
Skolkovo Institute of Science and Technology

MATRIX FACTORIZATION METHODS

FOR TRAINING EMBEDDINGS

IN SELECTED MACHINE LEARNING PROBLEMS

Doctoral Thesis

by

Alexander Fonarev

Doctoral Program in Computational and Data Science and Engineering

Supervisor

Prof. Ivan Oseledets

Moscow

2018

Abstract

One of the essential problems in machine learning that appears in many practical appli-

cations is the problem of representing complex objects as real-valued low-dimensional

vectors, so-called embeddings, using collected statistical data. Methods that build and

learn embeddings have a significant amount of various applications — from information

retrieval and recommender systems to natural language processing and computer vision.

While most of popular embedding methods are based on neural network approaches,

in this thesis, we introduce and thoroughly examine a low-rank matrix factorization

framework for training embeddings, which often is more suitable because of a large

number of effective and efficient computational techniques that are developed in the nu-

merical linear algebra field. This framework generalizes existing embedding approaches

based on low-rank approximations, and allowed us to develop several new methods for

embedding learning that outperform state-of-the-art approaches.

Firstly, we propose the novel unsupervised method to learn embeddings of categor-

ical features’ values both for supervised and unsupervised machine learning problems.

This approach allows us to encode the categorical features into real values in order to

efficiently perform data analysis in various applications, such as security access man-

agement.

Moreover, we introduced and systematically investigated the general formulation

of the word embeddings training problem based on Skip-Gram Negative Sampling that

consists of two steps with clear objectives. These steps and objectives were not formu-

lated in the literature before.

We also developed the new method to learn word embeddings based on the Rieman-

nian optimization technique that outperforms the existing state-of-the-art approaches

2

dealing with approximate objectives of the embeddings training problem. The devel-

oped method has been implemented, tested and shared on the Web as open source.

Furthermore, we developed the method to obtain embeddings of cold users and items

from recommender system data. The developed method outperforms the existing state-

of-the-art approaches in terms of quality and computational speed and also does not

have their limitations by design. This methods was also implemented in Python and

publicly shared on the Web. Moreover, the developed method has one more indicator of

its practical significance — it is used as one of the sources of features for the industrial

recommender system at Yandex.Music.

3

Publications and Talks

The results were published in the papers:

1. Fonarev, A. (2014, August). Transformation of Categorical Features into Real

Using Low-Rank Approximations. In Russian Summer School in Information

Retrieval (pp. 253-262). Springer, Cham. The whole work was done by the

author.

2. Fonarev, A., Mikhalev, A., Serdyukov, P., Gusev, G., & Oseledets, I. (2016, De-

cember). Efficient Rectangular Maximal-Volume Algorithm for Rating Elicita-

tion in Collaborative Filtering. In 16th International Conference on Data Mining

(pp. 141-150). IEEE. Top rank A* computer science conference. Contribution of

the authors: the first author — the problem formulation, the existing approaches

analysis, designing the experiments, writing the text (partially), conducting the

experiments (partially), the method developement (partially); the second author

— writing the text (partially), conducting the experiments (partially), the method

developement (partially); the third author — writing the text (partially); the fourth

author — writing the text (partially); the fifth author — initial idea proposition,

writing the text (partially).

3. Fonarev, A., Hrinchuk, O., Gusev, G., Serdyukov, P., & Oseledets, I. (2017, Au-

gust). Riemannian Optimization for Skip-Gram Negative Sampling. In Proceed-

ings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers, pp. 2028-2036). Association for Computational Lin-

guistics. Top rank A* computer science conference. Contribution of the authors:

the first author — initial idea proposition, the problem formulation, the exist-

4

ing approaches analysis, designing the experiments, the method developement,

writing the text (partially), conducting the experiments (partially); the second au-

thor — writing the text (partially), conducting the experiments (partially); the

third author — writing the text (partially); the fourth author — writing the text

(partially); the fifth author — writing the text (partially).

The results introduced in the thesis were presented at top international confer-

ences:

1. Annual Meeting of Association of Computational Linguistics 2017, August (top

rank A* computer science conference), Vancouver, Canada;

2. International Conference on Data Mining 2016, December (top rank A* computer

science conference), Barcelona, Spain;

3. International Conference on Matrix Methods and Applications 2015, August,

Skolkovo, Russia.

4. Russian Summer School in Information Retrieval 2014, August, Nizhniy Nov-

gorod, Russia.

The results were also presented at scientific seminars:

1. The joint seminar of Intellectual Systems department and Machine Intelligence

Laboratory of Moscow Institute of Physics and Technology, April 2018, Moscow,

Russia;

2. The seminar of the 72nd department of Federal Research Center “Informatics and

Management” of Russian Academy of Sciences, May 2018, Moscow, Russia.

5

Contents and Structure of Thesis

The thesis consists of 7 chapters. Chapter 1 introduces the embeddings training prob-

lem and overviews state-of-the-art and important applications of embeddings. Chapter 2

overviews some of the existing methods for embeddings learning and provides the back-

ground that is needed for understanding the methods described in the work. Chapter 3

introduces the relative simple but efficient low-rank matrix factorization framework to

train embeddings that is a foundation for the new algorithms proposed in this work.

Chapter 4 introduces a method for unsupervised transformation of categorical features’

values into embeddings. Chapter 5 introduces a novel approach to train word embed-

dings based on Riemannian optimization. Chapter 6 presents an algorithm to learn

embeddings of cold users and items in recommender systems. Chapter 7 concludes and

summarizes the results of the thesis.

6

Acknowledgements

I am grateful to Alexander Mikhalev, Alexey Grinchuk, Gleb Gusev, Pavel Serdyukov,

Denis Kolesnikov for productive joint work and research, without your help this the-

sis could not be possible. I also wanted to thank people who helped me with proof-

reading the thesis text: Alexey Grinchuk, Anna Potapenko, Ilya Solomatin, Alexander

Katrutsa, Valentin Khrulkov. Special thanks to Victor Lempitskiy, Andrzej Cichocki,

Evgeny Burnaev, Konstantin Vorontsov, Alexander Bernshtein for deep dive into the

thesis ideas and very helpful comments. Moreover, I wanted to thank people who signif-

icantly helped me with the PhD process challenges that I encountered: Maxim Fedorov,

Maxim Panov, Dmitry Artamonov, Evgeny Frolov, Daniil Merkulov, Andrei Chertkov,

Ilya Sochenkov. A very special gratitude goes out to all PhD jury members that found

time in their tough schedules to participate in my PhD defense: Andrzej Cichocki, Vic-

tor Lempitskiy, Dmitry Ignatov, Alexander Tuzhilin, Andre Uschmajew.

Especially, I wanted to acknowledge my first teachers who gave me the motivation

to continue to work on math, information technology and data science: Alexander Spi-

vak, Victor Matyukhin and Alexander Dyakonov. And also, of course, huge thanks

to my family for support and giving me a chance of getting a good education. Fur-

thermore, thanks for fruitful discussions on various topics that substantially formed my

understanding of the data science field: Mikhail Gavrikov, Peter Romov, Konstantin

Vorontsov, Anna Potapenko, Alexander Dyakonov.

To my scientific advisor, Ivan Oseledets for patience, flexibility, trust, openness,

mentoring and support along the whole PhD path. Many thanks!

Thanks to everyone above and everyone who is not listed for your encouragement!

7

Contents

1 Introduction 13

1.1 Introduction to Embeddings . 13

1.2 Using Embeddings in Practical Machine Learning Tasks 15

1.3 Measuring Embeddings Performance 16

1.4 Embeddings Application Examples . 18

1.4.1 Word Embeddings Applications 18

1.4.2 User Behavior Embeddings Applications 20

1.4.3 Other Embeddings Applications 21

1.5 Chapter Summary . 21

2 Background 22

2.1 Matrix Factorization Background . 22

2.1.1 Low-Rank Matrix Factorization 22

2.1.2 Matrix Similarity Measures 22

2.1.3 Singular Value Decomposition 24

2.1.4 Riemannian Optimization . 25

2.1.5 Pseudo-Skeleton Factorization 29

2.2 Supervised Learning Background . 33

2.2.1 Introduction . 33

2.2.2 Decision Trees Based Methods 33

2.2.3 Linear Methods . 34

2.2.4 Neural Networks . 35

2.3 Background on Categorical Features in Machine Learning 36

8

2.3.1 Categorical Features . 36

2.3.2 Examples of Problems Involving Categorical Features 36

2.3.3 Existing Approaches to Handling Categorical Features 37

2.4 Word Embeddings . 41

2.4.1 Overview of Word Embeddings Methods 41

2.4.2 Skip-Gram Negative Sampling 42

2.4.3 SGNS Optimization as Matrix Factorization 44

2.4.4 SVD over SPPMI matrix . 45

2.5 Embeddings in Recommender Systems 46

2.5.1 Collaborative Filtering . 46

2.5.2 Implicit and Explicit Feedback 46

2.5.3 Latent Factor Models . 47

2.5.4 PureSVD . 48

2.5.5 Cold-Start Problem . 48

2.5.6 Cold Objects Embeddings with Rating Elicitation 49

2.5.7 Rating Elicitation Methods . 50

2.5.8 Representative Based Matrix Factorization 52

2.6 Chapter Summary . 53

3 Matrix Factorization Framework to Train Embeddings 54

3.1 Framework . 54

3.2 How Existing Embedding Approaches Fit to Framework 55

3.2.1 Principal Component Analysis 55

3.2.2 Text Embeddings via Latent Semantic Analysis 55

3.2.3 Text Embeddings via Probabilistic Latent Semantic Analysis . . 55

9

3.2.4 Word Embeddings via SVD over SPPMI Matrix 56

3.2.5 Users or Items Embeddings via PureSVD Recommender 56

3.2.6 Representative Based Matrix Factorization 56

3.3 How Developed Methods Fit Framework 57

3.3.1 Building Embeddings of Categorical Features’ Values 57

3.3.2 Riemannian Optimization for Training Skip-Gram Negative Sam-

pling Word Embeddings . 58

3.3.3 Obtaining Cold User and Item Embeddings in Recommender

Systems . 58

3.4 Chapter Summary . 59

4 Building Embeddings of Categorical Features’ Values 60

4.1 Section Overview . 60

4.2 Proposed Methods . 60

4.2.1 Transformation Using Direct Feature Value Frequencies 60

4.2.2 Low-Rank Frequency Approximations 61

4.2.3 Embeddings Based on Low-Rank Approximations 62

4.3 Experiments . 64

4.3.1 Datasets . 66

4.3.2 Prediction Quality Estimation 67

4.3.3 Results of the Experiments . 67

4.4 Chapter Summary . 70

5 Riemannian Optimization for Training Skip-Gram Negative Sampling Word

Embeddings 71

10

5.1 Section Overview . 71

5.2 Problem Setting . 74

5.2.1 Matrix Notation of the Problem 74

5.2.2 Computing Embeddings from a Low-Rank Solution 75

5.3 Algorithm . 77

5.4 Experimental Setup . 77

5.4.1 Training Models . 77

5.4.2 Evaluation . 79

5.5 Results of Experiments . 79

5.6 Chapter Summary . 82

6 Cold User and Item Embeddings in Recommender Systems 85

6.1 Section Overview . 85

6.2 Predicting Ratings with a Seed Set . 86

6.2.1 Computing coefficients via rating matrix 87

6.2.2 Computing coefficients via a low-rank factor. 88

6.3 Volume of Rectangular Matrices . 89

6.4 Algorithm . 92

6.4.1 Maximization of coefficients norm 93

6.4.2 Fast Computation of Coefficients 94

6.5 Algorithm Analysis . 96

6.5.1 Complexity analysis . 96

6.5.2 Comparing Complexity to Existing Approaches 97

6.5.3 Analysis of Error . 98

6.5.4 Upper Bound of Coefficients Norm 98

11

6.6 Experimental Setup . 100

6.6.1 Datasets . 100

6.6.2 Evaluation Protocol . 101

6.7 Results of Experiments . 102

6.8 Chapter Summary . 105

7 Conclusion 106

8 Appendix 125

12

1 Introduction

In the modern world, more and more technological processes collect data about the

behavior of various systems. For example, the spread of online social networks led

to collecting huge amounts of data about users and spread of mobile phones led to

obtaining a big amount of data about phone owners gathered via phones’ sensors. Often,

such data contains a lot of useful information that could be exploited for improving

business processes, developing new products, providing better client service or gaining

more revenue.

Usually, the collected data has a complicated structure and contains complex reg-

ularities, so it is expensive or even impossible to perform in-depth manual analysis of

this data in order to make valuable decisions from it. Moreover, often data-driven deci-

sions should be made instantly and frequently, so the manual decision-making process

is not appropriate. That is why, data science and, more specifically, machine learning

approaches become more and more demanded today. They focus on extracting hidden

features and structures from the data automatically without any human intervention.

Nowadays, machine learning solutions become a core part of a lot of businesses —

online search engines, online stores, online social networks, online advertisement plat-

forms, for banks, factories, automobile industry, etc.

1.1 Introduction to Embeddings

One of the essential directions within the machine learning field today is to represent

complex objects or data by vectors. Such process is called embedding and allows us

to store semantics of an object. As an example, let us look at a natural language pro-

cessing (NLP). In the NLP, a word is just a sequence of letters, so processing this infor-

13

“table”

“chair”

“sky”

Figure 1: An intuition behind word embeddings. The 3-dimensional embeddings of
word ”table” and ”chair” are closer to each other than embeddings of words ”table” and
”sky”, which is aligned with our understading of semantics of these words.

mation on a computer in order to make decisions based on the semantics of this word

is difficult. However, having a big amount of collected natural language texts (e.g., all

English Wikipedia texts) and analyzing co-occurrences of various words close to each

other within these texts, it is possible to build a low-dimensional semantic representa-

tion of the word that would contain some aspects of the meaning. For example, having

such word embeddings, a computer can understand that the word “table” is semantically

more similar or related to the word “chair” than to the word “sky” (Figure 1 illustrates

this idea). In general, embedding learning procedures could be applied to graphs, im-

ages, user preferences, product specifications, websites and other complex objects.

Let us formalize the concept descriped above. LetA be a set of objects that we want

to build d-dimensional embeddings for. Then the embedding function f is the following

14

mapping:

f : A → Rd. (1)

There are three main reasons to train embeddings of complex objects in practical tasks:

1. Aligned dimensionality of representations. Most of statistical tools and sys-

tems (e.g. most of supervised learning methods) are able to handle objects which

descriptions have the same dimensionality and the dimensions are aligned (have

the same meaning).

2. Real-valued components of representations. Most of statistical tools and sys-

tems can handle objects which descriptions consists of real values.

3. Low dimensionality of representations. Usually, both for automated and man-

ual object analysis, it is very useful to keep their descriptions low-dimensional

because it either simplifies manual work or reduces computational complexity

of algorithms. Moreover, having low-dimensional embeddings often provide an

automatical de-noising effect that helps to avoid further overfitting and perform

more precise data analysis.

In this work, we do not focus on the problem of embedding dimensionality d selection

— it is a hyperparameter that could be selected based on performance metric of a task

where the embeddings are used.

1.2 Using Embeddings in Practical Machine Learning Tasks

As mentioned above, embeddings of complex objects are helpful in many practical prob-

lems within various industrial processes. As it is illustrated in Figure 2, there are two

main steps where embeddings are involved in solving business problems:

15

Step 1: Embeddings are learned from collected data. Building embeddings with

a good performance is often a challenging problem. This work focuses on devel-

oping new methods to perform Step 1.

Step 2: The embeddings obtained on Step 1 are used in practical applications.

Important to note that usually the same embeddings can be used in various re-

lated problems. For example, same word embeddings could be used in machine

translation, speech recognition, news articles categorization, etc. So once an effi-

cient embeddings learning method is developed, it can be applied for many tasks.

That is one more reason, why the focus of the thesis is to improve the quality of

existing approaches to build embeddings.

1.3 Measuring Embeddings Performance

As mentioned above, this thesis focuses on developing new embedding algorithms that

outperform existing approaches in terms of performance. There are two main ways to

measure the performance of embeddings.

1. Using the performance measure of a target application. As it was mentioned

above, embeddings are used as a part of solutions for various tasks. Usually, a task

has its own performance measures, so it is very natural to use them to estimate

the performance of embeddings that are used to solve it. Despite straightforward-

ness, this approach’s important limitation is the fact that there are many factors

that influence on the target performance, so sometimes it is hard to distinguish

gain obtained by embeddings from other factors. Moreover, in complex industrial

16

Raw data for building
embeddings

(e.g., text corpus, user
behavior data, etc.)

Target applications that use
object embeddings

(e.g. machine translation, web
search, recommender systems,

etc.)

Embeddings that contain
semantic information about

objects
(e.g., word embeddings, user
behavior embeddings, etc.)

Step 1. Training
object embeddings
from the raw data

Step 2. Obtained
embeddings are applied
in applications

Figure 2: A common pipeline of using embeddings in practical problems. The embed-
dings are usually used on the second step illustrated on the scheme. The thesis focuses
on developing new embedding methods for the first step.

17

processes, it might be costly to perform experiments over the whole system in

order to estimate the quality of one part of it.

2. Using an internal embeddings performance measure. This approach implies

constructing a separate performance measure for embeddings that should corre-

late with the performance in target applications where the embeddings are being

used. For example, tasks often require to have embeddings of similar objects

placed close to each other in the representation space. The level of fulfillment

of this requirement could be measured using a separate dataset which contains

pairs of objects with assessed levels of similarity between them. Moreover, for

example, embeddings should satisfy additional properties, such as interpretabil-

ity [115], which also could be measured and used as an embedding performance

measure.

Experiments described in the thesis use both evaluation approaches.

1.4 Embeddings Application Examples

This section describes several real-life examples of embeddings in order to illustrate a

wide range of applications and the fact that improving embeddings once will lead to

improvements of several applications that use these embeddings.

1.4.1 Word Embeddings Applications

In most of the problems where natural language words are used for automated analy-

sis, it is very convenient to have them in a real-valued vector format, such as one-hot-

encoding or embeddings (which is usually more preferable), because such representa-

tions could be easily used by various machine learning and NLP algorithms. Thus, many

18

NLP tasks take advantage of learning high-quality embeddings. This could be language

modeling tasks (predict next words given the previous), sequence tagging tasks (predict

some tag for each word in a sequence, e.g., Named Entity Recognition), sequence to

sequence tasks (predict a sequence of tags given a sequence of words, e.g., machine

translation), and many more. A detailed survey of all possible applications goes beyond

the scope of this thesis, but a few specific applications are listed below.

Named Entity Recognition. NER is an essential problem in natural language pro-

cessing. An NER algorithm gets a text as an input and classifies all relevant named

nouns that are mentioned in the text. For example, an NER algorithm could recognize

names of people, cities, brands, etc. within the text. It has a lot of applications in var-

ious systems — from internet search engines and news articles analysis to automated

lawyers and content recommenders.

A significant input for an NER algorithm is a context of a word that is being classi-

fied, so word embeddings store this information in a compact real-valued low-dimensional

format. These embeddings could be used, for example, as features for a machine learn-

ing classifier which implements a NER logic. There are a large number of papers that

discuss how embeddings can be applied in NER. For example, [26] combines word em-

beddings with categories data from Wikipedia, [102] uses word embeddings as features

for learning algorithms, [105] adapts popular Word2Vec embedding learning systems to

NER, etc.

Coreference resolution. In natural language processing, coreference resolution algo-

rithms are widely used in applications related to text meaning understanding, e.g., in

automated dialog systems. There are a lot of paper that use embeddings for the coref-

19

erence resolution problems. For example, authors of [106] use word embeddings as

features in a machine learning classifier, [69] presents an end-to-end system based on

word embeddings, [109] explores usage of word embeddings for coreference resolution

in Russian language, [23] uses embeddings as features to detect coreference pairs of

clusters and so on.

Textual Entailment. The problem of textual entailment focuses on understanding

complex structures and entailments in natural language, which also is widely used in

automated dialog systems. In fact, this is another field where word embeddings are suc-

cessfully applied. For example, [5] does this for Arabic language, [107] uses this for

analysis based in Twitter data, [129] uses embeddings in addition to attention and some

composition improvements.

Question Answering. The problem of automated question answering becomes more

and more demanded with a growth of automated personal assistants. Solutions of this

task also widely use embeddings. For example, [104] proposes to merge embeddings

and models inspired from machine translation field, [103] exploits causal information

into account, [84] uses embeddings for questions retrieval.

1.4.2 User Behavior Embeddings Applications

Embeddings that correspond to user behaviours or preferences and describe their previ-

ous behaviour also are widely used in various applications. For example, they could be

used for unsupervised analysis of users by clustering their embeddings, [116] describes

methods to personalize web search using embeddings, [4] describes personalization of

product search, [89] proposes methods to perform personalized lessons based on stu-

20

dents’ embeddings, [61] explores methods to personalize automatic conversations using

users’ embeddings, while [60] overviews user embeddings methods to build recom-

mender systems.

1.4.3 Other Embeddings Applications

There are many other types of embeddings that are used in various applications. For

example, [54] develops methods to build embeddings of images, [124, 42] explore em-

beddings for queries in search engines, embeddings are used as an initialization of neu-

ral nets in speech recognition [65], sentence embeddings are used in machine transla-

tion [80], [60] explores items embeddings in recommender systems, product embed-

dings for searching close products to recommend are described in [43].

1.5 Chapter Summary

In this chapter, we introduced the embedding concept, explained how embeddings are

usually applied to practical problems, overviewed some embedding method examples

and formulated the objectives of the thesis. While most of embedding methods are based

on neural network approaches, in this thesis, we focus on embedding algorithms based

on low-rank matrix factorizations since often they have better properties and outperform

state-of-the-art approaches. The next chapter describes how popular embedding meth-

ods work internally and gives the required background for understanding the following

sections.

21

2 Background

2.1 Matrix Factorization Background

2.1.1 Low-Rank Matrix Factorization

Let A be a matrix from Rn×m. Then given a number d ∈ N, called a factorization rank,

A could be approximated as a product of two matrices P ∈ Rn×d and Q ∈ Rm×d:

A ≈ P ·Q⊤ = B. (2)

This approximation is called low-rank matrix factorization or low-rank matrix decom-

position.

2.1.2 Matrix Similarity Measures

The factorization is usually performed based on a distance measure ρ(·, ·) between two

matrices, which is used to calculate the similarity between A and its approximation B,

and additional constraints on P and Q that depend on a problem being solved:

ρ(A,B)→ min
P∈Rn×d,Q∈Rm×d

(3)

The choice of a particular measure ρ significantly influences the result of matrix low-

rank approximation process. Let us overview the most popular types of these measures.

The most popular way is to use the Frobenius norm to measure the distance:

∥ A−B ∥2F=
∑
i,j

(ai,j − bi,j)
2. (4)

22

In some cases, when the original matrix A contains probability values that describe a

probability distribution, it becomes more natural to use the generalized Kullback-Leibler

divergence or I-divergence [21]:

DKL(A ∥ B) =
∑
i,j

(ai,j · log
ai,j
bi,j
− ai,j + bi,j), (5)

which represents a distance between two probability distributions. These measures are

the particular cases of so called β-divergence [21]:

Dβ
Beta(A ∥ B) =

∑
i,j

(ai,j ·
aβ−1
i,j − bβ−1

i,j

β − 1
−

aβi,j − bβi,j
β

), (6)

where β is a hyperparameter of the metric. Indeed, here are the cases when β → 1:

Dβ
Beta(A ∥ B)→ DKL(A ∥ B), (7)

and when β = 2:

Dβ
Beta(A ∥ B) =

1

2
∥ A−B ∥2F . (8)

The optimization problem (3) can be solved using gradient descent based optimiza-

tion approaches that optimize all elements of P and Q independently or using alternat-

ing approaches that iteratively optimize factor P having factor Q fixed and conversely.

The details about the optimization using β-divergence could in found in [28]. Compu-

tational and algorithmic details related to sparse nonnegative orthogonal matrix approx-

imations can be found in [8].

Note that in case of the optimization problem (3), the factorization PQ⊤ is not

23

unique. Indeed, for every square non-singular matrix S ∈ Rd×d we have

PQ⊤ = PSS−1Q⊤ = (PS)(S−1Q⊤) = P̃Q̃⊤, (9)

where matrices P̃ and Q̃ represent another factorization with the same value of ρ.

2.1.3 Singular Value Decomposition

Let us explore the following approximation of matrix A with three factors:

A ≈ UΣV⊤ = A′, (10)

where columns of U ∈ Rn×d are dominant orthonormal eigenvectors of AA⊤, rows of

V⊤ ∈ Rd×m are dominant orthonormal eigenvectors of A⊤A, and matrix Σ ∈ Rd×d is

diagonal and contains d maximal singular values σi of A in the decreasing order on the

diagonal. This factorization is called truncated Singular Value Decomposition (SVD).

Denoting P = U
√
Σ and Q = V

√
Σ, we get the familiar low-rank approximation

of matrix A:

A ≈ PQ⊤. (11)

According to the Eckart-Young theorem [36], this solution is the global optimum of

the optimization problem (3) with Frobenuis norm of matrices difference as a distance

measure ρ:

||A−PQ⊤||2 → min
P,Q

. (12)

SVD can be efficiently performed using the block power numerical method [13],

which consists of a series of QR decompositions. The computational complexity of the

24

SVD algorithm strongly depends of the properties of the matrix A. Also, several SVD

algorithms are more efficient in case of sparse and thin-and-toll matrices [67].

2.1.4 Riemannian Optimization

Problem Setting. The Riemannian optimization framework is a powerful tool to solve

low-rank optimization problems. It allows to solve the following maximization prob-

lem:

maximize F (X),

subject to X ∈Md,

(13)

whereMd is the manifold (see Section 1.1 in [113] for details) of all matrices in Rn×m

with rank d:

Md = {X ∈ Rn×m : rank(X) = d}. (14)

An introduction to optimization over Riemannian manifolds can be found in [112].

In case of minimizing the distance ρ between matrices A and B, the problem could

be rewritten in the following form:

minimize ρ(A,B),

subject to B ∈Md.

(15)

The key difference between the problems (15) and (3) is the non-requirement of ex-

plicit search for factors matrices P and Q. As we present in Chapter 5, we developed

the novel approach without explicit search for these factors which provides a signifi-

cant performance boost in some applications. Moreover, Riemannian optimization can

25

be successfully applied to various data science problems: for example, matrix comple-

tion [113], large-scale recommender systems [110], and tensor completion [62].

Riemannian Optimization Framework. Assume we have an approximated solution

Xi on a current step of the optimization process of the problem given by (13), where i is

the iteration step number. In order to improve Xi, the next step of the standard gradient

ascent outputs the point

Xi+1 = Xi +∇F (Xi), (16)

where ∇F (Xi) is the gradient of objective F at the point Xi. Note that the gradient

∇F (Xi) can be naturally considered as a matrix in Rn×m. Point Xi +∇F (Xi) leaves

the manifoldMd, because its rank is generally greater than d. That is why Riemannian

optimization methods need to map point Xi + ∇F (Xi) back to manifold Md. The

simplest Riemannian gradient method first projects the gradient step onto the tangent

space at the current point Xi and then retracts it back to the manifold:

Xi+1 = R (PTM (Xi +∇F (Xi))), (17)

where R is the retraction operator, and PTM is the projection onto the tangent space.

Although the optimization problem is non-convex, Riemannian optimization meth-

ods show good performance on it. The overview of retractions of high-rank matrices to

low-rank manifolds is provided in [1].

Projector-Splitting Algorithm. In this thesis, we use a simplified version of such

approach that retracts point Xi +∇F (Xi) directly to the manifold and does not require

26

projection onto the tangent space PTM as illustrated in Figure 3:

Xi+1 = R(Xi +∇F (Xi)). (18)

Fine-tuning word embeddings

xxxxx xxxxx

xxxxx

xxxx xxxx

xxxx xxx

xxxxx xxxx

xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rFi

Xi = UiSiV
T
i

Xi+1 = Ui+1Si+1V
T
i+1

retraction

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx

xxxxx

xxxx xxxx

xxxx xxx

xxxxx xxxx

xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rFi

Xi = UiSiV
T
i

Xi+1 = Ui+1Si+1V
T
i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx

xxxxx

xxxx xxxx

xxxx xxx

xxxxx xxxx

xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi +rF (Xi)

Xi = UiSiV
T
i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T
i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx

xxxxx

xxxx xxxx

xxxx xxx

xxxxx xxxx

xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi +rF (Xi)

Xi = UiSiV
T
i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T
i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx

xxxxx

xxxx xxxx

xxxx xxx

xxxxx xxxx

xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi +rF (Xi)

Xi = UiSiV
T
i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T
i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx

xxxxx

xxxx xxxx

xxxx xxx

xxxxx xxxx

xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi +rF (Xi)

Xi = UiSiV
T
i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T
i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 3: Geometric interpretation of one step of projector-splitting optimization proce-
dure: the gradient step and the retraction of the high-rank matrix Xi +∇F (Xi) to the
manifold of low-rank matrices Md.

Intuitively, retractor R finds a rank-d matrix on the manifoldMd that is similar to

high-rank matrix Xi + ∇F (Xi) in terms of Frobenius norm. How can we do it? The

most straightforward way to reduce the rank of Xi+∇F (Xi) is to perform the SVD by

keeping d largest singular values of it:

1: Ui+1,Σi+1,V
⊤
i+1 ← SVD(Xi +∇F (Xi)),

2: Xi+1 ← Ui+1Σi+1V
⊤
i+1.

(19)

However, such approach is computationally expensive.

27

Therefore, we propose to apply the projector-splitting method proposed in [73],

which is a second-order retraction onto the manifold. The projector-splitting algorithm

also was mentioned in [1] as “Lie-Trotter retraction”. The theoretical properties and

convergence guarantees of such method are discussed in [57].

Its practical implementation is quite intuitive: instead of computing the full SVD

of Xi + ∇F (Xi) according to the gradient projection method, we use just one step of

the block power numerical method [13] which computes the SVD in order to reduce the

computational complexity.

Let us present the current point in the following factorized form:

Xi = UiSiV
⊤
i , (20)

where matrices Ui ∈ Rn×d and Vi ∈ Rm×d have d orthogonal columns and Si ∈ Rd×d

is upper triangle matrix. Then we need to perform two QR-decompositions to retract

point Xi +∇F (Xi) back to the manifold to point Xi+1 = Ui+1Si+1V
⊤
i+1 as follows:

1: Ui+1,Si+1 ← QR ((Xi +∇F (Xi))Vi) ,

2: Vi+1,S
⊤
i+1 ← QR

(
(Xi +∇F (Xi))

⊤Ui+1

)
,

3: Xi+1 ← Ui+1Si+1V
⊤
i+1.

Using this trick, we always keep the solution Xi+1 = Ui+1Si+1V
⊤
i+1 on the mani-

foldMd.

What is important, we only need to compute∇F (Xi), so the gradients with respect

to U, S and V do not need to be calculated explicitly. Due to this we avoid the subtle

case where S is close to singular (so-called singular (critical) point on the manifold).

28

Indeed, the gradient with respect to U (while keeping the orthogonality constraints) can

be written [56] as:
∂F

∂U
=

∂F

∂X
VS−1, (21)

which means that the gradient will be large if S is close to singular. The proposed

projector-splitting scheme is free from this problem.

2.1.5 Pseudo-Skeleton Factorization

Pseudo-Skeleton Factorization. In some practical applications, it is needed to de-

compose matrix A ∈ Rn×m into factors that consist of original elements of A. Let us

have a look at the following decomposition:

A ≈ PÂ−1H, (22)

where P consists of a subset of columns of matrix A, H consists of rows of A and Â is

the intersection of columns P and rows R. This low-rank factorization is called pseudo-

skeleton [39] and can effectively approximate initial matrix A in various problems. In

this work, we use the following simplification of the approximation above:

A ≈ A[:,k]C, (23)

where k ∈ Nd represents a set of column indices of A, A[:,k] consists of columns of

matrix A with indices k and C ∈ Rd×m is the matrix of coefficients. This work uses

the Numpy Python indexing notation1: A[k, :] is the matrix whose column j coincides

1https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.
html

29

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html

with the row kj of A, where kj is the j-th component of vector k.

The following sections describe the simple algorithm to perform such decomposi-

tion.

Maximal Volume Concept. The maximal-volume concept [38] provides an approach

for a matrix approximation in a pseudo-skeleton form, which is a product of matrices

formed by columns or rows of the source matrix.

The algorithm, called Maxvol [37], allows to efficiently find a well-conditioned sub-

matrix with a high enough volume for building such an approximation. Maximal volume

submatrices are useful for various applications, such as wireless communications [117],

preconditioning of overdetermined systems [7], tensor decompositions [83], and rec-

ommender systems [72]. The generalization of the maximal-volume concept to the

rectangular case presented in this work offers additional degrees of freedom, which is

potentially useful in any of these areas.

Suppose we want to select d columns with indices k ∈ Nd. First of all, the algorithm

requires to compute the rank-d SVD factorization of A given by Equation (11). After

this, searching for a column set is equivalent to searching for a square submatrix

S = Q[k, :]⊤ ∈ Rd×d (24)

in the factor matrix Q. As it was shown in [37], it is an efficient (from the computational

time point of view) approach to search for such submatrix S that has a big volume (the

modulus of a determinant).

30

Overall, we have the following optimization task:

k← argmax
k

Vol S = argmax
k
| detS|, S = Q[k, :]. (25)

The problem is NP-hard in the general case [22] and, therefore, suboptimal greedy

procedures are usually applied.

Maximal Volume Algorithm. One of the most popular greedy procedures is called

Maxvol algorithm [37] and is based on searching for a dominant submatrix S ∈ Rd×d

of Q⊤. The dominant property of S means that all columns qi ∈ Rd of Q⊤ can be

represented via a linear combination of columns from S with the coefficients not greater

than 1 in modulus. Although this property does not imply that S has the maximal

volume, it guarantees that S is locally optimal, which means that replacing any column

of S with a column of Q⊤, does not increase the volume [37].

At the initialization step, Maxvol usually takes d linearly independent latent vectors

that are the pivots from LU-decomposition [36] of matrix Q⊤. Practice shows that this

initialization provides a good initial approximation S to maximal volume matrix [37].

After that, the algorithm iteratively performs the following procedure. At each step, it

computes the coefficient matrix C = S−1Q⊤ ∈ Rd×m. Each column of C contains the

coefficients of the representation of a row in Q via the vectors from S. Thus, i-th entry

in j-th column of C that is larger than 1 in modulus provides us with a hypothesis that

j-th latent vector is “larger” than i-th. Therefore, the algorithm seeks for the maximal

in modulus coefficient in order to swap a “smaller” latent vector inside the seed set with

a “larger” one out of it. The procedure repeats until convergence. In the work, we

also call this algorithm Square Maxvol, because it seeks for a square submatrix (since

31

determinant is defined only for square S). Furthermore, it is important to note that the

original algorithm presented in [37] has crucial speed optimizations for avoiding the

expensive matrix multiplications and inversions, which are not presented in the work.

We recommend to go to the original literature to for a more rigorous explanation of the

Maxvol algorithm.

Algorithm 1 presents a high-level pseudo-code of the Maxvol based approach.

Algorithm 1 Searching good columns using Maxvol
Require: Matrix A ∈ Rn×m, number of columns d
Ensure: Indices k ∈ Nd of d representative items

1: Perform rank-d SVD of the matrix A ≈ PQ⊤

2: k← d pivot indices from LU-decomposition of Q
3: repeat
4: S← Q[k, :]⊤

5: Find coefficients for representing row of Q via the seed set: C ← S−1Q⊤

6: Find the maximal coefficient in C: (i, j) ← argmaxi,j /∈k |cij|
7: Swap i-th element from the seed set and j-th column out of it: ki ← j
8: until ∀(i, j) : |cij| ≤ 1
9: return k

Computational Complexity of Maxvol. Let us analyze the computational complex-

ity of Maxvol. The LU-decomposition with pivoting takes O(md2) operations. The

iterative updates take O(αmd) operations, where α is the number of iterations. Typi-

cally, α ≤ d iterations are needed. The overall complexity of Square Maxvol can be

estimated as O(md2). A more detailed complexity analysis of Square Maxvol is given

in [37].

32

2.2 Supervised Learning Background

2.2.1 Introduction

Supervised learning methods form a foundation of a lot of embedding methods, so fur-

ther in this section, we overview most widely used existing supervised learning ap-

proaches.

Let us have a dataset {xi}ni=1, where every sample (also called an object) xi =

(xi,1, ..., xi,m) ∈ X , where X is the set of all possible objects. The element xi,j is called

the j-th feature of the object xi [30]. The whole dataset can be represented as a matrix

X with size n×m. Unsupervised problems involve finding regularities within this data.

In supervised learning problems every element xi of the training set has an object label

yi ∈ Y , and the goal is to approximate X → Y function.

There are several popular choices of Y . If Y = R then the problem is called regres-

sion problem. If Y = {0, 1, ..., K−1} the problem is called classification problem. The

most widely used and important case of classification problems is binary classification

problem when K = 2. Cases of K > 2 could be solved using classifiers for the binary

classification case, so further we overview only the binary classification case.

2.2.2 Decision Trees Based Methods

Decision tree based methods [86] often show a good performance in problems where the

number of features m is not large compared to the number of objects n. These meth-

ods work exceptionally well in problems where features have different nature, which

happens in such applications as web search, credit scoring, churn prediction, etc. The

decision-based approaches can handle various types of supervised learning problems,

including classification, regression, and others.

33

Although single decision trees [17] usually do not show a good performance, ensem-

bled decision trees often provide state-of-the-art results. The most popular ensembling

approaches are Random Forest [16], which learns a set of independent decision trees us-

ing bagging [15] and Random Supspace Method [9] techniques, and Gradient Boosted

Decision Trees [31, 32], which learns decision trees one by one and each new decision

tree training focuses on compensating the error of the all previous trees combination.

2.2.3 Linear Methods

Historically, the most popular methods to solve supervised learning problems are linear

methods [30], which decision function is based on the scalar product ⟨w,xi⟩ of an

object’s real-valued feature vector xi = (xi,1, ..., xi,m) and a vector of weights w =

(w1, ..., wm) that are parameters of the algorithm.

In case of regression problems, a predicted label ỹi of i-th object is set to this scalar

product and the weights w are usually found based on the following optimization prob-

lem:

||Xw − y||2 → min
w∈Rm

. (26)

In case of a binary classification, a predicted probability ỹi of i-th object to belong

to the class 1 is calculated in the following way:

p(yi = 1|xi) = σ (⟨w,xi⟩) =
1

1 + exp (−⟨w,xi⟩)
,

and the weights are tuned by the optimization

n∑
i=1

L(yi, σ(⟨w,xi⟩))→ min
w∈Rm

,

34

where L is the negative logarithm of the likelihood (the so-called log-loss) to observe

the training set’s target labels in accordance to the predicted probabilities ỹ:

L(yi, ỹi) = −(yi log ỹi + (1− yi) log(1− ỹi)).

2.2.4 Neural Networks

Neural networks [30, 120] naturally generalize the linear supervised learning approach

to the non-linear case. A neural network decision-making process consists of several

steps (layers), and each of these steps takes outputs (neurons) from the previous step,

applies a non-linear transformation to them and multiplies them by some weight matrix

in order to generate outputs. The first step takes object’s features as an input, and the

last step’s output is interpreted as a prediction of the neural network.

Usually, neural network training procedure finds optimal weight matrices in accor-

dance to the task being solved. The most popular optimization approach is based on

gradient descent procedure and is called backpropagation [30, 20]. The number of lay-

ers, the number of neurons in each of them, non-linear transformation functions are

hyperparameters of the algorithm.

Nowadays, neural networks are successfully applied in various applications where

the data has some spatial structure — images, time series, texts, audio, etc. The main

reason for this is inventions of particular types of neural networks that successfully

handle such data [12, 63, 68, 75, 119].

35

2.3 Background on Categorical Features in Machine Learning

2.3.1 Categorical Features

Most of existing machine learning methods suppose that the features {xi,j}mj=1 of ob-

ject xi are in R. But there are many problems, where the feature values come from

a finite unordered set, not from R. These features are called categorical, nominal or

factoral. For example, the categorical feature City may have values from set

{ Moscow, New York, Paris, ... } (27)

in some tasks. Such tasks become even more difficult with the increase of the size q of

this set, because of huge data sparsity [30]. There are very few methods that are directly

suitable for categorical data analysis, e.g., naive Bayes based methods for supervised

problems. It means that many widely used and very powerful real-valued techniques

cannot be efficiently applied to these tasks. That is why Section 4 aims at finding a

method of meaningful transformation of categorical features’ values into real-valued

vectors in order to avoid this issue.

2.3.2 Examples of Problems Involving Categorical Features

There are a lot of tasks where objects are described using categorical features. We point

out some examples in this section.

Collaborative Filtering. Collaborative filtering is one of the most popular exam-

ples [95]. Each object xi in the training set is a corresponding user rating description.

In the simplest case, each object has two categorical features User and Item with target

36

label yi which represents the rating of Item set by User. The task is to predict rating

scores for objects unseen before. See Section 2.5 for details.

Web Search. A lot of existing information retrieval techniques can be improved using

the categorical features. For example, the learning to rank task can be generalized to the

personalized learning to rank just by adding a single categorical feature User to the

features vectors that describe Query-Document pairs [123].

Natural Language Modelling. Categorical features are also applied in the natural

language processing [50]. For example, the categorical feature Word appears in tasks

such as the highly demanded language modelling problem, which requires an estimation

of probability p(wt−n+1, ..., wt), where wi is the word in i-th position of a sequence of

words with length n, which, in turn, is the size of the language model. This task can

be viewed as the task with n categorical features [12], and such approach shows high

performance in applications.

2.3.3 Existing Approaches to Handling Categorical Features

Naive Encoding. This work proposes a method that transforms a categorical data ma-

trix X with size n×m (each column is categorical) into a real matrix Z ∈ Rn×m′ , where

m′ is a number of features after the transformation. The real-valued matrix Z can be

further used with classical machine learning methods.

37

Let us enumerate categorical feature’s values. There is an example for feature City:

Moscow → 1,

New York → 2,

Paris → 3,

London → 4,

... →

So we use X̃ ∈ Nn×m instead of original X.

Indeed, the categorical feature’s values set is unordered, so such simple transforma-

tion of categorical features cannot be effectively used with most real-valued machine

learning techniques, because a non-existing order of feature values is significantly con-

sidered this way. E.g., there is no sense in the inequality New York < London, but

most real-valued machine learning algorithms would take into an account this wrong

knowledge.

Decision Tree Based Methods. Decision Trees [17], Random Forests [16] and other

Decision Tree based methods can handle categorical features out-of-the-box. They work

in the following way. The training process tries to find the optimal split of the dataset

into two parts in each node. The best split is the one that increases the purity of the

subsets. But it is very computationally expensive to find the optimal split in case of

categorical features with a large number of unique values. Actually there are O(2qj)

different splits for the j-th feature with qj distinct values. So even if qj = 100, it

becomes impossible to find the optimal split because of computational complexity.

38

One-Hot Encoding. A very popular method of transformation of categorical matrix

X into real-valued matrix Z is the so-called one-hot encoding [82], also known as

Dummy Encoding. Let some j-th feature has qj unique values {a1, ..., aqj}. Then this

feature is expanded into qj new binary features in this way:

zi,(j,ak) = 1[xi,j = ak], X ∈ Nn×m, Z ∈ Rn×m′
, k ∈ {1, ..., qj}, (28)

where m′ =
∑m

j=1 qj . Here 1[a] is an indicator of a, i.e.

1[a] =

1, if a is true,

0, else.

We get new transformed matrix Z by applying this procedure for every feature of X.

Although one-hot transformation is natural and easy to use, it has many drawbacks.

The major one is a high increase of object space dimensionality m′. Because most of the

binary feature values are zeros, it’s especially necessary to use sparse data representation

if m′ is large. Only a few methods can efficiently work with such representations, e.g.,

sparse linear methods. Thus, using one-hot encoding leads to significant limitations in

choosing further tools of data analysis.

There are many other categorical encoding approaches that are very similar to the

one-hot encoding, e.g., dummy encoding, effects encoding and other [45]. They are

primarily designed for further using with linear methods. All these approaches have the

same drawbacks as the previously discussed one-hot encoding.

39

Naive Bayes. To solve the problem of binary classification with categorical features,

a naive multinomial Bayesian classifier can be used. Its main idea is the assumption of

probabilistic conditional independence of features. In case of classification, the follow-

ing class will be predicted:

argmax
yi

p(yi|xi) = argmax
yi

p(yi)
m∏
j=1

p(xi,j|yi). (29)

Since all the multipliers are statistics over discrete and unordered sets (categorical fea-

tures’ values) then the principle of maximum likelihood provides the following estima-

tion of such multiplier:

p(xi,j|yi) =
∑n

k=1 1[yi = yk] · 1[xi,j = xk,j]∑n
k=1 1[yk = yi]

. (30)

In this situation, the maximum likelihood principle may have several disadvantages.

For example, if some categorical value of j was not found in the training sample, the

algorithm will not be able to calculate p(xi,j|yi). In addition, this approach does not

take into account the variance of the maximum likelihood estimate. In order to avoid

this in practice, an additive smoothing of probabilities [50] is used. It imposes a priori

Dirichlet distribution on the parameters of the probabilistic model:

p(xi,j|yi) =
∑n

k=1(1[yi = yk] · 1[xi,j = xk,j] + α)∑n
k=1(1[yk = yi] + α)

, (31)

where parameter α is a smoothing parameter. The greater is the value α, the closer

the probability estimates are to the prior probabilities of each class. And conversely,

the smaller is α, the closer the probability estimations are to the maximum likelihood

40

estimations.

Factorization Machines. Factorization Machines (FMs) [90] is the state-of-the-

art technique for a modeling recommender data. FMs use polynomial approximation

methods and the one-hot encoding. The advantages of FMs are in their scalability and

the fact, that they can mimic the most successful approaches for the task of collaborative

filtering, including SVD++ [58], PITF [93] and FPMC [92]. Note that FMs is a complete

supervised prediction model that can handle categorial features, but it is not a categorical

feature transformation method.

2.4 Word Embeddings

A short overview of the embeddings methods and their applications was presented in

Chapter 1. Two further sections focus on two specific cases: word embeddings and

embeddings of users and items in recommender systems.

2.4.1 Overview of Word Embeddings Methods

Word embedding training methods became an essential part of the natural language

processing field after the publication of [76], which described the implementation of

popular “word2vec” software and gave a significant impact for the whole industry. This

work introduced the Skip-Gram and Skip-Gram Negative Sampling embedding models,

which could be implemented efficiently and can process big amounts of data. After this,

other popular approaches were published, such as GloVe [85]. Moreover, non-negative

matrix factorizations are also used to build embeddings [79].

Apart the word-level embeddings, a lot of subword-level embeddings that could

analyze the meaning of words by analyzing their parts were introduced, e.g., [14, 19,

41

41, 46, 101, 114, 121].

In this work, we focus on the classical and one of the most popular approaches —

Skip-Gram Negative Sampling.

2.4.2 Skip-Gram Negative Sampling

Skip-Gram Negative Sampling (SGNS) approach to train word embeddings was intro-

duced in [76]. The “negative sampling” approach is thoroughly described in [35], and

the learning method is explained in [96]. There are several open-source implementa-

tions of SGNS neural network, which is widely known as “word2vec”. 12

Assume we have a text corpus given as a sequence of words w1, . . . , wn, where n

may be larger than 1012 and wi belongs to a vocabulary of words VW . A context c ∈ VC

of the word wi is a word from set {wi−L, ..., wi−1, wi+1, ..., wi+L} for some fixed window

size L. Usually, VC and VW are equal, however in some application they are different

(e.g. rare words or contexts are replaced with a special token). Let w, c ∈ Rd be the

word embeddings of word w and context c, respectively. Assume they are specified by

the following mappings:

W : VW → Rd, C : VC → Rd, (32)

where d is the dimensionality of the embedding space. The ultimate goal of SGNS word

embedding training is to fit good mappings W and C or, in other words, to find good

embeddings w and c for each word w and context c. Important to note that in a general

case, vocabulary of contexts can differ from the vocabulary of words, e.g. we might

1Original Google word2vec: https://code.google.com/archive/p/word2vec/
2Gensim word2vec: https://radimrehurek.com/gensim/models/word2vec.html

42

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html

want to consider nouns only. However, in the majority of cases, and in the SGNS case

in particular, these two sets are just equal.

Let D be a multiset of all word-context pairs observed in the corpus. In the SGNS

model, the probability that word-context pair (w, c) is observed in the corpus is mod-

elled as a following distribution:

P (#(w, c) ̸= 0|w, c) =

= σ(⟨w, c⟩) = 1

1 + exp(−⟨w, c⟩)
,

(33)

where #(w, c) is the number of times the pair (w, c) appears in D and ⟨x,y⟩ is the scalar

product of vectors x and y. Number d is a hyperparameter that adjusts the flexibility of

the model. It usually takes values from tens to hundreds.

In order to collect a training set, we take all pairs (w, c) from D as positive examples

and k randomly generated pairs (w, c) as negative ones. The number of times the word

w and the context c appear in D can be computed as

#(w) =
∑
c∈Vc

#(w, c), (34)

#(c) =
∑
w∈Vw

#(w, c) (35)

accordingly. Then negative examples are generated from the distribution defined by

#(c) counters:

PD(c) =
#(c)

|D|
. (36)

In this way, we have a model maximizing the following logarithmic likelihood objective

43

for all word-context pairs (w, c):

lwc(w, c) =#(w, c)(log σ(⟨w, c⟩)+

+ k · Ec′∼PD
log σ(−⟨w, c′⟩)),

(37)

where k is a hyperparameter that controls the weight of the negative class in the model.

In order to maximize the objective over all observations for each pair (w, c), we arrive

at the following SGNS optimization problem over all possible mappingsW and C:

l =
∑
w∈VW

∑
c∈VC

(#(w, c)(log σ(⟨w, c⟩)+

+ k · Ec′∼PD
log σ(−⟨w, c′⟩)))→ max

W,C
.

(38)

Usually, this optimization is done via the stochastic gradient descent procedure that is

performed during passing through the corpus [76, 96].

2.4.3 SGNS Optimization as Matrix Factorization

As shown in [70], the logarithmic likelihood (38) can be represented as the sum of

l̃w,c(w, c) over all pairs (w, c), where l̃w,c(w, c) has the following form:

l̃w,c(w, c) =#(w, c) log σ(⟨w, c⟩)+

+ k
#(w)#(c)

|D|
log σ(−⟨w, c⟩).

(39)

A crucial observation is that this loss function depends only on the scalar product ⟨w, c⟩

but not on embeddings w and c separately:

l̃w,c(w, c) = fw,c(xw,c), (40)

44

where

fw,c(xw,c) = aw,c log σ(xw,c) + bw,c log σ(−xw,c), (41)

and xw,c is the scalar product ⟨w, c⟩, and

aw,c = #(w, c), bw,c = k
#(w)#(c)

|D|
(42)

are constants. This means that (38) represents the low-rank factorization problem.

Indeed, denote the size of the words vocabulary |VW | as n and the size of the context

words vocabulary |VC | as m. Let W ∈ Rn×d and C ∈ Rm×d be low-rank matrices,

where each row w ∈ Rd of matrix W is the word embedding of the corresponding

word w and each row c ∈ Rd of matrix C is the context embedding of the corresponding

context c. Then the optimization problem can be written in the following form:

∑
w∈VW

∑
c∈VC

l̃w,c(w, c)→ max
W,C

. (43)

2.4.4 SVD over SPPMI matrix

In order to be able to use out-of-the-box SVD for this factorization task, the authors

of [70] proposed the surrogate version of SGNS as the objective function based on a

Shifted Positive Pointwise Mutual Information (SPPMI) matrix. There are two general

assumptions made in their algorithm that distinguish it from the SGNS optimization:

1. SVD optimizes Mean Squared Error (MSE) objective instead of SGNS loss func-

tion.

2. In order to avoid infinite elements in Shifted Pointwise Mutual Information (SPMI)

matrix, which results from the SGNS optimizaton, it is transformed in the ad-hoc

45

manner (SPPMI matrix is used) before applying SVD.

This makes the objective not interpretable in terms of the original task (38). As men-

tioned in [70], SGNS objective weighs different (w, c) pairs differently, unlike the SVD,

which works with the same weight for all pairs and may entail the performance fall. The

comprehensive explanation of the relation between SGNS and SVD-SPPMI methods is

provided in [53]. Papers [64, 71] give a good overview of highly practical methods to

improve these word embedding models.

2.5 Embeddings in Recommender Systems

2.5.1 Collaborative Filtering

Collaborative Filtering (CF) [94] is one of the most widely used approaches to recom-

mender systems. It is based on the analysis of users’ previous activity (likes, watches,

skips, etc. of items) and discovering hidden relations between users and items. Com-

pared to other recommender system approaches, conventional Collaborative Filtering

methods do not analyze any domain-specific context of users/items [98], such as ex-

plicit user and item profiles, items’ text descriptions or social relations between users.

Therefore, they are domain- and data-independent and can be applied to a wide range

of tasks, which is their major advantage.

2.5.2 Implicit and Explicit Feedback

There are different types of user feedback [60]: explicit and implicit. Explicit feedback

supposes every single user rates only a small set of items and ratings for other items are

unknown. That means that the rating matrix is sparse. For example, explicit feedback

may be convenient in cases when there are both positive and negative feedback, e.g.,

46

likes and dislikes. Implicit feedback implies that any user action can be viewed as

feedback: e.g., skips, likes, purchases, views, playbacks, etc. [81, 49]. Actually, an

absence of any actions related to a particular item can be considered as feedback as

well, and therefore the rating matrix may be dense.

2.5.3 Latent Factor Models

Among CF methods, matrix factorization techniques [59, 60] offer the most competitive

performance [25] and usually outperforms popular neighborhood methods [59]. Latent

Factor Models map users and items into a latent factor space of d-dimensional embed-

dings which contains information about preferences of users w.r.t. items. The mapping

is provided by a low-rank approximation of the rating matrix R ∈ Rn×m where one

dimension represents n users, another dimension represents m items of interest and en-

tries represent user feedback on items. An unknown relevance of a particular item that

would be assigned by a particular user can be estimated by the scalar product of their

embeddings (latent vectors).

The question is how to find a good factorization of a rating matrix. In case of explicit

feedback, the most popular approach for sparse matrix factorization is Alternating Least

Squares (ALS) method [11]. Its principal idea is based on componentwise optimization

through factors that can be reduced to the least squares estimation. Sometimes, the

absence of any actions can be viewed as negative feedback with a small weight and, in

this case, the method for low-rank approximation is called Implicit Alternating Least

Squares (IALS) [49].

47

2.5.4 PureSVD

A very popular and natural way to extract latent vectors from the data is to use classic

truncated sparse Singular Value Decomposition (SVD) of the rating matrix, which is

also called PureSVD in the recommender literature [25]:

R ≈ PQ⊤, P ∈ Rn×d, Q ∈ Rm×d. (44)

This approach assumes that all values in the rating matrix are known, but a lot of them

are equal to zero (actually, all entries with unknown ratings). In terms of popular

ranking measures, this approach performs better than other popular methods such as

SVD++ [25].

This factorization can be interpreted as follows. Every user u has a low dimensional

embedding pu ∈ Rd, a row in the matrix P, and every item i has an embedding qi ∈ Rd,

a row of the matrix Q. As a result, PureSVD method provides an approximation r̃ui of

the unknown rating for a pair (u, i), which is computed as the scalar product of the

embeddings: r̃ui = ⟨pu,qi⟩.

2.5.5 Cold-Start Problem

Since Collaborative Filtering approaches use only user behavioral data for predictions,

but not any domain-specific context of users/items, they cannot generate recommenda-

tions for new cold users or cold items which have no ratings so far.

There are various approaches to cold start problem proposed in the literature. Ad-

ditional context information (e.g., category labels [126] or all available metadata [10])

may be used. Moreover, there is a class of methods that use adaptive tree-based ques-

48

tionnaires to acquire the initial information about new users [34, 40, 51, 52, 108, 131].

Moreover, the cold start problem can be viewed from the exploration-exploitation trade-

off point of view [3, 130]. The methods from [24, 55] analyze the performance of CF

methods w.r.t. the number of known ratings for a user. This work, in turn, focuses on

the most popular type of approaches called Rating Elicitation.

2.5.6 Cold Objects Embeddings with Rating Elicitation

A very common approach to solve this cold-start problem [99], called rating elicitation,

is to explicitly independently ask cold users to rate a small representative seed set of

items or to ask a representative seed set of users to rate a cold item [33, 34, 72]. These

obtained ratings, in turn, could be used as an embedding of a cold user or a cold item.

The rating elicitation methods, such as [6, 33, 72, 87], are based on the same com-

mon scheme, which is introduced in this section. Suppose we have a system that con-

tains a history of users’ ratings for items, where only a few items may be rated by a

particular user. Denote the rating matrix by R ∈ Rn×m, where n is the number of users

and m is the number of items, and the value of its entry rui describes the feedback of

user u on item i. If the rating for pair (u, i) is unknown, then rui is set to 0. Without

loss of generality and due to the space limit, the following description of the methods is

provided only for the user cold start problem. Without any modifications, these methods

for the user cold start problem can be used to solve the item cold start problem after the

transposition of matrix R.

Algorithm 2 presents the general scheme of a rating elicitation method. Such proce-

dures ask a cold user to rate a seed set of representative items with indices k ∈ NL0 for

modeling his preference characteristics, where L0, called budget, is a parameter of the

49

rating elicitation system.

Algorithm 2 Rating elicitation for user cold start problem
Require: Warm rating matrix R ∈ Rn×m, cold user, budget L0

Ensure: Predicted ratings of the cold user for all items
1: Compute indices k ∈ NL0 of representative items that form a seed set
2: Elicit ratings z′ ∈ R1×L0 of the cold user on items with indices k
3: Predict ratings of the cold user for all items z ∈ R1×m using z′

4: return z

The performance of a rating elicitation procedure and the performance of the ob-

tained embeddings should be measured using a quality of predictions z. For this pur-

pose, we use ranking measures (such as Precision@k), which are well suitable for CF

task (see Section 6.6 for details).

2.5.7 Rating Elicitation Methods

Scoring Methods. The simplest method to find a good seed set is to rank users or

items by some ad-hoc score which shows how representative they are and take the top

ranked entities as a seed set [87, 88, 125, 127]. An obvious drawback of such meth-

ods that is avoided in the approach is that these elements are taken from the seed set

independently, and diversity of the selected elements is limited [33].

GreedyExtend. Among scoring methods, the most straightforward method is the GreedyEx-

tend approach [33]. Unfortunately, the brute force manner of GreedyExtend implies

very high computational costs. Hence, it is hardly scalable, in contrast to the approaches

that are empirically compared in this work. This method greedily adds the item i to the

current seed set of indices k ∈ NL that maximizes the target quality measure. The

search of the best i is computed in a brute force manner, i.e. the algorithm iteratively

adds the best item into the seed set: k ← [k, i], where i = argmini′ /∈kF([k, i′]) and

50

F([k, i′]) is the quality measure of recommendations generated using the seed set in-

dices [k, i′]. The authors of this method reported the results only for an approach that

uses similarities of items to predict the ratings via the seed set ratings. More effective

[6] linear approach described in Section 6.2 costs O(Lnm), where L is a current length

of k. At each step, the least squares solution is computed for almost all items, i.e., O(m)

times. Since the algorithm has L0 such steps, the total complexity is O(L2
0nm

2) (more

than 1016 operations for the Netflix dataset and the seed set size L0 = 10). Therefore,

we do not use this method in the experiments.

Further, in this section, we overview the methods that aim at a selection of a diverse

seed set and that have better performance.

Backward Greedy Selection. Another class of methods of searching for diverse rep-

resentatives is based on the factorization of the rating matrix. Since the selection of user

or item representatives is equivalent to selecting a submatrix of the corresponding factor,

these algorithms seek for the submatrix that maximizes some criterion. One such ap-

proach, called Backward Greedy Selection [6], solves only the item cold start problem,

but not the user one. This method is based on the techniques for transductive experi-

mental design introduced in [122]. To get the seed set, it greedily removes users from a

source user set in order to get a good seed set minimizing the value Trace
(
(SS⊤)−1

)
,

where S ∈ Rd×L is a submatrix in the items’ factor Q ∈ Rd×m of a rank-d decom-

position. Each deletion of an item requires an iterative lookup of all the items in the

data, where each iteration costs O(d2L). So, one deletion takes O(d2Lm) operations.

Assuming that L0 ≪ m, the whole procedure takes O(d2m3) operations, which is too

expensive to be computed on real-world datasets (the authors have selected a small sub-

set of users to perform their evaluation).

51

2.5.8 Representative Based Matrix Factorization

In this section, we focus on a one more rating elicitation algorithm of seeking for a set of

representative items that relies on the following intuitions. First, such algorithm should

not select items, if they are not popular and thus cover preferences of only a small

non-representative group of users. That means that the latent vectors from the seed

set should have large norms. Second, the algorithm has to select diverse items that are

relevant to different users with different tastes. This can be formalized as choosing latent

vectors that are far from being collinear. The requirements can be met by searching for

a subset of columns of Q that maximizes the volume of the parallelepiped spanned by

them. This intuition is demonstrated in Figure 4, which captures a two-dimensional

latent space and three seed sets. The volume of each seed set is proportional to the area

of the triangle built on the corresponding latent vectors. The dark grey triangles have

small volumes (because they contain not diverse vectors or vectors with small length)

and hence correspond to bad seed sets. Contrariwise, the light gray triangle has a large

volume and represents a better seed set.

The method presented in [72], called Representative Based Matrix Factorization

(RBMF), uses this intuition. It uses maximal-volume concept and the Maxvol algorithm

[37] for searching the most representative rows or columns in the factors of a CF factor-

ization. This approach is highly efficient and more accurate than all other competitors,

but it also has one significant limitation. It must use the same rank of factorization as

the desired number of representative users or items for the seed set. This work proposes

a generalization of Maxvol that allows using different rank values. It often leads to a

better recommendation accuracy, as shown in Section 6.6.

52

Figure 4: An illustration of the intuition behind Maxvol for searching the seed set:
correlated or short embeddings form a triangles (dark grey) with a smaller volume

2.6 Chapter Summary

This chapter overviewed existing approaches to train word embeddings and embeddings

of cold users and items from recommender data. Also, this chapter introduced all back-

ground required to understand the existing and new embedding methods described in

the work. In the following chapter, we are going to discuss a general framework to train

embeddings using low-rank matrix factorizations.

53

3 Matrix Factorization Framework to Train Embeddings

3.1 Framework

Low-rank matrix factorization techniques are widely used to build embeddings, even

though sometimes the obtained low-dimensional object representations are not called

“embeddings”. We formalized the common ideas behind this folklore knowledge [111]

and call this formalization a framework. Using this framework, we also develop new

methods that are proposed in the thesis. The framework procedure consists of 2 steps:

Step 1. Let say, we want to build embeddings of some objects (e.g. words, users,

etc). Denote the number of these objects as n. And then we need to construct

descriptions (features) of these objects. As a result, matrix X ∈ Rn×m should be

obtained, where m is a number of features.

Step 2. After this, we need to define an algorithm to factorize matrix X into two

factors P and Q. In the most popular case, if some matrix loss-function ρ(·, ·)

is used, the factorization algorithm is equal to solving the following optimization

problem:

ρ(X,PQ⊤)→ min
P,Q

,

s.t. P ∈ Rn×d, Q ∈ Rm×d.

(45)

The obtained matrix P ∈ Rn×d represents d-dimensional embeddings of each of

n objects. After obtaining these embeddings, it becomes possible to measure their

performance (see Section 1.3 for details).

Further sections show how the existing approaches and methods developed within

54

the thesis suit to this framework.

3.2 How Existing Embedding Approaches Fit to Framework

First of all, let us demonstrate how some of the existing methods fit to the framework

described above.

3.2.1 Principal Component Analysis

Well-known Pricipal Component Analysis (PCA, also called Karhunen-Loeve transfor-

mation) [30] dimensionality reduction procedure natually fits to the framework above.

Step 1. Objects’ descriptions are defined by the PCA task.

Step 2. Matrix factorization solves the optimization problem defined by Equa-

tion (45), where loss function ρ(A,B) = ||A−B||F is used. Since SVD provides

the optimal solution of this problem, it is usually used to perform PCA.

3.2.2 Text Embeddings via Latent Semantic Analysis

Latent Semantic Analysis (LSA) [66] is a particular case of PCA:

Step 1. Objects are texts and they are described by Bag of Words representa-

tion [128] with TF-IDF statistics.

Step 2. Loss function ρ(A,B) = ||A−B||F is used for factorization.

3.2.3 Text Embeddings via Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA) [48] solves the problem similar to LSA.

The only difference is the loss function ρ used in the optimization.

55

3.2.4 Word Embeddings via SVD over SPPMI Matrix

The work [70] describes the method to train word embeddings using low-rank factor-

ization of SSPMI matrix. Here is how it fit to the framework:

Step 1. Objects are natural language words. Their features are Shifted Posi-

tive Pointwise Mutual Information [70] of co-occurrences frequencies with other

words within a same context.

Step 2. Loss function ρ(A,B) = ||A − B||F is used to perform the matrix

factorization.

3.2.5 Users or Items Embeddings via PureSVD Recommender

PureSVD recommender approach learns users’ and items’ embedding via low-rank fac-

torization of the rating matrix (see section 2.5 for details). This is how PureSVD fit the

framework in case of user embeddings:

Step 1. Each user is described by ratings of films that he/she rated, and unknown

ratings are filled with zeros.

Step 2. Loss function ρ(A,B) = ||A−B||F is used to perform the factorization.

3.2.6 Representative Based Matrix Factorization

As shown in Section 2.5.6, the cold start problem in recommenders could be solved by

the rating elicitation procedure that obtains an embedding of a cold user (or, symmetri-

cally, a cold item). This is how the Representative Based Matrix Factorization (RBMF)

fits to the framework:

56

Step 1. Each user is described by ratings of films that he/she rated, and unknown

ratings are filled with zeros.

Step 2. The rating matrix is factorized using the pseudo-skeleton approach, which

means that users’ embeddings consists of ratings for a small seed set of represen-

tative items.

3.3 How Developed Methods Fit Framework

This work focuses on developing new methods to train embeddings in accordance with

the framework described above. In this section, you can find how the developed methods

suit to the framework.

3.3.1 Building Embeddings of Categorical Features’ Values

Chapter 4 is introduces a method to transform categorical (discrete) feature values into

real value embeddings that could be trained in the unsupervised fashion. This is how

the developed method fits the framework described above:

Step 1. Embedded objects are the values of categorical features. Each categorical

feature’s value is described by a vector of co-occurrence frequencies with another

categorical feature’s values. So each categorical feature’s value has as many em-

beddings as is the number of the rest categorical features in the dataset.

Step 2. The factorization algorithm (45) uses various β-divergency loss func-

tions. The performance of the embeddings is evaluated as a performance of sim-

ple supervised learning tasks where these embeddings are used instead of original

categorical features’ values.

57

3.3.2 Riemannian Optimization for Training Skip-Gram Negative Sampling Word

Embeddings

Skip-Gram Negative Sampling (SGNS) word embedding model, well known by its im-

plementation in “word2vec” software, is usually optimized by stochastic gradient de-

scent. However, the optimization of SGNS objective can be viewed as a problem of

searching for a good matrix with the low-rank constraint. The most straightforward

way to solve this type of problems is to apply Riemannian optimization framework to

optimize the SGNS objective over the manifold of required low-rank matrices. Chapter

5 proposes an algorithm that optimizes SGNS objective using Riemannian optimization

and demonstrates its superiority over popular competitors.

This is how the developed method fits the framework described above:

Step 1. Objects are natural language words. Each word is described by a vector

of co-occurrence frequencies of encountering this word within the same context

with any other word from the dictionary.

Step 2. This work reformulated the original algorithm training Skip-gram Nega-

tive Sampling embeddings as a two-steps procedure, where the first step naturally

fits to the Riemannian optimization approach, which we successfully applied. The

second step, in turn, decomposes an obtained low-rank solution into two fac-

tors W and C⊤. We used standard datasets to evaluate the performance of such

embeddings.

3.3.3 Obtaining Cold User and Item Embeddings in Recommender Systems

The cold start problem in Collaborative Filtering can be solved by asking new users

to rate a small seed set of representative items or by asking representative users to

58

rate a new item (see Section 2.5 for details). The question is how to build a seed

set that can give enough preference information for making good recommendations.

Chapter 6 introduces a fast algorithm for an analytical generalization of the existing

approach (RBMF) based on Maxvol algorithm, which we call Rectangular Maxvol.

This is how the developed method fits the framework described above:

Step 1. Objects are users (or items) including cold ones. Each user (item) is

described by a vector of ratings that he left for all items (that were left by all

users). Unknown ratings are filled with zeros according to the PureSVD approach.

Step 2. The novel pseudo-skeleton factorization algorithm is applied to select a

seed set, and ratings from the seed set form embeddings of cold objects. The per-

formance of these embeddings is evaluated as a performance of recommendations

based on them.

As you can see, the approaches introduced in this thesis also naturally fit the frame-

work described above.

3.4 Chapter Summary

This chapter formalized a general framework that allows to train embeddings using

low-rank matrix factorizations. It was shown that this framework comprises existing

embedding approaches and the new methods developed in this thesis. Three following

chapters introduce these novel methods.

59

4 Building Embeddings of Categorical Features’ Values

4.1 Section Overview

Most of existing machine learning techniques can handle objects described by real but

not categorical features. This chapter introduces a simple unsupervised method to trans-

form categorical features’ values into real-valued embeddings. It is based on low-rank

approximations of co-occurrence matrices of categorical features’ values. Once object’s

categorical features are transformed into real-valued, any common real-valued machine

learning technique can be applied for further data analysis. We tested our approach in

several supervised learning problems with categorical features. The experiments show

that the combination of the proposed features transformation method with a common

real-valued supervised algorithm (classical Random Forest predictor) leads to the results

that are comparable to the state-of-the-art approaches that are able to handle categorical

features out-of-box, such as Factorization Machines.

4.2 Proposed Methods

4.2.1 Transformation Using Direct Feature Value Frequencies

Suppose we have training data matrix X with size n ×m that describes n objects with

m features, and all features are categorical. In this section, we construct the method

that transforms each pair of features into a new real-valued feature using categorical

features’ values co-occurrence frequencies, which contain essential information about

the internal dataset structure.

Let us denote a transformed real-valued matrix as Z ∈ Rn×m′ , where each row

corresponds to an object from X, all categorical features’ values of X are replaced with

60

real-valued ones and m′ is the dimensionality of the new feature space. Then we can

compute every new feature j3 of dataset Z that corresponds to every pair of categorical

features j1 and j2 of initial dataset X as their co-occurrence value frequency:

zi,j3 =
1

n

n∑
k=1

1[xi,j1 = xk,j1] · 1[xi,j2 = xk,j2], j3 ∈ {1, ...,m′}, (46)

where

m′ =
m(m− 1)

2
. (47)

This new matrix Z contains only real-valued features and such transformation keeps

the statistical information about “interactions” [91] between pairs of the categorical

features.

Note that this transformation is unsupervised because it does not require target object

labels y. In other words, this transformation considers a generative structure of the

object space and can be used for a wide range of machine learning tasks.

4.2.2 Low-Rank Frequency Approximations

In this section, we propose another categorical features transformation approach that is

a modification of the previously discussed method. Instead of using the co-occurence

frequencies of feature values explicitly, we propose to use low-rank approximations of

these values.

Let us denote the unique values of features j1 and j2 as {ak}
qj1
k=1 and {bl}

qj2
l=1 respec-

tively. Then we can construct matrix G ∈ Rqj1×qj2 of co-occurence features’ values

frequencies:

gk,l =
1

n

n∑
i=1

1[xi,j1 = ak] · 1[xi,j2 = bl]. (48)

61

Then, we can approximate matrix G as a product of two matrices with low rank d, where

d ≤ qj1 , d ≤ qj2:

G ≈ PQ⊤, P ∈ Rqj1×d, Q ∈ Rqj2×d. (49)

Let us denote rows of P and Q corresponding to the values a and b of the j1-th and

j2-th features of X respectively as P[a, :] ∈ Rd and Q[b, :] ∈ Rd. So the scalar product

of vectors P[a, :] and Q[b, :] is an approximated co-occurence frequency of pair (a, b).

Using this transformation for every pair of the features, we can get new transformed

matrix Z ∈ Rn×m′:

zi,j3 = ⟨P[xi,j1 , :],Q[xi,j2 , :]⟩, j3 ∈ {1, ...,m′}, (50)

where

m′ =
m(m− 1)

2
. (51)

The scheme of this transformation process is illustrated in Figure 5. The usage of

low-rank factorizations provides the reduction of the transformation model parameters

number from quadratic O(qj1 · qj2) to linear O(d · (qj1 + qj2)), that is why this approach

is helpful in avoiding extra overfitting. Note that since many elements of G equal to

zero, usually it is computationally efficient to use low-rank factorization algorithms that

work with sparse matrices [8].

4.2.3 Embeddings Based on Low-Rank Approximations

Vectors P[a, :] and Q[b, :] can be used as embeddings of categorical features’ values a

and b, which are based on the information about their co-occurence with other categor-

ical features’ values. They may be used explicitly for feature encoding instead of scalar

62

Машинное обучение 1
Итоговая контрольная работа

Решите предложенные задачи. При решении можно пользоваться любыми электронными и бу-
мажными источниками информации. Решать задания необходимо строго самостоятельно! Каждая
задача должна быть подробно обоснована, задачи без обоснования не засчитываются. Решения
пишутся в свободной форме, однако так, чтобы проверяющие смогли разобраться в нем. Если про-
веряющие не смогут разобраться в решении какой-нибудь задачи, то она автоматически не засчи-
тывается.

p(c|x1

, ..., x

m

) =

p(c)p(x

1

, ..., x

m|c)
p(x

1

, ..., x

m

)

/

/ p(c)p(x

1

, ..., x

m|c) ⇡ p(c)

mY

i=1

p(x

i|c)

p(y|x
1

, ..., x

m

) / p(y)

mY

i=1

p(x

i

|y)

p(c|x1

, ..., x

m

) 6= e

log p(c)+

Pm
i=1 log p(x

i|c)

p(c|x1

, ..., x

m

) =

e

log p(c)+

Pm
i=1 log p(x

i|c)
P

K

k=1

e

log p(ck)+
Pm

i=1 log p(x

i|ck)

�(z

1

, z

2

) =

e

z1

e

z1
+ e

z2
=

=

1

1 + e

z2�z1
=

1

1 + e

�a

P (y = 1|x) = �(w

T

x)

P (y = k|x) = �

k

(w

T

k

x)

�

j

(z

1

, ..., z

n

) =

e

zj

P
n

k=1

e

zk

e

log p(c)+

Pm
i=1 log p(x

i|c)

log p(c|x1

, ..., x

m

) = log p(c) +

mX

i=1

log p(x

i|c)

p(+1|x1

, ..., x

m

) / p(+1)

mY

i=1

p(x

i|+ 1) = p(+1)

mY

i=1

p(+1|xi

)p(x

i

)

p(+1)

k 2 {1, ...,K}

1

j1 j2

j1 j2

=

X

G P
Q�

PQ�

Z

Low-rank
approximationj3

Figure 5: Scheme of using low-rank feature value frequency approximations for trans-
formation categorical features of matrix X into real-valued features of Z.

63

multiplication, as it was done in the previous section. In this case, 2d-dimensional set j3

of new transformed features’ values of Z ∈ Rn×m′ consists of the following embeddings

concatenation:

Z[i, j3] = concat (P[xi,j1 , :],Q[xi,j2 , :]) , j3 ∈ {1, ...,m′}, (52)

where

m′ = 2d · m(m− 1)

2
= dm(m− 1). (53)

Thus, every pair of features is transformed into new 2d real features, or, in other words,

each feature value is replaced with a d(m− 1)-dimensional embedding. This approach

is unsupervised as well. The scheme of this process for all features is illustrated in

Figure 6.

4.3 Experiments

We implemented three categorical feature transformation methods proposed in Sec-

tion 4.2 using [8] and [28]. In order to measure the performance of any categorical

features’ values embedding approach, we use it in several supervised learning tasks for

categorical features transformation and train the Random Forest real-valued supervised

learning method using the transformed real-valued dataset. Its performance indicates

the performance of the embedding approach. Some of the existing algorithms that can

handle categorical features out-of-the-box (without transforming them into real-valued)

were used in the experiments as baselines: Factorization Machines, sparse logistic re-

gression, Naive Bayes.

64

Машинное обучение 1
Итоговая контрольная работа

Решите предложенные задачи. При решении можно пользоваться любыми электронными и бу-
мажными источниками информации. Решать задания необходимо строго самостоятельно! Каждая
задача должна быть подробно обоснована, задачи без обоснования не засчитываются. Решения
пишутся в свободной форме, однако так, чтобы проверяющие смогли разобраться в нем. Если про-
веряющие не смогут разобраться в решении какой-нибудь задачи, то она автоматически не засчи-
тывается.

p(c|x1

, ..., x

m

) =

p(c)p(x

1

, ..., x

m|c)
p(x

1

, ..., x

m

)

/

/ p(c)p(x

1

, ..., x

m|c) ⇡ p(c)

mY

i=1

p(x

i|c)

p(y|x
1

, ..., x

m

) / p(y)

mY

i=1

p(x

i

|y)

p(c|x1

, ..., x

m

) 6= e

log p(c)+

Pm
i=1 log p(x

i|c)

p(c|x1

, ..., x

m

) =

e

log p(c)+

Pm
i=1 log p(x

i|c)
P

K

k=1

e

log p(ck)+
Pm

i=1 log p(x

i|ck)

�(z

1

, z

2

) =

e

z1

e

z1
+ e

z2
=

=

1

1 + e

z2�z1
=

1

1 + e

�a

P (y = 1|x) = �(w

T

x)

P (y = k|x) = �

k

(w

T

k

x)

�

j

(z

1

, ..., z

n

) =

e

zj

P
n

k=1

e

zk

e

log p(c)+

Pm
i=1 log p(x

i|c)

log p(c|x1

, ..., x

m

) = log p(c) +

mX

i=1

log p(x

i|c)

p(+1|x1

, ..., x

m

) / p(+1)

mY

i=1

p(x

i|+ 1) = p(+1)

mY

i=1

p(+1|xi

)p(x

i

)

p(+1)

k 2 {1, ...,K}

1

Embeddings

j1 j2

j1 j2

X

G P
Q�

Z

Figure 6: Scheme of using low-rank features’ value embeddings for transformation of
categorical features.

65

4.3.1 Datasets

We use two supervised datasets in the experiments. The first dataset was published at

the international data mining competition Amazon.com – Employee Access Challenge2,

which was held in 2013. We call this dataset shortly Amazon in the work. It represents

a binary classification task. The training set has 32769 objects and approximately 94%

of them belong to class 1, other objects belong to class 0. Each object corresponds

to an employee access request to some resource. The target label shows whether the

corresponding request was approved by a supervisor or not. The task is to provide a

model that would automatically predict the probability of approvement.

Every object has a categorical feature description: Employee ID, Resource ID, De-

partment ID, etc (9 features in total). The number of unique values of each feature is

shown in Table 1.

Number of the feature 1 2 3 4 5 6 7 8 9
Number of unique values 7518 4243 128 177 449 343 2358 67 343

Table 1: Number of unique values for every feature in Amazon dataset

The second dataset is Movie Lens 100K3. We call it shortly Movie Lens. The dataset

provides 100000 user-film ratings, and each rating is described by the following cate-

gorical features: User ID, Item ID, User social information (several features), Genre

information. The original dataset includes many binary indicators corresponding to the

films genres (each film can have several genres). We merged these genre indicators to-

gether into a new categorical feature, where each unique value corresponds to a unique

genre combination. The target object label is binary and represents whether a corre-

sponding rating equals to 5 or not. Approximately 64% of the objects belong to the
2https://www.kaggle.com/c/amazon-employee-access-challenge
3https://grouplens.org/datasets/movielens/100k/

66

https://www.kaggle.com/c/amazon-employee-access-challenge
https://grouplens.org/datasets/movielens/100k/

class 1. The number of unique values of every feature is shown in Table 2.

Number of the feature 1 2 3 4 5 6
Number of unique values 943 1682 2 21 795 216

Table 2: Number of unique values for every feature in Movie Lens dataset

4.3.2 Prediction Quality Estimation

Let us have true label vector y ∈ {0, 1}n and vector of predictions ỹ ∈ [0, 1]n (e.g. it can

be estimated probabilities of belonging to the class 1). The performance of predictions

is computed as the area under the ROC-curve (AUC-ROC) [30].

We use the cross-validation technique to estimate the performance. We set 7-fold

cross-validation for the Amazon dataset and 5-fold for the Movie Lens dataset. The

cross-validated performance results of different algorithms are compared using Mann-

Whitney U statistical test [74] with p-value bounded by 0.05 for statistical significance.

4.3.3 Results of the Experiments

The experiments show that the transformation based on low-rank embeddings (Sec-

tion 4.2.3) is the most effective approach among the proposed ones. The performance

of rank-10 transformations combined the Random Forest classifier is presented in Ta-

ble 3. Also, you can see the results for the baselines. All the results are statistically

significantly different, which is proved by Mann-Whitney U test.

First of all, from the table, we can see that the simple enumeration of categorical

values provides very poor results. Also, we can note that the transformation approach

in combination with Random Forest (see Section 2.2 for details) leads on the Amazon

dataset and inferiors on Movie Lens. However, this advantage is expected because Fac-

67

torization Machines (see Section 2.2 for details) are designed as a recommender method,

so it is natural that they show better results on the specific domain dataset Movie Lens.

Summing it up, the proposed transformation approach combined with the popular Ran-

dom Forest predictor allows us to get the performance comparable to the state-of-the-art.

Figure 7 shows the dependency of the prediction performance on the rank d of matrix

approximation on the Amazon dataset. According to the results, it is not necessary to

use rank much more than 10. The situation with the Movie Lens dataset is quite similar.

Another question is the choice of the matrix similarity measure used in low-rank

matrix fatorizations. All results above use the Frobenius norm as this measure. Figure 8

shows the dependence of AUC-ROC score on the parameter β in β-divergency. We

see that the optimization of Kullback-Leibler divergence (β → 1) gives more precise

results than the Frobenius norm optimization (β = 2). But the optimization of Kullback-

Leibler divergence works much slower (more than 104 times slower) than the Frobenius

norm optimization, because of efficient implementations of sparse SVD. That is why, we

were not able to compute results for the Amazon dataset in case of the KL-divergence.

Anyway, the obtained results are promising even in case of using Frobenius norm.

We also did not compare our approach to the industrial algorithm CatBoost4 by

Yandex, which focuses on processing categorical data, because it was developed much

later that the current research was conducted and published.

4https://github.com/catboost/catboost

68

https://github.com/catboost/catboost

Method Amazon Movie Lens
Direct frequency transformation + RF 0.8503 0.7597
Low-rank approximated transformation + RF 0.8472 0.7539
Low-rank latent transformation + RF 0.8817 0.7702
Low-rank latent transformation + SVM 0.8442 0.7174
Simple numeration + RF 0.5703 0.5311
Sparse logistic regression 0.8691 0.7958
Smoothed naive Bayes 0.8776 0.7744
Factorization machines 0.8765 0.8116

Table 3: Comparison of proposed and existing approaches in terms of AUC-ROC per-
formance measure. All performance differences are statistically significant.

0 2 4 6 8 10 12

Rank of approximation

0.80

0.82

0.84

0.86

0.88

0.90

0.92

A
U

C

Figure 7: Dependence of AUC-ROC on parameter d with 2σ errorbar on Amazon
dataset.

69

1.2 1.4 1.6 1.8 2.0

Beta

0.766

0.768

0.770

0.772

0.774

0.776

0.778

0.780

0.782

A
U

C

Figure 8: Dependence of AUC-ROC on parameter β with 2σ errorbar on Movie Lens
dataset.

4.4 Chapter Summary

This chapter introduced a domain-independent method of unsupervised transformation

of categorical features values into real-valued embeddings that are obtained from low-

rank factors. Categorical data transformed in this way can be efficiently analyzed by

common real-valued machine learning techniques. In order to demonstrate the perfor-

mance of this embedding approach, it was shown that the categorical features trans-

formation method based on the proposed embeddings and combined with widely used

Random Forest binary classifier leads to the results comparable to the state-of-art ap-

proaches that can handle categorical features, such as Factorization Machines. Besides

the binary classification problem, the proposed unsupervised embeddings can also be

used for regression, multiclass classification, cluster analysis and many other machine

learning problems.

70

5 Riemannian Optimization for Training Skip-Gram Neg-

ative Sampling Word Embeddings

5.1 Section Overview

In this chapter, we consider the problem of embedding words into a low-dimensional

space in order to measure the semantic similarity between them. As an example, how to

find whether the word “table” is semantically more similar to the word “chair” than to

the word “sky”? That is achieved by constructing a low-dimensional vector represen-

tation for each word and measuring the similarity between the words as the similarity

between the corresponding vectors. The dimensionality of this embedding space is a

hyperparameter of the embedding training problem.

One of the most popular word embedding models [76], described in Section 2.4.2, is

a discriminative neural network that optimizes Skip-Gram Negative Sampling (SGNS)

objective (see Equation (38)). It aims at predicting whether two words can be found

close to each other within a text. As shown in Section 5.2, the process of word embed-

dings training using SGNS can be divided into two general steps with clear objectives

(in this chapter, we use the matrix factorization notation that is standard in the literature

and different from the rest of the thesis):

Step 1. Search for a low-rank matrix X that provides a good SGNS objective value;

Step 2. Search for a good low-rank representation X = WC⊤ in terms of linguistic

metrics, where W is a matrix of word embeddings and C is a matrix of so-

called context embeddings.

Unfortunately, most previous approaches mixed these two steps into a single one, which

71

entails a not completely correct formulation of the optimization problem. For example,

popular approaches to train embeddings (including the original “word2vec” implemen-

tation) do not take into account that the objective from Step 1 depends only on the

product X = WC⊤: instead of straightforward computing of the derivative w.r.t. X,

these methods are explicitly based on the derivatives w.r.t. W and C, which compli-

cates the optimization procedure. Moreover, such approaches do not take into account

that parametrization WC⊤ of matrix X is non-unique and Step 2 is required. Indeed,

for any invertible matrix S, we have

X = W1C
⊤
1 = W1SS

−1C⊤
1 = W2C

⊤
2 , (54)

therefore, solutions W1C
⊤
1 and W2C

⊤
2 are equally good in terms of the SGNS objective

but entail different cosine similarities between embeddings and, as a result, different

performance in terms of linguistic metrics (see Section 5.4.2 for details).

A successful attempt to follow the described above steps, which outperforms the

original SGNS optimization approach in terms of various linguistic tasks, was proposed

in [70]. In order to obtain a low-rank matrix X on Step 1, this method reduces the

dimensionality of Shifted Positive Pointwise Mutual Information (SPPMI) matrix via

Singular Value Decomposition (SVD). On Step 2, it computes embeddings W and C

via a simple formula that depends on the factors obtained by SVD. However, this method

has one important limitation: SVD provides a solution to a surrogate optimization prob-

lem, which has no direct relation to the SGNS objective. In fact, SVD minimizes the

Mean Squared Error (MSE) between X and SPPMI matrix, which does not lead to min-

imization of SGNS objective in general (see Section 2.4.4 and Section 4.2 in [70] for

details).

72

These issues bring us to the main idea of the work: while keeping the low-rank

matrix search setup on Step 1, optimize the original SGNS objective directly. This

leads to an optimization problem over matrix X with the low-rank constraint, which is

often [77] solved by applying Riemannian optimization framework [112]. In the work,

we use the projector-splitting algorithm [73] (see Section 2.1.4 for details), which is

easy to implement and has low computational complexity. Of course, Step 2 may be

improved as well, but we regard this as a direction of future work.

As a result, the approach achieves the significant improvement in terms of SGNS

optimization on Step 1 and, moreover, the improvement on Step 1 entails the improve-

ment on Step 2 in terms of linguistic metrics. That is why the proposed two-step de-

composition of the problem makes sense, which, most importantly, opens the way to

applying even more advanced approaches based on it (e.g., more advanced Riemannian

optimization techniques for Step 1 or a more sophisticated treatment of Step 2).

To summarize, the main contributions of this chapter are:

• we reformulated the problem of SGNS word embedding learning as a two-step

procedure with clear objectives;

• For Step 1, we developed an algorithm based on Riemannian optimization frame-

work that optimizes SGNS objective over low-rank matrix X directly;

• The algorithm outperforms state-of-the-art competitors in terms of SGNS objec-

tive and the semantic similarity linguistic metric [70, 76, 100].

73

5.2 Problem Setting

5.2.1 Matrix Notation of the Problem

Relying on the prospect proposed in [70], let us show that the SGNS optimization prob-

lem given by (38) from Section 2.4.2 can be considered as a problem of searching for a

matrix that maximizes a certain objective function and has the rank-d constraint (Step 1

in the scheme described in Section 5.1). In the current section, we use the same notation

as introduced in Section 2.4.2.

Denote the size of the words vocabulary |VW | as n and the size of the context words

vocabulary |VC | as m. Let W ∈ Rn×d and C ∈ Rm×d be matrices, where each row w ∈

Rd of matrix W is the word embedding of the corresponding word w and each row

c ∈ Rd of matrix C is the context embedding of the corresponding context c. Then the

elements of the product of these matrices

X = WC⊤ (55)

are the scalar products xw,c of all pairs (w, c):

X = (xw,c), w ∈ VW , c ∈ VC . (56)

Note that this matrix has rank d, because X equals to the product of two matrices with

sizes (n×d) and (d×m). Now we can write SGNS objective given by (38) as a function

of X:

F (X) =
∑
w∈VW

∑
c∈VC

fw,c(xw,c), F : Rn×m → R, (57)

74

where

fw,c(xw,c) = lw,c(w, c) =#(w, c) log σ(⟨w, c⟩)+

+ k
#(w)#(c)

|D|
log σ(−⟨w, c⟩).

(58)

This arrives us at the following proposition:

Proposition 1. SGNS optimization problem given by (38) can be rewritten in the fol-

lowing constrained form:

maximize F (X),

subject to X ∈Md,

(59)

whereMd is the manifold [112] of all matrices in Rn×m with rank d:

Md = {X ∈ Rn×m : rank(X) = d}. (60)

The key idea of this chapter is to solve the optimization problem given by (59) via

the framework of Riemannian optimization, which we introduce in Section 2.1.4.

Important to note that this prospect does not suppose the optimization over parame-

ters W and C directly. This entails the optimization in the space with ((n+m− d) · d)

degrees of freedom [78] instead of ((n + m) · d), which simplifies the optimization

process (see Section 5.5 for the experimental results).

5.2.2 Computing Embeddings from a Low-Rank Solution

Once X is found, we need to recover W and C such that X = WC⊤ (Step 2 in the

scheme described in Section 5.1). This problem does not have a unique solution, since

if (W,C) satisfy this equation, then WS−1 and CS⊤ satisfy it as well for any non-

75

singular matrix S. Moreover, different solutions may achieve different values of the

linguistic metrics (see Section 5.4.2 for details). While the work focuses on Step 1, we

use, for Step 2, a heuristic approach that was proposed in [71] and it shows good results

in practice. We compute SVD of X in the form

X = UΣV⊤, (61)

where U and V have orthonormal columns, and Σ is the diagonal matrix, and use

W = U
√
Σ, C = V

√
Σ (62)

as matrices of embeddings. Since X is stored in the low-rank format, the SVD could be

done efficiently.

A simple justification of this solution is the following: we need to map words into

vectors in a way that similar words would have similar embeddings in terms of cosine

similarities:

cos(w1,w2) =
⟨w1,w2⟩
∥w1∥ · ∥w2∥

. (63)

It is reasonable to assume that two words are similar, if they share contexts. Therefore,

we can estimate the similarity of two words w1, w2 as

s(w1, w2) =
∑
c∈VC

xw1,c · xw2,c, (64)

which is the element of the matrix XX⊤ with indices (w1, w2). Note that

XX⊤ = UΣV⊤VΣU⊤ = UΣ2U⊤. (65)

76

If we choose W = UΣ, we exactly obtain ⟨w1,w2⟩ = s(w1, w2), since WW⊤ =

XX⊤ in this case. That is, the cosine similarity of the embeddings w1,w2 coincides

with the intuitive similarity s(w1, w2). However, scaling by
√
Σ instead of Σ was shown

in [71] to be a better solution in experiments.

5.3 Algorithm

In order to solve the optimization problem given by (59), we use the Projector-Splitting

algorithm [1], described in Section 2.1.4. In case of SGNS objective given by (57), an

element of gradient∇F required for the optimization method has the form:

(∇F (X))w,c =
∂fw,c(xw,c)

∂xw,c

=

= #(w, c) · σ (−xw,c)− k
#(w)#(c)

|D|
· σ (xw,c) .

(66)

To make the method more flexible in terms of convergence properties, we addition-

ally use λ ∈ R, which is a step size parameter. In this case, retractor R returns

Xi + λ∇F (Xi) instead of Xi + ∇F (Xi) onto the manifold. The whole optimization

procedure is summarized in Algorithm 3.

5.4 Experimental Setup

5.4.1 Training Models

We compare the proposed method (“RO-SGNS” in the tables) performance to two base-

lines: SGNS embeddings optimized via Stochastic Gradient Descent, implemented in

the original “word2vec”, (“SGD-SGNS” in the tables) [76] and embeddings obtained

by SVD over SPPMI matrix (“SVD-SPPMI” in the tables) [70]. we have also experi-

77

Algorithm 3 Riemannian Optimization for SGNS
Require: Dimentionality d, initialization W0 and C0, step size λ, gradient function
∇F : Rn×m → Rn×m, number of iterations K

Ensure: Factor W ∈ Rn×d

1: X0 ←W0C
⊤
0 # get an initial point at the manifold

2: U0,S0,V
⊤
0 ← SVD(X0) # the first point satisfying the low-rank constraint

3: for i← 1, . . . , K do
4: Ui,Si ← QR ((Xi−1 + λ∇F (Xi−1))Vi−1) # step of the block power method
5: Vi,S

⊤
i ← QR

(
(Xi−1 + λ∇F (Xi−1))

⊤Ui

)
6: Xi ← UiSiV

⊤
i # update the point at the manifold

7: end for
8: U,Σ,V⊤ ← SVD(XK)
9: W← U

√
Σ # compute word embeddings

10: return W

mented with the blockwise alternating optimization over factors W and C, but the results

are almost the same as SGD results, that is why we do not include them in the work.

The source code of the experiments is available online1.

The models were trained on English Wikipedia “enwik9” corpus2, which was pre-

viously used in most work on this topic. Like in previous studies, we counted only the

words which occur more than 200 times in the training corpus [70, 76]. As a result, we

obtained a vocabulary of 24292 unique tokens (set of words VW and set of contexts VC

are equal). The size of the context window was set to 5 for all experiments, as it was

done in [70, 76]. We conduct three series of experiments: for dimensionality d = 100,

d = 200, and d = 500.

Optimization step size is chosen to be small enough to avoid huge gradient values.

However, thorough choice of λ does not result in a significant difference in performance

(this parameter was tuned on the training data only, the exact values used in experiments

are reported below).

1https://github.com/AlexGrinch/ro_sgns
2http://mattmahoney.net/dc/textdata

78

https://github.com/AlexGrinch/ro_sgns
http://mattmahoney.net/dc/textdata

5.4.2 Evaluation

We evaluate word embeddings via the word similarity task. We use the following pop-

ular datasets for this purpose: “wordsim-353” ([29]; 3 datasets), “simlex-999” [47] and

“men” [18]. Original “wordsim-353” dataset is a mixture of the word pairs for both

word similarity and word relatedness tasks. This dataset was split [2] into two inter-

secting parts: “wordsim-sim” (“ws-sim” in the tables) and “wordsim-rel” (“ws-rel” in

the tables) to separate the words from different tasks. In the experiments, we use both

of them on a par with the full version of “wordsim-353” (“ws-full” in the tables). Each

dataset contains word pairs together with assessor-assigned similarity scores for each

pair. As a quality measure, we use Spearman’s correlation between these human ratings

and cosine similarities for each pair. We call this quality metric linguistic in the work.

5.5 Results of Experiments

First of all, we compare the value of SGNS objective obtained by the methods. The

comparison is demonstrated in Table 4.

d = 100 d = 200 d = 500
SGD-SGNS −1.68 −1.67 −1.63
SVD-SPPMI −1.65 −1.65 −1.62
RO-SGNS −1.44 −1.43 −1.41

Table 4: Comparison of SGNS values (multiplied by 10−9) obtained by the models.
Larger is better.

We see that SGD-SGNS and SVD-SPPMI methods provide quite similar results;

however, the proposed method obtains significantly better SGNS values, which proves

the feasibility of using Riemannian optimization framework in SGNS optimization prob-

lem. It is interesting to note that SVD-SPPMI method, which does not optimize SGNS

79

Dim. d Algorithm ws-sim ws-rel ws-full simlex men

d = 100
SGD-SGNS 0.719 0.570 0.662 0.288 0.645
SVD-SPPMI 0.722 0.585 0.669 0.317 0.686
RO-SGNS 0.729 0.597 0.677 0.322 0.683

d = 200
SGD-SGNS 0.733 0.584 0.677 0.317 0.664
SVD-SPPMI 0.747 0.625 0.694 0.347 0.710
RO-SGNS 0.757 0.647 0.708 0.353 0.701

d = 500
SGD-SGNS 0.738 0.600 0.688 0.350 0.712
SVD-SPPMI 0.765 0.639 0.707 0.380 0.737
RO-SGNS 0.767 0.654 0.715 0.383 0.732

Table 5: Comparison of the methods in terms of the semantic similarity task. Each entry
represents the Spearman’s correlation between predicted similarities and the manually
assessed ones.

five he main
SVD-SPPMI RO-SGNS SVD-SPPMI RO-SGNS SVD-SPPMI RO-SGNS

Neighbors Dist. Neighbors Dist. Neighbors Dist. Neighbors Dist. Neighbors Dist. Neighbors Dist.
lb 0.748 four 0.999 she 0.918 when 0.904 major 0.631 major 0.689
kg 0.731 three 0.999 was 0.797 had 0.903 busiest 0.621 important 0.661

mm 0.670 six 0.997 promptly 0.742 was 0.901 principal 0.607 line 0.631
mk 0.651 seven 0.997 having 0.731 who 0.892 nearest 0.607 external 0.624
lbf 0.650 eight 0.996 dumbledore 0.731 she 0.884 connecting 0.591 principal 0.618
per 0.644 and 0.985 him 0.730 by 0.880 linking 0.588 primary 0.612

Table 6: Examples of the semantic neighbors obtained for words “five”, “he” and
“main”.

objective directly, obtains better results than SGD-SGNS method, which aims at opti-

mizing SGNS. This fact additionally confirms the idea described in Section 5.2.1 that

the independent optimization over parameters W and C may decrease the performance.

However, the target performance measure of embedding models is the correlation

between semantic similarity and human assessment (Section 5.4.2). Table 5 presents the

comparison of the methods in terms of it. We see that the proposed method outperforms

the competitors on all datasets except for “men” dataset where it obtains slightly worse

results. Moreover, it is essential that the higher dimension entails higher performance

gain of the method in comparison to the competitors.

To understand how the model improves or degrades the performance in comparison

80

usa
SGD-SGNS SVD-SPPMI RO-SGNS

Neighbors Dist. Neighbors Dist. Neighbors Dist.
akron 0.536 wisconsin 0.700 georgia 0.707

midwest 0.535 delaware 0.693 delaware 0.706
burbank 0.534 ohio 0.691 maryland 0.705
nevada 0.534 northeast 0.690 illinois 0.704
arizona 0.533 cities 0.688 madison 0.703

uk 0.532 southwest 0.684 arkansas 0.699
youngstown 0.532 places 0.684 dakota 0.690

utah 0.530 counties 0.681 tennessee 0.689
milwaukee 0.530 maryland 0.680 northeast 0.687

headquartered 0.527 dakota 0.674 nebraska 0.686

Table 7: Examples of the semantic neighbors from 11th to 20th obtained for the word
“usa” by all three methods. Top-10 neighbors for all three methods are exact names of
states.

to the baseline, we found several words, whose neighbors in terms of cosine distance

change significantly. Table 6 demonstrates neighbors of the words “five”, “he” and

“main” for both SVD-SPPMI and RO-SGNS models. A neighbor is marked bold if

we suppose that it has similar semantic meaning to the source word. First of all, we

notice that the model produces much better neighbors of the words describing digits or

numbers (see word “five” as an example). A similar situation happens for many other

words, e.g., in case of “main” — the nearest neighbors contain 4 similar words for

the model instead of 2 in case of SVD-SPPMI. The neighborhood of “he” contains less

semantically similar words in case of the model. However, it filters out irrelevant words,

such as “promptly” and “dumbledore”.

Table 7 contains the nearest words to the word “usa” from 11th to 20th. We marked

names of USA states bold and did not represent top-10 nearest words as they are exactly

names of states for all three models. Some non-bold words are arguably relevant as they

present large USA cities (“akron”, “burbank”, “madison”) or geographical regions of

81

several states (“midwest”, “northeast”, “southwest”), but there are also some completely

irrelevant words (“uk”, “cities”, “places”) presented by first two models.

The experiments show that the optimal number of iterations K in the optimization

procedure and step size λ depend on the particular value of d. For d = 100, we have

K = 7, λ = 5 · 10−5, for d = 200, we have K = 8, λ = 5 · 10−5, and for d = 500, we

have K = 2, λ = 10−4. Moreover, the best results were obtained when SVD-SPPMI

embeddings were used as an initialization of Riemannian optimization process.

Figure 9 illustrates how the correlation between semantic similarity and human as-

sessment scores changes through iterations of the method. The optimal value of K is

the same for both whole testing set and its 10-fold subsets chosen for cross-validation.

The idea to stop optimization procedure on some iteration is also discussed in [64].

Training of the same dimensional models (d = 500) on English Wikipedia corpus

using SGD-SGNS, SVD-SPPMI, RO-SGNS took 20 minutes, 10 minutes and 70 min-

utes respectively. The proposed method works slower, but not significantly. Moreover,

since we were not focused on the code efficiency optimization, this time can be reduced.

5.6 Chapter Summary

In this part of the work, we proposed the general two-step scheme of training SGNS

word embedding model that is successfully used by other researchers [132] and intro-

duced the algorithm that performs the search of a solution in the low-rank form via Rie-

mannian optimization framework. We also demonstrated the superiority of the method

by providing an experimental comparison to existing state-of-the-art approaches.

Possible direction of future work is to apply more advanced optimization techniques

to the Step 1 of the scheme proposed in Section 5.1 and to explore the Step 2 — obtain-

82

0 5 10 15 20 25

iterations

0.346

0.347

0.348

0.349

0.350

0.351

0.352

0.353

0.354

co
rr

el
at

io
n

simlex-999

0 5 10 15 20 25

iterations

0.696

0.698

0.700

0.702

0.704

0.706

0.708

0.710
men

Figure 9: Illustration of why it is important to choose the optimal iteration and stop op-
timization procedure after it. The graphs show semantic similarity metric in dependence
on the iteration of optimization procedure. The embeddings obtained by SVD-SPPMI
method were used as initialization. Parameters: d = 200, λ = 5 · 10−5.

83

ing embeddings with a given low-rank matrix.

84

6 Cold User and Item Embeddings in Recommender Sys-

tems

6.1 Section Overview

As it was discussed in the Section 2.5.6, there is an approach to solve a cold start prob-

lem in collaborative filtering, called rating elicitation. Its main idea is to ask cold users

to rate a seed set of representative set of items or conversely ask a representative set of

users to rate cold items. These obtained ratings form embeddings of user and item that

could be used for further data analysis.

From the overview in the background chapter, we know that one of the most popular

and successful approaches [72] to perform rating elicitation is based on the maximal-

volume concept [38]. Its general intuition is that the most representative seed set should

consist of the most representative and diverse latent vectors, i.e., they should have the

largest length yet be as orthogonal as possible to each other. Formally, the degree to

which these two requirements are met is measured by the volume of the parallelepiped

spanned by these latent vectors. In matrix terms, the algorithm, called Maxvol [37],

searches very efficiently for a submatrix of a factor matrix with the locally maximal

determinant. Unfortunately, the determinant is defined only for square matrices, which

means that a given fixed size of a seed set requires the same rank of the matrix factor-

ization that may be not optimal. For example, the search for a sufficiently large seed

set requires a relatively high rank of factorization, and hence a higher rank implies a

larger number of the model parameters and a higher risk of overfitting, which, in turn,

decreases the quality of recommendations.

To overcome the intrinsic “squareness” of the ordinary Maxvol, which is entirely

85

based on the determinant, we introduce the notion of rectangular matrix volume, a

generalization of the usual determinant. Searching a submatrix with high rectangular

volume allows using ranks of the factorization that are lower than the size of a seed

set. However, the problem of searching for the globally optimal rectangular submatrix

is NP-hard in the general case. In this work, we propose a novel efficient algorithm,

called Rectangular Maxvol, which generalizes the original Maxvol algorithm. It works

in a greedy fashion and adds representative objects into a seed set one by one. This in-

cremental update has a low computational complexity, which results in high algorithm

efficiency. In this work, we provide a detailed complexity analysis of the algorithm

and its competitors and present a theoretical analysis of its error bounds. Moreover, as

demonstrated by the experiments, the rectangular volume notion leads to a noticeable

quality improvement of recommendations on popular recommender datasets.

The major contribution of this chapter, which is described in Section 6.3, is a novel

method to perform Step 1 from the Algorithm 2. It is based on PureSVD [25] Collabo-

rative Filtering technique, that is described in Section 2.5. Before going into the details

of the proposed approach, in Section 6.2, we discuss how to effectively perform Step 3

from Algorithm 2 using the similar factorization based approach.

6.2 Predicting Ratings with a Seed Set

Let us assume that some algorithm has selected a seed set with L0 representative items

with indices k ∈ NL0 , and assume a cold user has been asked to rate only items k,

according to Steps 1–2 of the rating elicitation scheme described by Algorithm 2 from

Section 2.5. In this section, we explain how to perform Step 3, i.e., how to predict

ratings z for all items using only the ratings of the seed set.

86

As shown in [6], the most accurate way to do it is to find a coefficient matrix C ∈

RL0×m that allows to linearly approximate each item rating via ratings z′ of items from

the seed set, which in fact is a pseudo-skeleton factorization, described in Section 2.1.5.

Each column of C contains the coefficients of the representation of an item rating via

the ratings of the items from the seed set. Shortly, this approximation can be written in

the following way:

z← z′C. (67)

We highlight two different approaches to compute matrix C.

6.2.1 Computing coefficients via rating matrix

First approach is called Representative Based Matrix Factorization (RBMF) [72] (see

Section 2.5 for details and notation). It aims to solve the following optimization task:

∥R−R[:,k]C∥2 → min
C

. (68)

Note that z′ is not a part of R[:,k], because there is still no information about a cold

user ratings. This optimization task corresponds to the following approximation:

R ≈ R[:,k]C. (69)

The solution of (68) is:

CR = (R[:,k]⊤R[:,k])−1R[:,k]⊤R. (70)

87

Since L0 ≪ n, the matrix R[:,k] is often well-conditioned. Therefore, the regulariza-

tion term used in [72] is unnecessary and does not give a quality gain.

6.2.2 Computing coefficients via a low-rank factor.

In this work, we also propose a more efficient second approach that considers the rank-d

factorization, d ≤ L0. Let Q[k, :] ∈ RL0×d be the matrix formed by L0 rows of Q that

correspond to the items of the seed set. Let us try to linearly recover all item latent

vectors via the latent vectors from the seed set:

∥Q−C⊤Q[k, :]∥2 → min
C

. (71)

It is a low-rank version of the problem given by (68) and, therefore, is computationally

easier. Solution C of this optimization problem can be also used for recovering all

ratings using (69).

Unlike (68), the optimization problem given by (71) has different exact solutions

C in general case, because there are infinitely many ways to linearly represent an d-

dimensional vector via more than d other vectors. Therefore, we should find a solution

of the underdetermined system of linear equations:

Q⊤ = SC, (72)

where we denote S = Q[k, :]⊤. Since the seed set latent vectors surely contain some

noise and coefficients in C show how all item latent vectors depend on the seed set la-

tent vectors, it is natural to find “small” C, because larger coefficients produce larger

noise in predictions. We use the least-norm solution C in the research, which is addi-

88

tionally theoretically motivated in Section 6.5. The least-norm solution of (72) should

be computed as follows:

C = S†Q⊤, (73)

where

S† = S⊤(SS⊤)−1 (74)

is the right pseudo-inverse of S.

Such linear approach to rating recovering results in the following factorization model.

Taking the latent vectors of the representative items S as a new basis of the decomposi-

tion given by Equation (44), we have

R ≈ PQ⊤ = PSC =
(
PQ[k, :]⊤

)
C ≈ R[:,k]C = FC, (75)

where

F = R[:,k]. (76)

In this way, we approximate an unknown rating rui by the corresponding entry of matrix

FC, where factor F consists of the known ratings for the seed set items. This scheme is

illustrated in Figure 10.

6.3 Volume of Rectangular Matrices

The obvious disadvantage of the Maxvol-based approach to rating elicitation is the fixed

size of the decomposition rank d = L0, because the matrix determinant is defined only

for square matrices. That makes it impossible to build a seed set with fixed size L0

using an arbitrary rank of decomposition. This section introduces a generalization of

89

Unknown embeddingsC
ol

d
W

ar
m

 u
se

rs

R
ep

re
se

nt
at

iv
e

ite
m

s

Embeddings in a new basis

Q⏉

S

PR

≈

Figure 10: The rating elicitation procedure scheme in case of the cold user problem —
the subset S of columns of Q⊤ specifies the set of representative items, and their ratings
are used as embeddings of cold users.

90

the maximal-volume concept to rectangular submatrices, which allows overcoming the

intrinsic “squareness” of the ordinary maximal-volume concept, which is entirely based

on the determinant of a square matrix. As we further demonstrate in Section 6.6 with

experiments, using the rectangular Maxvol generalization with a decomposition of rank

d smaller than the size L0 of the seed set could result in better accuracy of recommen-

dations for cold users.

Consider S ∈ Rd×L0 , d ≤ L0. It is easy to see that the volume of a square matrix

is equal to the product of its singular values. In the case of a rectangular matrix S, its

volume [97] can be defined in a similar way:

Rectvol(S) :=
L0∏
s=1

σs =
√

det(SS⊤). (77)

We call it rectangular volume. The simple intuition behind this definition is that it

is the volume of the ellipsoid defined as the image of a unit sphere under the linear

transformation defined by S:

Rectvol(S) = Vol {v ∈ Rd : ∃c ∈ RL
0 , ∥c∥2 ≤ 1 |v = Sc}. (78)

This can be easily verified using the singular value decomposition of S and the uni-

tary invariance of the vector norm. Moreover, in the case of a square matrix S, the

rectangular volume is equal to the ordinary square volume:

Rectvol(S) =
√

det(SS⊤) = | det(S)| = Vol(S). (79)

Note that, if d > L0, then detSS⊤ = 0.

91

Overall, searching for a seed set transforms to the following optimization task that

is a generalization of Problem (25):

k← argmax
k

Rectvol(S), (80)

where S = Q[k, :]⊤. It is important to note that this maximization problem does not

depend on the basis of the latent vectors from S. Indeed, let X ∈ Rd×d be an invertible

matrix of some linear transformation. Then the optimization transforms to

argmax
k

(
(detX)2 · Rectvol(S)

)
= argmax

k
Rectvol(S). (81)

The simplest method to find a suboptimal solution is to use a greedy algorithm that

iteratively adds rows of Q to the seed set. Unfortunately, the straightforward greedy

optimization (trying to add each item to the current seed set and computing its rectan-

gular volume) costs O(mL2
0d

2), that often is too expensive considering typical sizes of

modern recommender datasets and a number of model hyperparameters. Therefore, we

developed a fast algorithm with complexity O(mL2
0) that is described in the following

section.

6.4 Algorithm

In this section, we introduce an algorithm for the selection of L0 representative items

using the notion of rectangular volume. At the first step, the algorithm computes the best

rank-d approximation of the rating matrix R, PureSVD (see Section 2.5.4 for details),

and selects d representative items with the pivot indices from LU-decomposition of Q⊤

or with the Maxvol algorithm. This seed set is further expanded by the Algorithm 4 in a

92

greedy fashion: by adding new representative items one by one maximizing rectangular

volume of the seed set. Further, we show that new representative item should have the

maximal norm of the coefficients that represent its latent vector by the latent vectors

of the current seed set. The procedure of such norm maximization is faster than the

straightforward approach. At the end of this section, we describe the algorithm for even

faster rank-1 updating norms of coefficients.

6.4.1 Maximization of coefficients norm

Suppose, at some step, we have already selected L < L0 representative items with the

indices k ∈ NL. Let S ∈ Rd×L be the corresponding submatrix of Q⊤ ∈ Rd×m. On the

next step, the algorithm selects a column qi ⊂ Q⊤, i /∈ k and adds it to the seed set:

S ← [S,qi] , (82)

where [A,B] is an operation of horizontal concatenation of two matrices A and B. This

column should maximize the following volume:

qi = argmax
i/∈k

Rectvol ([S,qi]) . (83)

Suppose C ∈ RL×m is the current matrix of coefficients from Equation (72), and let

ci ∈ RL be an i-th column of matrix C. Then the updated seed set from (83) can be

written as following:

[S,qi] = [S,Sci] = S · [IL, ci]. (84)

93

Then the volume of the seed set can be written in the following way:

Rectvol ([S,qi]) =
√
det ([S,qi] · [S,qi]⊤) =

=
√
det

(
SS⊤ + Scic⊤i S

⊤
)
.

(85)

Taking into account the identity det(X + AB) = det(X) det(I + BX−1A), the vol-

ume (85) can be written as following:

Rectvol ([S,qi]) = Rectvol(S)
√
1 + wi, (86)

where wi = ∥ci∥22. Thus, the maximization of rectangular volume is equivalent to

the maximization of the l2-norm of the coefficients vector ci, which we know only af-

ter recomputing (73). Total recomputing of coefficient matrix C on each iteration is

faster than the straightforward approach described in Section 6.3 and costs O(mL2
0dm).

However, in the next section, we describe even faster algorithm with an efficient recom-

putation of the coefficients.

6.4.2 Fast Computation of Coefficients

Since the matrix of coefficients C is the least-norm solution (44), after adding column

qi to the seed set, C should be computed using Equation (84):

C← [S,qi]
†Q⊤ = [IL, ci]

†S†Q⊤ = [IL, ci]
†C. (87)

94

The pseudoinverse from (87) can be obtained in this way:

[IL, ci]
† = [IL, ci]

⊤ (
[IL, ci] · [IL, ci]⊤

)−1
=

IL
c⊤i

(
IL + cic

⊤
i

)−1
, (88)

where

A
B

 is an operation of vectical concatenation of A and B. The inversion in this

formula can be computed by the Sherman-Morrison formula:

(
IL + cic

⊤
i

)−1
= IL −

cic
⊤
i

1 + c⊤i ci
.

Putting it into (87), we finally get the main update formula for C:

C←

IL − cic

⊤
i

1+c⊤i ci

c⊤i −
c⊤i cic

⊤
i

1+c⊤i ci

 ·C =

C− cic

⊤
i C

1+c⊤i ci

c⊤i C

1+c⊤i ci

 . (89)

Recall that we should efficiently recompute norms wi of coefficients. Using Equa-

tion (89), we arrive at the following formula for the update of all norms wj:

wj ← wj −
(c⊤i cj)

2

1 + c⊤i ci
. (90)

It is natural to see that coefficients norms are decreasing, because adding each new

latent vector to the seed set gives more flexibility of representing all latent vectors via

representative ones.

Equations (89) and (90) allow to recompute C and w using the simple rank-1 update.

Thus, the complexity of adding a new column into the seed set is low, which is shown

95

in Section 6.5.1. The pseudocode of the algorithm is provided in Algorithm 4.

Algorithm 4 Searching representative items using Rectangular Maxvol
Require: Rating matrix R ∈ Rn×m, number of representative items L0, rank of de-

composition d ≤ L0

Ensure: Indices k ∈ NL0 of L0 representative items
1: Compute rank-d PureSVD of the matrix R ≈ PQ⊤

2: Initialize a square seed set: k← L0 pivot indices from LU-decomposition of Q⊤

3: S← Q[k, :]⊤

4: C = S−1Q⊤

5: ∀i : wi ← ∥ci∥22, where ci is the i-th column of C
6: while len(k) < L0 do
7: i← argmaxi/∈k(wi)
8: k← [k, i]
9: S← [S,qi]

10: C←

C− cic
⊤
i C

1+c⊤i ci

c⊤i C

1+c⊤i ci

11: ∀j : wj ← wj − (c⊤i cj)

2

1+c⊤i ci

12: end while
13: return k

The seed sets provided by the algorithm can be used for rating elicitation and further

prediction of ratings for the rest of the items, as demonstrated in Section 6.2. Moreover,

if the size of the seed set L0 is not limited by a fixed budget, alternative stopping criteria

is proposed in Section 6.5.

6.5 Algorithm Analysis

6.5.1 Complexity analysis

The proposed algorithm has two general steps: the initialization (Steps 1–5) and the iter-

ative addition of columns or rows into the seed set (Steps 6–12). The initialization step

corresponds to the LU-decomposition or Square Maxvol, which have O(md2) complex-

96

Algorithm Complexity
Square Maxvol O(mL2

0)
Rectangular Maxvol O(mL2

0)
GreedyExtend O(m2nL2

0)
Backward Greedy O(m3d2)

Table 8: Complexity of the algorithms

ity. Addition of one element into the seed set (Steps 7–11) requires the recomputation

of the coefficients C (Step 10) and lengths of coefficient vectors (Step 11). The recom-

putation (Step 10) requires a rank-1 update of the coefficients matrix C ∈ RL×m and the

multiplication c⊤i c, where ci ∈ RL is a column of C. The complexity of each of the two

operations is O(Lm), so the total complexity of one iteration (Steps 7–11) is O(Lm).

Since this procedure is iterated over L ∈ {f, ..., L0}, the complexity of the loop (Step 6)

is equal to O(m(L2
0 − d2)). So, in total, the complexity of Algorithm 4 is O(mL2

0).

6.5.2 Comparing Complexity to Existing Approaches

Let us overview the computational complexity of the proposed Rectangular Maxvol and

its competitors overviewed in Section 2.5. Some of these methods use low-rank factor-

izations of matrices, whose detailed complexity analysis is provided in [36]. However,

as this is not a key point of the work, we neglect the computational cost of factorizations

in the further analysis, because it is same for all rating elicitation algorithms and usually

is previously computed for the warm Collaborative Filtering method. The summary of

the complexity analysis is shown in Table 8. The detailed complexity analysis of Square

Maxvol and Rectangular Maxvol is provided in Sections 2.1.5 and 6.5.1 respectively.

97

6.5.3 Analysis of Error

In this section, we theoretically analyse the estimation error of the method proposed in

Section 6.4. According to Section 2.5.4 we have a low-rank approximation of the rating

matrix R = PQ⊤ + E , where E ∈ Rn×m is a random error matrix. On the other hand,

we have RBMF approximation (69). Let us represent its error via E .

First of all, we have

R[:,k] = PQ[k, :]⊤ + E [:,k] = PS+ E [:,k]. (91)

Since C = S†Q⊤ (see Section 6.2 for details), the RBMF approximation of R can be

written in the following form:

R[:,k]C = PSS†Q⊤ + E [:,k]C = R− E + E [:,k]C, (92)

which means:

R = R[:,k]C+ E − E [:,k]C. (93)

The smaller in modulus the noise terms are, the better approximation of R we have. It

means that we are interested in the small values of the matrix C, such as the least-norm

solution of (71). Further, we prove a theorem providing an approximated bound for the

maximal length of ci.

6.5.4 Upper Bound of Coefficients Norm

Similarly to Square Maxvol algorithm, a rectangular submatrix is called dominant, if its

rectangular volume does not increase by replacing one row with another one from the

98

source matrix.

Theorem 1. Let Q ∈ Rm×d be a matrix of rank d. Assume k ∈ NL0 is a vector of seed

set element indices that produces rank-d dominant submatrix of S = Q[k, :]⊤, where

S ∈ Rd×L0 and m ≥ L0 ≥ d. Let C be a matrix of coefficients C ∈ RL0×m, such that

Q⊤ = SC. Then l2-norm of a column ci of C for i not from the seed set is bounded as:

∥ci∥2 ≤
√

d

L0 + 1− d
, i /∈ k. (94)

Proof. Since S is a dominant submatrix of the matrix Q, it has the maximal rectangular

volume among all possible submatrices of [S,qi] with the shape d × L0. Therefore,

applying Lemma 1 (see Appendix) to the matrix [S,qi], we get

det
(
[S,qi] · [S,qi]

⊤) ≤ L0 + 1

L0 + 1− d
det(SS⊤). (95)

Using Equation (86), we get:

∥ci∥22 =
det

(
[S,qi] · [S,qi]

⊤)
det(SS⊤)

− 1 ≤ d

L0 + 1− d
, (96)

which finishes the proof.

The similar theoretical result was obtained in [27]. However, the proof seems to

be much easier and closely related to the notation used in the work and the proposed

algorithm.

Theorem 1 demonstrates that, if we have an existing decomposition with the fixed

rank d, it is enough to take L0 = 2d items to the seed set for getting all coefficients

norm lesser than 1. This condition of representativeness has a very natural geometric

99

meaning: all item latent vectors are inside the ellipsoid spanned by the latent vectors

from the seed set. The numerical experiments with randomly generated d×m matrices

have shown, that Algorithm 4 requires only L0 ≈ 1.2d rows to reach upper bound 2

for the length of each row of C and only L0 ≈ 2d to reach the upper bound 1 for the

length of each row of C. So, although, the algorithm does not guarantee that the seed

set submatrix is dominant, the experiment results are entirely consistent with the theory.

6.6 Experimental Setup

The proposed experiments compare two algorithms: Square Maxvol based (our primary

baseline) and Rectangular Maxvol5 based. Other competitors have either an infeasible

computational complexity (see Section 6.5.2 for details) or have a lower quality than the

baseline, as it is shown in [72]. Moreover, it is important to note that the experiments

in [72] used smaller versions of the datasets. Therefore, the performance of Square

Maxvol on the extended datasets is different from that reported in [72].

6.6.1 Datasets

We used two popular publicly available datasets in the experiments: the Movielens

dataset6 that contains 20,000,263 ratings and the Netflix dataset7 that contains 100,480,507

ratings. The rating matrix R was formed in the same way as in [72].

5The source code is available here: https://bitbucket.org/muxas/rectmaxvol recommender
6http://grouplens.org/datasets/movielens/
7http://www.netflixprize.com/

100

http://grouplens.org/datasets/movielens/
http://www.netflixprize.com/

6.6.2 Evaluation Protocol

Our evaluation pipeline for the comparison of the rating elicitation algorithms is similar

to the one introduced in [72]. All the experiments are provided for both the user and

the item cold start problems. However, without loss of generality, this section describes

the evaluation protocol for the user cold start problem only. The item cold start problem

can be evaluated in the same way after the transposition of the rating matrix.

We evaluate the algorithms for selecting representatives by the assessing the qual-

ity of the recommendations recovered after the acquisition of the actual ratings of the

representatives, which can be done as shown in Section 6.2. Note that users may not

have scores for the items from the seed set: if user u was asked to rate item i with an

unknown rating, then, according to PureSVD model, rui is set to 0. We use the 5-fold

cross validation with respect to the set of users in all experiments.

Pointwise quality measures are easy to be optimized directly, but they are not very

suitable for recommendation quality evaluation, because the goal of a recommender

system is not to predict particular rating values but to predict the most relevant recom-

mendations that should be shown to the user. That is why we use ranking measures

to evaluate all methods [44]. For evaluation, we divided all items for every user into

relevant and irrelevant ones, as it was done in the baseline paper [72].

One of the most popular and interpretable ranking measures for the recommender

systems evaluation are Precision@h and Recall@h [25] that measure the quality of top-

h recommendations in terms of their relevance. Note that in the case of the item cold

start problem, Precision@h and Recall@h are computed on the transposed rating matrix

R. It means that we sort items in the decreasing order of their relevance to a user and

assess the top of this list with these measures. Moreover, following the methodology

101

from [72], we compare algorithms in terms of coverage and diversity.

6.7 Results of Experiments

As we mentioned in Section 6.2, there are two different ways to compute the coefficients

for representing the hidden ratings via the ratings from a seed set. The first one is to

calculate them via the low-rank factors, as shown in Equation (73). The second one

is to compute them via the source rating matrix R, as shown in Equation (70). The

experiments show that the latter approach demonstrates the significantly better quality.

Therefore, we use this method in all the experiments.

We processed experiments for the seed set sizes from 5 to 100 with a step of 5.

These computations become possible for such dense grid of parameters, because of

the high computational efficiency of the algorithm (see Section 6.5.2). The average

computational time of Rectangular Maxvol on the datasets is 1.12 seconds (Intel Xeon

CPU 2.00GHz, 26Gb RAM). The average computational time of Square Maxvol is

almost the same which confirms the theoretical complexity analysis.

In the case of Rectangular Maxvol, for every size of the seed set, we used the rank

that gives the best performance on a separate evaluation set of ratings. Figures 11 and 12

demonstrate the superiority of the approach over the ordinal Square Maxvol for all cold

start problems types (user and item) and both datasets. Moreover, it can be seen from

the magnitudes of the differences that Rectangular Maxvol gives much more stable re-

sults than the square one. The same conclusions can be made for any combination of

Precision/Recall, h, and seed set sizes.

As mentioned above, Rectangular Maxvol used the optimal rank value in the exper-

iments. Figure 13 demonstrates the averaged optimal rank over all experiments for all

102

0 20 40 60 80 100
Number of representative items

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

is
io

n@
10

User cold start

Netflix, Rect. Maxvol
Netflix, Square Maxvol
Movielens, Rect. Maxvol
Movielens, Square Maxvol

Figure 11: Precision@10 dependence on the size of the seed set. The comparison of
Square Maxvol and Rectangular Maxvol. The errorbars indicate σ deviation. The Rect-
angular Maxvol approach outpreforms the baseline.

0 20 40 60 80 100
Number of representative users

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

is
io

n@
10

Item cold start

Netflix, Rect. Maxvol
Netflix, Square Maxvol
Movielens, Rect. Maxvol
Movielens, Square Maxvol

Figure 12: Precision@10 dependence on the size of the seed set. The comparison of
Square Maxvol and Rectangular Maxvol. The errorbars indicate σ deviation. The Rect-
angular Maxvol approach outpreforms the baseline.

103

0 20 40 60 80 100
Seed set size

0

20

40

60

80

100

O
pt

im
al

ra
nk

Netlix, repr. users
Movielens, repr. users
Netflix, repr. items
Movielens, repr. items
Square Maxvol

Figure 13: The optimal rank dependence on the size of the seed set — the optimal rank
is much lower than the seed set size, which additionally proves that the Maxvol-based
rating elicitation approach can be improved.

datasets and all cold start problem types. It is easy to see that, in each case, the required

optimal rank is significantly smaller than the corresponding size of the seed set. This un-

equivocally confirms that the rectangular generalization of the square maximal-volume

concept makes a great sense. Moreover, since Rectangular Maxvol requires a smaller

rank of the rating matrix factorization, it is more computationally and memory efficient.

In Figure 14, we can see that the coverage and diversity measures of the represen-

tative Netflix items selected by Rectangular Maxvol are higher than the measures of

Square Maxvol. The cases of representative users and Movielens dataset lead to the

same results.

In the end, it is interesting to analyze the behavior of the automatic stopping crite-

rion that adds objects into the seed set until all latent vectors are covered by the ellipsoid

spanned by the latent vectors of the representatives. The experiments show that increas-

104

0 20 40 60 80 100
Number of represenatative items

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
or

di
ve

rs
ity

Rect. Maxvol diversity
Square Maxvol diversity
Rect. Maxvol coverage
Square Maxvol coverage

Figure 14: Coverage and diversity depending on the seed set size — the Rectangular
Maxvol approach outpreforms the baseline.

ing of the rank results in a quality fall in the case of representative users and the ranks

higher than 50, which means overfitting of PureSVD. In case of the representative items,

the quality becomes almost constant starting from the same ranks.

6.8 Chapter Summary

In this part of the work, we introduced the efficient algorithm based on the novel defi-

nition of rectangular matrix volume which allows efficiently build pseudo-skeleton fac-

torization and, as a result, constructing embeddings of cold users and items in recom-

mender systems. In order to demonstrate the superiority of the proposed method, we

provided the analytical and experimental comparison to the existing approaches.

105

7 Conclusion

Embedding methods play a crucial role in modern data science applications, from ma-

chine translation and speech recognition to recommender systems and search engines.

The thesis overviews methods for training embeddings from data and explores the prob-

lem of training embeddings using low-rank approximations. There are the following

main contributions of the work:

1. Chapter 3 introduces the simple low-rank factorization framework to train em-

beddings that generalizes existing approaches to train embeddings using matrix

factorizations. Unfortunately, such techniques they have not been studied inten-

sively, despite of the fact that they often show a performance that is not achievable

the competitors. This framework allowed us to develop several new state-of-the-

art embedding methods described in the following sections;

2. In Chapter 4, the thesis formulates the problem of unsupervised search for em-

beddings of categorical features’ values and introduces the novel unsupervised

method to train such embeddings;

3. In Chapter 5, we formulate the generalization of the Skip-Gram Negative Sam-

pling word embeddings training procedure and, according to this formulation,

introduce the new embeddings training method based on Riemannian optimiza-

tion, which outperforms existing state-of-the-art approaches. The source code of

the method is publicly available on the Web. Moreover, the introduced theoretical

findings were recognized as useful and were used by other researchers [132].

4. In Chapter 6, we introduce the novel method to obtain embeddings of cold users

and cold items in recommender systems based on the rectangular generalization

106

of the Maxvol algorithm. The developed method outperforms existing state-of-

the-art approaches in terms of quality and computational complexity. The source

code of the method is published on the Web and is used by other researchers in

the community [118]. Furthermore, the method is successfully applied within an

industrial recommender system at Yandex, which additionally proves the practical

relevance of the approach.

As future directions of research, we wanted to highlight developing new methods

in accordance with the low-rank framework proposed in the thesis. Currently, the com-

munity tends to use neural network based embedding methods, however, the low-rank

based approaches often are much more suitable because of the developed theoretical and

computational tools for low-rank matrix operations. We see a big room for new develop-

ments in word embeddings and recommender systems fields using advanced low-rank

optimization techniques, such as Riemannian optimization, and in the active learning

field using pseudo-skeleton based factorizations.

107

References

[1] P.-A. Absil and I. V. Oseledets. Low-rank retractions: a survey and new results.

Computational Optimization and Applications, 62(1):5–29, 2015.

[2] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and A. Soroa. A study

on similarity and relatedness using distributional and wordnet-based approaches.

In NAACL, pages 19–27, 2009.

[3] M. Aharon, O. Anava, N. Avigdor-Elgrabli, D. Drachsler-Cohen, S. Golan, and

O. Somekh. Excuseme: Asking users to help in item cold-start recommendations.

In Recsys’15, pages 83–90, 2015.

[4] Q. Ai, Y. Zhang, K. Bi, X. Chen, and W. B. Croft. Learning a hierarchical em-

bedding model for personalized product search. In Proceedings of the 40th Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 645–654. ACM, 2017.

[5] N. Almarwani and M. Diab. Arabic textual entailment with word embeddings. In

Proceedings of the Third Arabic Natural Language Processing Workshop, pages

185–190, 2017.

[6] O. Anava, S. Golan, N. Golbandi, Z. Karnin, R. Lempel, O. Rokhlenko, and

O. Somekh. Budget-constrained item cold-start handling in collaborative filtering

recommenders via optimal design. In WWW’15, pages 45–54, 2015.

[7] M. Arioli and I. S. Duff. Preconditioning of linear least-squares problems by

identifying basic variables. Preprint RAL-P-2014-007, 2014.

108

[8] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse

and factored tensors. SIAM Journal on Scientific Computing, 30(1):205–231,

December 2007.

[9] I. Barandiaran. The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8), 1998.

[10] I. Barjasteh, R. Forsati, F. Masrour, A.-H. Esfahanian, and H. Radha. Cold-start

item and user recommendation with decoupled completion and transduction. In

Recsys’15, pages 91–98, 2015.

[11] R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived

neighborhood interpolation weights. In ICDM’07, pages 43–52, 2007.

[12] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain. Neural prob-

abilistic language models. In Innovations in Machine Learning, pages 137–186.

Springer, 2006.

[13] A. Bentbib and A. Kanber. Block power method for svd decomposition. Analele

Stiintifice Ale Unversitatii Ovidius Constanta-Seria Matematica, 23(2):45–58,

2015.

[14] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with

subword information. arXiv preprint arXiv:1607.04606, 2016.

[15] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[16] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

109

[17] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and re-

gression trees. CRC press, 1984.

[18] E. Bruni, N.-K. Tran, and M. Baroni. Multimodal distributional semantics. J.

Artif. Intell. Res.(JAIR), 49(1-47), 2014.

[19] W. B. Cavnar, J. M. Trenkle, et al. N-gram-based text categorization. Ann arbor

mi, 48113(2):161–175, 1994.

[20] Y. Chauvin and D. E. Rumelhart. Backpropagation: theory, architectures, and

applications. Psychology Press, 2013.

[21] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari. Nonnegative matrix and

tensor factorizations: applications to exploratory multi-way data analysis and

blind source separation. John Wiley & Sons, 2009.

[22] A. Civril and M. Magdon-Ismail. Finding maximum volume sub-matrices of a

matrix. RPI Comp Sci Dept TR, pages 07–08, 2007.

[23] K. Clark and C. D. Manning. Improving coreference resolution by learning

entity-level distributed representations. arXiv preprint arXiv:1606.01323, 2016.

[24] P. Cremonesi, F. Garzottto, and R. Turrin. User effort vs. accuracy in rating-based

elicitation. In Recsys’12, pages 27–34, 2012.

[25] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms

on top-n recommendation tasks. In Recsys’10, pages 39–46. ACM, 2010.

[26] A. Das, D. Ganguly, and U. Garain. Named entity recognition with word em-

beddings and wikipedia categories for a low-resource language. ACM Transac-

110

tions on Asian and Low-Resource Language Information Processing (TALLIP),

16(3):18, 2017.

[27] F. De Hoog and R. Mattheij. Subset selection for matrices. Linear Algebra and

its Applications, 422(2):349–359, 2007.

[28] C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization with the

β-divergence. Neural Computation, 23(9):2421–2456, 2011.

[29] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and

E. Ruppin. Placing search in context: The concept revisited. In WWW, pages

406–414, 2001.

[30] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning,

volume 1. Springer Series in Statistics New York, 2001.

[31] J. H. Friedman. Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232, 2001.

[32] J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data

Analysis, 38(4):367–378, 2002.

[33] N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping recommender systems.

In CIKM’10, pages 1805–1808, 2010.

[34] N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender

systems using decision trees. In WSDM’11, pages 595–604, 2011.

[35] Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et al.’s negative-

sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

111

[36] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press,

2012.

[37] S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, and N. Zamarashkin.

How to find a good submatrix. Matrix methods: theory, algorithms and applica-

tions, page 247, 2010.

[38] S. A. Goreinov and E. E. Tyrtyshnikov. The maximal-volume concept in approx-

imation by low-rank matrices. Contemporary Mathematics, 280:47–52, 2001.

[39] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseu-

doskeleton approximations. Linear Algebra and its Applications, 261(1):1–21,

1997.

[40] M. P. Graus and M. C. Willemsen. Improving the user experience during cold

start through choice-based preference elicitation. In Recsys’15, pages 273–276,

2015.

[41] E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski. Bag of tricks for efficient text

classification. In Proceedings of the 15th Conference of the European Chapter of

the Association for Computational Linguistics, pages 427–431, 2017.

[42] M. Grbovic, N. Djuric, V. Radosavljevic, F. Silvestri, R. Baeza-Yates, A. Feng,

E. Ordentlich, L. Yang, and G. Owens. Scalable semantic matching of queries

to ads in sponsored search advertising. In Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information Retrieval,

pages 375–384. ACM, 2016.

112

[43] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan,

and D. Sharp. E-commerce in your inbox: Product recommendations at scale. In

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 1809–1818. ACM, 2015.

[44] A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of rec-

ommendation tasks. The Journal of Machine Learning Research, 10:2935–2962,

2009.

[45] M. A. Hardy. Regression with dummy variables. Number 93. Sage, 1993.

[46] B. Heinzerling and M. Strube. Bpemb: Tokenization-free pre-trained subword

embeddings in 275 languages. arXiv preprint arXiv:1710.02187, 2017.

[47] F. Hill, R. Reichart, and A. Korhonen. Simlex-999: Evaluating semantic models

with (genuine) similarity estimation. Computational Linguistics, 2016.

[48] T. Hofmann. Probabilistic latent semantic analysis. In Proceedings of the Fif-

teenth conference on Uncertainty in artificial intelligence, pages 289–296. Mor-

gan Kaufmann Publishers Inc., 1999.

[49] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback

datasets. In ICDM’08, pages 263–272, 2008.

[50] D. Jurafsky and H. James. Speech and language processing an introduction to

natural language processing, computational linguistics, and speech. 2000.

[51] R. Karimi, A. Nanopoulos, and L. Schmidt-Thieme. Improved questionnaire

trees for active learning in recommender systems. In Proceedings of the 16th

LWA Workshops: KDML, IR and FGWM, pages 34–44, 2014.

113

[52] R. Karimi, M. Wistuba, A. Nanopoulos, and L. Schmidt-Thieme. Factorized

decision trees for active learning in recommender systems. In ICTAI’13, pages

404–411. IEEE, 2013.

[53] S. S. Keerthi, T. Schnabel, and R. Khanna. Towards a better understanding of

predict and count models. arXiv preprint arXiv:1511.02024, 2015.

[54] D. Kiela and L. Bottou. Learning image embeddings using convolutional neural

networks for improved multi-modal semantics. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

36–45, 2014.

[55] D. Kluver and J. A. Konstan. Evaluating recommender behavior for new users.

In Recsys’14, pages 121–128, 2014.

[56] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM J. Matrix

Anal. Appl., 29(2):434–454, 2007.

[57] D. Kolesnikov and I. Oseledets. Convergence analysis of projected fixed-point

iteration on a low-rank matrix manifold. Numerical Linear Algebra with Appli-

cations, page e2140, 2016.

[58] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative fil-

tering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[59] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In KDD’08, pages 426–434, 2008.

114

[60] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, (8):30–37, 2009.

[61] S. Kottur, X. Wang, and V. R. Carvalho. Exploring personalized neural conver-

sational models. In Proceedings of the 26th International Joint Conference on

Artificial Intelligence, pages 3728–3734. AAAI Press, 2017.

[62] D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor completion

by riemannian optimization. BIT Numerical Mathematics, 54(2):447–468, 2014.

[63] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[64] S. Lai, K. Liu, S. He, and J. Zhao. How to generate a good word embedding?

arXiv preprint arXiv:1507.05523, 2015.

[65] S. Lai, K. Liu, S. He, and J. Zhao. How to generate a good word embedding.

IEEE Intelligent Systems, 31(6):5–14, 2016.

[66] T. K. Landauer. Latent semantic analysis. Wiley Online Library, 2006.

[67] R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. DAIMI

Report Series, 27(537), 1998.

[68] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[69] K. Lee, L. He, M. Lewis, and L. Zettlemoyer. End-to-end neural coreference

115

resolution. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 188–197, 2017.

[70] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factoriza-

tion. In NIPS, pages 2177–2185, 2014.

[71] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with

lessons learned from word embeddings. ACL, 3:211–225, 2015.

[72] N. N. Liu, X. Meng, C. Liu, and Q. Yang. Wisdom of the better few: cold start

recommendation via representative based rating elicitation. In Recsys’11, pages

37–44, 2011.

[73] C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical low-

rank approximation. BIT Numerical Mathematics, 54(1):171–188, 2014.

[74] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables

is stochastically larger than the other. The annals of mathematical statistics, pages

50–60, 1947.

[75] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent

neural network based language model. In Eleventh Annual Conference of the

International Speech Communication Association, 2010.

[76] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-

resentations of words and phrases and their compositionality. In NIPS, pages

3111–3119, 2013.

116

[77] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre. Fixed-rank matrix factor-

izations and riemannian low-rank optimization. Computational Statistics, 29(3-

4):591–621, 2014.

[78] A. Mukherjee, K. Chen, N. Wang, and J. Zhu. On the degrees of freedom of

reduced-rank estimators in multivariate regression. Biometrika, 102(2):457–477,

2015.

[79] B. Murphy, P. Talukdar, and T. Mitchell. Learning effective and interpretable

semantic models using non-negative sparse embedding. Proceedings of COLING

2012, pages 1933–1950, 2012.

[80] M. Neishi, J. Sakuma, S. Tohda, S. Ishiwatari, N. Yoshinaga, and M. Toyoda. A

bag of useful tricks for practical neural machine translation: Embedding layer

initialization and large batch size. In Proceedings of the 4th Workshop on Asian

Translation (WAT2017), pages 99–109, 2017.

[81] D. W. Oard, J. Kim, et al. Implicit feedback for recommender systems. In AAAI

workshop on recommender systems, pages 81–83, 1998.

[82] C. W. Omlin and C. L. Giles. Stable encoding of large finite-state automata

in recurrent neural networks with sigmoid discriminants. Neural Computation,

8(4):675–696, 1996.

[83] I. Oseledets and E. Tyrtyshnikov. Tt-cross approximation for multidimensional

arrays. Linear Algebra and its Applications, 432(1):70–88, 2010.

[84] N. Othman, R. Faiz, and K. Smaili. A word embedding based method for ques-

117

tion retrieval in community question answering. In ICNLSSP 2017-International

Conference on Natural Language, Signal and Speech Processing, 2017.

[85] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In EMNLP, volume 14, pages 1532–43, 2014.

[86] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[87] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and

J. Riedl. Getting to know you: learning new user preferences in recommender

systems. In IUI’02, pages 127–134, 2002.

[88] A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences of new users in

recommender systems: an information theoretic approach. ACM SIGKDD Ex-

plorations Newsletter, 10(2):90–100, 2008.

[89] S. Reddy, I. Labutov, and T. Joachims. Learning student and content embeddings

for personalized lesson sequence recommendation. In Proceedings of the Third

(2016) ACM Conference on Learning@ Scale, pages 93–96. ACM, 2016.

[90] S. Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th

International Conference on, pages 995–1000. IEEE, 2010.

[91] S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent

Systems and Technology (TIST), 3(3):57, 2012.

[92] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized

markov chains for next-basket recommendation. In Proceedings of the 19th in-

ternational conference on World wide web, pages 811–820. ACM, 2010.

118

[93] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for

personalized tag recommendation. In Proceedings of the third ACM international

conference on Web search and data mining, pages 81–90. ACM, 2010.

[94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an

open architecture for collaborative filtering of netnews. In Proceedings of the

1994 ACM conference on Computer supported cooperative work, pages 175–

186. ACM, 1994.

[95] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems hand-

book. Springer, 2011.

[96] X. Rong. word2vec parameter learning explained. arXiv preprint

arXiv:1411.2738, 2014.

[97] N. J. Rose. Linear algebra and its applications (gilbert strang). SIAM Review,

24(4):499–501, 1982.

[98] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative filtering

recommender systems. In The adaptive web, pages 291–324. Springer, 2007.

[99] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics

for cold-start recommendations. In SIGIR’02, pages 253–260. ACM, 2002.

[100] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims. Evaluation methods for

unsupervised word embeddings. In EMNLP, 2015.

[101] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words

with subword units. arXiv preprint arXiv:1508.07909, 2015.

119

[102] M. Seok, H.-J. Song, C.-Y. Park, J.-D. Kim, and Y.-s. Kim. Named entity recog-

nition using word embedding as a feature. International Journal of Software

Engineering and Its Applications, 10(2):93–104, 2016.

[103] R. Sharp, M. Surdeanu, P. Jansen, P. Clark, and M. Hammond. Creating causal

embeddings for question answering with minimal supervision. arXiv preprint

arXiv:1609.08097, 2016.

[104] Y. Shen, W. Rong, N. Jiang, B. Peng, J. Tang, and Z. Xiong. Word embedding

based correlation model for question/answer matching. In AAAI, pages 3511–

3517, 2017.

[105] S. K. Sienčnik. Adapting word2vec to named entity recognition. In Proceedings

of the 20th nordic conference of computational linguistics, nodalida 2015, may

11-13, 2015, vilnius, lithuania, number 109, pages 239–243. Linköping Univer-

sity Electronic Press, 2015.

[106] I. Simova and H. Uszkoreit. Word embeddings as features for supervised corefer-

ence resolution. In Proceedings of the International Conference Recent Advances

in Natural Language Processing, RANLP 2017, pages 686–693, 2017.

[107] O.-M. Şulea. Recognizing textual entailment in twitter using word embeddings.

In Proceedings of the 2nd Workshop on Evaluating Vector Space Representations

for NLP, pages 31–35, 2017.

[108] M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and H. Zha. Learning multiple-

question decision trees for cold-start recommendation. In WSDM’13, pages 445–

454. ACM, 2013.

120

[109] A. Sysoev, I. Andrianov, and A. Khadzhiiskaia. Coreference resolution in rus-

sian: state-of-the-art approaches application and evolvement. In Computational

Linguistics and Intellectual Technologies: Papers from the Annual International

Conference Dialogue, volume 1, pages 327–338, 2017.

[110] M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J. Pan. Riemannian

pursuit for big matrix recovery. In ICML, volume 32, pages 1539–1547, 2014.

[111] P. D. Turney and P. Pantel. From frequency to meaning: Vector space models of

semantics. Journal of artificial intelligence research, 37:141–188, 2010.

[112] C. Udriste. Convex functions and optimization methods on Riemannian mani-

folds, volume 297. Springer Science & Business Media, 1994.

[113] B. Vandereycken. Low-rank matrix completion by riemannian optimization.

SIAM Journal on Optimization, 23(2):1214–1236, 2013.

[114] C. Vania and A. Lopez. From characters to words to in between: Do we capture

morphology? In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 2016–

2027, 2017.

[115] K. Vorontsov and A. Potapenko. Tutorial on probabilistic topic modeling: Ad-

ditive regularization for stochastic matrix factorization. In International Confer-

ence on Analysis of Images, Social Networks and Texts x000D , pages 29–46.

Springer, 2014.

[116] T. Vu, D. Q. Nguyen, M. Johnson, D. Song, and A. Willis. Search personalization

121

with embeddings. In European Conference on Information Retrieval, pages 598–

604. Springer, 2017.

[117] B. H. Wang, H. T. Hui, and M. S. Leong. Global and fast receiver antenna se-

lection for mimo systems. Communications, IEEE Transactions on, 58(9):2505–

2510, 2010.

[118] S. Wang, Z. Chen, Q. Yan, K. Ji, L. Wang, B. Yang, and M. Conti. Deep and

broad learning based detection of android malware via network traffic.

[119] P. J. Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

[120] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: perceptron,

madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442,

1990.

[121] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Charagram: Embedding

words and sentences via character n-grams. arXiv preprint arXiv:1607.02789,

2016.

[122] K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental design.

In ICML’06, pages 1081–1088. ACM, 2006.

[123] F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang. Lambdafm: learn-

ing optimal ranking with factorization machines using lambda surrogates. In

Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management, pages 227–236. ACM, 2016.

122

[124] H. Zamani and W. B. Croft. Estimating embedding vectors for queries. In Pro-

ceedings of the 2016 ACM International Conference on the Theory of Information

Retrieval, pages 123–132. ACM, 2016.

[125] X. Zhang, J. Cheng, and H. Lu. Less is more: Sparse representative based pref-

erence elicitation for cold start recommendation. In IMCS’14, page 117, 2014.

[126] X. Zhang, J. Cheng, S. Qiu, G. Zhu, and H. Lu. Dualds: A dual discriminative

rating elicitation framework for cold start recommendation. Knowledge-Based

Systems, 73:161–172, 2015.

[127] X. Zhang, J. Cheng, T. Yuan, B. Niu, and H. Lu. Semi-supervised discriminative

preference elicitation for cold-start recommendation. In CIKM’13, pages 1813–

1816. ACM, 2013.

[128] Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words model: a statis-

tical framework. International Journal of Machine Learning and Cybernetics,

1(1-4):43–52, 2010.

[129] K. Zhao, L. Huang, and M. Ma. Textual entailment with structured attentions and

composition. arXiv preprint arXiv:1701.01126, 2017.

[130] X. Zhao, W. Zhang, and J. Wang. Interactive collaborative filtering. In CIKM’13,

pages 1411–1420, 2013.

[131] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start

recommendation. In SIGIR’11, pages 315–324, 2011.

[132] A. Zobnin. Rotations and interpretability of word embeddings: the case of the

123

russian language. In International Conference on Analysis of Images, Social

Networks and Texts, pages 116–128. Springer, 2017.

124

8 Appendix

Lemma 1. Let A ∈ Rn×n and B ∈ Rm×n,m > n. Let A−i be n×(m−1) submatrix of

A without i-th column and B−i be (m− 1)×n submatrix of B without i-th row. Then,

det(AB) ≤ m

m− n
max

i
(det(A−iB−i)) (97)

Proof. From the Cauchy-Binet formula we get

det(AB) =
∑
k

detA[:,k] · detB[k, :], (98)

where k ∈ Nn is a vector of n different indices. Since A−i contains all columns of A

except i-th column, then A[:,k] is a submatrix of A−i for any i /∈ k. Since k consists

of n different numbers, we have m − n different i, such that A[:,k] is a submatrix of

A−i. The same is true for the matrix B. So get

m∑
i=1

det(A−iB−i) = (m− n) det(AB) (99)

applying Cauchy-Binet formula to each summand. Therefore,

det(AB) =
1

m− n

m∑
i=1

det(A−iB−i), (100)

which finishes the proof.

125

	Introduction
	Introduction to Embeddings
	Using Embeddings in Practical Machine Learning Tasks
	Measuring Embeddings Performance
	Embeddings Application Examples
	Word Embeddings Applications
	User Behavior Embeddings Applications
	Other Embeddings Applications

	Chapter Summary

	Background
	Matrix Factorization Background
	Low-Rank Matrix Factorization
	Matrix Similarity Measures
	Singular Value Decomposition
	Riemannian Optimization
	Pseudo-Skeleton Factorization

	Supervised Learning Background
	Introduction
	Decision Trees Based Methods
	Linear Methods
	Neural Networks

	Background on Categorical Features in Machine Learning
	Categorical Features
	Examples of Problems Involving Categorical Features
	Existing Approaches to Handling Categorical Features

	Word Embeddings
	Overview of Word Embeddings Methods
	Skip-Gram Negative Sampling
	SGNS Optimization as Matrix Factorization
	SVD over SPPMI matrix

	Embeddings in Recommender Systems
	Collaborative Filtering
	Implicit and Explicit Feedback
	Latent Factor Models
	PureSVD
	Cold-Start Problem
	Cold Objects Embeddings with Rating Elicitation
	Rating Elicitation Methods
	Representative Based Matrix Factorization

	Chapter Summary

	Matrix Factorization Framework to Train Embeddings
	Framework
	How Existing Embedding Approaches Fit to Framework
	Principal Component Analysis
	Text Embeddings via Latent Semantic Analysis
	Text Embeddings via Probabilistic Latent Semantic Analysis
	Word Embeddings via SVD over SPPMI Matrix
	Users or Items Embeddings via PureSVD Recommender
	Representative Based Matrix Factorization

	How Developed Methods Fit Framework
	Building Embeddings of Categorical Features' Values
	Riemannian Optimization for Training Skip-Gram Negative Sampling Word Embeddings
	Obtaining Cold User and Item Embeddings in Recommender Systems

	Chapter Summary

	Building Embeddings of Categorical Features' Values
	Section Overview
	Proposed Methods
	Transformation Using Direct Feature Value Frequencies
	Low-Rank Frequency Approximations
	Embeddings Based on Low-Rank Approximations

	Experiments
	Datasets
	Prediction Quality Estimation
	Results of the Experiments

	Chapter Summary

	Riemannian Optimization for Training Skip-Gram Negative Sampling Word Embeddings
	Section Overview
	Problem Setting
	Matrix Notation of the Problem
	Computing Embeddings from a Low-Rank Solution

	Algorithm
	Experimental Setup
	Training Models
	Evaluation

	Results of Experiments
	Chapter Summary

	Cold User and Item Embeddings in Recommender Systems
	Section Overview
	Predicting Ratings with a Seed Set
	Computing coefficients via rating matrix
	Computing coefficients via a low-rank factor.

	Volume of Rectangular Matrices
	Algorithm
	Maximization of coefficients norm
	Fast Computation of Coefficients

	Algorithm Analysis
	Complexity analysis
	Comparing Complexity to Existing Approaches
	Analysis of Error
	Upper Bound of Coefficients Norm

	Experimental Setup
	Datasets
	Evaluation Protocol

	Results of Experiments
	Chapter Summary

	Conclusion
	Appendix

