ned

simialrly to Eq. (2.30). Here we omit biases as they can be trivially added.

The matrix product SQ in Eq. (2.33) gives an aggregated representation of every

user via the latent features of consumed items. As a result, the contribution into the

prediction score is de�ned by all the actions taken by the user, independently of the

user-assigned rating values. Note that the model has a reduced number of parame-

ters which can be especially suitable in the systems with very large amount of users

and may potentially help to avoid a certain redundancy. It also has inspired further

research in this direction and has led to more elaborate models such as SVD++ and

Asymmetric-SVD [93]. Later it was shown to be a special case of the more general

models, namely SVDFeature [30] and Factorization Machines [132].

In the SVD++ model, which turned out to provide results superior to

Asymmetric-SVD, the latent features of users are not replaced, but rather are aug-

mented with an additional information about multiple aspects of user-item interac-

tions in the following way:

R = (P + S̄L)QT , (2.34)

where L represents an independent ofQ latent subspace, which is used to build neigh-

borhoods of items rated together by the same user. The sparse aggregation matrix S̄
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has the same sparsity pattern as S . In contrast to NSVD, its values are not binary and

are row-normalized, so that the norm of every row would be equal to 1, i.e. S̄ =D−1S ,

whereD = diag{‖s1‖2,‖s2‖2, . . . ,‖sM‖2} and si is an i-th row of S . Such normalization

prevents susceptibility of the model to popularity of items and to contribution of very

active raters.

Note that multiple types of feedback can be easily incorporated into the model

simply by adding more aggregation terms, i.e. P + S̄1L1 + S̄2L2 + . . ., corresponding

to di�erent types of feedback (e.g. purchase activity, browsing history, etc.). The key

drawback of such approach is an increased number of parameters, which makes the

model more di�cult to train and prone to over�tting.

Eq. (2.34) can be reformulated as R = (XP̄ )QT
, where X = [I S̄] and P̄ T =

[P TLT ] are block matrices of aggregation coe�cients and joint latent features respec-

tively. Up until now we have used coe�cients matrix X to combine items rated by

the same user. However, it can also be used to re�ect any sort of additional informa-

tion which helps better describe the observed interactions. For example, instead of

(or along with) indicating the rated-together items, it can be used to encode relevant

user attributes and group users with respect to these attributes. The matrix P̄ will

be extended with the corresponding embeddings of these attributes onto the latent

feature space similarly to how it was performed for items with the matrix L.

The same reasoning can be applied with respect to the matrix Q which can be

replaced with an aggregated view on di�erent item properties and the item-related

interaction aspects. The most general formulation of such representation can be com-

pactly described as:

R = XP (YQ)T , (2.35)

where the block matrices P T = [P T1 P
T
2 . . .] and QT = [QT

1 Q
T
2 . . .] now represent var-

ious user-based, item-based and mutual aspects of the observed interactions. Sparse

coe�cient matrices X = [X1X2 . . .] and Y = [Y1Y2 . . .] with the corresponding block

structure allow to aggregate various latent vectors to represent every interaction from

a multi-aspect perspective. This aggregated model is known as SVDFeature [30]. Due

to its ability to take side information into account it can be considered as a represen-

tative of the so called hybrid approach (see Sec. 1.1.3).

There is one nuance that is worth noting here. The authors of the model propose

to represent the global bias as a weighted sum of global biases calculated with respect
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to di�erent aspects. It is more convenient to demonstrate it with an equivalent to

Eq. (2.35) elementwise formulation, now including all bias terms:

rij = b0 + tTxi + f T yj + xTi PQ
T yj , (2.36)

where b0 =
∑
g∈Gγgµg is a global bias aggregated over the group of aspects denoted

by G with individual weight coe�cients γg and bias values µg .

Note that the bilinear form of Eq. (2.36) can be viewed as a special case of a

polynomial expansion:

r(z) = b0 +bT z+ zTHz+ . . . (2.37)

The connection to the SVDFeature model can be seen with the following substitution:

bT = [tT f T ] and zT = [xT yT ], where xT and yT are some rows of the matrices X and

Y . The coe�cients vector z now encodes the full information about an interaction

between some user and some item with respect to all related aspects
5
, as was discussed

previously. Hence, the quadratic term zTHz with symmetric positive semi-de�nite

matrix H allows to account for an interplay between any entities and any aspects in

their contribution to the �nal prediction score. Note thatH subsumes matrices P and

Q in a certain way and the parameters of the model are described as Θ = {b0,b,H}.
Such a generalization leads to the next hybrid approach and a popular machine

learning algorithm, namely Factorization Machines (FM) [132], which has been proven

to perform well in recommender systems. The author of the model notes that the

matrixH should have a low-rank structure in order to deal with the sparsity problem

and increase the expressiveness of the model:

H = VV T

where V embeds all users, items and the corresponding side information onto the

lower dimensional latent feature space. In addition to that, all self-in�uence terms (i.e.

x2i ) are excluded and the symmetry of the model (i.e. the equivalent contribution of

both xixj and xjxi interplay terms) is taken into account, which produces the following

relevance score function:

r(z) = b0 +
∑
i

bizi +
∑
i

∑
j=i+1

〈vi ,vj〉zizj (2.38)

5
In the case of categorical data, e.g. user or item id, user gender, movie genre, etc., this method of building a sparse

representation of the multidimensional input data is called one hot encoding.
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The task of generating recommendations, therefore, boils down to solving the poly-

nomial regression problem given the observation data.

Note that unlike SVDFeature or SVD++ the model allows to take into account

additional interaction factors, e.g. it allows to include a “within-class” in�uence – an

in�uence of entities and aspects of the same type on each other within a single obser-

vation. Indeed, indices i, j in zizj term may belong to 2 di�erent items or 2 di�erent

features describing the same item. Depending on the problem, such extra interactions

can be meaningless or undesirable. In order to control which interactions are allowed

in the model one can replace zizj with δijzizj , where binary variable δij would indicate

whether the corresponding interaction is allowed. Clearly, FM can be reduced to any

of the previously discussed models by a proper choice of the model parameters and

indicator coe�cients. A popular variation of FM that uses this technique to separate

the latent space for various groups of features is called Field-Aware FM (FFM) [84].

FM models also have a close connection to a higher order approach based on

Pairwise Interaction Tensor Factorization (PITF) model [134]. Unlike matrix-based

models, PITF uses an array with 3 dimensions, called a 3rd order tensor, to encode

pairwise relations between users, items and additional interaction aspects (tags). The

model uses 2 independent latent feature spaces for tags: one for user-tag and another

one for item-tag relations respectively. The PITF model per se is a member of a broader

family of tensor-based methods, which allow to model n-ary relations (ternary, qua-

ternary, etc.) not only in a pairwise but in a mutual way.

The topic of tensor methods in recommender systems deserves a separate dis-

cussion and we refer the reader to [54] for a comprehensive overview. Worth noting

here that tensor-based methods are often used for context-aware recommender sys-

tems. There are also several direct extensions of the FM idea to higher order cases,

e.g. Tensor Machines [188], Higher Order FM [20], Exponential Machines [115].

2.3.5 Remark on connection with SVD

As can be seen, there are some matrix factorization methods that have SVD

acronym in their names. This may lead to a certain confusion, that should be avoided.

Strictly speaking, most of these methods, like FunkSVD, SVD++, SVDFeature and their

derivatives have very little in common with a mathematical formulation of SVD. Un-
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like conventional SVD, these methods do not build a space of singular vectors and do

not compute singular values. Most of them do not preserve the orthogonality property.

Weighted matrix factorization approach is designed speci�cally to work with incom-

plete matrices, often ignoring unknown entries or treating them not in the same way

as in PureSVD. They form a separate family of methods with di�erent optimization

objectives and more �exible tuning. However, due to historical reasons, they are still

sometimes are referenced as SVD-based methods.

As a matter of fact, it is, of course, possible to orthogonalize latent factors in

Eq. (2.1) and get an equivalent to Eq. (2.5) form with orthonormal basis. This can be

achieved by the virtue of the QR decomposition applied to both P and Q matrices

(in order to get singular values as well one would have to additionally apply SVD to

the product of the low dimensional upper triangular matrices resulted from the QR

decomposition). Nevertheless, whenever the optimization objective Eq. (2.17) includes

speci�c constraints other than simple quadratic regularization and the loss function is

considerably di�erent from Eq. (2.14), performing orthogonalization potentially leads

to a loss of structure in the latent feature space imposed by those special conditions.

Also note that a simple regularization constraint similar to Eq. (2.18) can be

added for SVD factors as well. Optimization of the corresponding loss function de�ned

by Eq. (2.4) with this added constraint can be performed without the need to switch to

general matrix factorization framework. The solution to such optimization problem,

known as quadratically regularized PCA, has the same analytical form as the standard

SVD and preserves its properties [176]. There is also a connection of the latter to an

iterative SVD-based approach called softImpute suitable for the rating prediction task

[72].

2.4 Learning to rank

There is an overwhelming amount of factorization models that implement so-

phisticated modi�cations to standard MF formulation in order to achieve a certain

goal or address a speci�c problem. To name a few, factorization models may include

the concept of metric learning [81] or impose additional locality constraints [31] to

generate a better latent representation; rely on a more �exible probabilistic inference

techniques [105, 143]; use kernel methods to capture non-linear e�ects [133], etc. An
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overview of such a variety of methods falls beyond the scope of this work. We, how-

ever, �nd it necessary to brie�y describe a particular example which is directly related

to the top-n recommendation problem.

One of the main concerns with the standard formulation of matrix factoriza-

tion problems is that it is especially suitable for the rating prediction task, however,

one can argue that this may not be the best choice for top-n recommendations (see

Sec. 1.2.4), where the correct ranking of recommended items is more important than

any particular prediction score. It turns out that there is a formal way to address this

issue with the help of the learning to rank approach [101]. In order to do that, let us

consider three general categories of optimization objectives, which lead to di�erent

ranking mechanisms in recommender systems: pointwise, pairwise and listwise [28].

Pointwise objective directly depends on a pointwise loss function between the

observations and the predicted values. This is the simplest case, which corresponds

to previously discussed optimization problems, e.g. Eq. (2.4) or Eq. (2.14), and is not

designed for the ranking task. Nevertheless, like in the case with PureSVD, which is

formulated as a matrix completion problem and yet can be tuned to provide reasonably

good precision-recall scores, it is also possible to empirically �nd a set of model hyper-

parameters, which improve the ranking of recommendations. However, it is unlikely

to get a signi�cant improvement in this case.

Pairwise objective depends on a pairwise comparison of the predicted values

and penalizes those cases where their ordering does not correspond to the ordering

of observations. The total loss in that case may take the following (or similar) form:

L (A,R) =
∑
i

∑
j,j ′ :aij>aij′

l(rij − rij ′),

where l(x1 − x2) is a pairwise loss function that decreases with the increase of the

di�erence x1 − x2 (e.g. sigmoid function) and rij is the predicted score. It allows to

smoothly approximate an indicator function I(x1 > x2).
One of the most popular examples of the pairwise optimization is Bayesian

Personalized Ranking (BPR) technique [135], which optimizes a smooth version of

AUC with the help of SGD. Another variation of the pairwise approach is Weighted

Approximate-Rank Pairwise (WARP) [183, 80], which implements an e�cient itera-

tive sampling procedure for negative examples. Alternatively, the authors of RankALS
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[172] propose a modi�cation of the WRMF model for the pairwise objective and pro-

pose an ALS-based optimization procedure.

Listwise objective optimizes the predicted ordering over entire lists of items at

once. The corresponding listwise loss function can be schematically expressed as

l({aij}, {rij}). It penalizes the deviation of the predicted ranking of a given list of items

from the ground truth ranking based on observations. This approach is considered

to be the most suitable for the top-n recommendation task as it allows to directly op-

timize listwise metrics, e.g. mean average precision (MAP), normalized discounted

cumulative gain (NDCG) or mean reciprocal rank (MRR). The listwise approach fol-

lows a similar trick of a smooth approximation of the ranking metrics. For example,

the reciprocal rank RRij of an item j recommended to a user i can be approximated

by:

RRij ≈
1

1+ e−rij
.

A few remarkable examples of this approach are CoFiRank [181], which implements

a convex upper bound approximation of NDCG, and CLiMF [156], which instead op-

timizes a lower bound of a smooth reciprocal rank.

Worth noting here, although both pairwise and listwise algorithms are likely

to improve the quality of predicted ranking of elements, they are typically harder to

implement and may require additional heuristics to reduce the computational com-

plexity [157].

2.5 Practical aspects

There are many practical aspects that make particular algorithms more suit-

able in certain environments depending on the desired balance between technical and

business requirements. For example, achieving the highest quality of recommenda-

tions with a state-of-the-art method may require a lot of computational resources or

depend on a complex setup which is hard to maintain and support in production. In

such cases a simpler approach with a more straightforward con�guration and �exi-

ble tuning may become more favorable and help to �nd a better trade-o� between a

solution’s complexity and the recommendations quality. The latter point is especially

crucial when latent factors are used to build neighborhood-based models. In large
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Table 2.1: Comparison of low-rank approximation algorithms for explicit feedback

data.

Algorithm Overall complexity Update complexity Sensitivity Optimality

SVD* O
(
nnzA · r + (M +N )r2

)
O (nnza · r) Stable Global

ALS O
(
nnzA · r2 + (M +N )r3

)
O

(
nnza · r + r3

)
Stable Local

CD O (nnzA · r) O (nnza · r) Stable Local

SGD O (nnzA · r) O (nnza · r) Sensitive Local

∗
For both standard and randomized implementations [71].

scale setting an exact search of neighbors may take a prohibitively long time and has

to be replaced with approximate solutions (see [10]).

A thorough technical analysis of di�erent algorithms is a non-trivial task and

depends on various aspects. One of the most crucial ones is the scalability question,

which includes an overall time complexity, memory and storage requirements, online

updates support, parallelization e�ciency in shared- and distributed-memory envi-

ronments. Other aspects include stability of an algorithm and its convergence guar-

antees. General di�erences between the main algorithms discussed in this chapter

are provided in Table 2.1. Note that unlike ALS and SVD, standard implementations

of SGD and CD are inapplicable for OCCF problems, as their complexity becomes

proportional to the total size of the rating matrix.

2.5.1 Parallel implementations

From the parallelization viewpoint, multi-core shared-memory systems are typ-

ically more preferred than distributed shared-nothing environments with multiple

computational nodes. This allows to avoid the between-node communication and

system state synchronization costs induced by hardware I/O capabilities and speci�c

software implementations.

Moreover, a wide class of large-scale problems can be tackled in the shared-

memory settings with the help of an up-to-date hardware [79] and appropriate data

preprocessing (e.g. cleansing, subsampling). For example, modern cloud computing

services provide instances for memory-intensive applications with several terabytes

of physical memory onboard, which may help to cover the needs in many practical
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cases. Therefore, as a rule of thumb, distributed setups should be avoided unless the

data and/or model parameters do not �t into a single machine’s memory [7].

Parallel SGD

As has been noted, the SGD algorithm is inherently sequential. Model’s param-

eters are updated after every single learning step and parallelization of the algorithm

becomes a challenging task. Within such computational environment various archi-

tectural choices on the data and model sharing, on data-accessing and data-passing

strategies may have a dramatic impact on the algorithm’s performance [195, 145].

A straightforward implementation of SGD in shared-memory environment di-

rectly leads to overwriting con�icts when, for example, several parallel workers op-

erate on the ratings of the same user/item and, therefore, modify the same vector of

user/item latent features. As a result, some of the standard techniques for SGD par-

allelization, such as Hogwild! [130], may not be suitable for the matrix factorization

case, unless the data is extremely sparse. As a lock-free algorithm, Hogwild! does

not restrict parallel overwrites and it’s performance is highly in�uenced by the data

imbalance. Latent features of very popular items or very active users are likely to be

updated and recomputed more frequently than latent features of entities with fewer

ratings. In practice, this may result in a slower convergence and a degradation of an

overall performance of the approach.

In turn, in the distributed case the synchronization of updated parameters of

SGD between computational nodes may easily become the main bottleneck of compu-

tations. The described problems has led to many di�erent approaches, which achieve

certain trade-o�’s between e�ective communications and state synchronization, use

various data partitioning techniques, implement elaborate locking strategies and rely

on aggressive caching. Some of the approaches are only suitable for shared-memory

systems [202, 118], others are designed for distributed systems [62, 149] and some

support both regimes [192].

Note that in production environments the stochastic nature of SGD may prevent

a normal execution of some standard operations. One of the examples is a (non)-

regression testing, which is executed on a regular basis to ensure that the behavior of

a system during its lifecycle is predictable and stable. An asynchronous execution of

SGD in this case may su�er from an uncontrollable randomization at the operating
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system level and render an unreproducible state, which makes it harder to track down

potential sources of issues and to resolve inconsistencies. In this sense, SVD with its

deterministic output and global guarantees provides a reliable alternative.

Parallel ALS

In contrast to SGD, parallel implementation of the standard ALS algorithm for

weighted matrix factorization is much more straightforward as latent feature vectors

for any user or item can be updated independently at each epoch. It is often said that

the algorithm is embarrassingly parallel. However, at large scale and in the distributed

settings the task may become more involved and IO intensive [190], requiring elabo-

rate data partitioning and parameters’ synchronization [39, 150].

As an example, if factor matrices are too large to �t into a single machine’s

memory than one have to distribute rows of factor matrices P andQ across nodes and

properly coordinate the between-node communications to ensure a consistent global

state. The interaction data may also be distributed so that all interactions related to a

single item or to a single user belong to the same computational node [201]. As this

would require switching between columns and rows of the ratings matrix, which is

typically stored in the compressed sparse row/column formats (CSR/CSC), two dis-

tributed copies of data are used: a column-wise copy for item-related interactions and

a row-wise copy for user-related interactions. This allows to avoid redundant com-

putations and reduce the intensity of data transfer.

Nevertheless, communication overhead of the ALS in that case can still be con-

siderable due to random access to the latent feature matrices and may not play well

with widely accepted distributed data processing paradigms, such as map-reduce [79].

Alternatively, in the shared-memory settings both ALS and iALS can be implemented

very e�ciently [60].

Parallel CD

The CD method can be considered as an attempt to combine the advantages

of both ALS and SGD methods. It performs alternating optimization similar to ALS

and consists of a more lightweight iteration steps. The authors of cyclic CD approach
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(CCD++) [190] demonstrate that the method can be relatively easy adapted for both

multi-core and distributed environments.

Similarly to [15, 35], in CCD++ the standard row-wise updating scheme is re-

placed with the column-wise scheme, where the same component of the latent space is

updated for all users or items at once. Basically, the CCD++ approach transforms the

optimization problem into a sequence of local rank-1 subproblems, where the columns

of latent feature matrices are alternatively updated and each alternating step is dis-

tributed across several parallel workers. The authors also note that repeating several

alternating update cycles within a single subproblem allows to achieve better results.

Implementation of the algorithm is straightforward in the shared-memory set-

tings. In distributed environment it requires additional synchronization of column

factors after a complete rank-1 update. However, the authors estimate an overall com-

munication overhead of the approach to be not signi�cantly larger than in the case of

popular distributed SGD algorithm [62]. Moreover, it provides a more stable conver-

gence. As demonstrated by the authors the approach shows favorable performance

and scales well in both distributed and shared-memory environments.

Parallel SVD

As has been previously discussed, computation of SVD relies on the Lanczos

procedure, which requires only matrix-vector products and can be made very e�-

cient with the help of broadly available linear algebra kernels, such as Intel MKL

or ARPACK. Internally, the computations are performed by calling highly optimized

BLAS/LAPACK routines, tuned for a better utilization of hardware capabilities on the

shared memory devices.

Implementation of the algorithm in the distributed setup is typically achieved

via the distribution of the Gram matrix-vector product (assuming A is a tall matrix):

(ATA)v =
∑
i

ai(ai
T v).

After gathering the result one can use a linear algebra kernel locally to compute the

top leading right singular vectors V by the virtue of an eigendecomposition of the

Gram matrix. After that the matrix-matrix product AV can also be obtained in a

distributed manner. The result is then collected and fed into the standard SVD to



50

�nally get the leading left singular vectors U and the corresponding singular values

Σ. The main bottlenecks of the process are parallel data reads and communication

overheads incurred by the matrix products. As has been demonstrated in [63] the

scaling is very sensitive to implementation details of the distributed calculations and

requires a careful investigation to achieve a better scalability.

One of the ways to achieve a better performance in both shared-memory and

distributed setups is to replace exact SVD with its approximate variant, such as Ran-

domized SVD [71]. A higher computational e�ciency of the algorithm comes at the

cost of a less accurate result. This, however, is not a stopper as the exact rating pre-

diction is not the main focus of the majority of recommender systems. Moreover, the

quality of approximation can be improved by a higher rank.

2.5.2 Hyper-parameters tuning

Due to di�erences in convergence properties, the methods discussed above re-

quire various levels of involvement during the model selection process. Some of the

methods are less demanding with respect to the hyper-parameters’ choice, others ex-

hibit more sensitive behavior (see Sensitivity column in Table 2.1).

Apparently, SVD can be treated as the most convenient method in this regard.

Indeed, it only requires to tune a single parameter – the rank of the decomposition

[38]. Moreover, due to optimality of the algorithm, once the PureSVD model is com-

puted for some rank value r , one can immediately obtain a model of any rank r ′ < r

simply by truncating the factor matrices to the �rst r ′ components and without any

extra computations.

Both CD and ALS depend on at least one extra parameter related to regulariza-

tion. However, the choice of its value in some reasonable range does not signi�cantly

a�ect the quality of the resulting model and the initialization may play a more impor-

tant role due to potential abundance of local minima. Nevertheless, WRMF methods

introduce additional parameters related to the weighting scheme and require a careful

tuning.

Lastly, SGD-based methods are the most sensitive to both initialization and

hyper-parameters tuning. This is especially true for the learning rate [202] and many

practical implementations employ additional adaptive techniques [22] to automati-
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cally select a more appropriate value depending on the convergence pattern and the

distance from a minimum.

2.6 Conclusion

This chapter gives an overview of the most popular and widely spread matrix

factorization techniques used in collaborative �ltering models. It provides the key

concepts related to the problem formulation, learning methods, tuning of models and

their practical applications. Due to outstanding composability of the MF approach, it

allows to address a high number of problems and challenges, arising in recommender

systems, that go far beyond simple rating prediction task.

MF methods allow to naturally incorporate additional sources of information

and impose speci�c constraints on the latent feature space, o�ering more meaningful

interpretations and a better quality of recommendations. The algorithms o�er various

trade-o�s between simplicity, computational e�ciency, �exibility in tuning, online

scenarios support, and quality of recommendations. This remains up to a practitioner

to validate the choice of a particular model based on a domain of application, available

infrastructure, and business requirements.

Overall, the �eld of matrix factorization methods in recommender systems has

advanced signi�cantly in recent decades. An increasing complexity of problems, espe-

cially in hybrid and learning to rank models, has led to the dominance of approximate

optimization methods based on ALS, CD, and SGD. These techniques have become a

versatile instrument containing a �exible framework for optimization objective ma-

nipulation. On the other hand, there are certain practical issues with this approach

and, as we argue in Chap. 4, it does not always pay-o� in terms of the quality of

recommendations.

This naturally raises the question, whether it is possible to employ a more ef-

�cient algorithm, like the one used in PureSVD with all its advantages, for solving

more complex problems and without giving up on recommendations quality. It turns

out that the answer is a�rmative. Even though SVD has a very rigid formulation and

allows to solve a very speci�c optimization problem, in Chap. 6 we demonstrate, how

it can be tweaked in order to construct an e�cient hybrid model, which uses side

information to saturate collaborative data and learn more viable behavioral patterns.



Chapter 3

Tensor Factorization

Conventional RS deal with two major types of entities which are typically users

(e.g., customers, consumers) and items (e.g., products, resources). Users interact with

items by viewing or purchasing them, assigning ratings, leaving text reviews, placing

likes or dislikes, etc. These interactions, also called events or transactions, create an

observation history, typically collected in a form of transaction/event log that re�ects

the relations between users and items. Recognizing and learning these relations in

order to predict new possible interactions is one of the key goals of RS.

As we will see further, the de�nition of entities is not limited to users and items

only. Entities can be practically of any type as long as predicting new interactions be-

tween them may bring valuable knowledge and help to make better decisions. In some

cases, entities can be even of the same type, like in the task of predicting new connec-

tions between people in a social network or recommending relevant paper citations

for a scienti�c paper.

Modern recommender models may also have to deal with more than two types

of entities within a single system. For instance, users may want to assign tags (e.g.,

keywords) to the items they like. Tags become the third type of entity that relates to

both users and items, as it represents the user motivation and clari�es items relevance

(more on that in Sec. 3.2.2). Time can be another example of an additional entity,

as both user preferences and items relevance may depend on time (see Sec. 3.2.3).

Taking into account these multiple relations between several entities typically helps

to provide more relevant, dynamic and situational recommendations. It also increases

the complexity of RS models, which in turn brings new challenges and opens the door

for new types of algorithms, such as tensor factorization (TF) methods.

52
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The topic of building a production-ready recommender system is very broad and

includes not only algorithms but also concerns a lot about business logic, data�ow de-

sign, integration with infrastructure, service delivery and user experience. This also

may require speci�c domain knowledge and always needs a comprehensive evalua-

tion. Speaking about the latter, the most appropriate way of assessing RS quality is

an online A/B testing and massive user studies [74, 49, 89], which are typically not

available right at hand in academia. In this work, we will only touch mathematical

and algorithmic aspects which will be accompanied with examples from various ap-

plication domains.

3.1 Introduction to tensors

In this section we brie�y introduce some general concepts needed for better

understanding of further material. For a deeper introduction to the key mathematical

aspects of multilinear algebra and tensor factorizations we refer the reader to [90, 37,

68]. As in the case of MF in RS, TF produces a predictive model by revealing patterns

from the data. The major advantage of a tensor-based approach is the ability to take

into account a multifaceted nature of user-item interactions.

3.1.1 De�nitions and notations

We will regard an array of numbers with more than 2 dimensions as a tensor.

This is a natural extension of matrices to a higher order case. A tensor withm distinct

dimensions or modes is called an m-way tensor or a tensor of order m.

Without loss of generality and for the sake of simplicity we will start our con-

siderations with a 3rd order tensors to illustrate some important concepts. We will

denote tensors with calligraphic capital letters, e.g. A ∈ RM×N×K stands for a 3rd

order tensor of real numbers with dimensions of sizes M,N,K . We will also use a

compact form A = [aijk]
M,N,K
i,j,k=1 , where aijk is an element or entry at position (i, j,k),

and will assume everywhere in the text the values of the tensor to be real.

Tensor �bers. A generalization of matrix rows and columns to a higher order case

is called a �ber. Fiber represents a sequence of elements along a �xed mode when all
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A B

A B

Figure 3.1: Tensor of order 3 (top) and its matricization/unfolding (bottom). Arrow

denotes the mode of matricization.

but one indices are �xed. Thus, a mode-1 �ber of a tensor is equivalent to a matrix

column, a mode-2 �ber of a tensor corresponds to a matrix row. A mode-3 �ber in a

tensor is also called a tube.

Tensor slices. Another important concept is a tensor slice. Slices can be obtained

by �xing all but two indices in a tensor, thus forming a two-dimensional array, i.e.

matrix. In a third order tensor there could be 3 types of slices: horizontal, lateral, and

frontal, which are denoted as Ai::,A:j:,A::k respectively.

Matricization. Matricization is a key term in tensor factorization techniques. This

is a procedure of reshaping a tensor into a matrix. Sometimes it is also called unfolding

or �attening. We will follow the de�nition introduced in [90, Section 2.4]. The n-mode

matricization of a tensor A ∈ RM×N×K arranges the mode-n �bers to be the columns

of the resulting matrix (see Fig. 3.1). For the 1-mode matricization A(1) the resulting

matrix size is M × (NK), for the 2-mode matricization A(2) the size is N × (MK) and

the 3-mode matricization A(3) has the size K × (MN ). In the general case of an m-

th order tensor A ∈ RI1×I2×···×Im the n-mode matricization A(n) will have the size In ×
(I1 I2 . . . In−1In+1 . . . Im). For the corresponding index mapping rules we refer the reader

to [90].

Diagonal tensors. Another helpful concept is a diagonal tensor. Tensor A ∈
RI1×I2×···×Im is called diagonal when ai1i2...im , 0 only if i1 = i2 = . . . = im. This con-

cept helps to build a connection between di�erent kinds of tensor decompositions.
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3.1.2 Problem formulation

As in the matrix case (Sec. 2.1), the main goal is to learn a latent factor model

from real observations, which turns into a dimensionality reduction problem with a

similar loss function, given by:

L (T (A) ,R(Θ)) ,

where R is a low rank tensor approximation that may have several distinct forms

depending on the type of decomposition used to calculate it (see Sec. 3.1.3); T (·) de-

notes a problem-dependent data transformation as in the matrix case and Θ stands

for model parameters. We will keep this notation throughout the text, i.e. A will al-

ways be used to denote observation data and R will always be used to represent the

reconstructed model, learned from A.

3.1.3 Tensor Factorization techniques

In order to draw a connection to the matrix case and prepare the ground for

further generalization to higher order cases we start by introducing an alternative MF

notation, which is convenient for our purposes, albeit typically unused. Let us rewrite

Eq. (2.5) in the following form:

R = Σ×1U ×2 V , (3.1)

where ×n is an n-mode product, which is typically de�ned for the product of a tensor

with a matrix. Evidently, in the case of two conformable matrices A and B it has the

following form:

(A×1 B)ij =
∑
k

akibjk, (A×2 B)ij =
∑
k

aikbjk.

Expanding this notation to a more general case with some tensor A gives a conven-

tional de�nition of an n-mode product [90, Section 2.5]:

(A×n B)i1...in−1jin+1...im =
∑
in

ai1i2...imbjin. (3.2)
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For the same purpose of further generalization we also rewrite Eq. (3.1) in two

alternative forms, namely, the index form

rij =
r∑

α=1

σαuiαvjα,

and the sum of rank-1 terms

R =
r∑

α=1

σαuα ⊗ vα, (3.3)

where uα,vα denote columns of the factor matrices, e.g. U = [u1 . . .ur],V = [v1 . . .vr],

and ⊗ denotes the vector outer product (or dyadic product). Depending on the way

these two forms are transformed into a higher order representation, one can arrive at

either CANDECOMP/PARAFAC (CP) or Tucker decomposition (TD).

CP decomposition

The most straightforward way of extending SVD to higher orders is to add new

factors in Eq. (3.3). In the third order case this will have the following form:

R =
r∑

α=1

λαuα ⊗ vα ⊗wα, (3.4)

where each summation component uα ⊗ vα ⊗ wα is a rank-1 tensor. We can also

equivalently rewrite Eq. (3.4) in a more concise notation:

R = [[λλλ;U,V ,W ]], (3.5)

where λλλ is a vector of length r with elements λ1 ≥ . . . ≥ λr > 0 and U ∈ RM×r ,
V ∈ RN×r , W ∈ RK×r de�ned similarly to Eq. (3.3). The expression assumes that

factors U,V ,W are normalized. As we will see further, in some cases values of λλλ can

have a meaningful interpretation. However, in general, the assumption can be safely

omitted, which yields:

R = [[U,V ,W ]] ≡
r∑

α=1

uα ⊗ vα ⊗wα, (3.6)

or in the index from:

rijk =
r∑

α=1

uiα vjαwkα. (3.7)
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The right-hand side of Eq. (3.6) gives a rank-r approximation of real observations in

the form of CP decomposition. Despite being similar to Eq. (3.3) formulation, there

is a number of substantial di�erences in the concepts of tensor rank and low-rank

approximation, thoroughly explained in [90].

Apart from technical considerations, an important conceptual di�erence is that

there is no higher order extension of the Eckart-Young theorem (mentioned in Sec. 2.2),

i.e. if an exact low-rank decomposition ofAwith rank r is known, then its truncation

to the �rst r ′ < r terms may not give the best rank-r ′ approximation. Moreover, the

optimization task in terms of low-rank approximation is ill-posed [41] which is likely

to lead to numerical instabilities and issues with convergence, unless additional con-

straints on factor matrices (columns orthogonality, non-negativity, etc.) are imposed.

Tucker decomposition

A stable way of extending SVD to the higher order case is to transform the

diagonal matrix Σ from Eq. (3.1) into a third order tensor G and add an additional

mode-3 tensor product, de�ned by Eq. (3.2), with a new factor matrix W :

R = [[G;U,V ,W ]] ≡ G ×1U ×2 V ×3W, (3.8)

where U ∈ RM×r1,V ∈ RN×r2,W ∈ RK×r3 are typically required to be columnwise or-

thonormal and have a similar meaning of the latent feature matrices as in the case

of SVD. Tensor G ∈ Rr1×r2×r3 is called a core tensor of the TD and a tuple of numbers

(r1, r2, r3) is called a multilinear rank. The index form of TD reads:

rijk =
r1,r2,r3∑
α,β,γ=1

gαβγ uiα vjβwkγ . (3.9)

The decomposition is not unique; however, the optimization problem with respect to

multilinear rank is well-posed. Also note that setting the core tensor G to be diagonal

turns the decomposition into CP form.

The de�nition of TD is not restricted to have 3 modes only. Generally, the num-

ber of modes is not limited; however, storage requirements depend exponentially on

the number of dimensions (see Table 3.1), which is often referred as a curse of dimen-

sionality. This imposes strict limitations on the number of modes for many practical

cases, whenever more than 4 entities are modelled in a multilinear way (e.g. user, item,
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CP TD TT HT

storage dnr dnr + rd dnr2 dnr + dr3

Table 3.1: Storage requirements for di�erent TF methods. For the sake of simplicity,

this assumes a tensor with d dimensions of equal size n and all ranks (or rank in case

of CP) of a tensor decomposition set to r .

time, location, company or any other context variables, see Fig. 1.1). In order to break

the curse of dimensionality, a number of e�cient methods has been developed re-

cently, namely Tensor Train (TT) [116] and Hierarchical Tucker (HT) [67]. However,

we are not aware of any published results related to TT- or HT-based implementations

in RS.

3.1.4 Optimization algorithms

TF techniques rely on the same concepts of pointwise, pairwise and listwise opti-

mization, introduced in Sec. 2.4. An optimization problem can be written in a similar

form, keeping in mind the di�erence in model parameters, i.e.,

Θ∗ = argmin
Θ

J (Θ), (3.10)

where Θ B {U,V ,W } for CP-based models and Θ B {G,U,V ,W } in the case of TD.

The di�erence in factorization techniques also leads to variations in how exactly the

solution to Eq. (3.10) is obtained. Below we provide some typical examples.

Pointwise algorithms for TD

In case of TD-based model the solution to Eq. (3.10) in a standard least squares

sense can be found with help of two well-known methods proposed in [40]: Higher-

Order SVD (HOSVD) [163, 168, 127] or Higher-Order Orthogonal Iteration (HOOI)

[197, 165].

The HOSVD method can be described as a consecutive application of SVD to all

3 matricizations of A, i.e. A(1),A(2),A(3) (assuming that missing data is imputed with

zeros). Generally it produces a suboptimal solution; however, it is worse than the best

possible solution only by a factor of

√
d, where d is the number of dimensions [70].

Due to its simplicity this method is often used in recommender systems literature.
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Algorithm 1: Practical HOOI algorithm for Tucker decomposition

Input : Tensor A in sparse COO format,

Tensor decomposition ranks r1, r2, r3
Output: G,U,V ,W
Initialize V and W by random matrices with orthonormal columns.

repeat
U ← r1 leading left singular vectors of A(1) (W ⊗V )

V ← r2 leading left singular vectors of A(2) (W ⊗U )

W, Σ, Z← r3 leading singular triplets of A(3) (V ⊗U )

G ← reshape matrix ΣZT into shape (r3, r1, r2) and transpose

until norm of the core ceases to grow or exceeds maximum iterations;

The HOOI method uses an iterative procedure based on an alternating least

squares (ALS) technique, which successively optimizes the objective with the help of

SVD (see Alg. (1)). In practice it may require a small amount of iterations to converge

to an optimal solution, but in general it is not guaranteed to �nd a global optimum [90].

The choice of any of these two methods for particular problem may require additional

investigation in terms of both computational e�ciency and recommendations quality

before the �nal decision is made.

The orthogonality constraints imposed by TD may in some cases have no

speci�c interpretation. Relaxing these constraints leads to a di�erent optimization

scheme, typically based on gradient methods, such as stochastic gradient descent

(SGD) [85]. The objective in that case is expanded with a regularization term Ω(Θ):

J (Θ) =L (T (A),R(Θ)) +Ω(Θ), (3.11)

which is commonly expressed as follows:

Ω(Θ) = λG‖G‖2F +λU‖U‖2F +λV ‖V ‖2F +λW ‖W ‖2F, (3.12)

where λG, λU ,λV ,λW are regularization parameters and usually λU = λV = λW .

Pointwise algorithms for CP

As has been noted in Sec. 3.1.3, CP is generally ill-posed and if no speci�c do-

main knowledge could be employed to impose additional constraints, a common ap-
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proach to alleviate the problem is to introduce regularization similarly to Eq. (3.12):

Ω(Θ) = λU‖U‖2F +λV ‖V ‖2F +λW ‖W ‖2F, (3.13)

Indeed, depending on the problem formulation it may also have more complex form

both for CP (e.g. as in Sec. 3.2.3) and TD models. In general, regularization allows to

ensure convergence and avoid degeneracy (e.g. when rank-1 terms become close to

each other by absolute value but their magnitudes go to in�nity and have opposite

signs [90]); however, it may lead to a sluggish rate of convergence [110]. In practice,

however, many problems can still be solved with CP using variations of both ALS [78,

91] and gradient-based methods.

Pairwise and listwise algorithms.

Pairwise and listwise methods are considered to be more advanced and accurate

as they are speci�cally designed to solve ranking problems. The objective function is

often derived directly from a de�nition of some ranking measure, e.g. pairwise AUC

or listwise MAP (see [137] for CP-based and [157] for TD-based implementations), or

constructed in a way that is closely related to those measures [134, 138].

These methods typically have a non-trivial loss function with complex data in-

terconections within it which makes it hard to optimize and tune. In practice, the

complexity problem is often resolved with help of handcrafted heuristics and problem-

speci�c constraints (see Sec. 3.2.2 and Sec. 3.2.4), which simplify the model and im-

prove computational performance.

3.2 Tensor-based models in recommender systems

Treating data as tensor may bring new levels of �exibility and/or quality into

RS models; however, there are nuances that should be taken into account and treated

properly. This section covers di�erent tensorization techniques used to build ad-

vanced RS in various application domains. For all the examples we will use a uni�ed

notation (where it is possible) introduced in Sec. 3.1, hence it might look di�erent from

the notation used in the original papers. This helps to reuse some concepts within dif-

ferent models and build a consistent narrative throughout the text.
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3.2.1 Personalized search and resource recommendations

There is a very tight connection between personalized search and RS. Essen-

tially, recommendations can be considered as a zero query search [6] and, in turn,

personalized search engine can be regarded as a query-based RS.

Personalized search systems aim at providing a better search experience by re-

turning the most relevant results, typically web pages (or resources), in response to a

user’s request. A clicktrough data (i.e. an event log of clicks on the search results after

submitting a search query) can be used for this purpose as it contains an information

about users’ actions and may provide valuable insights into search patterns. The es-

sential part of this data is not just a web page that a user clicks on, but also a context,

a query associated with every search request that carries a justi�cation for the user’s

choice. The utility function in that case can be formulated as:

fu : User×Resource×Query→ RelevanceScore,

whereResource denotes a set of web pages andQuery is a set of keywords that can be

speci�ed by users in order to emphasize their current interests or information needs.

In the simplest case a single query can consist of one or a few words (e.g. “jaguar” or

“big cat”). More elaborate models could employ additional natural language process-

ing tools in order to breakdown queries into a set of single keywords, e.g. a simple

phrase “what are the colors of the rainbow” could be transformed into a set {“rain-

bow”, “color”} and further split into 2 separate queries, associated with the same (user,

resource) pair.

CubeSVD

One of the earliest and at the same time very illustrative works where this for-

mulation was explored with help of tensor factorization is CubeSVD [163]. The au-

thors build a 3-rd order tensor A ∈ RM×N×K with values representing the level of

association (the relevance score) between user i and web-page j in the presence of

query k: aijk > 0, if (i, j,k) ∈ S,

aijk = 0, otherwise,
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where S is an observation history, e.g. a sequence of events described by the triplets

(user, resource, query). Note that authors in their work use simple queries without

processing, e.g. “big cat” is a single query term.

The association level can be expressed in various ways, the simplest one is to

measure a co-occurrence frequency f , e.g. how many times a user has clicked on

a speci�c page after submitting a certain query. In order to prevent an unfair bias

towards the pages with high click rates, it can be restricted to have only values of 0

(no interactions) or 1 (at least one interaction). Or it can be rescaled with a logarithmic

function:

f ′ = log2(1 + f /f0),

where f ′ is a new normalized frequency and f0 is, for example, an IDF (Inverse Docu-

ment Frequency) measure of a web page. Another scaling approach can also be used.

The authors proposed to model the data with a third order TD Eq. (3.8) and

in order to �nd it they applied the HOSVD. Similarly to SVD Eq. (2.5), factors U ∈
RM×r1,V ∈ RN×r2 and W ∈ RK×r3 represent embedding of users, web pages and

queries vectors into a lower-dimensional latent factors space with dimensionalities

r1, r2 and r3 correspondingly. The core tensor G ∈ Rr1×r2×r3 de�nes the form and the

strength of multilinear relations between all three entities in the latent feature space.

Once the decomposition is found, the relevance score for any (user, resource, query)

triplet can be recovered with Eq. (3.9).

With the introduction of new dimensions the data sparsity becomes even higher,

which may lead to a numerical instabilities and general failure of the learning al-

gorithm. In order to mitigate that problem, the authors propose several smoothing

techniques: based on value imputation with small constant and based on the content

similarity of web pages. They reported an improvement in the overall quality of the

model after these modi�cations.

After applying the decomposition technique the reconstructed tensor R will

contain new non-zero values denoting potential associations between users and web

resources in�uenced by certain queries. The tensor values can be directly used to

rank a list of the most relevant resources: the higher the value rijk is the higher the

relevance of the page j to the user i within the query k.

This simple TF model does not contain a remedy for some of the typical RS

problems such as cold start or real-time recommendations and is most likely to have
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issues with scalability. Nevertheless, this work is very illustrative and demonstrates

the general concepts for building a tensor-based RS.

TOPHITS

As has been discussed in Sec. 1.2.6, new entities can appear in the system dy-

namically and rapidly, which in the case of higher order models creates even more

computational load, i.e. full recomputation of tensor decomposition quickly becomes

infeasible and incremental techniques should be used instead. However, in some

cases simply rede�ning the model might lower the complexity. As we mentioned

in Sec. 1.1.2, a simple approach to reduce the model is to eliminate one of the entities

with some sort of aggregation.

For example, instead of considering (user, resource, query) triplets we could work

with aggregated (resource, resource, query) triplets, where every frontal sliceA::k of the

tensor is simply an adjacency matrix of a resources browsed together under a speci�c

query. Therefore users are no longer explicitly stored and their actions are recorded

only in the form of a co-occurrence of resources they searched for.

An example of such a technique is TOPHITS model [91]. This analogy requires

an extra explanation as the authors are not modelling users clicking behavior. The

model is designed for web-link analysis of a static set of web pages referencing each

other via hyperlinks. The data is collected by crawling those web pages and collecting

not only links but also keywords associated with them. However, the crawler can

be interpreted as a set of users browsing those sites by clicking on the hyperlinked

keywords. This draws the connection between CubeSVD and TOPHITS model as

the keywords can be interpreted as a short search queries in that case. And, as we

stated earlier, users (or crawlers) can be eliminated from the model by constructing

an adjacency matrix of linked resources.

The authors of the TOPHITS model extend an adjacency matrix of interlinked

web pages with additional keyword information and build the so called adjacency

tensor A ∈ RN×N×K that encodes hubs, authorities and keywords. As has been men-

tioned, the keyword information is conceptually very similar to queries, hence it can

be also modelled in a multirelational way. Instead of TD format the authors prefer

to use CP in the form of Eq. (3.5) with U,V ∈ RN×r and W ∈ RK×r
with ALS-based

optimization.
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The interpretation of this decomposition is di�erent from the CubeSVD. As the

authors demonstrate, the weights λk, (1 ≤ k ≤ r) have a straightforward semantic

meaning as they correspond to a set of r speci�c topics extracted from the overall web

page collection. Accordingly, every triplet of vectors (uk,vk,wk) represents a collection

of hubs, authorities and keyword terms respectively, characterized by a topic k. The

elements with higher values in these vectors provide the best-matching candidates

under the selected topic, which allows a better grouping of web pages within every

topic and provide means for a personalization.

For example, as the authors show, a personalized ranked list of authorities a∗

can be obtained with:

a∗ = VΛW Tq, (3.14)

where Λ = diag(λλλ) is a diagonal matrix and q is a user-de�ned query vector of length

K with elements qt = 1 if term t belongs to the query and 0 otherwise, t = {1, . . . ,K }.

Similarly, a personalized list of hubs can be built simply by substituting factor V with

U in Eq. (3.14).

The interpretation of tensor values might seem very natural; however, there

is an important note to keep in mind. Generally, the restored tensor values might

turn both positive and negative, and in most applications the negative values have no

meaningful explanation. The non-negative tensor factorization (NTF) [36, 200] can be

employed to resolve that issue (see example in [32], and also the connection of NTF

to probabilistic factorization model under a speci�c conditions [33]).

3.2.2 Social tagging

A remarkable amount of research is devoted to one speci�c domain, namely

social tagging systems (STS), where predictions and recommendations are based on

commonalities in social tagging behavior (also referred as collaborative tagging). A

comprehensive overview of the general challenges and state-of-the-art RS methods

can be found in [104].

Tags carry a complementary semantic information that helps STS users to cat-

egorize and organize items of their choice. This brings an additional level of interpre-

tation of the user-item interactions, as it exposes the motives behind the user prefer-

ences and explains the relevance of particular items. This observation suggests that



65

tags play an important role in de�ning the relevance of (user, item) pairs, hence all

the three entities should be modelled mutually in a multirelational way. The scoring

function in that case can be de�ned as follows:

fu : User× Item×Tag→ RelevanceScore.

The triplets (user, item, tag), coming from an observation history S , can be easily

translated into a 3rd order tensor A = [aijk]
M,N,K
i,j,k=1 , where M,N,K denote the number

of users, items and tags respectively. Users are typically not allowed to assign the same

tags to the same items more than once, hence the tensor values are strictly binary and

de�ned as: aijk = 1, if (i, j,k) ∈ S,

aijk = 0, otherwise.

Uni�ed framework

As in the case of keywords and queries, tensor dimensionality reduction helps

to uncover latent semantic structure of the ternary relations. The values of the recon-

structed tensorA can be interpreted as the likeliness or weight of new links between

users, items and tags. These links might be used for building recommendations in var-

ious ways: help users assign relevant tags for items [169], �nd interesting new items

[170], or even �nd like-minded users [167].

The model that is built on top of all three possibilities is described in [168].

The authors perform a latent semantic analysis on the data with help of the HOSVD.

Generally, the base model is similar to CubeSVD (see Sec. 3.2.1): items can be treated

as resources and tags as queries.

The authors also face the same problem with sparsity. The tensor matricizations

A(n),1 ≤ n ≤ 3 within the HOSVD procedure produce highly sparse matrices which

may prevent the algorithm from learning the accurate model. In order to overcome

that problem they propose a smoothing technique based on a kernel trick.

In order to deal with the problem of real-time recommendations (see Sec. 1.2.6)

the authors adopt a well known folding-in method [56] to a higher order case. The

folding-in procedure helps to quickly embed a previously unseen entity into the latent

features space without recomputing the whole model. For example, an update to a
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Figure 3.2: Higher order folding-in for Tucker decomposition. A slice with new user

information in the original data (left) and a corresponding row update of the factor

matrix in TD (right) are marked with solid color.

users feature matrix U can be obtained with:

unew = pV1Σ
−1
1 ,

where p is a new user information that corresponds to a row in the matricitized tensor

A(1); V1 is an already computed (during HOSVD step) matrix of right singular vectors

of R(1), and Σ1 is a corresponding diagonal matrix of singular values; unew is an up-

date row which is appended to the latent factor matrix U . The resulting update to

reconstructed tensor Rnew is computed with (see Fig. 3.2):

Rnew = [G ×2 V ×3W ]×1

 U

unew

 ,
where the term within the left brackets of the right hand side does not contain any

new values, e.g. does not require the full recomputation and can be pre-stored, which

makes the update procedure much more e�cient.

Nevertheless, this typically leads to a loss of orthogonality in factors and neg-

atively impacts the accuracy of the model in the long run. This can be avoided with

an incremental SVD update, which for the matrices with missing entries was initially

proposed by [23]. As the authors demonstrate, it can be also adopted for tensors.

It should be noted that this is not the only possible option for incremental up-

dates. For example, a di�erent incremental TD-based model with HOOI-based opti-

mization is proposed in [197] for a highly dynamic, evolving environment (not related

to tag-based recommendations). The authors of this work use an extension of a two-

dimensional incremental approach from [139].
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RTF and PITF

The models, overviewed so far, has a common “1/0” interpretation scheme for

a missing values, i.e. all triplets (i, j,k) ∈ S are assumed to be positive feedback and

all others (missing) are negative feedback with zero relevance score. However, as the

authors of ranking with TF model (RTF) [137] and more elaborate pairwise interaction

TF (PITF) [134] model emphasize, all missing entries can be split into 2 groups: the true

negative feedback and the unknown values. The true negatives correspond to those

triplets of (i, j,k) where the user i has interacted with the item j and has assigned tags

di�erent from the tag k. More formally, if PS is a set of all posts that correspond to all

observed (user, item) interactions, than true negative feedback within any interaction

between user i and item j is de�ned as:

A−ij B {k | (i, j) ∈ PS ∧ (i, j,k) < S}.

Likewise, true positive feedback is:

A+
ij B {k | (i, j) ∈ PS ∧ (i, j,k) ∈ S}.

All other entries are unknowns and are to be uncovered by the model.

Furthermore, both RTF and PITF models do not require any speci�c values to

be imposed on either known or unknown entries. Instead they only impose pairwise

ranking constraints on the reconstructed tensor values:

rijk1 > rijk2⇔ (i, j,k1) ∈ A+
ij ∧ (i, j,k2) ∈ A

−
ij .

These post-based ranking constraints become the essential part of an optimiza-

tion procedure. The RTF model uses the Tucker format; however, it aims at directly

maximizing AUC measure, which, according to the authors, takes the following form:

AUC(Θ, i, j)B
1

|A+
ij ||A−ij |

∑
k+∈A+

ij

∑
k−∈A−ij

σ (rijk+ − rijk−),

where Θ are the parameters of the TD model (as de�ned in Eq. (3.11)) and σ (x) is a

sigmoid function, introduced to make the term di�erentiable:

σ (x) =
1

1+ e−x
. (3.15)
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As we are interested in maximizing AUC, the loss function takes the form:

L (T (A), R) = −
∑

(i,j)∈PS

AUC(Θ, i, j).

The regularization term of the model is de�ned by Eq. (3.13).

The authors adopt a stochastic gradient descent (SGD) algorithm for solving

the optimization task. However, as they state, directly optimizing the AUC objective

is computationally infeasible. Instead, they exploit a smart trick of recombining and

reusing precomputed summation terms within the objective and its derivatives. They

use this trick for both tasks of learning and building recommendations.

The PITF model is built on top of ideas from RTF model. It adopts Bayesian

Personalized Ranking (BPR) technique proposed for MF case in [135] to the ranking

approach. The tags rankings for every observed post (i, j) are not deterministically

learned like in RTF model but instead are derived from the observations by optimizing

the maximum aposteriori estimation. This leads to a similar to RTF optimization ob-

jective with similar regularization (excluding the tensor core term which is not present

in CP) and slightly di�erent loss function:

L (T (A), R) = −
∑

(i,j,k1,k2)∈DS

lnσ (rijk1 − rijk2),

where the same notation as in RTF is used; σ is a sigmoid function from Eq. (3.15) and

DS is a training data, i.e. a set of quadruples:

DS = {(i, j,k1, k2) | (i, j,k1) ∈ S ∧ (i, j,k2) < S}. (3.16)

An important di�erence of PITF from RTF is that the complexity of multilinear

relations is signi�cantly reduced by leaving only pairwise interactions between all

entities. From the mathematical viewpoint it can be considered as a CP model with a

special form of partially �xed factor matrices (cf. Eq. (3.7)):

rijk =
∑
α

uiαw
U
kα +

∑
α

vjαw
V
kα +

∑
α

uiα vjα, (3.17)

where wUkα and wVkα are the parts of the same matrix W responsible for tags relation

to users and items respectively; uiα and vjα are interactional parts of U and V .
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The authors emphasize that the user-item interaction term does not contribute

to the BPR-based ranking optimization scheme which yields even more simple equa-

tion that becomes an essential part of the PITF model:

rijk =
∑
α

uiαw
U
kα +

∑
α

vjαw
V
kα. (3.18)

Another computational trick that helps to train the model even faster without

sacri�cing the quality is random sampling within the SGD routine. All the quadruples

in DS corresponding to a post (i, j) are highly overlapped with respect to the tags

associated with them. Therefore, learning with some randomly sampled quadruples

is likely to have a positive e�ect on learning the remaining ones.

In order to verify the correctness and e�ectiveness of such simpli�cations the

authors conduct experiments with both BPR-tuned TD and CP and demonstrate that

PITF algorithm achieves close or even better quality of recommendations while learn-

ing features faster than the other two TF methods.

Despite its computational e�ectiveness, the original PITF model is lacking the

support for the real-time recommendation scenarios, where rebuilding the full model

for each new user, item or tag could be prohibitive. The authors of [99] overcome this

limitation by introducing the folding-in procedure compatible with the PITF model

and demonstrate its ability to provide high recommendations quality. Worth noting

here that a number of variations of the folding-in technique are available for di�erent

TF methods, see [196].

The idea of modelling higher order relations in a joint pairwise manner similar

to Eq. (3.18) has been explored in various application domains and is implemented in

various settings, either straightforwardly or as a part of a more elaborate RS model

[57, 75, 199, 152]. There are several generalized models [182, 138], [78], which also

use this idea. They are covered in more details in Sections Sec. 3.2.4 and Sec. 3.2.4 of

this work.

Improving the prediction quality

As has been already mentioned in Sec. 3.2.2 high data sparsity typically leads to

a less accurate predictive models. This problem is common across various RS domains.

Another problem, speci�c to STS, is tag ambiguity and redundancy. The following are
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the examples of some of the most common techniques, developed to deal with these

problems.

The authors of CubeRec [187] propose a clustering-based separation mecha-

nism. This mechanism builds clusters of triplets (user, item, tag) based on the proxim-

ity of tags derived from the item-tag matrix. With this clustering some of the items

and tags can belong to several clusters at the same time, according to their meaning.

After that the initial problem is split into a number of sub-problems (corresponding to

clusters) of a smaller size and hence, with a more dense data. Every subproblem is then

factorized with the HOSVD similarly to [163], and the resulting model is constructed

as a combination of all the smaller TF models.

The authors of the clustering-based TD model (ClustHOSVD) [165] also employ

clustering approach. However, instead of splitting the problem, they replace tags by

tag clusters and apply the HOOI method (which is named AlsHOSVD by the authors)

directly to the modi�ed data consisting of (user, item, tag cluster) triplets. They also

demonstrate the e�ect of di�erent clustering techniques on the quality of RS.

As can be seen, many models bene�t from clustering either prior to or after the

factorization step. This suggests that it can also be bene�cial to perform simultaneous

clustering and factorization. This idea is explored by the authors of [55], where they

demonstrate the e�ectiveness of such an approach.

A further improvement can be achieved with hybrid models (see Sec. 1.1.2),

which exploit a content information and incorporate it into a tensor-based CF model.

It should be noted, however, that there is no “single-bullet” approach, suitable for all

kinds of problems, as it highly depends on the type of data used as a source of content

information.

The authors of [109] exploit acoustic features for music recommendations in a

tag-based environment. The features, extracted with speci�c audio-processing tech-

niques, are used to measure the similarity between di�erent music samples. The au-

thors make an assumption that similarly sounding music is likely to have similar tags,

which allows to propagate tags to the music that was not tagged yet. With this as-

sumption the data is augmented with new triplets of (user, item, tag), which leads to

a more dense data and results in a better predictive quality of the HOSVD model.

The TF and tag clustering (TFC) model [127] combines both content exploita-

tion and tag clustering techniques. The authors focus on the image recommendations
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problem, thus they use an image processing techniques in order to �nd items’ sim-

ilarities and propagate highly relevant tags. Once the tag propagation is completed,

the authors �nd tag clusters (naming them topics) and build new association triplets

(user, item, topic), which are further factorized with the HOSVD.

As a last remark in this section, the idea of model splitting, proposed in the Cu-

beRec model, was also explored in a more general setup in [179]. The authors consider

a multiple context environment, where user-item interactions may depend on various

contexts such as location, time, activity, etc. This is generally modelled with an N -th

order tensor, where N > 3. Instead of dealing with higher number of dimensions and

greater sparsity, the authors propose to build a separate model for every context type,

which transforms the initial problem into a collection of a smaller problems of order

3. Then all the resulting TF models are combined with speci�c weights (based on

the context in�uence measure proposed by the authors) and can be used to produce

recommendations. However, despite the ability to better handle the sparsity issue,

the model may loose some valuable information about the relations between di�erent

types of context. A more general methods for multi-context problems are covered in

Sec. 3.2.4.

3.2.3 Temporal models

User consumption patterns may change in time. For example, the interest of TV

users may correlate not only with a topic of a TV program, but also with a speci�c time

of the day. In retail user preferences may vary depending on the season. Temporal

models are designed to learn those time-evolving patterns in data by taking the time

aspect into account, which can be formalized with the following way scoring function:

fu : User× Item×Time→ RelevanceScore.

Even though the general problem statement looks already familiar, when work-

ing with the Time domain one should mind the di�erence between the evolving and

periodic (e.g. seasonal) events which may require a special treatment.
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BPTF

One of the models that exploits periodicity of events is the Bayesian Probabilistic

TF (BPTF) [186]. It uses seasonality to reveal trends in retail data and predict the

orders that will arrive in the ongoing season based on the season’s start and previous

purchasing history. The key feature of the model is the ability to produce forecasts on

the sales of the new products that were not present in previous seasons. The model

captures dynamic changes in both product designs and customers’ preferences solely

from the history of transactions and does not require any kind of an expert knowledge.

The authors develop a probabilistic latent factors model by introducing priors

on the parameters; i.e. the latent feature vectors are allowed to vary and the variance

of relevance scores is assumed to follow a Gaussian distribution:

rijk |U,V ,W ∼N (< Ui:,Vj:,Wk: >,γ
−1),

where γ is an observations precision and < Ui:,Vj:,Wk: > denotes a right hand side of

Eq. (3.7). Note that in the original work the authors use a transposed version of the

factor matrices, e.g. any column of the factorU in their work represents a single user,

the same holds for two other factors.

In order to prevent the over�tting the authors also impose prior distributions

on U and V :

Ui: ∼N (0,σ 2
U I),

Vj: ∼N (0,σ 2
V I).

Furthermore, the formulation for the time factor W takes into account its evolving

nature and implies smooth changes in time:

Wk: ∼N (Wk−1:,σ
2
dW I),

W0: ∼N (µW ,σ
2
0 I).

The time factor W rescales the user-item relevance score with respect to the time-

evolving trends and the probabilistic formulation helps to account for the users who

do not follow those trends.
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The authors show that maximizing the log-posterior distribution

logp(U,V ,W ,W0,:|A) with respect to U,V ,W and W0: is equivalent to an op-

timization task with the weighted square loss function:

L (T (A),R) =
∑

(i,j,k)∈S

(aijk − rijk)2, (3.19)

and a bit more complex regularization term:

Ω(Θ) =
λU
2
‖U‖2F +

λV
2
‖V ‖2F +

λdT
2

K∑
k=1

‖Wk: −Wk−1:‖2 +
λ0

2
‖W0: −µW ‖2,

where λU = (ασU )−1,λV = (ασV )−1,λdW = (ασdW )−1,λ0 = (ασ0)−1 and the last two

terms are due to a dynamic problem formulation. The number of parameters of this

model makes the task of optimization almost infeasible. However, the authors come

up with an elaborate MCMC-based integration approach that makes the model almost

parameter-free and also scales well.

TCC

The authors of TF-based subspace clustering and preferences consolidation

model (TCC) [180] exploit the periodicity in usage patterns of the IPTV users in order

to, at �rst, identify them and, secondly, provide with more relevant recommendations,

even if those users share the same IPTV account (for example, across all family mem-

bers). This gives a slightly di�erent de�nition of a utility function:

fu : Account× Item×Time→ RelevanceScore,

where Account is the domain of all registered accounts and the number of accounts

is not greater than the number of users, i.e. |Account| ≤ |User|. Initial tensor A is

built from the triplets (account, item, time) and its values are just the play counts.

In order to be able to �nd a correct mapping of the real users to the known

accounts, the authors introduce a concept of a virtual user. Within the model the real

user is assumed to be a composition of particular virtual users uak which express the

speci�c user’s preferences tied to a certain time periods, e.g.:

uak B {(a,pk) |a ∈ A,pk ∈ P ,pk ,∅},
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where a is an account from the set of all accounts A, pk is a sub-period from the set

of all non-overlapping time periods P .

As the authors state, manually splitting the time data into the time slots pk does

not �t the data well and they propose to �nd those sub-periods from the model. They

�rst solve the SGD-based optimization task for TD with the same weighted squared

loss function as in Eq. (3.19) and regularization term as in Eq. (3.12) (with λG = λU =

λV = λW = 1
2λ). Once the model factors are found, the sub-periods pk can be obtained

by clustering the time feature vectors:

P ← k-Means clustering of the rows of W.

Then the consolidation of virtual users into the real ones can be done in 2 steps.

At �rst, a binary similarity measure is computed between di�erent pairs of virtual

users (uak, uak′ ) corresponding to the same account a. The second step is to combine

similar virtual users so that every real user is represented as a set of virtual ones.

This is done with help of a graph-based technique. Once the real users are identi�ed,

recommendations can be produced with a user-based kNN approach. As the authors

demonstrate, the proposed method not only provides a tool for user identi�cation,

but also outperforms standard kNN and TF-based methods applied without any prior

clustering.

3.2.4 General context-aware models

In previous sections we have discussed TF methods targeted at speci�c classes of

problems: keyword- or tag-based recommendations, temporal models. They all have

one thing in common - the use of a third entity leading to a higher level of granularity

and better predictive capabilities of a model. This leads to an idea of generalization of

such approach, which is suitable for any model formulated in the form of Eq. (1.2).

Multiverse

One of the �rst attempts towards this generalization is the Multiverse model

[85]. The authors de�ne context as any set of variables that in�uence users’ prefer-

ences and propose to model it by theN -th order TD withN−2 contextual dimensions:

A = [[G;U,V ,W1,W2, . . . ,WN−2]],
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where factors Wi , i ∈ {1, . . . ,N −2} represent a corresponding embedding of every

contextual variable into a reduced latent space and all factors including U and V are

not restricted to be orthogonal. As the authors state, the model is suitable for any

contextual variables over a �nite categorical domain. It should be noted that the main

focus of the work is systems with an explicit feedback and the model is optimized for

the error-based metrics, which does not guarantee an optimal items ranking as has

been discussed in Sec. 1.2.4.

Following the general form of an optimization objective stated in Eq. (3.11), the

authors use the weighted loss function:

L (T (A), R) = 1
‖G‖1

∑
(i,j,k)∈S

l(aijk, rijk),

where l(aijk, rijk) is a pointwise loss function, which can be based on l1, l2 or other

types of distance measures. The example is provided for the 3rd order case; however,

it can be easily generalized to a higher orders. The authors also use the same form of

the regularization term as in Eq. (3.12), as it enables trivial optimization procedure.

In order to �ght against the growing complexity for the higher order cases they

propose a modi�cation of the SGD algorithm. Within a single optimization step the

updates are performed on every row of the latent factors independently. For example,

an update for i-th row of U :

Ui:←Ui: − ηλUUi: − η ∂rijk l(aijk, rijk)

is independent on all other factors and thus all the updates can be performed in par-

allel. The parameter η de�nes the model’s learning step.

In addition to the general results on the real dataset, this work features a com-

prehensive experimentation on the semi-synthetic data that shows the impact of a

contextual information on the RS models performance. It demonstrates that high con-

text in�uence leads to a better quality of the selected context-aware methods, among

which the proposed TF approach gives the best results, while a context-unaware

method’s quality signi�cantly degrades.

TFMAP

Similarly to the previously discussed PITF model, the TF for MAP optimiza-

tion model (TFMAP) [157] also targets optimal ranking; however, it exploits the MAP
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metric instead of AUC. The model is designed for an implicit feedback systems which

means that the original tensor A is binary with non-zero elements re�ecting the fact

that an interaction has occurred:

aijk =

1, if (i, j,k) ∈ S,

0, otherwise.
(3.20)

The optimization objective is drawn from the MAP de�nition:

MAP =
1
MK

M∑
i=1

K∑
k=1

∑N
j=1

aijk
pijk

∑N
j ′=1aij ′k I

(
pij ′k ≤ pijk

)
∑N
j=1aijk

,

where pijk denotes the position (or rank) of item j in the item list of user i under the

context of type k; I (·) is an indicator function, which is equal to 1 if the condition is

satis�ed and 0 otherwise, both depend on the reconstructed values of A. In order to

make the metric smooth and di�erentiable the authors propose two approximations:

1
pijk
≈ σ (rijk),

I
(
pij ′k ≤ pijk

)
≈ σ (rij ′k − rijk),

where rijk is calculated with Eq. (3.7) (which makes the model a CP-based) and σ is a

sigmoid function de�ned by Eq. (3.15). Notably, rij ′k−rijk =< Ui:,Vj ′ :−Vj:,Wk: >, where

we use the same notation as in BPTF model, see Sec. 3.2.3. The model also follows the

standard optimization formulation stated in Eq. (3.11), where the loss function is just

a negative MAP gain, i.e.

L (T (A),R) = −MAP ,

and the regularization has the form of Eq. (3.13).

Note that MAP optimization also has a weighted form due to Eq. (3.20). How-

ever, the computation complexity would still be prohibitively high due to its complex

structure. In order to mitigate that, the authors propose the fast learning algorithm:

for each (user, context) pair only a limited set of a representative items (a bu�er) is con-

sidered, which in turn, allows to control the computational complexity. They also pro-

vide an e�cient algorithm of sampling the “right” items and constructing the bu�er,

which does not harm the overall quality of the model.
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CARTD

The CARTD model (Context-Aware Recommendation Tensor Decomposition)

[182, 138] provides a generalized framework for an arbitrary number of contexts and

also targets an optimal ranking instead of a rating prediction. Under the hood the

model extends the BPR-based ranking approach used in the PITF model to the higher

order cases.

The authors introduce a uni�ed notion of an entity. A formal task is to �nd

the list of the most relevant entities within a given contextual situation. Remarkably,

all information that is used to make recommendations more accurate and relevant, is

de�ned as a context. In that sense, not only information like tag, time, location, user

attributes, etc. is considered to be a context, even users themselves might be de�ned as

a context of an item. This gives a more universal formulation for the recommendations

task:

fu : Entity×Context1 × . . .×Contextn→ RelevanceScore. (3.21)

As an illustration to that, a quadruple (user, item, time, location) maps to

(context1, entity, context2, context3). Obviously, the de�nition of the entity depends

on the task. For example, in case of social interactions prediction with (user, user,

attribute) triplets, the main entity as well as one of the context variables will be a user.

The observation data in a typical case of a user-item interactions can be encoded

similarly to Eq. (3.16):

DS B {(e, f , c1, . . . , cn) | (e,c1, . . . , cn) ∈ S ∧ (f , c1, . . . , cn) < S} ,

where e and f are the entities (i.e. items) and ci , i = {1, . . . ,n} denotes a context type

(includes users). As the authors emphasize, this leads to a huge sparsity problem,

and instead they propose to relax conditions and instead build the following set for

learning the model:

DAB
{
(e, f , c1, . . . , cn) | ∀ci : #ci (e) > #ci (f )

}
,

where #ci (·) indicates the number of occurrences of an entity within the context ci .

The rule #ci (e) > #ci (f ) denotes the prevalence of the entity e over the entity f with

respect to all possible contexts.
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The optimization objective will also look similar to the one used in the PITF

model with the loss function de�ned as:

L (T (A), R) = −
∑

(e,f ,c1,...,cn)∈DA

ln σ
(
r{c},e − r{c},f

)
,

where {c} denotes a set of all context variables ci and the tensor values aijk are calcu-

lated with help of the reduced CP model with the pairwise only interactions, similarly

to Eq. (3.18):

r{c},e =
n∑
i=1

vE,Cie vCi ,Eci ,

where vE,Cie and vCi ,Eci are the elements at the cross section of the e-th row and the i-th

column of the factor matrices V E,Ci and V Ci ,E respectively. As in the previous cases,

the regularization term Ω(Θ) have similar to Eq. (3.13) form, which includes all the

factors from Θ:

Θ = {V E,C1,V C1,E, . . . ,V E,Cn,V Cn,E}.

iTALS

As has been mentioned in the introduction (see Sec. 1.2.3), an implicit feed-

back does not always correlate with the actual user preferences, thus a simple binary

scheme (as in Eq. (3.20)) may not be accurate enough. For this reason, the authors of

the iTALS model (ALS-based implicit feedback recommender algorithm) [77] propose

to use the con�dence-based interpretation of an implicit feedback introduced in [82]

and adopt it for the higher order case.

They introduce the dense tensorW that assigns non-zero weights for both ob-

served and unobserved interactions. For the n-th order tensor it has the following

form: wi1,...,in = α ·#(i1, . . . , in), if (i1, . . . , in) ∈ S,

wi1,...,in = 1, otherwise,
(3.22)

where #(i1, . . . , in) is the number of occurrences of the tuple (i1, . . . , in) (e.g. the com-

bination of the user i1 and the item i2 interacted within the set of contexts i3, . . . , in)

in the observation history; α is set empirically and α · #(i1, . . . , in) > 1 which means

that the observed events provide more con�dence in the user preferences than the

unobserved ones.
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The loss function will then take the form:

L (T (A), R) =
∑
i1,...,in

wi1,...,in(ai1,...,in − ri1,...,in)
2,

where weights wi1,...,in are de�ned by Eq. (3.22), ri1,...,in are the values of a binary feed-

back tensor of order n, de�ned similarly to Eq. (3.20), and ai1,...,in are the values of the

reconstructed tensor.

The model uses CP with an ALS-based optimization procedure and a standard

regularization similar to Eq. (3.13). The latent feature vectors are encoded in the rows

of the factor matrices, not the columns, i.e. following the authors’ notation, we should

rewrite Eq. (3.6) as:

A = [[MT
1 , . . . ,M

T
n ]],

where Mi (1 ≤ i ≤ n) are transposed factors of the CP decomposition.

The authors show, how an e�cient computation over the dense tensor can be

achieved with the same tricks that are used in [82] for the matrix case. The model also

has a number of modi�cations [76]: based on the conjugate gradient approach (iTALS-

CG) and the coordinates descent approach (iTALS-CD) where an additional features

compression is achieved by the Cholesky decomposition. This makes the iTALS-CD

model to learn even faster than MF methods. While performing on approximately the

same level of accuracy as the state-of-the-art Factorization Machines (FM) method

[136], it is capable of learning more complex latent relations structure. Another mod-

i�cation is the pairwise “PITF-like” reduction model, named iTALSx [75].

GFF

The General Factorization Framework (GFF) [78] further develops the main

ideas of the family of iTALS models. Within the GFF model di�erent CP-based fac-

torization models (also called a preference models) are combined in order to capture

the intrinsic relations between users and items in�uenced by an arbitrary number of

contexts. As in many other works the authors of GFF model �x the broad de�nition

of the context as an entity, which “value is not determined solely by the user or the

item”, i.e. not a content information (see Sec. 1.2.7).
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The model can be better explained with the example. Let us consider the prob-

lem of learning the scoring function as follows:

fu : U× I× S×Q→ RelevanceScore, (3.23)

where U and I are the domains of users and items respectively; S stands for season

and denotes the periodicity of the events (see Sec. 3.2.3); Q describes the sequential

consumption patterns, e.g. what are the previous items that were also consumed with

the current one (see [77] for broader set of examples). Let us also de�ne the pairwise

interactions between users and items as UI (standard CF model), between items and

seasons as IS and so forth. Using the same notation we can also de�ne multi-relational

interactions, such as UIS for a 3-way user-item-season interactions or UISQ for the

4-way interactions between all 4 types of entities.

In total, there could be 2047 di�erent combinations of interactions, yet not all of

them are feasible in terms RS model, as not all of them may contribute to the preference

model.

As the result, GFF generates a very �exible multirelational model that allows to

pick the most appropriate scheme of interactions, which does not explode the com-

plexity of the model and meanwhile achieves a high quality of recommendations.

Based on the experiments the authors conclude: “leaving out useless interactions re-

sults in more accurate models”.

As it can be seen, tensors-based methods help represent and model complex

environments in a convenient and congruent way, suitable for various problem for-

mulations. More examples, starting from multi-criteria learning to cross-domain rec-

ommendations, can be found in [54]. Nevertheless, as we have already stated earlier,

the most common practical task for RS is to build a ranked list of recommendations (a

top-n recommendations task). In this regard, we summarize related features of some

of the most illustrative, in our opinion, methods in Table 3.2. We also note that while,

technically, incremental learning is applicable to any of these methods, not all au-

thors provide the speci�c steps to implement it. We therefore emphasize, whether

the presented models explicitly address the problem of real-time recommendations in

dynamic environments (the last column of the table).
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Table 3.2: Comparison of popular TF models. The Ranking prediction column shows

whether a method is evaluated against ranking metrics. The Online column denotes

a support for real-time recommendations for new users (e.g. folding-in).

Name Type Algorithm Domain Entities Optimization

Ranking

prediction

Online

TOPHITS [91], 2005 CP ALS Link prediction Resources, Keyword pointwise X

CubeSVD [163], 2005 TD HOSVD Personalized Search User, Resource, Query pointwise X

RTF [137], 2009 TD SGD Folksonomy User, Item, Tag pairwise X

BPTF [186], 2010 CP MCMC Temporal dynamics User, Item, Time pointwise

Multiverse [85], 2010 TD SGD Context-awareness User, Item, Contexts pointwise

PITF [134], 2010 CP
∗

SGD Folksonomy User, Item, Tag pairwise X

TagTR [168], 2010 TD HOSVD Folksonomy User, Item, Tag pointwise X X

TFMAP [157], 2012 CP SGD Context-awareness User, Item, Context listwise X

CARTD [138], 2012 CP
∗

SGD Context-awareness Item, Contexts pairwise X

ClustHOSVD [165], 2015 TD HOOI Folksonomy User, Item, Tag pointwise X

GFF [78], 2015 CP
∗

ALS Context-awareness User, Item, Contexts pointwise X

∗
Method uses pairwise reduction concept, initially introduced in PITF.

3.3 Conclusion

In this chapter, we have attempted to overview a broad range of tensor-based

methods used in recommender systems to date. As we have seen, these methods pro-

vide a powerful set of tools for merging various types of additional information and are

aimed at increasing �exibility, customizability and quality of recommendation mod-

els. Tensorization enables original and non-trivial setups, going far beyond standard

user-item paradigm, and �nds its applications in various domains. Tensor-based mod-

els can also be used as a part of more elaborate systems, providing compressed latent

representations as an input for other well-developed techniques.

One of the main concerns for the higher order models is inevitable growth of

computational complexity with increasing number of dimensions. Even for mid-sized

production systems that have to deal with highly dynamic environments, this might

have negative implications, such as the inability to generate recommendations for new

users in a timely manner. This type of issues can be �rmly addressed with incremental

updates and higher order folding-in techniques.

Despite a numerous amount of various TF techniques, we note a common pat-

tern shared by all of them: user feedback, if present in the form of rating-like values, is

always treated as a direct measure of item relevance on a continuous real-valued scale.
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On the other hand, as we will discuss in Chap. 4, it seems more natural to treat rat-

ings as ordinal values. In Chap. 5 we explore this idea more carefully with the help of

tensor-based formulation, where user feedback is encoded within a third dimension.

In some sense, it resembles context-aware and tag-based approaches, like Multiverse

or TagTR, if we view it from the ternary relations perspective.

We demonstrate that our model can potentially increase the perceived relevance

of recommendations, especially in the warm start scenario, where generated predic-

tions are highly sensitive to user input and, therefore, the ability to build a more

adequate preference model plays a crucial role. Our method also supports a simple

analytic form of the folding-in calculation, which results from a direct higher order

generalization of the one used in PureSVD.

In addition to that, as we will show in Chap. 5, even though the formulation of

our tensor approach is pointwise, it can also be viewed as a special kind of a ranking

task. Moreover, it has a much simpler formulation, comparing to pairwise or listwise

learning to rank methods like PITF or TFMAP; it does not bring additional complexity

and does not require any heuristic-based simpli�cations for solving the problem.

Finally, in Chap. 7 we combine both tensor-based preference model and our

hybrid model from Chap. 6 within a new tensor factorization approach. Unlike the

methods like Multiverse, it is more economical in a sense that it does not require

building a separate latent feature space for incorporating additional side knowledge

into the model.
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Limited preference information problem

As we note in Sec. 1.1.2, the general premise of the CF approach is that it does

not require any expert or domain knowledge for generating a model. Intrinsic rela-

tions within the data are expected to be learned directly from the observed user-item

interactions and in the case of latent factor models enclosed in the latent feature space.

While it may hold true in many cases, there are still situations when the output of CF

models becomes unreliable.

A particular example of that is the problem of the insu�cient amount of user

feedback used to build CF models and to generate recommendations with their help.

We will denote that problem with the term limited preference information. It can be

divided into two distinct subproblems: the local lack of preferences and the global lack

of preferences, both having di�erent implications on the behavior and the outcome of

the models.

The local problem arises right after an entity is introduced to the system for the

�rst time and lasts until a certain amount of preferences is collected. Predictions for

the entity during this phase are typically less reliable and less stable, especially in the

beginning. While this phase is inevitable for any entity, we implicitly assume here

that there are no general obstacles for collecting more data with time, which eventu-

ally resolves the problem. In other words, the problem does not a�ect the quality of

recommendations in general; hence the name “local”.

In contrast, the main driver for the global problem is the very mechanism of

user-item interactions, which limits an overall amount of preferences that can be po-

tentially collected. As it was noted in Sec. 1.2.2, this may have a negative impact

on general quality of recommendations. We note, however, that unlike the previous

83
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case, the problem is not always present and signi�cantly depends on the domain of

application, the nature of decision making and some other factors.

Below we provide a more detailed view on each subproblem and demonstrate a

few “blind spots” in existing approaches, which we aim to resolve in this work.

4.1 Local lack of preferences

In the de�nition of the local problem, we assume that the observed data is gen-

erally “nice” in a sense that it contains enough collaborative information for learning

representative patterns and building an adequate CF model. This corresponds to the

cases of a comparatively high density of user-item interactions. In this setting, the

task of generating relevant recommendations becomes problematic only in particular

cases of new users or new items with insu�cient or unavailable feedback data, i.e., in

the warm start and the cold start scenarios introduced in Sec. 1.2.1. We refer to this

subproblem as the local lack of preferences.

There are several possible ways of dealing with this problem. One way is to

use the so-called rating elicitation technique. In this case, a recommender system is

designed to explicitly ask newly arrived or unrecognized users to provide feedback

on a pre-selected non-personalized list of items before they can actually start using

a recommendation service. Conversely, in the case of newly introduced items, a pre-

de�ned group of existing users can be asked to provide some feedback on them.

The selection process, however, is a very challenging task. For example, in the

new user case, a trivial strategy of presenting randomly picked items is ine�ective and

can be frustrating for users. A more adequate approach is to �nd a collection of the

most representative items [53]. However, deriving a list of items that helps to better

learn user preferences without making a user feel bored by the elicitation process is a

non-trivial problem. In fact, it represents only a small part of a more general research,

devoted to the so-called active learning approach [51].

The problem becomes even worse if a pre-built list of items resonates poorly

with actual user tastes. In this case provided feedback will be mostly negative, i.e.,

full of items with low scores or low ratings assigned by users. Taking into account

the tendency of conventional CF algorithms to favor positively rated items, which we

demonstrate in Sec. 5.1.1, the elicitation process, in the end, may lead to an undesired
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outcome with a lot of irrelevant recommendations. This is often alleviated by gener-

ating more items until enough positive feedback (e.g., items with high scores or high

ratings) is gathered. However, this makes engagement with the system less e�ortless

for users and may even lead to a loss of interest in it.

As an alternative to the rating elicitation option, one can infer user interests and

item relevance based on their side information. For example, one can restrict the list

of shown items based on which category of items a user is currently browsing. This is

where various content-based models can be applied. However, this approach should

be primarily considered as a last resort due to limitations mentioned in Sec. 1.1.1. If

side information is broadly available, a more elaborate but more fruitful alternative

is to use a hybrid approach. This may not only help to better handle the cold start,

but also allows to mitigate the global problem of insu�cient preference information

described next.

4.2 Global lack of preferences

The aforementioned “nice” structure of data is not something that can be always

easily achieved. In practice, data sparsity is often very high, and in the most severe

cases, it may prevent CF models from discovering non-trivial and reliable relations

within the data, which in turn leads to substantial degradation of the resulting quality

of recommendations. We will refer to this subproblem as the global lack of preferences.

A trivial example of the global lack of preferences is a fresh system start when

there is yet not enough data collected by a recommender system. Clearly, in some

cases, the problem can be resolved merely by allowing a recommender system to run

for a longer period of time. However, there are more challenging situations, when,

for example, due to domain speci�cs users interact with only a small fraction of all

available items and the sparsity problem may even get worse with time. This is often

the case in online stores with a large (and potentially increasing) assortment. The

availability of side information plays a crucial role in such cases.

Indeed, as we have mentioned in Sec. 1.1.1, user choice can be in�uenced by

intrinsic properties of items. For example, users may prefer products of a particular

brand or products with speci�c characteristics. Even if item properties are unknown,

the knowledge about users themselves, such as demographic information or occupa-
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tion, may help to explain their choice and to reveal certain behavioral patterns. By

using some hybrid CF approach, one may try to uncover at least some of these patterns

and build a better predictive model. In addition to an improved quality of recommen-

dations, using side information may help to make algorithms more stable and less

susceptible to extreme data sparsity.

4.3 Related work

The described subproblems can be addressed with a broad range of methods and

techniques. Below we provide a brief overview of such methods with respect to the

subproblem they are suitable for.

4.3.1 Addressing the local problem

Let us �rst consider the rating elicitation process. The majority of rating elici-

tation systems seem to focus only on a positive experience of users without properly

addressing the negative part. Roughly, a common approach across many standard

models can be summarized with a short line “people who like this item also like ...”.

This dictates how the rating elicitation is performed as well: users are asked to pro-

vide information about items they like. Obviously, this approach covers at most only

half of possible scenarios, as users may also dislike items, presented to them during

the rating elicitation phase. At best, the disliked items are simply �ltered out. How-

ever, it seems more natural to engage with a complementary “people who dislike this

item do like ... instead” scenario. This, in turn, requires a more careful analysis of

user feedback, which can also improve the quality of recommendations in a general

scenario.

Nevertheless, only a few research papers have studied an e�ect of di�erent types

of user experience on the quality of recommender systems in general. For example,

the authors of [96] proposed to split user ratings into categories and compute the

relevance scores based on user-speci�c rating values distribution. The authors of SLIM

method [113] have compared models that learn ratings either explicitly (r-models) or

in a binary form (b-models). They compare initial distribution of ratings with that

of recommended items by calculating a hit rate for every unique rating value. The
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authors show that r-models have a stronger ability to predict top-rated items even if

ratings with the highest values are not prevalent.

The authors of [27] state that discovering what a user does not like can be easier

than discovering what the user actually likes. They propose to simply ignore all neg-

ative preferences of individuals to avoid unsatisfactory recommendations to a group.

Meanwhile, excessive focus on high ratings can lead to an even more pronounced bias

of recommendation algorithms towards top-rated items [51]. Thus, for example, the

authors of [50] explore the e�ect of items with the lowest predicted score on the out-

come of the personalized rating elicitation procedure. Their conclusion, however, is

that while it helps to improve performance in terms of error-based metrics, the tech-

nique is ine�ective for improving the ranking of recommendations. The authors of

the MinRating approach [86], used for exploration of items, additionally show that the

lowest score predictions, made by MF models, are often inaccurate (leading to higher

gradients in parameter updates), which additionally exposes models’ biases.

The authors of [8] provide an insightful study of subjective nature of ratings

from a user perspective. They demonstrate that a rating scale is non-uniform in a

sense that distances between di�erent rating values are perceived di�erently even by

the same user. The work raises an important question of a more adequate preference

modeling. As the authors show, the nature of user ratings is very di�erent from its

common representation in terms of a simple real-valued scale or as a set of cardi-

nal numbers and is better interpreted in terms of an ordinal concept. The studies in

neoclassical economics [103] also support this observation.

An ordinal representation, in turn, can be achieved with a number of methods.

For example, one can apply several variants of ordinal regression [191, 95]. Alterna-

tively, it is possible to use various probabilistic frameworks, e.g., Bayesian inference

for matrix factorization [119], Boltzmann Machines (BM) [122] or Restricted Boltz-

mann Machines (RBM) [144]. An improper explicit dependence on the values of feed-

back can also be alleviated within the learning to rank framework, brie�y described in

Sec. 2.4, and in particular with the methods like xCLiMF [158] (an extension of CLiMF

to explicit feedback data) or CoFiRank [181].

Nevertheless, while all these methods have their own unique set of advantages,

they also come with some drawbacks and limitations. For example, the methods based

on the BM approach are incredibly versatile and provide a natural formulation for or-
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dinal data representation; however, they have high computational complexity and

cannot be easily applied to large-scale problems [144, 95]. Moreover, �nding an op-

timal structure of BMs can be quite cumbersome due to the need to tune additional

hyper-parameters, including the number of hidden units and connectivity in the input

layer.

A more scalable alternative would be OrdRec [95], an ordinal regression-based

model. The model additionally allows to have a personalized rating scale, which ad-

dresses individual di�erences in user perception, and at the same time, it does not

require any additional latent features to encode rating values. However, its latent

space for items is twice the size of that in standard MF models: for every interaction,

it encodes an item’s neighborhood with a separate set of latent features. In addi-

tion to that, while the model is based on the SVD++ approach, it takes more time to

train without providing a signi�cant improvement in the quality of recommendations.

Thus, it may not always be worth the e�orts, especially taking into account that in

some cases comparable or even better improvement over SVD++ can be achieved by

PureSVD [38, 96] with much fewer e�orts spent on its tuning
1
.

As we have noted in Sec. 2.4, learning to rank models also employ more elab-

orate optimization objectives, which may involve special tricks and depend on non-

trivial optimization techniques. For example, CoFiRank [181] optimizes the upper

bound approximation of nDCG, which additionally invokes a linear program along

with the SGD-based optimization. The xCLiMF model [158] in that sense is more ad-

vantageous, as it implements a more straightforward SGD-based optimization of a

smooth approximation of the Expected Reciprocal Rank. Nevertheless, even though

both models are designed to optimize a ranking metric, they may still underperform

a �ne-tuned SVD++ algorithm in top-n recommendations task [98].

Moreover, as we have discussed in Sec. 2.5.2, any SGD-based approach, in-

cluding SVD++, requires careful hyper-parameters’ tuning, which is far more labor-

intensive than tuning an SVD-based model. Indeed, assuming that we have 60 unique

points on a hyper-parameter grid, we would have to retrain and evaluate an SGD-

based model 60 times. In contrast, the SVD-based model needs to be trained only

1
Metrics used in [95] and [38, 96] are not precisely the same; however they are still of the same type and are expected

to correlate. The di�erence between them in comparative analysis is unlikely to be as dramatic as the di�erence between

the ranking- or relevance-based metrics on the one hand and the error-based metrics on the other, which was mentioned

in Sec. 1.2.4 and also discussed in [38].
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once with some su�ciently high rank value, and then all models of a lower rank are

obtained simply by truncating the number of columns in factor matrices. Even if an

SVD-based model would depend on additional hyper-parameters, still for every �xed

set of their values one can quickly evaluate the model for a range of ranks by comput-

ing it only for the highest one. This can signi�cantly reduce the time for �nding an

optimal con�guration and favorably distinguishes SVD-based models from other MF

models.

In addition to that, while implementing some advanced MF method is typically

not too hard, making it computationally e�cient can be quite challenging. We have

covered a few signi�cant di�culties concerning both shared-memory and distributed

environments in Sec. 2.5.1, which require good engineering skills and a certain level of

experience in multicore programming and high-performance computing. Ine�cient

implementations may easily result in days of training time, which can make them

infeasible in rapidly changing environments that require more frequent updates of

the entire model.

On the other hand, while there are a few production-level implementations, still

many advanced algorithms, even if publicly available, are often distributed in the form

of an unparalleled code running on a single-core, which requires substantial e�orts

for making them really e�cient. Moreover, new and more elaborate optimization ob-

jectives would require writing new optimization code. In that sense, the ability to

reuse SVD seems more bene�cial, as it already has highly optimized implementations

in many programming languages and takes advantage of e�cient linear algebra ker-

nels. This minimizes the amount of new code to be written, which in turn saves both

time and e�orts and also allows to enjoy additional guarantees backed by solid linear

algebra.

4.3.2 Addressing the global problem

We have already discussed the problem of sparsity in Sec. 1.2.2 and provided

a few examples that allow to address it with some sort of “smoothing” techniques

or data clustering. It is also possible to use the compressed sensing technique in CF

settings [198].
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In this work we are more interested in the cases where additional information

about relations is also available. We will speci�cally focus on content data, i.e., side

information about users and items, which allows using the hybrid approach with a

number of versatile and powerful techniques. We consider a particular category of

hybrid algorithms that are based on the MF approach. For convenience, we infor-

mally group them into several categories, depending on a particular choice of data

preprocessing steps and optimization objectives.

We have already described a few hybrid models in Sec. 2.3.4, namely FM and

SVDFeature. These models represent a wide class of hybrid factorization approaches,

where real attributes and properties are mapped to latent features with the help of

some linear transformation. In the majority of models feature mapping is a part of op-

timization process [123, 29, 140]; however, it can also be used as a post-processing step

[58]. Several other models can be categorized into an aggregation approach [114, 185],

where feature-based relations are imposed on interaction data and are used for learn-

ing aggregated representations. Alternatively, in the augmentation approach features

are represented as dummy variables that extend the model [108].

Another wide class of models uses regularization-based techniques to enforce

proximity of entities in the latent feature space based on their actual features. Some

of these models are based on probabilistic frameworks [69, 126], others extend stan-

dard MF objective [111, 31] with additional terms. One of the most straightforward

and well-studied regularization-based approach is collective MF [159]. In its simplest

variant, sometimes also called coupled MF, the corresponding loss function can be for-

mulated as [52]:

L (A,Θ) =
∥∥∥∥W ◦ (A− PQT

)∥∥∥∥2
F
+α

(
‖H − PWH‖2F + ‖G −QWG‖2F

)
,

where Θ = {P ,Q,WH ,WG} represents model parameters, matrices H and G encode

side information, i.e. user attributes and item characteristics, and α controls the con-

tribution of the side information into the resulting model.

There are also several variations of the coupled factorization technique, where

parametrization of the content matrices H,G is replaced with parametrization of the

content-based similarity between users and items [155, 11]. The authors of the Local

Collective Embeddings (LCE) model [147] propose to add a locality constraint, so that

the entities, which are close to each other in terms of real features, remain close to
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each other in the latent feature space as well. The authors use the model to speci�cally

address the cold-start problem.

Many of the described techniques can be generalized to the tensor case as well.

As an example, the coupled tensor factorization approach is explored in [128]. How-

ever, as we have shown in Chap. 3, the tensor format provides great �exibility in data

representation and problem formulation. For example, one of the most well-known

TD-based models called Multiverse (Sec. 3.2.4) encodes any data, including side infor-

mation, within additional dimensions. This model, however, can be hardly applied to

the problems with many side features encoded in a separate dimension, as the storage

required for TD factors depends exponentially on the number of dimensions. This

leads to the curse of dimensionality problem, mentioned in Sec. 3.1.3. Moreover, as we

have discussed in Sec. 1.2.8, encoding side information within additional dimensions

may lead to interpretation issues.

Alternatively, the Contextual Tensor-Based Approach for Personalized Expert

Recommendation (TAPER) model [61] uses CP format as a workhorse for a uni�ed

representation. Various sources of information in TAPER are glued together with the

help of additional regularization constraints. The model also imposes locality con-

straints, requiring similar entities to remain close to each other in the latent feature

space. The curse of dimensionality problem is avoided due to the use of CP format.

However, as have been already mentioned in Sec. 3.1.3, the CP decomposition is gener-

ally unstable and may require some e�orts in order to ensure convergence. Moreover,

in general, it does not impose orthogonality constraints on the columns of factor ma-

trices. This leads to a more complicated folding-in procedure that requires additional

optimization steps.

Worth noting that the majority of these methods are also based on SGD opti-

mization. This leads to the same technical issues, which were discussed at the end of

the previous section.

4.4 The need for new methods

To summarize, the described methods o�er great �exibility in solving the prob-

lem of insu�cient preference information. However, in many cases, it comes at the

cost of elaborate optimization schemes that require substantial engineering e�orts
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for implementing them and a special care on hyper-parameter tuning, which may not

necessarily result in signi�cant quality improvement.

Moreover, di�erent methods focus on either the local or the global aspect of

the problem. Meanwhile, both subproblems can be present at the same time within

a single system. Switching between di�erent methods to address particular aspects

of the problem would inevitably increase maintenance costs. In turn, a joint model

based on some derivative of these methods is likely to increase an overall complexity

of the solution and can potentially magnify the aforementioned technical issues.

On the other hand, in Sec. 2.2 and Sec. 2.5 we have demonstrated that SVD-

based methods can be adjusted quite considerably and, in addition to that, o�er many

advantages in terms of scalability, hyper-parameter tuning and support for online

settings. Moreover, the deterministic output and global guarantees, provided by SVD,

can play a crucial role in production environments. All this naturally leads to the

question, whether it is possible to derive a new approach, which would help to solve

the problems described in this chapter and at the same time preserve all the advantages

provided by SVD. Ideally, we would like to have a method that satis�es the following

criteria:

• uses SVD or applies it sequentially for optimization,

• requires minimal tuning of hyper-parameters,

• supports highly dynamic online settings via folding-in,

• e�ciently handles a large number of di�erent side features,

• provides a uni�ed solution to the limited preference information problem and

can be easily adapted to each of its subproblems.

In the next part, we will gradually develop a new approach that meets all the

aforementioned requirements. In Chap. 5 we �rstly address the problem of proper

feedback modeling. We propose a tensor-based method, where feedback values are

encoded within an additional dimension along with users and items, which allows to

naturally impose ordinal relations in the model. Technically it resembles the context-

aware methods and can also be viewed as a simpli�ed version of the learning to rank

approach. In Chap. 6 we step back to the matrix case in order to see how the PureSVD



93

model can be modi�ed in order to incorporate side information into it. We propose a

generalized formulation, which allows to achieve that while staying within the com-

putational paradigm of SVD. Finally, in Chap. 7 we combine both approaches into a

single framework, that preserves the advantages of its both predecessors and provides

a uni�ed solution to the problem of limited preference information.
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Chapter 5

Higher order preference model

We argue that the situation with the local lack of preferences, described in the

previous chapter, can be alleviated if the system is able to learn equally well from

both positive and negative feedback. Consider the following movie recommendation

example. A new user marks the “Scarface” movie with a low rating, e.g., 2 stars out of

5, and no other user preferences are available. This is likely to indicate that the user

does not like movies about crime and violence. It also seems natural to assume that

the user probably prefers “opposite” features, such as sentimental story, which can be

present in romantic movies, or happy and joyful narrative provided by animation or

comedies. If this is the case, asking to rate or simply recommending the “Godfather”

movie is a redundant and inappropriate action. Similarly, if a user provides some

negative feedback for the �rst part of a series (e.g., the �rst movie from the “Lord of

the rings” trilogy), it is quite natural to expect that the system will not immediately

recommend another part from the same series.

A more proper way to engage with the user, in that case, is to leverage a sort

of “users, who dislike that item, do like these items instead” scenario. Users certainly

can share preferences not only in what they like but also in what they do not like

and it is fair to expect that techniques, based on the CF approach, could exploit this

for more accurate predictions even from solely negative feedback. In addition to that,

negative feedback may have a greater importance for a user, than a positive one. Some

psychological studies demonstrate that emotionally negative experience not only has

a stronger impact on an individual’s memory [87], but also has a more signi�cant

e�ect on human behavior in general [141], known as the negativity bias.

95
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Of course, many heuristics and tweaks (e.g., user and item biases discussed in

Sec. 2.2.2 and Sec. 2.3.2) could be proposed for traditional techniques to �x the prob-

lem; however, there are intrinsic limitations within standard models that make the

task hardly solvable. For example, algorithms could start looking for less similar items

in the presence of an item with negative feedback.

However, there is a problem of preserving relevance to the user’s tastes. It is

not enough to just pick the most dissimilar items, as they are most likely to lose the

connection to user preferences. Moreover, it is not even clear when to switch between

the “least similar” and the “most similar” modes. If a user assigns a 3-star rating for

a movie, does it mean that the system still has to look for the least similar items or

should it switch back to the most similar ones? User-based similarity approach is also

problematic, as it tends to generate a very broad set of recommendations with a mix of

similar and dissimilar items, which again leads to the problem of extracting the most

relevant, yet unlike recommendations.

In order to deal with the denoted problems, we propose a new tensor-based

model that treats feedback data as a special type of categorical variable. We show that

our approach not only helps to improve user cold start scenarios but also increases

general recommendations accuracy.

5.1 Problem formulation

The goal of conventional recommender system is to be able to accurately gen-

erate a personalized list of new and interesting items (top-n recommendations), given

a su�cient number of examples with known user preferences. As has been noted, if

preferences are unknown this requires special techniques, such as rating elicitation, to

be involved �rst, which in turn may disappoint users. In order to avoid that extra step

or at least make it less frustrating we introduce the following additional requirements

for a recommender system:

• the system must be sensitive to a full user feedback scale and do not disregard

its negative part,

• the system must be able to respond properly even to a single feedback and take

into account its type (positive or negative).
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These requirements should help to gently navigate new users through the catalog of

items, making an overall experience more personalized, as with every new feedback

the system will gradually improve preference predictions.

5.1.1 Limitations of standard models

Let us consider without the loss of generality the problem of movie recommen-

dations. Traditionally, this is formulated as a rating prediction task:

fu : User×Movie→ Rating, (5.1)

where User is a set of all users, Movie is a set of all movies and fu is a utility func-

tion, which assigns predicted values of ratings to every (user, movie) pair. The utility

function in CF models is learned from a prior history of interactions, i.e. previous ex-

amples of how users rate movies, which can be conveniently represented in the form

of a matrix A ∈ RM×N with M rows corresponding to the number of users and N

columns corresponding to the number of movies. Elements aij of the matrix A denote

actual movie ratings assigned by users. As users tend to provide feedback only for a

small set of movies, not all entries ofA are known, and the utility function is expected

to infer the missing values.

In order to provide recommendations, the inferred values of ratings R = [rij]
M,N
i,j=1

are used to rank movies and build a ranked list of top-n recommendations, which in

the simplest case is generated as:

toprec(i,n) :=
n

argmax
j∈Movie

rij . (5.2)

where toprec(i,n) is a list of n top-ranked movies predicted for user i. The way values

rij are calculated depends on a CF algorithm and we argue that standard algorithms

are unable to accurately predict relevant movies given a user with only low ratings in his

or her preferences.

Example with matrix factorization

Let us �rst start with the MF approach. As we do not aim at predicting the exact

values of ratings and are more interested in correct ranking, it is adequate to employ
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the PureSVD model of some rank r <min(M,N ) described in Sec. 2.2.1. The matrix

of predictions in that case can be expressed as:

R =UΣV T ≡ PQT , (5.3)

where we also provide an equivalent form with factors P = UΣ
1
2 and Q = VΣ

1
2 ,

commonly used in other matrix factorization techniques.

In contrast to many other MF techniques, one of the key properties of SVD is an

orthogonality of columns in factor matrices U and V . As it was shown in Sec. 2.2.3,

this property helps to �nd approximate values of ratings even for users that were not

a part of the original matrix A with a very simple and easy to compute expression:

r ≈ VV Ta, (5.4)

where a ∈ RN is a sparse vector of known user preferences, where a position of every

non-zero element corresponds to a movie, rated by a new user, and its value corre-

sponds to the actual user rating on that movie. Respectively, r ∈ RN is a dense vector

of all predicted movie ratings.

Nevertheless, there is a subtle issue here. If, for instance, a contains only a

single rating, then it does not matter what exact value it has. Di�erent values of the

rating will simply scale all the resulting scores, given by Eq. (5.4), and will not a�ect

the actual ranking of recommendations. In other words, the recommendation list in

the case of a single 2-star rating is going to be the same as in the case a 5-star rating.

In the case of a well-known user with a lot of known ratings this e�ect can be less

pronounced. However, when preference information is limited, like in the case with

new users in the cold start setting, this e�ect may play a crucial role in the willingness

of a user to continue using such an insensitive recommendation service.

Example with similarity-based approach

It may seem that the problem can be alleviated if we exploit some user similarity

technique with the help of a user-based kNN approach mentioned in Sec. 1.1.2. Indeed,

if users share not only what they like, but also what they dislike, then users, similar to

the one with a negative only feedback, might give a good list of candidate movies for
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Table 5.1: Similarity-based recommendations issue.

Scarface Toy Story Godfather

Observation

Alice 2 5 3

Bob 4 5

Carol 2 5

New user

Tom 2 ? ?

Prediction

2.6 3.1

recommendations. The list can be generated with help of the following expression:

rij =
1
K

∑
k∈Ni

rkj sim(i,k), (5.5)

where Ni is a set of users, the most similar to user i, sim(i,k) is some similarity

measure between users i and k; K is a normalizing factor, equal to

∑
k∈Ni |sim(i,k)| in

the simplest case. Similarity between users can be computed by comparing either their

latent features given by the rows of matrix U or simply by the preferences encoded

in the rows of the initial matrix A. It can be also modi�ed to a more advanced forms,

which take into account user biases [2].

However, even though more relevant items are likely to get higher scores with

this user-similarity approach, it still does not guarantee an isolation of irrelevant

items. Let us demonstrate it on a simple example. For illustration purposes we will

use a simple kNN approach, based on a cosine similarity measure. However, it can be

generalized to more advanced variations with di�erent similarity measures as well.

Let a new user Tom have rated the “Scarface” movie with rating 2 (see Table 5.1)

and we need to decide which of two other movies, namely “Toy Story” or “Godfather”,

should be recommended to Tom, given an information on how other users – Alice,

Bob and Carol – have also rated these movies. As it can be seen, Alice and Carol,

similarly to Tom, do not like criminal movies. They also both enjoy the “Toy Story”

animation. Even though Bob demonstrates an opposite set of interests, the preferences

of Alice and Carol prevail. From here it can be concluded that the most relevant (or
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safe) recommendation for Tom would be the “Toy Story”. Nevertheless, the prediction

formula Eq. (5.5) assigns the highest score to the “Godfather” movie, which is the result

of a higher value of cosine similarity between Bob’s and Tom’s preference vectors.

5.1.2 Resolving the inconsistencies

The problems described above suggest that in order to build a model, which ful-

�lls the requirements, proposed in the beginning of Sec. 5.1, we have to move away

from traditional representation of ratings. Our idea is to restate the problem formula-

tion in the following way:

fu : User×Movie×Rating→ RelevanceScore, (5.6)

where Rating is a domain of ordinal (categorical) variables, consisting of all possible

user ratings, and RelevanceScore denotes the likeliness of observing a certain (user,

movie, rating) triplet. With this formulation relations between users, movies and rat-

ings are modelled in a ternary way, i.e. all three variables in�uence each other and the

resulting score.

This type of relations can be modelled with several methods, such as Factor-

ization Machines [136] or other context-aware methods [3]. We propose to solve

the problem with a tensor-based approach, as it seems to be more �exible and nat-

urally �ts the formulation in Eq. (5.6) (see Fig. 5.1). More formally, with this approach

the observed (user, movie, rating) triplets are encoded within a third order tensor

A∈RM×N×K with M,N and K corresponding to the total number of unique users,

movies and ratings respectively. We set the values of A to be binary:aijk = 1, if (i, j,k) ∈ S,

aijk = 0, otherwise,
(5.7)

where S is a history of known interactions, i.e. a set of the observed (user, movie,

rating) triplets. Similarly to the MF case represented by Eq. (5.3), we are interested in

�nding such a tensor factorization that helps to reveal common patterns in data and

to build a latent representation of users, movies and additionally ratings.
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Figure 5.1: From a matrix to a third order tensor.

5.2 Proposed approach

The corresponding tensor approximation problem can be formulated in terms

of minimization of the following square loss function:

L (A,R) = ‖A−R‖2F, (5.8)

where R is a low rank tensor approximation and ‖ · ‖F denotes Frobenius norm simi-

larly to the matrix case, i.e. ‖X‖2F =
∑
i1

∑
i2
...

∑
id
x2i1i2...id .

Both CP and TD decompositions are suitable for this task. However, following

the SVD-based approach we additionally require orthogonality of columns in factor

matrices. Later we will show that this requirement allows for quick computation of

recommendations, similarly to Eq. (5.4) in the SVD case.

The orthogonality constraint can be naturally satis�ed with the TD decompo-

sition, hence we seek for the solution in the following format (see Sec. 3.1.3):

R = G ×1U ×2 V ×3W,

where G ∈ Rr1×r2×r3 is the core of decomposition; U ∈ RM×r1,V ∈ RN×r2,W ∈ RK×r3

are columnwise orthogonal factor matrices. The �rst two of them represent embedding

of users and items onto a reduced latent feature space, similarly to the SVD case. The

third matrix W gives an additional latent representation of ratings. The decomposi-

tion is computed with the help of HOOI algorithm described in Sec. 3.1.4.
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Figure 5.2: Higher order folding-in for Tucker decomposition. A slice with a new user

information in the original data (left) and a corresponding row update of the factor

matrix in Tucker decomposition (right) are marked with solid a color.

5.2.1 E�cient computation of recommendations

Recommender systems typically have to deal with large number of users and

items, which renders the problem of fast computation of recommendations. For exam-

ple, factorizing the tensor for every new user can take prohibitively long time, which

is inconsistent with the requirement of real-time engagement with users. In order to

address that problem we propose a higher order folding-in method (see Fig. 5.2). Sim-

ilarly to the SVD case, it helps to �nd approximate recommendations for any unseen

user with comparatively low computational cost (cf. Eq. (5.4)):

R(i) = VV
T P(i)WW T , (5.9)

where P(i) is an N ×K binary matrix that encodes preferences of an user i and R(i) ∈
RN×K is a relevance score prediction matrix. Similarly to the SVD-based folding-in

given by Eq. (5.9), it can be treated as a sequence of orthogonal projections to latent

spaces of movies and ratings.

5.2.2 Shades of ratings

Note that even though Eq. (5.9) looks very similar to Eq. (5.4), there is a substan-

tial di�erence in what is being scored. In the case of a matrix factorization we score

ratings (or other forms of feedback) directly, whereas in the tensor case we score the

likeliness of a rating to have a particular value for an item. This gives a new and more
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Figure 5.3: An example of predicted user preferences that we call shades of ratings.

Every horizontal bar can be treated as a likeliness of some movie to have a speci�c

rating for a selected user. More dense colors correspond to higher relevance scores.

informative view on the predicted user preferences (see Fig. 5.3). Unlike the conven-

tional methods, every movie in recommendations is associated not just with a single

score, but rather with a full range of all possible rating values that users are exposed

to.

Another remarkable property of “rating shades” is that it can be naturally uti-

lized for both ranking and rating prediction tasks. The ranking task corresponds to �nd-

ing a maximum score along the movies mode (2nd mode of the tensor) for a selected

(highest) rating. For example, in the case of 5-star scale, the task can be expressed as:

toprec(i,n) :=
n

argmax
j∈Movie; k=5

rijk. (5.10)

We also note that ranking can be performed within every rating value. Moreover, if

a positive feedback is de�ned by several ratings (e.g. 5 and 4), then the sum of scores

from these ratings can be used for ranking as well:

toprec(i,n) :=
n

argmax
j∈Movie

∑
k≥kp

rijk,

where kp is a positivity threshold, e.g. kp = 4. Our experiments show that this typically

leads to an improved quality of predictions comparing to Eq. (5.10).

Rating prediction can be performed in a similar fashion as it simply corresponds

to maximization of relevance scores along the ratings mode (i.e. the 3rd mode of the

tensor) for a selected movie.
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5.3 Evaluation

As has been discussed in Sec. 5.1.1, standard recommender models are unable

to properly operate with a negative feedback and more often simply ignore it. As

an example, a well known recommender systems library MyMediaLite [59] that fea-

tures many state-of-the-art algorithms, does not support a negative feedback for item

recommendation tasks.

In addition to that, a common way of performing an o�ine evaluation of recom-

mendations’ quality is to measure only how well a tested algorithm can retrieve highly

relevant items. Nevertheless, both relevance-based (e.g. precision, recall) and ranking-

based (e.g. nDCG, MAP) metrics, are completely insensitive to irrelevant items predic-

tion: an algorithm that recommends 3 positively rated and 7 negatively rated items

will gain the same evaluation score as an algorithm that recommends 3 positively

rated and 7 items with unknown (not necessarily negative) ratings.

This leads to several important questions, which are typically obscured and

which we aim to �nd an answer to:

• How likely is an algorithm to place irrelevant items in top-n recommendation

list and rank them highly?

• Does high evaluation performance in terms of relevant items prediction guar-

antee a lower number of irrelevant recommendations?

Answering these questions is impossible within standard evaluation paradigm and we

propose to adopt commonly used metrics in a way that respects crucial di�erence

between the e�ects of relevant and irrelevant recommendations. We also expect that

modi�ed metrics will re�ect the e�ects, described in the beginning of this chapter (the

Scarface and Godfather example).

5.3.1 Negativity bias compliance

The �rst step for a proper modi�cation of metrics is to split rating values into 2

classes: the negative feedback class and the positive feedback class. This is achieved by

selecting a positivity threshold value, such that the values of ratings equal to or above

this threshold are treated as positive examples and all other values – as negative.
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Figure 5.4: De�nition of matching and mismatching predictions. Recommendations

that are not a part of the known user preferences (question marks) are ignored and

not considered as false positive.

The next step is to allow generated recommendations to be evaluated against

the negative user feedback, as well as the positive one. This leads to a classical notion

of true positive (tp), true negative (tn), false positive (fp) and false negative (fn) types

of predictions [153], which also renders a classical de�nition of relevance metrics,

namely precision (P) and recall (R, also referred as True Positive Rate (TPR)):

P =
tp

tp+ fp
, R =

tp
tp+ fn

.

Similarly, False Positive Rate (FPR) is de�ned as

FPR =
fp

tp+ fp
.

The TPR to FPR curve, also known as a Receiver Operating Characteristics (ROC)

curve, can be used to assess the tendency of an algorithm to recommend irrelevant

items. Worth noting here that if items, recommended by an algorithm, are not rated

by a user (question marks on Fig. 5.4), then we simply ignore them and do not mark

as false positive in order to avoid fp rate overestimation [153].

TheDiscounted Cumulative Gain (DCG) metric will look very similar to the orig-

inal one with the exception that we do not include the negative ratings into the cal-

culations at all:

DCG =
∑
p

2rp − 1
log2 (p+1)

, (5.11)

where p : {rp ≥ positivity threshold} and rp is a rating of a positively rated item. This

gives an nDCG metric:

nDCG =
DCG
iDCG

,
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where iDCG is a value returned by an ideal ordering or recommended items (i.e. when

more relevant items are ranked higher in top-n recommendations list).

5.3.2 Penalizing irrelevant recommendations

The nDCG metric indicates how close tp predictions are to the beginning of a

top-n recommendation list, however, it tells nothing about the ranking of irrelevant

items. We �x this by a modi�cation of Eq. (5.11) with respect to a negative feedback,

which we call a Discounted Cumulative Loss:

DCL =
∑
n

2−rn − 1
− log2 (n+1)

, (5.12)

where n : {rn < positivity threshold} and rn is a rating of a negatively rated item.

Similarly to nDCG, nDCL metric is de�ned as:

nDCL =
DCL
iDCL

,

where iDCL is a value returned by an ideal ranking or irrelevant predictions (i.e. when

more irrelevant items are ranked lower). Note that as nDCL penalizes high ranking

of irrelevant items, the lower are the values of nDCL the better.

In the experiments all the metrics are measured for di�erent values of top-n

list length, i.e. the metrics are metrics at n denoted as @n. The values of metrics are

averaged over all test users.

5.3.3 Evaluation methodology

For the evaluation purposes we split datasets into two subsets, disjoint by users

(e.g. every user can only belong to a single subset). First subset is used for learning a

model, it contains 80% of all users and is called a training set. The remaining 20% of

users (the test users) are unseen in the training set and are used for models’ evaluation.

We holdout a �xed number of items from every test user and put them into a holdout

set. The remaining items form an observation set of the test users. Recommendations,

generated based on an observation set are evaluated against the holdout set.

The main di�erence from common evaluation methodologies is that we allow

both relevant and irrelevant items in the holdout set (see Fig. 5.4). Furthermore, we
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vary the number and the type of items in the observation set, which leads to various

scenarios:

• leaving only one or few items with the lowest ratings leads to the case of “no-

positive-feedback” cold start;

• if all the observation set items are used to predict user preferences, this serves

as a proxy to a standard recommendation scenario for a known user.

Using this scheme we perform a 5-fold cross validation by selecting di�erent 20% of

users each time and averaging the results across all 5 folds.

5.4 Experimental setup

This section describes various settings, including dataset preprocessing, selec-

tion of algorithms and problem speci�c modi�cations to evaluation methodology.

5.4.1 Datasets

We use publicly available Movielens
1

1M and 10M datasets as a common stan-

dard for o�ine recommender systems evaluation. We have also trained a few models

on the latest Movielens dataset (22M rating, updated on 1/2016) and deployed a movie

recommendations web application for online evaluation. This is especially handy for

our speci�c scenarios, as the content of each movie is easily understood and contra-

dictions in recommendations can be easily eye spotted (see Table 5.2). We preprocess

these datasets to contain only users who have rated no less than 20 movies.

5.4.2 Algorithms

We compare our approach with the state-of-the-art matrix factorization meth-

ods, designed for item recommendations task as well as two non-personalized base-

lines.

• CoFFee (Collaborative Full Feedback model) is the proposed tensor-based ap-

proach.

1
https://grouplens.org/datasets/movielens/
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• SVD, also referred as PureSVD described in Sec. 2.2.1. Missing values in this

model are simply imputed with zeros.

• WRMF is the MF method, described in Sec. 2.3.3, where missing values are uni-

formly weighted.

• BPRMF [135] is a matrix factorization method, powered by a Bayesian person-

alized ranking approach (BPR), which optimizes pairwise preferences between

observed and unobserved items.

• Most popular model always recommends top-n items with the highest number

of ratings (independently of ratings value).

• Random guess model generates recommendations randomly.

SVD is based on Python’s Numpy, and SciPy packages, which heavily use BLAS

and LAPACK functions as well as MKL optimizations. CoFFee is also implemented

in Python, using the same packages for most of the linear algebra operations. We

additionally use Pandas package to support sparse tensors in COO format.

BPRMF and WRMF implementations are taken from the MyMediaLite [59] li-

brary. Only positively rated data is used for training these two models. In the case

of BPRMF it is additionally binarized. We wrap the command line utilities of these

methods with Python, so that all the tested algorithms share the same namespace and

con�guration. Command line utilities do not support online evaluation and we imple-

ment our own (orthogonalized) folding-in on the factor matrices generated by these

models. Learning times of the models are depicted on Fig. 5.5. The source code as well

as the link to our web app can be found at Github
2
.

5.4.3 Settings

The number of holdout items is always set to 10. The top-n values range from

1 to 100. We perform 3 di�erent selection mechanisms for observation set. In the �rst

one we sample either 1 or 3 negatively rated items from test user preferences. In the

second scheme we select 1, 3 or 5 items at random. Finally, in the third case we select

all available test user items (see Sec. 5.3.3 for details).

2
https://github.com/Evfro/�fty-shades
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03:10.5

01:19.6

00:00.2
00:17.7

BRPMF WRMF SVD CoFFee

Figure 5.5: Models’ learning time, mm:ss.ms (single laptop, Intel i5 2.5GHz CPU,

Movielens 10M).

We include higher values of top-n (up to 100) as we allow random items to ap-

pear in the holdout set. This helps to make experimentation more sensitive to wrong

recommendations that match negative feedback from users. Both observation and

holdout sets are cleaned from the items that are not present in the training set. The

number of latent factors for all matrix factorization models is set to 10, CoFFee multi-

linear rank is (13, 10, 2). Regularization parameters of WRMF and BPRMF algorithms

are set to MyMediaLite’s defaults.

The positivity threshold is set to 4 for both Movielens 1M and Movielens 10M.

Worth noting here that lower values of positivity threshold (e.g., 3 or 2) mostly lead

to the changes in absolute numbers, while the general behavior of models stays ap-

proximately the same with only minor rearrangements. Due to this reason we only

report results for one �xed value of the positivity threshold.

5.5 Results

Evaluation results are presented on Fig. 5.6. Rows A and C correspond to Movie-

lens 1M dataset, rows B and D correspond to Movielens 10M dataset. We also report

a few interesting hand-picked examples of movies recommendations, generated from

a single negative feedback (see Table 5.2).

How to read the graphs. The results are better understood with particular exam-

ples. Let us start with the �rst two rows on Fig. 5.6 (row A is for Movielens 1M and

row B is for Movielens 10M). These rows correspond to a performance of the models,

when only a single (random) negative feedback is provided.
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Figure 5.6: The ROC curves (1st column), precision-recall curves (2nd column),

nDCG@n (3rd column) and nDCL@n (4th column). Rows A, B correspond to a cold

start with a single negative feedback. Rows C, D correspond to a known user recom-

mendation scenario. Odd rows are for Movielens 1M, even rows are for Movielens

10M. For the �rst 3 columns the higher the curve, the better, for the last column the

lower the curve, the better. Shaded areas show a standard deviation of an averaged

over all cross validation runs value.

First of all, it can be seen that the item popularity model gets very high scores

with TPR to FPR, precision-recall and nDCG metrics (�rst 3 columns on the �gure).

One could conclude that this is the most appropriate model in that case (when almost

nothing is know about user preferences). However, high nDCL score (4th column)

of this model indicates that it is also very likely to place irrelevant items at the �rst

place, which can be disappointing for users. Similar poor ranking of irrelevant items

is observed with SVD and WRMF models. On the other hand, the lowest nDCL score

belongs to the random guess model, which is trivially due to a very poor overall per-
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Table 5.2: Hand-picked examples from top-10 recommendations generated on a sin-

gle feedback. The models are trained on the latest Movielens dataset.

Scarface LOTR: The Two Towers Star Wars: Episode VII - The Force Awakens

CoFFee

Toy Story Net, The Dark Knight, The

Mr. Holland’s Opus Cli�hanger Batman Begins

Independence Day Batman Forever Star Wars: Episode IV - A New Hope

SVD

Reservoir Dogs LOTR: The Fellowship of the Ring Dark Knight, The

Goodfellas Shrek Inception

Godfather: Part II, The LOTR: The Return of the King Iron Man

formance. The same conclusion is valid for BPRMF model, which has low nDCL (row

A), but fails to recommend relevant items from a negative feedback.

The only model that behaves reasonably well is the proposed CoFFee model. It

has low nDCL, i.e. it is more successful at avoiding irrelevant recommendations at the

�rst place. This e�ect is especially strong on the Movielens 10M dataset (row B). The

model also exhibits a better or comparable to the item popularity model’s performance

on relevant items prediction. At �rst glance, the surprising fact is that the model has

a low nDCG score. Considering the fact that it can not be due to a higher ranking of

irrelevant items (as it follows from low nDCL), this is simply due to a higher ranking

of items, which were not yet rated by a user (recall the question marks on Fig. 5.4).

The model makes a safe guess by �ltering out irrelevant items and proposing

those items that are more likely to be relevant to an original negative feedback (unlike

popular or similar items recommendation). This conclusion is also supported by the

examples from the �rst 2 columns of Table 5.2. It can be easily seen that, unlike SVD,

the CoFFee model makes safe recommendations with “opposite” movie features (e.g.

Toy Story against Scarface). Such an e�ects are not captured by standard metrics and

can be revealed only by a side by side comparison with the proposed nDCL measure.

In standard recommendations scenario, when user preferences are known (rows

C, D on Fig. 5.6) our model also demonstrates the best performance in all but nDCG

metrics, which again is explained by the presence of unrated items rather than a poor

quality of recommendations. In contrast, MF models – SVD and WRMF – while also

being the top-performers in the �rst three metrics, demonstrate the worst quality in

terms of nDCL almost in all cases.
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5.6 Conclusion and perspectives

To conclude, let us �rst address the two questions, posed at the beginning of

Sec. 5.3. As we have shown, standard evaluation metrics that do not treat irrelevant

recommendations properly (as in the case with nDCG), might obscure a signi�cant

part of a model’s performance. An algorithm that highly scores both relevant and

irrelevant items is more likely to be favored by such metrics while increasing the risk

of a user disappointment.

We have proposed modi�cations to both standard metrics and evaluation pro-

cedure, which not only reveal a positivity bias of standard evaluation but also help

to perform a comprehensive examination of recommendations’ quality from the per-

spective of both positive and negative e�ects.

We have also proposed a new model that is able to learn equally well from full

spectrum of user feedbacks and provides state-of-the-art quality in di�erent recom-

mendation scenarios. The model is uni�ed in a sense that it can be used both at an

initial step of learning user preferences and at standard recommendation scenarios

for already known users. We believe that the model can be used to complement or

even replace standard rating elicitation procedures and help to safely introduce new

users to a recommender system, providing highly personalized experience from the

very beginning.



Chapter 6

Hybrid factorization model

Since the very beginning of the recommender systems �eld, there was active

research devoted to various dimensionality reduction methods allowing to build more

expressive and more accurate latent factor models. A considerable part of this research

was speci�cally devoted to elaborate MF techniques. As we have seen in Chap. 2, these

techniques o�er a very �exible framework for addressing many di�erent aspects of

the recommendation task.

The interest in the MF approach had been additionally warmed up by the famous

Net�ix prize competition. However, one of its main critiques was a narrow focus on

rating prediction. As has been noted in Sec. 1.2.4, good rating prediction performance

cannot be straightforwardly translated to a good performance in terms of the top-n

recommendations task. In fact, one of the simplest SVD-based models called PureSVD,

which is not even suitable for rating prediction, was proven to outperform other much

more sophisticated MF algorithms (see Sec. 2.2.1).

Moreover, as we have discussed in Sec. 2.5 and summarized in Sec. 4.4, PureSVD

o�ers a number of practical advantages, such as global convergence with determin-

istic output backed by solid linear algebra, highly optimized implementations based

on BLAS and LAPACK routines, a lightweight hyper-parameter tuning achieved by

a simple rank truncation, analytical expression for instant online recommendations,

scalable modi�cations based on randomized algorithms. Therefore, we �nd it neces-

sary to distinguish this approach from all other MF methods. Even though some of

them are inspired by SVD and have its acronym in their names (e.g., FunkSVD, SVD++,

etc.), they are not SVD-based and do not provide the same set of advantages.

113
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However, as any other CF technique, PureSVD relies solely on the knowledge

about user preferences expressed in the form of ratings, likes, purchases or other types

of feedback, either explicit or implicit. On the other hand, as has been discussed in

Chap. 4, this information may not always be su�cient for learning a representative

model. If interaction data is too scarce, it may become extremely di�cult to dis-

cover reliable patterns from the observations without considering additional sources

of knowledge about users and items.

Addressing the described problems of insu�cient preference data has lead to

the development of hybrid models, introduced in Sec. 1.1.3. As we have also discussed

in Sec. 4.3, a signi�cant body of work is speci�cally devoted to incorporating side

information into MF methods. Surprisingly, the SVD-based approach has received

much lower attention in this regard, despite having many practical advantages.

It was shown to be a convenient tool for factorizing aggregated representations

of feature matrices and collaborative data [166]. However, in this case, the structure of

interactions vanishes due to the aggregation process and the obtained factors can only

be used as an intermediate result. Therefore, unlike PureSVD, it requires some other

CF algorithm for generating predictions and leads to a more complicated solution.

To the best of our knowledge, there were no attempts for developing an inte-

grated hybrid approach, where interaction data and side information would be jointly

factorized with the help of SVD, and the obtained result would be used as an end model

that allows to immediately generate recommendations as in the PureSVD approach.

With this work, we aim to �ll that gap and extend the family of hybrid methods with

a new approach based on a straightforward modi�cation of PureSVD.

6.1 Understanding the limitations of SVD

As we have demonstrated in Chap. 2, MF methods o�er a great level of �exi-

bility allowing to tackle various RS problems and �ne-tune a desired solution. This

includes the already mentioned ability to blend both interaction data and additional

side knowledge within a single optimization objective, which, among other bene�ts,

produces a more meaningful latent feature space with a certain inner structure, con-

trolled by side information.
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Table 6.1: An example of insu�cient preference data problem

Item1 Item2 Item3 Item4 Item5

Observed interactions

Alice 1 1 1

Bob 1 1 1

Carol 1 1

New user

Tom 1 ? ? 1 1

PureSVD: 0.3 0.3

Our approach: 0.1 0.6

Table note: Item5 is a cold-start item. Item3 and Item5, highlighted with blue color, are assumed to be

similar to each other in terms of their characteristics. This assumption is re�ected in the Our approach

row. The PureSVD row corresponds to the PureSVD model of rank 2. The code to reproduce this result

can be found at https://gist.github.com/Evfro/c6ec2b954ad�f6aaa356f9b3124b1d2.

This technique, however, is not available o�-the-shelf in the PureSVD approach

due to the classical formulation of the truncated SVD problem with its �xed optimiza-

tion objective given by Eq. (2.4). In this work we aim to �nd a new way to formulate the

optimization problem so that, while staying within the same computational paradigm

of the truncated SVD, it would allow us to account for additional sources of information

during the optimization process. In order to do this we �rst need to decompose SVD

internals and see what exactly a�ects the formation of its latent feature space.

6.1.1 When PureSVD does not work

Consider the following simple example on �ctitious interaction data depicted in

Table 6.1. Initially we have 3 users (Alice, Bob and Carol) and 5 items, with only �rst

4 items being observed in interactions (the �rst 3 rows and 4 columns of the table).

The last column corresponds to a cold start (i.e. previously unobserved) Item5. We

use this toy data to build PureSVD of rank 2 and generate recommendations for a new

user Tom (New user row in the table), who has already interacted with Item1, Item4

and Item5.

https://gist.github.com/Evfro/c6ec2b954adfff6aaa356f9b3124b1d2
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Let us suppose that in addition to interaction data we are also provided with

some prior knowledge about item relations. More speci�cally, we assume that Item3

and Item5, highlighted with blue color, are more similar in their characteristics to each

other than to other items. For example, they can be of the same unique category. In

that case, since Tom has expressed an interest in Item5, it seems natural to expect

from a good recommender system to favor Item3 over Item2 in recommendations.

This, however, does not happen with PureSVD.

With the help of the folding-in technique given by Eq. (2.11) it can be easily ver-

i�ed that the scores predicted by SVD will be equal for both items as shown next to

the PureSVD entry in the bottom of Table 6.1. This example demonstrates a general

limitation of the PureSVD approach related to the lack of preference data: the lower is

the density of data the harder it is for SVD to recover meaningful relations (see Fig. 6.1).

Obviously, this problem cannot be resolved without taking into account additional

problem-speci�c knowledge. In this chapter we show how to remove this limitation by

employing side data and help an SVD-based model generate more reasonable predic-

tions (see Our approach entry in Table 6.1 as an example).

It should be also noted that if Carol would have additionally rated both Item3

and Item5, this would build a connection between these items in the model and lead

to the appropriate scores even without side information. This leads to an idea that de-

pending on the sparsity of interactions, using side information may not always provide

additional bene�ts. We investigate this idea in Sec. 6.4. This also opens up a perspec-

tive of addressing (at least partially) an important question, “why SVD works well for

some recommender applications, and less well for others”, raised in [146].

6.1.2 Why PureSVD does not work

The formal explanation of the observed result requires understanding of how

exactly computations are performed in the SVD algorithm. A very rigorous mathemat-

ical analysis of that is performed by the authors of the EIGENREC model, described

in Sec. 2.2.4. As the authors demonstrate, the latent factor model of PureSVD can be

viewed as an eigendecomposition of a scaled user-based or item-based cosine similarity

matrix.
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Figure 6.1: The quality of PureSVD recommendations is very sensitive to the lack

of preference data and may even fall below the non-personalized popularity-based

model (denoted as MP) with extreme sparsity. Results from Movielens-10M dataset

(see Sec. 6.3 for details). At every sparsity level the rank of PureSVD is tuned to provide

the best result.

Recall that, for example, in the user-based case each element of the similarity

matrix is proportional to the scalar product between the corresponding rows of the

original rating matrix:

cij ∼ aTi aj , (6.1)

where ai is a sparse vector that encodes preferences of user i. This observation imme-

diately suggests that any cross-item relations are simply ignored by SVD as it takes only

item co-occurrence into account. In other words, the contribution of a particular item

into the �nal user similarity score cij is counted only if the item is present in preferences

of both user i and user j . Similar conclusion also holds for the item-based case. This

fully explains the uniform scores assigned by PureSVD in our �ctitious example.

The authors of EIGENREC propose to replace the scaling factors as well as the

similarity matrix with some new matrices, which �t more adequately into an under-

lying relations model. Among various proposed replacement options, one particular

similarity measure, namely Jaccard Index, could partially solve the described problem,

as to some extent it allows to account for cross-entity relations. However, it does not

take into consideration how similar entities are. Indeed, depending on a set of fea-

tures particular items or users can be more similar to each other than to others and

therefore should have a higher contribution into a �nal similarity score.
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6.2 Proposed approach

In order to account for cross-entity relations in a more appropriate way we have

to �nd a di�erent similarity measure that would consider all possible pairs of entities

and allow us to fuse side information in there. A straightforward way to achieve this

is to modify the inner product in Eq. (6.1) as follows:

cij ∼ aTi S aj . (6.2)

where symmetric matrix S ∈ RN×N
re�ects auxiliary relations between items based on

side information. This matrix be constructed in many ways. As an example, one can

represent items as vectors of their real features (e.g., movie genres) and then compute

cosine similarity between di�erent pairs of these vectors in order to �ll-in o�-diagonal

entries of S . More details about the properties of such matrices are given in Sec. 6.2.2.

E�ectively, this matrix creates “virtual” links between users even if they have no

common items in their preferences, i.e., have never rated the same item. Occasional

links will be �ltered out by dimensionality reduction, whereas more frequent ones

will contribute into the model and help to reveal valuable consumption patterns. In

a similar fashion we can introduce a matrix K ∈ RM×M to incorporate user-related

information. We will use the term side similarity to denote these matrices. Their

entries encode similarities between users or items based on side information, such as

user attributes or item features.

6.2.1 HybridSVD

Equation (6.2) generates the following matrix cross-product:

A0SA
T
0 , (6.3)

where, as previously, A0 denotes a rating matrix with unknown elements replaced

by zeroes. We omit scaling factors, used in the EIGENREC model, to have a clearer

picture of the e�ects related purely to side information handling. Scaling, however,

adds an additional degree of freedom in model tuning and can be brought back at any

time. In a similar fashion, matrix K gives

AT0KA0. (6.4)
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These two cross-products have an e�ect on either rows or columns of A0 and are

independent of each other. Our ultimate goal is to bring them together into a joint

problem formulation with a single solution based on standard SVD.

In order to achieve that, we note that if A = UΣV T
is an SVD of some matrix

A, then an eigendecomposition of the corresponding Gram matrices reads:AA
T =UΣ2UT ,

ATA = VΣ2V T .
(6.5)

By plugging Eq. (6.3)–(6.4) into Eq. (6.5), we arrive at the following system of equa-

tions: A0SA
T
0 =UΣ2UT ,

AT0KA0 = VΣ2V T ,
(6.6)

where matrices U and V represent embeddings of users and items onto a common

latent feature space.

The system of equations in Eq. (6.6) has a close connection to the Generalized

SVD [66] and can be solved via the standard SVD of an auxiliary matrix Â [1]:

Â ≡ K
1
2A0S

1
2 = ÛΣV̂ T , (6.7)

where matrices Û ,Σ and V̂ represent singular triplets similarly to the PureSVD model.

Matrix Σ here is the same as in Eq. (6.6) and the connection between the auxiliary and

the original latent feature space is established by the following relations:

Û = K
1
2U, V̂ = S

1
2V . (6.8)

There are certain technical challenges, related to the computation of matrix

square roots in Eq. (6.7) and the need to calculate their inverses for �nding U and

V in Eq. (6.8). In Sec. 6.2.3 we show how to avoid these problems with the help of

Cholesky decomposition. Meanwhile, let us �x the fact that solving the joint problem

of Eq. (6.6) turns out to be as simple as �nding standard SVD of an auxiliary matrix

Â. We call this model HybridSVD. As it can be seen, matrix Â “absorbs” additional

relations encoded by matrices K and S and allows to model them jointly.

Orthogonality of factor matrices Û and V̂ allows to shed the light on the struc-

ture of factors U and V . Using the fact that ÛT Û = V̂ T V̂ = I , one gets:

UTKU = V TSV = I,
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Figure 6.2: The e�ect of genre-based movie similarity. Scatter points correspond to

di�erent movies in the latent feature space (the �rst two principal components). Our

model tends to pull movies of di�erent genres apart and place movies of the same

genre close to each other. Uniform, distance-preserving scaling is applied to make

models comparable.

i.e. columns of the matrices U and V are orthogonal under the constraints imposed

by matrices K and S respectively
1
. In other words, the structure of the latent space

is directly shaped by side information. We also note that enitities with high similarity

in their own feature space are likely to become closer to each other in the latent feature

space of HybridSVD (see Figure 6.2).

6.2.2 Side similarity

Construction of the matrices K and S to a certain extent is a feature engineer-

ing task and therefore, it is di�cult to provide a universal recipe. We have already

mentioned one possible way based on a simple cosine similarity calculation. Indeed,

there can be many other ways. However, we will limit possible options by restricting

these matrices to be:

1. symmetric: K = KT
, S = ST ,

2. positive de�nite: K � 0, S � 0.

Cases when the above requirements do not hold are out of the scope of this work as

the problem becomes more complex and computationally infeasible.

1
This property of matrices U and V is sometimes called K- and S-orthogonality [162].
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The �rst requirement is typically easily satis�ed, however the second one is

more restrictive since side information may come from heterogeneous sources and

may have an arbitrary structure. In order to resolve the uncertainty we impose the

following form on side similarity matrices:S = I +αZ,

K = I + βW ,
(6.9)

where Z ,W are zero-diagonal real symmetric matrices with elements satisfying −1 ≤
zij ,wij ≤ 1∀i, j , and α, β ∈ R+

are free model parameters. Note that with α = β =0

the model turns back into PureSVD.

When side similarity matrices are not strictly positive de�nite reducing the val-

ues of α and β allows to �x that
2
. Additional bene�t provided by α and β is the ability

to control an overall contribution of side information in the model and avoid undesirable

dominance of feature-based relations over co-occurrence patterns.

In our experiments we used a simple procedure to construct similarity matri-

ces. Assuming there are k di�erent classes of features f1, f2, . . . , fk one can build k

matrices S1,S2, . . . ,Sk corresponding to a similarity or proximity of objects with re-

spect to each particular feature class. Depending on the nature of features, one can

use di�erent similarity measures, e.g. based on a Euclidian distance, cosine similarity

or Jaccard Index. The �nal single representation S can then be obtained using an in-

clusive S = 1
k

∑k
i=1Si or exclusive S =

∏k
i=1Si rule. The latter produces the sparsest

result, which is bene�cial from both computational and storage e�ciency, however in

our case decreased the overall quality of the model, and we went with the former.

We note that independently of the type of transformations described above the

e�ect of changing α and β (i.e. downvoting or upvoting o�-diagonal elements of similar-

ity matrices) is typically the most pronounced, leading to a noticeable change in quality

of recommendations.

6.2.3 E�cient computations

Matrix square root. Finding square root of an arbitrary matrix is a computation-

ally intensive operation. However, by construction, matrices K and S are symmetric

2
A su�cient (however not necessary) upper bound for the values of α and β can be estimated from the matrix diagonal

dominance condition [66].
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positive de�nite (SPD) and therefore can be represented in the Cholesky decomposition

form: S = LSL
T
S , K = LKL

T
K , where LS and LK are lower triangular real matrices. This

decomposition can be computed much more e�ciently than the standard square root.

By a direct substitution it can be veri�ed that SVD of the following auxiliary

matrix

Â ≡ LTKA0LS = ÛΣV̂ T , (6.10)

also provides a solution to Eq. (6.6) and, therefore, it can be used to replace Eq. (6.7)

with expensive square root computation. The connection between the auxiliary latent

space and the original one in this case is given by (c.f. Eq. (6.8)):

Û = LTKU, V̂ = LTSV . (6.11)

Note that after singular vectors Û and V̂ are computed, there is no need to explicitly

calculate inverses of LTS and LTK for �nding U and V . It only requires to solve a cor-

responding triangular system of equations, which can be performed very e�ciently

[66].

Furthermore, matrices K and S are likely to be sparse for a broad set of real fea-

tures and attributes. This can be also exploited via computation of the sparse Cholesky

decomposition or, even better, incomplete Cholesky decomposition [66], additionally

allowing to skip negligibly small similarity values. We note that for sparse similar-

ity matrices the corresponding triangular part of their Cholesky factors also become

sparse.

As an additional remark, Cholesky decomposition is fully deterministic and al-

lows symbolic factorization to be used for �nding the non-zero structure of its factors.

This feature makes tuning HybridSVD more e�cient: once the resulting sparsity pat-

tern of the Cholesky factors is revealed it can be reused to speedup further calcula-

tions performed for di�erent values of α and β due to Eq. (6.9), as it does not a�ect

the sparsity structure.

Computing SVD. Note that there is also no need to directly compute the matrix

product in Eq. (6.10), which would lead to a new potentially dense matrix. Instead,

one can exploit the Lanczos procedure simialrly to the way it is used in PureSVD

(Sec. 2.2.1). In order to �nd r principal singular vectors and corresponding singular

values it is su�cient to simply provide a rule of how to multiply matrix product from
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Eq. (6.10) by an arbitrary dense vector from the right and from the left. This can be

implemented as a sequence of 3 matrix-vector multiplications. Hence, the added com-

putational cost of the algorithm over the standard SVD is controlled by the complexity

of multiplying Cholesky factors by a dense vector.

More speci�cally, given the number of non-zero elements nnzA of the

matrix A that corresponds to the number of the observed interactions, an

overall computational complexity of the HybridSVD algorithm is estimated as

O(nnzA · r) +O((m+n) · r2) +O((JK + JS) · r), where the �rst 2 terms correspond to

PureSVD’s complexity and the last term depends on the complexities JK and JS of

multiplying triangular matrices LK and LS by a dense vector. In the scope of this

work we are interested in the case when matrices K and S are sparse and therefore

sparse Cholesky decomposition can be employed. Hence, JK and JS are determined

by the corresponding number of non-zero elements nnzLK and nnzLS of the Cholesky

factors. The total complexity in that case is O(nnztot · r) + O((m + n) · r2), where

nnztot = nnzA +nnzLK +nnzLS .

Generating recommendations. HybridSVD inherits the key properties of

PureSVD, including simpli�ed folding-in computation. Combining equations Eq. (6.7)

and Eq. (6.10) and applying the folding-in technique gives the following very similar

to Eq. (2.11) expression for the vector of predicted item scores:

r ≈ L−TS V̂ V̂
TLTSa = VlV

T
r a, (6.12)

where Vl = L
−T
S V̂ , Vr = LSV̂ and a is a vector of user preferences. This can be applied

to both known users and warm-start users. Here we assume that the matrix K is

equal to identity (i.e. no side information about users is given). This corresponds to

our experimental setup, described in Sec. 6.3.

6.3 Experiments

We conduct three types of experiments. The �rst experiment measures an impact

of data sparsity on the performance of recommendation models. The key purpose of

this experiment is to verify the main claims from Sec. 6.1 regarding the dependence on

data sparsity. Another two experiments are standard top-n recommendation scenario
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and item cold start scenario. Every experiment starts with a hyper-parameter tuning

phase with n = 10 �xed and after the optimal parameter values are found they are

used for �nal evaluation of recommendations quality.

6.3.1 Evaluation methodology

In the sparsity test experiment we sequentially take 1, 3, 10, 30 and 100% of

interaction data to vary its density and build recommendation models on top of it.

We preliminarily exclude all known preferences of a set of randomly sampled test

users. We additionally exclude any test user preferences that are not present in all

data subsamples simultaneously. This ensures a fair and consistent comparison. For

each test user we holdout a single item at random from his or her preferences. The rest

of the items are used to generate recommendations which are then evaluated against

the holdout.

In the standard scenario we consequently mark every 20% of users for test. Each

20% partition always contains only those users who have not been tested yet. We

randomly withdraw a single item from every test user and form a holdout set based

on these items. After that the test users are merged back with the remaining 80% of

users and form a training set. During the evaluation phase we generate a ranked list

of top-n recommendations for every test user based on their known preferences and

evaluate it against the holdout.

In the cold start scenario we perform 80%/20% partitioning of the list of all unique

items. We select items from a 20% partition and mark them as cold start items. Users

with at least one cold start item in the preferences are marked as the test users. Users

with no items in their preferences, other than cold start items, are �ltered out. The

remaining users form a training set with all cold start items excluded. Evaluation of

models in that case is performed as follows: for every cold start item we generate a

ranked list of the most pertinent users and evaluate it against one of the test users

chosen randomly among those who have actually interacted with the item.

In both sparsity test and standard scenario we try to predict which items will

be the most relevant for a set of selected test users. Alternatively, in the cold start

scenario we try to �nd those users who are likely to be the most interested in a set

of selected cold start items. In both standard and cold start experiments we perform
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a 5-fold cross validation and average the results over all 5 folds. We also report 95%

con�dence intervals based on the paired t-test criteria.

The quality of recommendations is measured with the help of hit-rate (HR) and

average reciprocal hit-rank (ARHR) metrics [43]. In our settings with a single holdout

entity the ARHR metric is equivalent to mean reciprocal rank (MRR). The resulting

evaluation scores computed for di�erent values of n (from 1 to 30) are denoted as

MRR@n or HR@n. We also use the MRR score as a selection criterion during the

hyper-parameter tuning phase.

6.3.2 Datasets

We have used MovieLens-10M (ML10M), MovieLens-1M (ML1M) and BookCross-

ing (BX), datasets hosted by Grouplens
3
. These datasets provide snapshots of real

users’ behavior and are widely used in a research literature for benchmarking recom-

mendation algorithms. Beyond that, we choose these particular datasets due to their

substantial di�erences in an internal data structure. ML1M dataset contains very ac-

tive users with a lot of feedback provided for various items. Conversely, interaction

data in the BX dataset is very scarce as users tend to provide their feedback to a con-

siderably fewer number of items comparing to the full assortment. ML10M is very

similar to ML1M, however its size is su�cient for reliable subsampling of data and

performing gradual transition from high to low sparsity levels.

These datasets allow us to assess whether the resulting sparsity of the data af-

fects the importance of side information in terms of recommendations quality. As has

been noted, the hypothesis behind this assessment is that the lack of collaborative

information makes it more di�cult to reveal intrinsic relations within the data with-

out any side knowledge. In contrast, a su�cient amount of collaborative information

may totally hinder the positive e�ect of side knowledge. Moreover, if chosen side fea-

tures do not play a signi�cant role in a user decision-making process, recommendation

models may su�er from learning non-representative relations.

As we are not interested in the rating prediction, the settings with only binary

feedback are considered in our experiments. In the case of the BX dataset we select

only the part with an implicit data. In these settings a recommendation model predicts

3
https://grouplens.org/datasets/
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how likely is a user to interact with a recommended book. We additionally prepro-

cess the data by �ltering out users with more than 2000 or less than 3 items in their

preferences. Items with only one interaction are also removed. This resulted in the

dataset with 15936 users, 87068 items and 0.033% density. The information about au-

thors and publishers available in the dataset is used to build side similarity matrices.

We employed simple cosine similarity measure for that purpose.

Both Movielens datasets are binarized with a threshold value of 4: lower ratings

are �ltered and the remaining ratings are set to 1. With this setup in the standard

scenario a recommendation model predicts how likely is a user to rate a recommended

movie with 4 or 5 stars. As the result, ML1M consists of 6038 users, 3532 items and

has a 2,7% density, while ML10M has 69797 users, 10255 items and 0.7% density.

The Movielens datasets contain only genres information. We have crawled the

TMDB database
4

to additionally extract cast, directors and writers information. As

the lists of cast and directors are meaningfully ordered (e.g. movie actors are sorted

according to the importance of their role) we employed Weighted (a.k.a. generalized)

Jaccard Index [34]. It allows to compare sets with respect to the weights associated

with set elements and in our case the weights are obtained as reciprocal ranks of

actors and directors respectively. For other features with used cosine similarity with

standard row normalization.

Due to a high number of movies with Drama listed as one of their genres, the

resulting density of similarity matrices for Movielens datasets was around 50%, which

can already be considered a dense matrix. One simple way to reduce the density is

to remove that genre entirely as uninformative or leave it only for a smaller subset

of items (e.g., for long-tail items). We, however, proceeded as is. Even in that case

computing Cholesky decomposition took less than 10s on a laptop for ML10M.

6.3.3 Baseline algorithms

We compare the proposed HybridSVD model to several standard baseline mod-

els, including PureSVD. We also provide comparison with Factorization Machines (FM)

[132] as one of the most popular models, used to win several recommendation chal-

lenges in the past. FM allows to easily incorporate any sort of side information in the

4
https://www.themoviedb.org
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form of sparse one-hot encoded vectors. Below is the description of implementation

details for each model:

• CB is a hybrid approach based on an aggregation of similarity scores (content-

based information) computed with the help of known user preferences (collab-

orative information). In the standard scenario the aggregated item scores are

r = Sa. It is used to directly order items by their similarity to a test user’s pref-

erences, encoded by a sparse binary vector a. In turn, in the cold start scenario

we calculate the aggregated user scores r̄ = A0c, where c denotes the similarity

vector of a cold start item to other items. The resulting vector of scores r̄ rep-

resents how pertinent each user is to the cold start item. This vector is also used

for the SVD-based models as a replacement of known user preferences in the cold

start regime (see below).

• PureSVD is the model described in Sec. 2.2.1. The model is not directly applicable

in the cold start regime, as there is no preference information available.

• FM is a Factorization Machines model with ranking optimization objective used

instead of a standard one. We use implementation from Graphlab Create soft-

ware package
5
. The model uses general formulation with user and item biases

and incorporates it into a binary prediction objective based on a sigmoid func-

tion. The optimization task is performed by SGD with adaptive learning rate.

Note that in the case of implicit feedback the interaction matrix becomes com-

plete (even though sparse), which would make the SGD-based optimization in-

feasible. However, instead of learning over all data points, the algorithm em-

ploys a negative sampling technique. It learns over all positive examples (rated

items) and a �xed pre-de�ned number of negative examples (unrated items)

sampled randomly
6
.

• MP model recommends top-n the most popular items (in the standard scenario)

or the most active users with the highest overall number of preferences (in the

cold start scenario).

5
https://turi.com/download/install-graphlab-create.html

6
as de�ned in the RankingFactorizationRecommender class from the GraphLab documentation at https://turi.com/
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• RND model generates recommendations based on random item/user selection

in standard/cold start scenarios.

Recall that in the cold start scenario we try to recommend known users to cold

start items. Hence, the preference data is not available and the folding-in approach is

not directly applicable. To alleviate the problem we take an output of the CB model

r̄ as a preference vector of a cold start item against all known users. Then, for every

cold start item we can generate prediction scores as r ≈ UUT r̄, where matrix U

is computed by either PureSVD or HybridSVD. To explicitly denote this change we

mark PureSVD as PureSVD+CB. We do not add CB to HybridSVD name to avoid visual

cluttering.

6.3.4 Hyper-parameters tuning

We assess the quality of algorithms in terms of MRR@10 and HR@10 with the

main focus on the MRR metric. We note that in our experiments the performance

demonstrated by algorithms in terms of the HR metric is highly correlated with the

performance in terms of MRR. However, we used HR scores to monitor the gener-

alization of algorithms. For example, during the model tuning phase in the FM case

some sets of hyper-parameters could provide high values of MRR and considerably

lower values of HR comparing to other sets. In order to avoid such over�tting, we

shifted the selection of hyper-parameters towards slightly lower MRR but reasonably

high HR.

We test all factorization models on a wide range of rank values (i.e. a number

of latent features). The HybridSVD model is also evaluated for 3 di�erent values of

α: 0.1, 0.5 and 0.999. Similarly to the standard SVD case (see Sec. 2.5.2) and unlike

the majority of MF methods, once the model is computed for some rank rmax with

a �xed value of α, we immediately get an access to all the models with a lower rank

r < rmax by a simple rank truncation. In other words, in order to obtain a rank-r

model of HybridSVD it only requires to select the �rst r principal components of the

model of rank rmax without any additional optimization. This signi�cantly simpli�es

the hyper-parameter tuning procedure as it eliminates the need for expensive model

recomputation during the parameter grid search.
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Con�guration of the FM model consists of the following hyper-parameters: reg-

ularization coe�cients for the bias terms, interaction terms and ranking (negative sam-

pling) terms, initial SGD step size, the number of negative samples and the number of

epochs. In our experiments simpler SGD optimization was performing slightly better

than ADAGRAD [47].

Note that hyper-parameter space of the FM model quickly becomes infeasible

with the increased granularity of a parameter grid. Not only this model requires more

parameters to tune, we also do not have the luxury of a simpli�ed rank optimization as

in the case of HybridSVD. The problem is magni�ed by signi�cantly longer training

times in the case of FM. For example, on the ML1M dataset the FM model of rank

50 requires about 300s to converge (16-core Intel Xeon CPU E5-2640 v2 @2.00GHz),

while HybridSVD takes only about 10s and PureSVD takes less than 1s.

In order to deal with this issue we employ a Random Search strategy [16] and

limit the number of possible hyper-parameters combinations to 120. We additionally

perform an extensive grid-search in the closest proximity of the hyper-parameters

found during the Random Search phase. This allows to quickly test for more optimal

values that could be missed due to randomization. The tuning is always performed

on a single fold of cross-validation by additionally splitting it into train and validation

sets. The parameters, found during this step are then �xed for all folds.

6.4 Results and discussion

Results for standard and cold start scenarios are depicted in Fig. 6.3 and Fig. 6.4.

We report con�dence intervals only for the �nal top-n recommendation results (bot-

tom rows). Con�dence regions for the rank estimation experiments (top rows) are not

reported for the sake of picture clarity.

As can be seen, HybridSVD models exhibit very di�erent behavior on the two

datasets. For highly sparse BX data, where the number of known preferences per

user is much lower than in the ML1M case, even a simple information such as book

author helps HybridSVD to learn a better representation of behavioral patterns, which

is re�ected by a generally higher quality of recommendations. The di�erence is more

pronounced in the standard scenario (see the right column in Fig. 6.3) than in the cold

start settings.
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Figure 6.3: Experimentation results for standard scenario. The left column corre-

sponds to Movielens-1M, the right column - to BookCrossing. The �rst row represents

rank estimation experiments, the second row - �nal evaluation of top-n recommen-

dations quality. The con�dence intervals are reported as black vertical lines on top of

the bars.

6.4.1 Standard scenario

Remarkably, the highest MRR score in the BX case, achieved by PureSVD at rank

2000 in standard scenario, can be achieved with HybridSVD (α = 0.5) at rank 100.

Moreover, unlike PureSVD, the score of some HybridSVD models exhibits a positive

growth rate even at the rank 3200, at which we simply stopped our experiments. This

means that potentially even higher evaluation scores can be achieved (leaving aside

the practical aspect of huge rank values).

It should be noted that FM model also performs well on BX data in standard

settings and achieves the best PureSVD score at the lowest among other models value

of rank (around 30). However its maximum MRR score is much lower than the max-

imum score achieved by HybridSVD (see bottom-right graph of Fig. 6.3). The quality

of the FM model also seems to be less sensitive to the rank value, when other hyper-

parameters are optimally tuned. This is indicated by several almost �at regions on the

rank estimation curves (top row).
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Table 6.2: HybridSVD is more stable and reliable when the data sparsity is increasing.

Reported numbers are the MRR@10 scores, obtained on the Movielens-10M dataset.

Fraction of data 1% 3% 10% 30% 100%

Resulting density 0.04% 0.05% 0.10% 0.23% 0.70%

HybridSVD 0.045 0.049 0.056 0.077 0.105

PureSVD 0.037 0.038 0.054 0.076 0.112
MP 0.039 0.045 0.042 0.044 0.042

In the ML1M case we were unable to outperform PureSVD in standard scenario

(the left column in Fig. 6.3) and almost all factorization models achieve similar scores.

The FM model requires slightly lower ranks to achieve the comparable quality in that

case. Interesting to note that HybridSVD with the highest value of α equal to 0.999

underperforms other factorization models. All this suggests that relying too much on

side information confuses the model in that case.

This observation resonates well with the results in [123]. As the authors argue,

“even a few ratings are more valuable than metadata”. Indeed, on the relatively dense

movie ratings data additional features such as movie genres or actors seem to bring

not enough new knowledge into an understanding of common patterns and probably

lead to overspecialization of models.

In contrast, in the case of very sparse BX data higher contribution of item fea-

tures (i.e. higher values of α) lead to a generally better quality of recommendations,

which indicates that without side knowledge factorization models are unable to reliably

recover hidden relations and that using only the collaborative information in this case

may be insu�cient.

This result is also suported by our sparsity test experiment on the ML10M

dataset (see Table 6.2). As can bee seen, while PureSVD achieves the highest score

on full data, its quality quickly decreases as less information about user preferences

is given. At extreme sparsity levels it even falls below the quality of non-personalized

popularity-based model. In contrast, HybridSVD exhibits more reliable behavior and

handles extreme sparsity much better.

With the help of HybridSVD we demonstrate that side knowledge allows to

create additional “virtual” connections between related entities, which in turn helps

to alleviate the lack of preferences data. Inability to account for such information in
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Figure 6.4: Experimentation results for item cold start scenario. The left column cor-

responds to Movielens, the right column - to BookCrossing. The �rst row represents

rank estimation experiments, the second row - �nal evaluation of top-n recommen-

dations quality. The con�dence intervals are reported as black vertical lines on top of

the bars.

the PureSVD approach leads to its high sensitivity to the sparsity structure of an input

data. This result addresses (at least partially) the question from the end of Sec. 6.1.1.

6.4.2 Cold start scenario

In the cold start settings HybridSVD consistently outperforms the FM model

sometimes by a signi�cant margin (see Figure 6.4). A possible reason is that Hy-

bridSVD uses more data to generate recommendations. It utilizes the information

about similarity of items based on their features, while the FM model directly relies

on the latent representations of the features, when no preferences data is available.

This puts the models into a sort of unfair comparison.

One possible way to avoid that is to perform the folding-in optimization in the

FM model and try to �t the similarity data instead of interactions. Such incremental

updates could potentially improve the quality of the model. However, this is not as

straightforward as a simple matrix-vector multiplication provided by HybridSVD and

requires additional model modi�cations.
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Another common observation is that the CB approach, which relies on a simple

heuristic, performs remarkably well comparing to more sophisticated models. Even

though it is formally outperformed by the HybridSVD approach, the di�erence be-

tween them is negligibly small. Moreover, even the PureSVD+CB model behaves com-

parably to HybridSVD, except that the rank of HybridSVD to achieve the same quality

is 5 to 10x smaller (mind the logarithmic scale for rank values).

The performance of the HybridSVD approach is consistent, favoring the higher

values of α. Unsurprisingly, in the cold start regime it relies a lot on side information

for both datasets. Generally, the proposed approach provides a �exible tool to control

the contribution of side features into the model’s predictions. It allows to adjust rec-

ommendations based on the meaningfulness of side information. Moreover, it allows

to enforce the desired latent feature space structure as in the example with genres in

Fig. 6.2.

6.5 Conclusions and further research

We have generalized PureSVD approach to support user and item side informa-

tion. The model allows to saturate collaborative data with additional feature-based

relations and in certain cases improve the quality of recommendations. The model

seems to be especially suitable for the data with scarce user activity when the num-

ber of observed user preferences is low. In a “saturated” environment with a high

amount of user feedback the model seems to provide no bene�t over PureSVD. We

have also proposed an e�cient computation scheme for both model construction and

recommendation generation in online settings.

Despite being a �exible instrument for adjusting the contribution of side in-

formation into the �nal prediction quality, the pre-processing step of HybridSVD re-

quires some amount of e�orts. Finding a way to avoid an explicit construction of side

similarity matrices seems to be an interesting direction for further research.



Chapter 7

Higher order hybrid preference model

Up until now, we have proposed two models that address di�erent aspects of the

limited preference information problem. The CoFFee model, introduced in Chap. 5,

tackles the problem of a proper feedback representation, which �ts nicely into a

tensor-based formulation. The main bene�t of this representation is that it helps to

account for additional commonalities in user behavior and improve the quality of rec-

ommendations without the need for any additional data. Its advantage over conven-

tional models becomes especially vivid in the “almost” cold start case, when known

user preferences consist of only one or a few items.

On the other hand, HybridSVD approach, introduced in Chap. 6, makes use of

additional data sources, not related to actual user preferences. For this purpose, it

employs a generalized formulation of SVD and enriches standard SVD-based models

with side information about users and items. Based on that information, the model

measures how similar users or items are and virtually links them within collaborative

data. This allows uncovering more valuable patterns, which would otherwise stay

unrecognized. Moreover, it helps to battle extreme data sparsity.

Clearly, the fundamental ideas behind the proposed models are complementary,

which raises the question of whether it is possible to integrate one model into another.

In this chapter, we address this question by presenting a new model that directly com-

bines our previous models within a uni�ed hybrid tensor-based approach. It allows to

represent user preferences adequately and at the same time leverages side information

in order to improve recommendations’ quality and handle data sparsity. We provide

e�cient computational schemes for both o�ine learning and online recommendation

generation in dynamic environments.
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7.1 Motivation for a joint model

In the experiments with HybridSVD, we have only considered binary feedback

data. It is a reasonable formulation when user-item interactions have the simplest

form of an implicit feedback (e.g., likes or purchases). However, in general, user feed-

back may have a more complex nature and often embodies several distinct types or

modalities, which require careful treatment.

For example, implicit feedback may split into di�erent types of actions, such as

click on a product page, placing an order or actual product purchase. Evidently, this

corresponds to di�erent levels of user engagement. Assigning appropriate weights to

these actions in order to generate a single number (i.e., relevance score) used in the

matrix-based formulations is a challenging empirical task.

Similar reasoning applies to explicit feedback as well. We have already touched

this problem in Chap. 5. In addition to what was discussed there, we �nd it necessary

to provide another intuitive example of a common feedback representation fallacy

with more general implications. Consider a user who has assigned a 5-star rating to

one movie and gave only 2 stars to another. From here it does not immediately follow

that the user admires the former movie exactly 2.5 times higher than the latter. It only

implies that the user prefers one movie to another. This di�erence cannot be expressed

with simple arithmetic rules and should be treated in terms of an ordinal nature of

feedback.

There is an even more substantial problem particularly related to the

HybridSVD formulation, which can be illustrated with the following example. If user

Alice rates “Scarface” movie with 2 stars (negative preference) and user Bob rates

“Godfather” with 5 stars (positive preference), then even though these two movies are

quite similar in terms of a genre, it is unlikely that Alice and Bob have similar tastes.

However, this is not what the HybridSVD model will actually learn, as it will create an

additional link between users based on movie genre similarity and users will become

closer to each other in the latent feature space. In our combined model we aim to

resolve that problem as well by separating rating values in the third dimension.

From the CoFFee model perspective, side information not only serves the pur-

pose of generating a more meaningful latent representation of users and items but

also helps to address one of the key challenges of the tensor-based formulation – an
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increased data sparsity. Indeed adding new dimensions without providing more data

inevitably reduces the density. This, in turn, may have a substantial negative impact

on the generalization ability and the quality of the model.

7.2 Proposed approach

Following the same way SVD is generalized by Tucker decomposition, an aux-

iliary matrix from Eq. (6.10) can be generalized by an auxiliary tensor Â:

Â ≡ A×1 LTK ×2 LTS ×3 L
T
R ,

where LR is a Cholesky factor of some SPD similarity matrix R that corresponds to

the feedback dimension. With this formulation the model allows to naturally handle

cases described in Sec. 7.1 by linking only items with the same feedback value. This is

achieved by setting R = I . The model, however, provides much more �exibility and

allows to go beyond that scenario. In the presence of feedback similarity/correlation

data (i.e. when R is not just the identity matrix), the model allows to di�use connections

across feedback dimension when it is required by the task or dictated by the structure

of feedback data, e.g. when some feedback values are “closer” to each other in some

sense. We will leave the discussion of its meaning for the later (see Section 7.6).

The recommendation model is obtained from a low rank approximation of Â.

As in the CoFFee case, it can be achieved with the help of TD:

Â ≈ G ×1 Û ×2 V̂ ×3 Ŵ , (7.1)

where factor matrices are also required to have orthonormal columns. We call this

modelHybridCoFFee to emphasize its ability to adequately represent higher order pref-

erence data and saturate it with side information.

Note that factor matrices Û ∈ RM×r1, V̂ ∈ RN×r2 and Ŵ ∈ RF×r3 are de�ned in

an auxiliary latent space. The latent representation of users, items and feedback in

the original space is then given by

U = L−TK Û , V = L−TS V̂ , W = L−TR Ŵ . (7.2)

Columns of the resulting factor matrices satisfy K-, S- and R-orthogonality property,

i.e. UTKU = Ir1 , V
TSV = Ir2 and W TRW = Ir3 (Ir is an identity matrix of size r).
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Similarly to the HybridSVD case, this imposes an additional constraint that structures

the latent feature space according to real characteristics of the modelled entities.

We also add a control of an overall contribution of side information into the

learned latent representation by representing the similarity matrices in the form

K = I + αK0, S = I + βS0 and R = I + γR0, where zero-diagonal matrices K0,S0
and R0 actually encode side information-based relations and α,β,γ are non-negative

weighting parameters. Obviously, by setting α,β,γ to zero one gets the standard

CoFFee model.

Despite its similar look, the model, however, has a few substantial di�erences

from the standard TD that require careful handling. In the next section we show how

to e�ciently compute it by a corresponding modi�cation of the optimization objective.

7.3 E�cient computations

As in the CoFFee model case, a low rank approximation, de�ned by Eq. (7.1),

can be obtained with a HOOI algorithm. It solves the corresponding least squares

problem by an alternating optimization procedure, where the objective is minimized

with respect to one of the latent feature matrices while the other two are �xed. As

shown by the authors of HOOI, the problem conveniently reduces to the following

maximization task:

max
X
‖Â ×1 ÛT ×2 V̂ T ×3 Ŵ T ‖2F, (7.3)

where X is picked iteratively from

{
Û , V̂ , Ŵ

}
at each alternating optimization step.

The task can be e�ciently solved by the means of SVD (see Alg. (2)).

7.3.1 Hybrid tensor factorization

Note, however, that unlike the preference tensor in the CoFFee case, tensor Â is

not necessarily sparse and computing it quickly becomes the main bottleneck in terms

of system resources usage with the growth of the problem size. In order to avoid its

explicit formation we rewrite the inner term of Eq. (7.3) as

Â ×1 ÛT ×2 V̂ T ×3 Ŵ T ≡ A×1UT
K ×2 V T

S ×3W
T
R , (7.4)
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Algorithm 2: Practical algorithm for hybrid HOOI

Input : Tensor A in sparse COO format,

Tensor decomposition ranks r1, r2, r3,

Cholesky factors LK ,LS ,LR
Output: G, Û , V̂ , Ŵ
Initialize V̂ , Ŵ by random matrices with orthonormal columns.

Compute VS = LSV̂ ,WR = LRŴ .

repeat
Û ← r1 leading left singular vectors of LTKA

(1) (WR ⊗VS)
UK ← LKÛ

V̂ ← r2 leading left singular vectors of LTS A
(2) (WR ⊗UK)

VS ← LSV̂

Ŵ , Σ, Z← r3 leading singular triplets of LTRA
(3) (VS ⊗UK)

WR← LRŴ

G ← reshape matrix ΣZT into shape (r3, r1, r2) and transpose

until norm of the core ceases to grow or exceeds maximum iterations;

where we use the substitution UK = LKÛ , VS = LSV̂ , WR = LRŴ and utilize the

multiplication properties of a series of matrices in the n-mode product.

With the latter representation in Eq. (7.4) one can follow a standard technique to

separate any factor matrix from the other two in order to perform an alternating op-

timization step. This is achieved by the virtue of tensor unfolding de�ned in Sec. 3.1.1

and with the help of an n-mode product properties. For example, to optimize for Û

one arrives at the following expression after combining Eq. (7.3) and Eq. (7.4) with the

aforementioned properties:

max
Û
‖ÛTLTKA

(1) (WR ⊗VS)‖2F,

where matrix A(i) denotes mode-i unfolding of A and ⊗ stands for Kronecker prod-

uct. The corresponding solution is then given by the leading left singular vectors of

LTKA
(1) (WR ⊗VS). Similar transformations along modes 2 and 3 give the update rules

for V̂ and Ŵ respectively. See Alg. (2) for full description of the optimization process.

Note that the product A(1) (WR ⊗VS) has the same structure as in the standard

TD case. Therefore, for moderately sized problems it can be computed without ex-
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plicit construction of WR ⊗VS by performing a series of matrix multiplications with

a corresponding tensor unfolding [9]. For larger problems the memory bottleneck

induced by intermediate computation results can be circumvented by iteratively up-

dating entries of the �nal result in a simple nested loop instead of performing matrix

multiplications.

7.3.2 Online recommendations

As in the case with CoFFee or HybridSVD the orthogonality of columns in factor

matrices allows to derive an e�cient expression for higher-order hybrid folding-in. In

the user case, it helps to solve the problem of recommendations for unrecognized or

newly introduced users with only a few known preferences. Likewise, in the item case

it allows to quickly �nd an item’s representation in the latent feature space based on a

few interactions with it. As an example, the following expression is a generalization of

the tensor folding-in to the hybrid case, which allows to estimate new user preferences

(c.f. Eq. (5.9)):

P̄ = V V T
S PWRW

T , (7.5)

where V and W are de�ned according to Eq. (7.2). This allows to avoid recomputing

the whole model in response to frequent system updates. As has been noted in the pre-

vious chapters, it is especially viable in highly dynamic online environments, where

users expect an instant response from recommendation services or where new items

arrive rapidly. In our experiments we use this formula to generate recommendations for

the known users as well, not only newcomers.

7.3.3 Rank truncation

Hyper parameter-tuning can be a tedious task. As we have already mentioned

in Sec. 2.5.2, unlike many other approaches SVD-based methods provide a luxury of

minimal hyper parameter tuning via simple rank truncation of latent factors. Even

though it is not directly applicable in the tensor case, it is still possible to avoid redun-

dant computation of the model with lower multilinear rank values by the means of

tensor rounding technique. More formally, given some factor matrix X ∈ {Û , V̂ , Ŵ },
which corresponds to some mode i ∈ {1,2,3}, and a new rank value r < rank(X), the

�rst step is to compute r leading singular triplets Ur ,Σr ,Vr of the unfolded core G(i)
.
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Then the new factor matrix Xr of the reduced rank r is calculated as Xr = XUr and

the new truncated core Gr is obtained by reshaping matrix ΣrV
T
r back into the tensor

of order 3 with the conforming dimensionality. Note that due to typically small mul-

tilinear rank values, �nding SVD of an unfolded core is computationally cheap and an

overall procedure is very e�cient.

7.4 Evaluation methodology

We conduct a 5-fold cross-validation (CV) experiment for standard top-n recom-

mendation scenario by performing splits by users. At every fold we randomly mark

20% of users that were not yet tested. We randomly hide 10 consumed items of every

marked user to form the holdout set. This allows to have both high and low ratings

in the holdout and, therefore, to evaluate recommendations against both negative and

positive user preferences. User feedback is considered to be positive if the rating value

is equal or above 4 (including 4.5 if it is present in data) with the highest rating being

5. The remaining items from the marked users as well as all the preferences of 80% of

unmarked users form the training set. At each fold we generate recommendations for

the marked users and evaluate them against the holdout. CV results are averaged and

reported along with 95% con�dence intervals based on the paired t-test criterion. We

also repeat the sparsity test experiment described in Sec. 6.3.1. This time we do not

binarize ratings. No cross-validation is available in this case due to a �xed testset.

Metrics. As has been shown in Chap. 5, standard evaluation metrics exhibit a posi-

tivity bias, i.e. only consider the performance in terms of how relevant recommended

items are and completely disregard how likely it is to get recommended something

irrelevant. The latter, however, may have a dramatic impact on the perceived qual-

ity of a recommendation service and a�ects user retention. In order to account for

such e�ects we follow the evaluation scheme introduced in Sec. 5.3 and in addition to

the standard relevance- and ranking-based metrics also report performance of models

against the nDCL score. As we have shown, the latter serves as a proxy measure for

user disappointment and estimates how likely is a user to remain unsatis�ed with pro-

vided recommendations. We note that models with similar nDCG may have di�erent

nDCL score.
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Datasets. We use the same benchmark datasets as in previous chapters: MovieLens-

1M (ML1M), MovieLens-10M (ML10M), and BookCrossing (BX). These datasets have

very di�erent levels of data sparsity and therefore allow to examine how sensitive

our model is to the lack of collaborative information in comparison to other models.

In addition to that we randomly sample 3% of ratings from the ML10M dataset to

conduct the sparsity test experiment. We do not perform any special preprocessing

for the Movielens datasets. In the BX case we �lter out users with more than 1000

ratings as they are unlikely to represent real consumption patterns. We also remove

books with only one rating provided by a single user as unreliable. Ratings in the BX

dataset range from 1 to 10. In order to have uniform representation across all datasets,

we divide them by 2, giving a range from 0.5 to 5 with 0.5 step, similarly to ML10M.

Ratings in the ML1M dataset are integer values from 1 to 5.

Algorithms. We compare our method to both CoFFee and HybridSVD approaches.

We additionally use standard baseline models, namely PureSVD, WRMF (as in

Chap. 5), a heuristic model that recommends items based on their aggregated sim-

ilarity to known user preferences (CB), and a non-personalized model that simply

recommends the most popular items (MP). Models are tuned on the �rst CV fold and

the best found con�guration corresponding to the highest nDCG score is then used

across the remaining folds. In the case of PureSVD the only varying hyper-parameter

is the number of latent factors. For WRMF tuning we perform Random Search on the

hyper-parameter grid by sampling 60 points, corresponding to di�erent combinations

of weighting function parameters (according to Eq. (2.31)), regularization coe�cients

and rank values. In the CoFFee model we tune its multilinear rank with the require-

ment for mode-1 and mode-2 ranks to be always equal and take values from the same

range as the rank of PureSVD. Mode-3 rank takes values from {2, 3, 4}. In the Hy-

bridSVD case we �rstly tune its rank with a �xed weight value for side information

set to 0.5. After an optimal rank is found we perform additional evaluation to �nd

the most suitable weight value from {0.1, 0.5, 0.9}. Similar procedure is performed for

HybridCoFFee with the same requirement on rank values as for the CoFFee model.

SVD-based models use rank truncation to avoid redundant calculations during rank

tuning. Likewise, tensor-based models use tensor rounding described in Sec. 7.3.3.
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Side information. As in the HybridSVD case we used the information from TMDB

database
1

to complete movie data in the Movielens datasets with information about

cast, directors and writers along with already present genre information. BX dataset

provides additional information about authors and publishers. There is no additional

information about users or ratings, which renders LK and LR to be simply identity

matrices. For each dataset we inclusively merge all side data by independently con-

structing similarity matrices Si for each particular feature i and then combining them

into a single similarity matrix with a simple summation S = 1
nf

∑nf
i=1Si , where nf = 4

in the Movielens case and nf = 2 in the BX case. Accordingly, we used the same

similarity measures for constructing Si as in the HybridSVD case.

7.5 Results

We report 3 key evaluation metrics for all three datasets, which allow to assess

the quality of recommendation models: an overall ratio of relevant recommendations

to irrelevant, measured by Reciever Operator Characteristic curve (ROC), position of

relevant predictions in top-n recommendation list, measured by nDCG and position of

irrelevant predictions in top-n recommendation list measured by nDCL (see Fig. 7.1).

Note, that there is typically some balance between high relevance of recommendations

and high probability to generate irrelevant recommendations as well.

In order to correctly interpret results it is important to note, that low nDCG

scores do not necessarily mean low quality of recommendations. If a model with low

nDCG produces high enough ROC curve and at the same time shows low nDCL it

simply means that the model makes more “safe” recommendations. Instead of recom-

mending something irrelevant it pushes to the top more of unrated items, which is

generally a better strategy. In contrast, if the relevance-based scores as well as nDCL

score are all low, it indicates a poor performance.

For example, as can be seen from the �rst row of Fig. 7.1, both CB and MP models

have low nDCL; however, their relevance-based scores are also low, which means

that these models provide unsatisfactory recommendations. In contrast, HybridSVD

provides the highest (or one of the highest) nDCG score in general. However, it also

pushes one of the highest numbers of irrelevant items to the top of recommendations

1
https://www.themoviedb.org
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Figure 7.1: The ROC curves (1st column), nDCG@n (2nd column) and nDCL@n (3rd

column). Colors of lines and bars encode di�erent models. Rows correspond to dif-

ferent datasets in top-down order: ML1M, ML10M, BX and 3% fraction of ML10M. In

the �rst 2 columns the higher the curve/bar the better; in the last column the lower

the bar the better. Shaded areas in the 1st column as well as black vertical lines in the

other two columns denote con�dence intervals; no cross-validation is performed in

the case of the sparsity test experiment, hence no intervals in the 4th row.

list, as indicated by its nDCL score. As has been argued in Sec. 7.1, this is likely to be

the result of unreliable connections, created by the model, between items with very

di�erent rating values.

Likewise, in terms of nDCG score, WRMF performs comparably to other fac-

torization models on both Movielens datasets; yet it fails in terms of the other two

metrics. Its nDCL score is the worst among all models and the ratio of relevant to ir-
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relevant recommendations drops below PureSVD. In the case of BX dataset the WRMF

model achieves lower nDCL score comparing to the majority of other models; how-

ever, it performs poorly in terms of other metrics. In the sparsity test experiment with

3% of the ML10M dataset WRMF produces the most controversial results among all

models: it ampli�es the amount of both relevant and irrelevant recommendations at

the same time. Irrelevant items, however, dominate, which drops the model’s ROC

below the curves of competing factorization methods.

As it follows from the results, HybridCoFFee outperforms all other models in

terms of the proportion of relevant recommendations to irrelevant ones. There are two

interesting results, where the model demonstrates its superiority. In the second row

of the �gure, which corresponds to the ML10M dataset, our model is able to decrease

nDCL score below the standard CoFFee model, while keeping nDCG score at the same

fairly high level. This decrease of irrelevant recommendations is immediately re�ected

by the ROC curve and also indicates that the model was able to make a good use of

side information.

An even more remarkable result can be seen on the 4th row of the �gure, which

corresponds to the subsampled ML10M data with high sparsity. HybridCoFFee in

that case achieves almost as high nDCG score as WRMF, whereas its nDCL score is

signi�cantly lower. Interestingly, both CoFFee and especially CB model on the same

data exhibit a poor performance, which indicates that HybrdCoFFee, in turn, greatly

bene�ts from blending collaborative data and side information together and e�ectively

learns some non-trivial patterns.

Generally, our model exhibits the best balance between the key 3 evaluation

aspects. It does not su�er from the sparsity of data as, for example, the tensor-based

CoFFee model in the BX case (see the ROC curve on the third row of the Fig. 7.1).

It maintains high relevance of recommendations and generates more safe predictions,

allowing to avoid potential user disappointment.

7.6 Discussion and future work

We have presented a tensor-based approach that combines the ability to more

adequately model user preferences and allows to incorporate side knowledge in order

to handle data sparsity and improve the quality of recommendations. Based on the
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evaluation results we show that the proposed model demonstrates the best balance

between providing good recommendations and avoiding undesired user disappoint-

ment.

Note that the general formulation of our approach allows handling context in-

formation, such as time, place, mood, situation, etc., within additional dimensions,

similarly to various types of feedback. This can be an interesting direction for fur-

ther research, especially in the cases where context contains additional information

about correlations between its di�erent values. The key bene�t of the model, in that

case, is that it would allow to handle even more extreme sparsity levels induced by

multidimensional representation.

Based on the remark about the curse of dimensionality problem of TD, another

interesting direction for research is applying the key ideas presented in this work to

more appropriate tensor formats such as TT or HT. The potential downside for such

methods is the need to tune multiple rank values. Devising techniques for e�cient

rank selection is a challenging task and presents another vital research direction.
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Software
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Chapter 8

Polara: a new open-source framework for
recommender systems research

One of the critical aspects of creating new recommender models is their eval-

uation and fair comparison. Many software libraries have been developed to date;

however, none of them are concerned with the idea of feedback polarity as described

in Chap. 5, and the related implementation aspects of proper model evaluation are not

taken into consideration in their system design. This has led the author of this work to

the development of a new framework called Polara – the �rst recommendation frame-

work that allows a more in-depth analysis of recommender systems’ performance,

based on the idea of feedback polarity.

Polara, however, is not just an evaluation library and it is not limited to polarity-

driven evaluation paradigm. From the very beginning, it was envisioned as a gen-

eral purpose framework for quick model prototyping and comprehensive comparative

analysis, featuring various evaluation regimes and testing scenarios. The framework’s

design and its internal structure aim to minimize the risk of unintended mistakes in

routine tasks, reduce the number of potential bugs in the code and ensure consistent

experimental settings. All of this allows pursuing another higher-level goal – research

reproducibility.

The framework has also become a convenient playground for students and

helped facilitate teaching in classes. For those who have just started learning about

recommender systems, it makes the learning experience generally more smooth. For

more advanced students it allows to focus on creative tasks. Curious minds, however,

can always make a deep dive into the code and see how everything works internally.

147
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Polara provides exceptional �exibility in both model creation and experiment

setup. At the same time, it is designed to follow recommender system for humans

paradigm, providing a high-level abstraction of general work�ows with a signi�cant

focus on the usability and the ease of use.

To achieve these goals, Polara is written in Python programming language
1

–

de facto, the leading platform for data science and machine learning
2
. The framework

supports both Python 2 and Python 3 versions. In addition to that Polara is boosted by

the Python’s scienti�c computing ecosystem, which helps to ensure e�cient opera-

tions not only in model computations but also during the evaluation phase. The latter

at �rst glance might seem like a minor point, however in many cases evaluation takes

a much longer time than actual model training, which a�ects the way experiments

are conducted. Polara avoids running experiments user by user and, where it is pos-

sible, takes advantage of highly optimized vector operations and parallel execution to

reduce an overall experiment time.

Another essential feature of Polara is the possibility to easily extend its default

set of models with the help of external libraries and frameworks. This allows conduct-

ing more rigorous research that requires comparison with various existing techniques.

Implementing all of them in Polara from scratch would be a tedious task, and it would

be hard to keep up with the most recent advances. Instead, Polara de�nes a clear pro-

tocol for such interoperability and implements many convenience methods that make

this process transparent and straightforward.

Table 8.1 provides a brief comparison of Polara with some popular frameworks.

Besides some basic characteristics, we assess additional aspects related to function-

ality and usability. For example, Customizable evaluation column indicates whether

the framework supports and allows to chose from several evaluation scenarios, which

includes various data splitting protocols, data sampling strategies and �exible con-

�guration of experimental settings. The Warm start regime denotes the support of a

new user/new item scenario, which includes appropriate data preprocessing and/or

explicit implementation of folding-in for the provided models. The names of other

columns are self-descriptive.

1
https://www.python.org/

2
https://www.kdnuggets.com/2017/09/python-vs-r-data-science-machine-learning.html
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Table 8.1: Comparison with popular recommendation frameworks.
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Polara [125] Python X X X X X X X X MIT

Mrec [106] Python X BSD

Surpise [164] Python X X X X BSD-3 Clause

MyMediaLite* [107] C# / Java X GNU GPL

Turi / GraphLab* [175] C++ / Python X X Apache 2.0

Implicit* [83] Python X X MIT

RankSys [129] Java X X MPL 2.0

LensKit [97] Java X X X X X LGPL v2.1

LibRec [100] Java X X X X X X X X GNU GPL

RecommenderLab [131] R X X X GNU GPL v.2

∗
Supported as external models in Polara.

∗∗
Last checked: September 2018.

8.1 Core components

The framework has a modular structure and is built on top of three key compo-

nents, Recommender Data, Recommender Model and Evaluation, which consist of basic

classes and standalone methods. The components are designed to support a general

work�ow and take care of many technical aspects, related to the stable and reliable

functioning of the framework as a whole. There is also much �exibility included in

these components, allowing for a high degree of customization.

The general work�ow is based on the following paradigm. An instance of Rec-

ommender Data, holding actual user-item interactions, provides a single entry point

for all RecommenderModel instances. Recommender Data instance has a mutable state,

i.e., a speci�c con�guration, corresponding to the desired experimental setup. In turn,

Recommender Model instances, i.e., actual algorithmic implementations, take the data

model instance as an input argument and depend on its state. In that sense, all depen-
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dent recommender instances are subscribers that are immediately noti�ed on the data

state changes and take appropriate actions on their side.

For example, changing train-test splitting con�guration in a data model instance

will lead to recomputation of a dependent recommender model instance at the very

next attempt of using it (e.g., when calling for recommendations or trying to evaluate

the model’s performance). Alternatively, changing the number of holdout items in the

test data will leave the recommender model intact; however, will �ush previously cal-

culated recommendations and will ensure that evaluation scores are refreshed at next

calculation. Worth noting, the subscriber interface is exposed to a user, and it is pos-

sible to de�ne custom actions that are executed in response to certain state changes.

This mechanism can be especially useful in non-standard user-de�ned experiments

with speci�c evaluation pipelines.

Overall, an interplay of the described components allows to freely experiment

with various evaluation settings and be sure that all changes in experimentation setup

are taken into account by recommender models without any additional actions needed

from the user side. This also minimizes the amount of code, required to conduct ex-

periments. Below are the key implementation details of each component, also demon-

strating the ease of use of the framework.

8.2 Recommender Data

Recommender Data component is the central part of the framework, imple-

mented as a standalone class with pre-de�ned properties and methods. It provides

a rich interface with a number of tuning parameters that opens up a great level of

�exibility in experiment design and ensures consistent data state across all compared

models.

The component is designed in a data-agnostic way. As an input it takes a history

of transactions in the form of a Pandas
3

dataframe, which is internally transformed

into a standardized representation, allowing for e�cient data manipulation and quick

conversion between internal and external representations. It only requires to de�ne,

which columns of the dataframe correspond to users, items, and feedback data. As

3
https://pandas.pydata.org/
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an example, the code presented on the listing below allows to start working with the

Movielens-1M dataset.

Listing 8.1: Declaring data model.

1 from p o l a r a import RecommenderData

2 from p o l a r a import g e t _ m o v i e l e n s _ d a t a

3 d a t a = g e t _ m o v i e l e n s _ d a t a ( ) # l o a d d a t a from Grouplens w e b s i t e

4 data_mode l = RecommenderData ( data , " u s e r i d " , " movie id " , " r a t i n g " )

The component also implements various methods for data preprocessing, data

splitting and data indexing. All con�gurable parameters for the data manipulation and

their current values can be listed with the help of data_model.get_configuration()

call. These parameters include test_fold to control the fold selection in the CV ex-

periment, test_ratio to de�ne the fraction of users for test, holdout_size to control

the number of held out items, warm_start to exclude test users from the training, and

some other parameters that control data randomization and sampling mechanisms.

One can easily achieve almost any data con�guration by assigning the ap-

propriate values to the aforementioned parameters. For example, standard 5-fold

CV experiment with 20% of users marked for test and a single top-rated hold-

out item per each test user can be implemented with the following con�gura-

tion setup: data_model.test_ratio = 0.2, data_model.holdout_size = 1. Alterna-

tively, in order to hold out 5% of all consumed items from every available user, one

needs to assign data_model.test_ratio = 0, data_model.holdout_size = 0.05 and

data_model.warm_start = False4
.

Con�guration parameters are wrapped with “lazy update” routines in order

to prevent early triggering of subscriber noti�cation calls and avoid multiple ex-

ecution of the same commands. Con�guration is applied only after calling the

data_model.prepare() method. An attempt to read an altered con�guration before

calling this method will result in a warning message, informing the user that some of

the changes are not yet e�ective.

The system of state change noti�cations is based on a variant of the Observer de-

sign pattern and uses callback functionality for communication. Several default events

trigger noti�cations. These events correspond to modi�cation of parameters related

to either training or test data. Noti�cation processing for the default events is imple-

4
More examples can be found at https://github.com/Evfro/polara/tree/master/examples
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mented on the recommender model’s side and does not require any user involvement.

It is also possible to register custom events with noti�cations, handled by custom user

routines if the standard functionality is not su�cient for the user.

8.3 Recommender Model

Recommender Model component provides a generic interface for creating new

models ready for recommendations’ generation and evaluation. As with the previous

component, it holds some common properties and methods that are designed to sup-

port a uni�ed work�ow independently of speci�c implementation details. There are

several standard recommender models already implemented for user convenience, in-

cluding the models based on matrix and tensor factorization. The default models are

subclassed directly from the abstract base class called RecommenderModel. New models

can be subclassed either from the base class or from already de�ned models to inherit

some of their unique properties and extend upon them.

When creating custom models, there are two primary methods that should be

implemented prior to the usage: build and get_recommendations. The former com-

putes a recommendation model, and the latter takes its result to generate recommen-

dations for the test users. All generated recommendations are stored as an array

within the model and can be used to evaluate the model’s performance or asses its

behaviour for further �ne-tuning.

There are several control parameters shared by all models. Among them:

filter_seen attribute de�nes whether the previously consumed items are allowed to

be recommended again; topk attribute determines the number of recommendations

generated by the model; feedack_threshold attribute de�nes whether only the feed-

back above a certain threshold value (e.g., only ratings above 4) should be used for

computing the model. These parameters are all automatically initialized with some

default values when a model is created (so that users do not have to set them every

time manually) and can be rede�ned later. The default values can be found in the

polara.recommender.defaults module. Listing 8.2 below demonstrates an example of

creating a simple SVD-based model with Polara.

Listing 8.2: De�ne a simple SVD-based model.

1 from p o l a r a import RecommenderModel
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2 from s c i p y . s p a r s e . l i n a l g import svds # f o r s p a r s e m a t r i c e s

3

4 class SimpleSVD ( RecommenderModel ) :

5 def _ _ i n i t _ _ ( s e l f , da ta_mode l ) :

6 super ( SimpleSVD , s e l f ) . _ _ i n i t _ _ ( da ta_mode l )

7 s e l f . rank = 40 # s e t the rank o f SVD

8 s e l f . method = "SVD" # l a b e l t h a t w i l l be used i n l o g g i n g

9

10 def b u i l d ( s e l f ) :

11 # g e t s p a r s e m a t r i x o f r a t i n g s

12 t r a i n _ m a t r i x = s e l f . g e t _ t r a i n i n g _ m a t r i x ( d type = " f 8 " )

13 # f i n d l e a d i n g l e f t s i n g u l a r v e c t o r s with t r u n c a t e d SVD

14 _ , _ , i t e m s _ f a c t o r s = svds ( t r a i n _ m a t r i x , k= s e l f . rank ,

15 r e t u r n _ s i n g u l a r _ v e c t o r s = " vh " )

16 # remember the r e s u l t

17 s e l f . i t e m s _ f a c t o r s = i t e m s _ f a c t o r s

18

19 def get_recommendat ions ( s e l f ) :

20 # g a t h e r t e s t d a t a

21 t e s t _ d a t a , t e s t _ s h a p e , _ = s e l f . _ g e t _ t e s t _ d a t a ( )

22 # c o n s t r u c t s p a r s e r a t i n g m a t r i x f o r a l l t e s t u s e r s

23 t e s t _ m a t r i x , t e s t _ i d x = s e l f . g e t _ t e s t _ m a t r i x ( t e s t _ d a t a ,

24 t e s t _ s h a p e )

25 # compute p r e d i c t e d s c o r e s f o r a l l t e s t u s e r s a t once

26 v = s e l f . i t e m s _ f a c t o r s

27 s v d _ s c o r e s = ( t e s t _ m a t r i x . do t ( v . T ) ) . do t ( v )

28 if s e l f . f i l t e r _ s e e n :

29 # p r e v e n t seen i t e m s from a p p e a r i n g i n recommendat ions

30 s e l f . downvote_seen_ i tems ( s v d _ s c o r e s , t e s t _ i d x )

31 # compute recommendat ions

32 t o p _ r e c s = s e l f . g e t _ t o p k _ e l e m e n t s ( s v d _ s c o r e s )

33 return t o p _ r e c s

The newly created model can now be used in a general work�ow. It only takes a few

lines of code and the commands for that are self-explanatory, as illustrated below.

Listing 8.3: Create and evaluate the model.

1 svd = SimpleSVD ( data_mode l )

2 svd . b u i l d ( )

3 svd . e v a l u a t e ( " r e l e v a n c e " )
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4 # o u t p u t w i l l be something l i k e

5 # R e l e v a n c e ( p r e c i s i o n = 0 . 0 9 9 4 , r e c a l l = 0 . 3 3 1 4 . . .

We note that de�ning the build method is entirely on the user’s responsibility

and depends only on the choice of a particular algorithmic implementation. In turn,

the get_recommendations method provides two options. The �rst option is to manually

implement all of its internal logic similarly to the example in Listing 8.2. In that case,

the user is responsible for making the code e�cient in terms of both computational

resources and available memory. This can be a reasonable option when data is small,

and the framework is used for learning purposes.

However, in order to deal with real data, special care must be taken on the pro-

cess of recommendations generation. If the number of items as well as the number of

test users is huge, intermediate calculation results may consume all available mem-

ory (e.g., line 27 of Listing 8.2, where a complete dense matrix is created). Moreover,

as the memory I/O is generally slower than CPU operations, even if there is enough

memory it is more e�cient to limit its consumption by the model and expose memory

resources in pieces of a �xed size.

In order to achieve that the default implementation of the get_recommendations

method in the base class splits the test data into chunks. Every chunk will include a

number of unique test users, typically more than one. This relies on the assumption

that computing recommendations for a group of users at once is much more e�cient

than looping over every user individually. This is the case in a number of scenarios

(e.g., standard scenario of recommending to the known users) and for a wide range of

algorithms, including SVD, MF, TF, etc., as it may take advantage of BLAS operations.

In order to operate over the chunks of data, one only needs to de-

clare a slice_recommendations method, which is by default the key part of the

get_recommendations method. The code in Listing 8.4 indicates the necessary changes

in the new model creation to activate this functionality.

Listing 8.4: More e�cient variant of de�ning a model.

1 class SimpleSVD ( RecommenderModel ) :

2 def _ _ i n i t _ _ ( s e l f , da ta_mode l ) :

3 # same as b e f o r e

4

5 def b u i l d ( s e l f ) :

6 # same as b e f o r e
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7

8 def s l i c e _ r e c o m m e n d a t i o n s ( s e l f , t e s t _ d a t a , t e s t _ s h a p e ,

9 s t a r t , s top , t e s t _ u s e r s =None ) :

10 t e s t _ s l i c e = ( s t a r t , s t o p ) # s e l e c t i n g u s e r s from a range

11 t e s t _ m a t r i x , s l i c e _ d a t a = s e l f . g e t _ t e s t _ m a t r i x ( t e s t _ d a t a ,

12 t e s t _ s h a p e ,

13 t e s t _ s l i c e )

14 v = s e l f . i t e m s _ f a c t o r s

15 s c o r e s = ( t e s t _ m a t r i x . do t ( v ) ) . do t ( v . T )

16 return s c o r e s , s l i c e _ d a t a

The slice_recommendations method here operates on a group of users, selected by

an index range. The predicted scores are computed only for these users and then

are returned to the get_recommendations method to generate �nal recommendations.

The method also returns index data to allow �ltering out previously seen items from

recommendations. Note, that there’s no need to de�ne get_recommendations anymore

and the code becomes slightly simpler.

The size of chunks (i.e., the number of test users in it) is controlled by a pre-

de�ned memory limit, which can be set via the MEMORY_HARD_LIMIT attribute from the

polara.recommender.utils module. Its optimal value depends on the hardware ca-

pabilities and should be determined empirically. It may range from one gigabyte to

several dozens of gigabytes. Setting it to lower values will lead to a computational

overhead with many small iterations, while too high values (if there’s enough avail-

able memory) are unlikely to improve performance due to I/O bounds.

The I/O bound, however, can be alleviated with parallel execution. When data is

large, I/O operations like reading the data of a group of test users may take more time

than actual computations. Such operations typically lock Python’s Global Interpreter

Lock. In order to mitigate that limitation, the slice_recommendations method can be

executed in parallel threads. This behavior is controlled by the max_test_workers pa-

rameter of a recommender model. Setting it to a non-zero value de�nes the num-

ber of parallel threads. The maximum amount of memory consumed by a model

during the recommendations generation can be estimated as MEMORY_HARD_LIMIT *

max_test_workers gigabytes.
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Note that in the examples above only one model is created. However, as has been

previously mentioned, several recommender models can share the same data_model

in order to conduct bulk experiments with fair model comparison.

Polara can be easily extended with the help of external libraries and frameworks.

It uses the concept of wrapper – an interface between internal methods and external

sources. The general process of creating new wrappers is no di�erent from creating

new models within the framework and requires minimum e�orts. By default, Polara

already implements several wrappers for the well-known software tools, which ex-

tends the list of supported algorithms. This includes MyMediaLite [107], GraphLab

Create [175] and implicit [83].

8.4 Evaluation

Unlike the previous components, the evaluation component is not a particu-

lar class but rather is a set of convenience methods, designed to support various

evaluation scenarios in a uni�ed way. The major focus of evaluation is shifted to-

wards the relevance of recommendations and the quality of recommendation ranking.

There are several standard evaluation metrics supported by this component, namely

Precision, Recall,HR,MRR, nDCG, nDCL and a number of others.

Two key features distinguish this component from evaluation components in

other recommendation libraries and frameworks. The �rst one is a native control

over the false positive rate estimation. As described in Sec. 5.3.1, recommender mod-

els may recommend items that have no user feedback (this happens very often, in

fact). Treating them as false positives in some cases leads to an undesired fp rate

overestimation and spoils the precision-recall curve.

Polara allows users to assign more appropriate weighting in this case via the

not_rated_penalty argument of the model.evaluate() method. Setting its value to

1 will force the evaluation process to count recommendations with unknown user

feedback as false positives while setting it to 0 will �lter out such recommendations

from the �nal score calculation. Values between 0 and 1 will lead to a “smooth” fp

rate estimation.

The second feature is a native support for the positivity threshold, also described

in Sec. 5.3.1. As has been demonstrated in the results of Chap. 5, taking into account
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the performance of models with respect to both positive and negative aspects of rec-

ommendations plays a crucial role in an understanding of the overall quality of recom-

mendations. Hence, every recommender model is provided with the switch_positive

trigger, which allows de�ning, what values of feedback should be treated as positive

or negative examples when evaluating recommendation quality. This trigger not only

a�ects how metrics are computed but also allows to calculate the nDCL score, in-

troduced in Sec. 5.3.2. It also de�nes which recommendations are counted as false

positive.

The technical implementation of the component relies on a sparse data repre-

sentation and bulk computations without loops. This not only improves computa-

tional e�ciency but also allows to conduct a more in-depth analysis of model per-

formance, going beyond aggregated evaluation and in some cases helping to create a

better picture of model behavior. One particular method worth mentioning in this re-

gard is assemble_scoring_matrices from the polara.recommender.evaluation module.

It takes generated recommendations and holdout data as an input and returns various

indicators of correct and incorrect recommendations in the form of sparse matrices.

8.5 Supported scenarios and setups

As a multi-purpose evaluation framework, Polara provides the necessary instru-

ments and controls for various setups that cover all major evaluation scenarios. There

are three main experiment setups, supported natively by Polara. The standard evalua-

tion scenario allows test users to be a part of the training data and only the items from

holdout set remain unknown until the evaluation phase. In the warm start scenario

the test users are also hidden from the training phase. During the evaluation phase,

their known preferences are used to generate recommendations, which are then eval-

uated against the holdout items. Finally, the cold start scenario is represented by a

separate polara.recommender.coldstart module, which currently provides item cold

start functionality. The module additionally provides a few methods to manipulate

content information to support cold start regime.

Polara supports both implicit and explicit feedback, independently of whether

it is represented by rating values, binary data, frequency counts or other data formats.
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Note that categorical feedback naturally �ts the tensor-based representation and can

also be handled within Polara.

In addition to standard data splitting methods, Polara also supports custom

�elds that can be used to order elements and split data. The simplest example is the

timestamp data. Assuming there is an additional column named “timestamp” in the

original pandas dataframe, the following modi�cation of the Recommender Data con-

structor allows to take this information into account:

RecommenderData ( data , " u s e r i d " , " i t e m i d " , cus tom_order = " t imestamp " ) ,

where for illustration purposes we also omit the feedback �eld to demonstrate how to

handle purely implicit positive-only data.

An important part of the general evaluation framework is the ability to set cus-

tom test data, provided externally (e.g. in some online recommender system chal-

lenge). For example, if one is provided with some external holdout data, which is not

a part of the training data, however contains only known users, the following setup

allows to seamlessly work the data:

Listing 8.5: Preparing data model for experiments with custom holdout.

1 data_mode l = RecommenderData ( data , " u s e r i d " , " i t e m i d " , " f e e d b a c k " )

2 data_mode l . p r e p a r e _ t r a i n i n g _ o n l y ( ) # do not a t t e m p t t o s p l i t d a t a

3 data_mode l . s e t _ t e s t _ d a t a ( h o l d o u t = e x t e r n a l _ h o l d o u t ,

4 warm_s tar t = F a l s e )

It should be noted that by default Polara will reindex external_holdout data to con-

form with the internal data representation. This behavior can be disabled by providing

reindex = False argument into the set_test_data method.

Fine-tuning of many recommendation models is not as simple as the tuning of

SVD and often requires an extensive hyper-parameter search. Current implementa-

tion of Polara provides basic functionality for the random grid search, which can be

accessed via the random_grid method from the polara.evaluation.pipelines module.

This functionality will be extended in future versions and include customizable all-in-

one pipelines.

As a �nal example of the framework functionality, the listing below demon-

strates how to conduct a top-n recommendation experiment for several models in

bulk with a few lines of code in the current version of the framework:
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Listing 8.6: Example of cross-validation experiment for evaluating several models

1 from p o l a r a import P o p u l a r i t y M o d e l

2 from p o l a r a import RandomModel

3 from p o l a r a . e v a l u a t i o n import e v a l u a t i o n _ e n g i n e as ee

4

5 svd = SVDModel ( da ta_mode l )

6 p o p u l a r = P o p u l a r i t y M o d e l ( da ta_mode l )

7 random = RandomModel ( da ta_mode l )

8

9 models = [ svd , popular , random ]

10 m e t r i c s = [ " r a nk in g " , " r e l e v a n c e " ]

11 t o p k _ v a l u e s = [ 1 , 5 , 1 0 , 2 0 , 5 0 ] # number o f recommendat ions

12

13 t o p k _ r e s u l t = { }

14 for f o l d in [ 1 , 2 , 3 , 4 , 5 ] :

15 data_mode l . t e s t _ f o l d = f o l d

16 t o p k _ r e s u l t [ f o l d ] = ee . t o p k _ t e s t ( models , t o p k _ v a l u e s , m e t r i c s )

This will store the result of all models’ evaluation for all 5 folds in the topk_result

variable, which can be further used to perform comparative analysis and report on

�ndings.

8.6 Summary

In this chapter, we have described the key design aspects and demonstrated the

main functionality of the Polara framework. It takes care of the most of the data pro-

cessing and data handling hassles, providing a thin, abstract layer for the user with a

rich set of controls. The framework also provides a number of convenient and �exible

software tools for quick prototyping of recommender models and performing a com-

prehensive evaluation. Apart from the boilerplate functionality, Polara also supports

several external frameworks and libraries, allowing to incorporate their models into

the general work�ow. Internally, the framework uses various tweaks and controls in

order to perform operations e�ciently and wisely consume system resources. The

framework is suitable for both beginners and advanced users; it can be used in classes

for teaching or as a part of a daily research.



Final conclusion

In this work, we have considered various aspects of the limited preference in-

formation problem. This includes both cold start and warm start regimes, as well as

the general problem of the insu�cient amount of collaborative information, which

often raises due to low user activity or overwhelmingly large collection of items. The

main contribution of this work consists of the following parts:

• A new method for a proper modelling of user feedback is proposed. It allows

to better handle both positive and negative user feedback and improve user ex-

perience during the rating elicitation phase or in a general warm start scenario.

The method is based on the Tucker Decomposition and can be viewed as an

expansion of the PureSVD approach to higher order cases.

• The second proposed method uses a generalized formulation of SVD in order

to add the ability to use side information along with collaborative data. This

allows to handle cases of extreme data sparsity and maintain high quality of

recommendations. The method is also suitable for cold start regime.

• The third proposed method combines the previous two methods into a uni�ed

approach. We provide e�cient optimization technique, which takes the speci�c

structure of the problem into account. Remarkably, the method demonstrates

all the advantages of its predecessors and at the same time does not su�er from

their major shortcomings.

• All three methods use SVD as an atomic operation during the optimization pro-

cess and preserve the orthogonality of columns in factor matrices. This allows

to maintain high scalability and makes all methods especially suitable for online

settings due to simpli�ed folding-in computation.
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• The methods also have minimal requirements for optimal hyper-parameter

search. This is achieved with a simpli�ed rank tuning, which can be performed

by rank truncation in the SVD case and tensor rounding in the higher order

case.

• A new open-source recommendation framework written in Python is devel-

oped. The framework proved to be useful for quick model prototyping, com-

prehensive quality evaluation and also research reproducibility.

Despite considerable attention given to the rating data, the proposed uni�ed

model is potentially applicable to other types of feedback as well, including di�erent

response to the system, di�erent user actions, emojis, multiple criteria ratings, etc.

Due to a general formulation of its underlying principles, the model is also suitable for

context-aware or multi-aspect settings. Based on side information, the model helps

to reasonably restore missing connections between various aspects or entities and

impose additional constraints on them. We believe the model can be applied in many

domains, going beyond entertainment systems.

Despite the encouraging results, there is a general issue related to solving prob-

lems with multiple types of context and feedback values. When the number of dimen-

sions becomes much higher than 3, application of TD-based methods becomes infea-

sible due to the explosion of storage requirements. A possible cure for this problem is

to use TT/HT formats for tensor decomposition. Incorporating the ideas, developed

in this work, into a more appropriate tensor format for higher dimensional problems

remains a promising direction for further investigations.
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