
ALGORITHMS FOR SPEEDING UP

CONVOLUTIONAL NEURAL NETWORKS

Doctoral Thesis

by

VADIM LEBEDEV

DOCTORAL PROGRAM IN COMPUTATIONAL AND DATA SCIENCE AND

ENGINEERING

Supervisor

Professor Victor Lempitsky

Moscow

c© Vadim Lebedev 2018

Abstract

Modern convolutional neural networks excel in many areas, but their practical appli-

cation is often hindered by their high computational cost. In this work, we provide

a systematic review of the literature on the topic of speeding up convolutional neural

networks and present three novel methods. The first method uses a low-rank tensor de-

composition of the convolutional weights to modify the neural network architecture. For

the approach, we employ sparsity-inducing regularizer to prepare convolutional layers

for structured pruning and develop the modified implementation of convolution that ac-

celerates proportionally to the achieved sparsity level. The third approach performs fast

fine-grained classification with the combination of a light-weight neural network with a

radial basis function algorithm. The proposed methods fit into existing deep learning

frameworks and allow to finetune accelerated models, leading to considerable speedups

of modern convolutional architectures.

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Problems and datasets . 2

1.3 CNN building blocks . 4

1.4 CNN architectures . 10

1.5 Contribution . 15

2 Related work 17

2.1 Tensor decompositions . 18

2.2 Fast Architecture Design . 20

2.3 Automatic architecture search . 24

2.4 Quantization . 26

2.5 Pruning . 33

2.6 Teacher-student approaches . 37

2.7 Adaptive methods . 39

2.8 Problem-specific approaches . 41

2.9 Summary . 42

3 CP-decomposition of convolutional weights 44

3.1 Method . 45

3.1.1 Related works . 45

3.1.2 CP-decomposition . 46

3.1.3 Convolutional weights approximation 47

3.1.4 Implementation and Fine-tuning 48

3.1.5 Complexity analysis . 48

3.2 Experiments . 49

3.2.1 Character-classification CNN . 50

3.2.2 AlexNet . 50

3.2.3 NLS vs. Greedy . 51

3.3 Conclusion . 54

4 Group-wise Brain Damage 55

4.1 Method . 56

ii

iii

4.1.1 Group-Sparse Convolutions . 56

4.1.2 Fixed sparsity pattern . 59

4.1.3 Sparsifying with Group-wise Brain Damage 61

4.2 Experiments . 63

4.2.1 MNIST experiments . 64

4.2.2 ILSVRC experiments . 65

4.3 Conclusion . 67

5 Impostor Nets 69

5.1 Method . 70

5.1.1 Motivation . 71

5.1.2 Training impostor networks . 72

5.2 Experiments . 74

5.2.1 Timings . 79

5.2.2 Open set recognition. 81

5.2.3 Intuition behind the ”loose” impostors 83

5.3 Conclusion . 85

6 Conclusion and Discussion 86

Bibliography 89

List of Abbreviations

AlexNet a CNN architecture named after Alex Krizhevsky [Krizhevsky et al., 2012]

BLAS Basic Linear Algebra Subprograms, a specification for low-level linear al-

gebra libraries [Blackford et al., 2002]

CIFAR (CIFAR10 and CIFAR100) two datasets of small images and associated

classification tasks [Krizhevsky and Hinton, 2009]

CNN Convolutional Neural Network

CP Canonical Polyadic decomposition, a tensor decomposition

CPU Central Processing Unit

GPU Graphics Processing Unit, a specialized hardware for fast parallel compu-

tations

ILSVRC ImageNet Large Scale Visual Recognition Challenge, sometimes called Ima-

geNet, a large-scale image dataset and an associated classification task [Rus-

sakovsky et al., 2015]

MNIST Modified National Institute of Standarts and Technology dataset, a dataset

of small images and an associated classification task [LeCun et al., 1989]

NLS Nonlinear Least Squares, an optimization method

ReLU Rectified Linear Unit, f(x) = max(0, x), a popular activation function in

neural networks

ResNet Residual Network [He et al., 2016], a CNN architecture

SGD Stochastic Gradient Descent, an optimization method

SqueezeNet a compact CNN architecture [Iandola et al., 2016]

VGG a CNN architecture named after Visual Geometry Group, University of

Oxford [Simonyan and Zisserman, 2015]

iv

Chapter 1

Introduction

1.1 Motivation

Convolutional neural networks (CNNs) are extremely powerful models which dominate

modern computer vision. CNNs are used for image classification, segmentation, detec-

tion, filtering and generation tasks. Similarly, deep learning methods flourish in language

processing, signal processing, and general purpose reinforcement learning.

Although the basic ideas behind CNNs date back to 1980s [Fukushima and Miyake,

1982, LeCun et al., 1989], for a long time the neural networks were not able to live up

to the expectations imposed in the early days of AI research. The breakthrough for

CNNs in computer vision came about only with the introduction of powerful GPUs to

the learning process [Chellapilla et al., 2006, Raina et al., 2009, Krizhevsky et al., 2012].

Nowadays, GPUs are widespread in academia, and novel results are often obtained by

using excessive computational power, unavailable to the authors of the previous state-

of-the-art solution. New models are growing larger and slower, and this situation opens

a huge gap between research and practical application. This gap manifests in several

areas:

The smartphone has become a critical element of modern life, and the people are

going to rely on the wearable devices even more in the future. The neural networks

are among the major tools for making smartphones and wearable devices smarter; they

are used for optical character recognition, face recognition, natural language processing,

etc. All these problems can be solved on the server side, but the privacy concerns, time

constraints or unreliable Internet connection make an offline solution more desirable.

Computational capacity of a modern smartphone is remarkable compared to the previous

generations of devices, but it is still no match to a GPU server, and the battery power is

1

2

also limited. Powerful CNNs would run slower on weaker hardware, and while researchers

are willing to wait, end users are not so patient. Adapting CNNs to weak hardware is

one of the key challenges of modern deep learning.

Autonomous driving is a rapidly developing area of research which promises to make

a major impact in the near future. Autonomous driving systems often rely on multiple

sensors, including radars and lidars. However, the fact that regular human equipped

with a pair of eyes can drive a car means the autonomous driving system can be built

with pure computer vision. The key problems before this approach are reliability and

speed, as the autopilot has to react to the situation change promptly; superhuman speed

is desirable. Hardware specifications may differ in this case, but conditions are not so

harsh in terms of memory and electric power.

Large-scale image processing. Some applications of computer vision are character-

ized by the large scale of data to be processed. On example is the image retrieval, which

is the problem of information retrieval with an image as a query. It can be implemented

by computing descriptors of all images in the database and then comparing the descrip-

tor of the query image with database descriptors. For the modern search engines, the

database includes all the images on the Internet and thousands of queries have to be

processed at the same time, which requires huge computational power. Even if a neces-

sary number of powerful GPUs are available, faster models are still useful as a measure

for the conservation of electrical energy.

In the attempt to solve these problems, a new area of research was created: accelera-

tion and compression neural networks. Two tasks often go hand in hand and can be

approached with similar methods, but in this work, we focus mainly on the acceleration

problem.

The main part of this thesis describes approaches for speeding up CNNs. In the remain-

ing introductory part, we briefly explore tasks, solved with CNNs, and list popular CNN

architectures and their building blocks, used as starting points in the following chapters.

1.2 Problems and datasets

The speeding up of CNNs is relevant for all the fields of their application, including image

classification, object detection, segmentation, etc. Most of the approaches described

in this thesis are general, but the problem-specific approaches are also described in

Section 2.8 and Chapter 5.

3

Image classification is considered to be the most typical task for CNNs, and most papers

on the subject use classification task to demonstrate their achievements. The following

datasets are often used for these demonstrations:

MNIST. The MNIST database of handwritten digits is probably the single most famous

dataset in machine learning. It consists of 70000 (60000 train + 10000 test) 28×28 pixel

grayscale images, each belonging to one of 10 classes. MNIST was used in the seminal

papers on convolutional neural networks [LeCun et al., 1989], and still remains popular

because its small size and relative simplicity allows to run experiments and achieve

results quickly.

CIFAR10 and CIFAR100 are the labeled subsets [Krizhevsky and Hinton, 2009] of

large unlabeled 80 Million Tiny Images Dataset [Torralba et al., 2008]. Ten classes

included in CIFAR10 are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship

and truck. These datasets are similar to MNIST in size (32× 32 pixels), but have color,

and are much more diverse. For example, an image labeled as a bird can depict a bird

flying in the sky, or a close-up of an ostrich’s had. Man-made objects, such as trucks

and boats, can be painted in a variety of colors. This diversity makes CIFAR10 and

especially CIFAR100 much more complex than MNIST.

ILSVRC2012. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Rus-

sakovsky et al., 2015] has been running annually since 2010, although the 2012 version

is the most widely used. It has become the standard benchmark for large-scale object

recognition. The most challenging dataset on this list, it consists of 1.2 million images in

the train set and 50000 in the validation set, of 1000 classes. The size of images varies,

but they are commonly resized to 256 × 256 pixels. The ILSVRC dataset is a subset

of ImageNet – an even bigger database with 14 million images in 21841 hierarchically

organized categories), which was labeled via crowdsourcing.

Training neural networks on the datasets of this size was made possible by switching from

CPU to GPU computations [Krizhevsky et al., 2012], but CNN deployment on CPU-

only devices is often required in practice. Therefore, in the next section CPU and GPU

performance is reported separately. While in this thesis we focus exclusively on CPU and

GPU, other computational architectures can be used to speed up neural networks. These

architectures include field-programmable gate array (FPGA) [Ovtcharov et al., 2015] and

Application-Specific Integrated Circuits (the most notable example is Google’s Tensor

Processing Unit (TPU) [Jouppi et al., 2017], specifically designed for the tensorflow

framework). Although these solutions provide a significant speedup in some cases, their

flexibility is limited by design, an obvious downside for application in research.

4

ILSVRC2012 accuracy is considered to be an adequate measure of the model’s per-

formance on real-world tasks, and this dataset often becomes an end goal for general

purpose CNN speed up algorithms. CIFAR and MNIST are commonly used for prelimi-

nary experiments. However, there is a drastic difference between ILSVRC2012 and these

two datasets, particularly MNIST, in terms of size and complexity. This raises the ques-

tion if the success in preliminary MNIST experiments is representative of performance

on larger datasets. In my experience, it is not the case, as MNIST classification is too

easy, and approaches that work on MNIST often cannot be scaled on larger datasets.

Other datasets which are introduced to cover this gap include Caltech-UCSD Birds

dataset [Wah et al., 2011] and Stanford Cars dataset [Krause et al., 2013]. These fine-

grained classification datasets contain large images, like ImageNet, but a relatively small

number of classes.

1.3 CNN building blocks

In this section, we define the basic building blocks of convolutional neural networks

before moving on to the description of algorithms designed to speed them up. The neural

networks are organized as a stack of transformations (layers), and the key component

of CNN, which gave the model its name, is the convolutional layer.

Neural networks operate on data that is organized into 2D arrays, also called maps

or channels, 3D or 4D arrays. n-dimensional array is also called an nth-order tensor,

although in deep learning this two terms are mixed sometimes.

The convolution in CNNs is based on the concept of linear image filtering, which was

in use long before the modern era of CNNs. The linear filter takes an input 2D array

(map, channel) U , applies to it a 2D filter (or kernel) and produces another 2D array

V . The filtering can be defined as a convolution

V (x, y) =
∑
i,j

W (x−i, y−j)U(i, j) =
∑
i,j

W (i, j)U(x−i, y−j) (1.1)

or as a cross-correlation

V (x, y) =
∑
i,j

W (i, j)U(x+i, y+j) (1.2)

5

(1.1) can be transformed into (1.2) and vice versa by flipping the filter W . In many deep

learning frameworks as well as in the rest of the thesis the cross-correlation formula is

used, but by tradition the corresponding layer is still called convolutional.

The limits of summation are defined by the size of filter W , which is assumed here to

be d × d square. The out-of-bounds indices in U are handled by padding the input

tensor, usually with zeros. This padding is usually small and does not interfere with the

algorithms discussed in this thesis.

While (1.1) and (1.2) process single-channel (grayscale) images, the color images are

represented as a stack of 3 channels (or maps) or a single 3D array. Likewise, the data

passed between convolutional layers are also represented by 3D array, with the number of

channels that is usually much larger than 3. With the introduction of a third dimension

to the input U , the filter W also becomes a 3D array:

V (x, y) =
d∑
i=1

d∑
j=1

C∑
c=1

W (i, j, c)U(x+i, y+j, c) (1.3)

Finally, application of multiple 3D filters results in multiple outputs maps, which are

stacked into a single 3D output array. The filters are then organised as a single 4D array.

V (x, y, k) =

d∑
i=1

d∑
j=1

C∑
c=1

W (i, j, c, k)U(x+i, y+j, c) (1.4)

This transformation of 3D arrays (or third order tensors) is called the generalized convo-

lution. It is included in the neural networks as the convolutional layer, and the array W

is treated as the parameter of the model. Alternative names for W include: convolutional

weights, convolutional kernel, kernel tensor.

In convolutional layers, each neuron is connected to a small subset of neurons in a

previous layer, and this subset is called the receptive field. The number of floating point

operations in a convolution can be estimated as HWCNd2, where H, W and C are the

dimensions of input array, N is the number of filters, and d is the filter size.

Other building blocks of CNNs include:

• In Fully-connected layer, each neuron is connected to all neurons of the previous

layer. This layer takes an input vector x with C elements, multiplies it with the

weights matrix W ∈ RC×N producing an output vector y with N elements, in CN

floating point operations. If the input is not a vector, it is reshaped and treated

as a vector.

6

• Nonlinearity. Linear layers, such as the convolutional and the fully-connected

layer, are interleaved with nonlinearities. The most popular nonlinearity is the

rectified linear unit (ReLU) function f(x) = max(0, x). This computationally

cheap operation is applied element-wise, so its cost is negligible compared to other

components of CNNs. Since nonlinearity is almost always present after the fully-

connected or convolutional layer, it is often omitted in the architecture description.

• Pooling. Pooling layer subsamples inputs with maximum, average, or another

kind of aggregation method. Downsampling image s times reduces the number of

operations in subsequent layers s2 times, making the proper positioning of pooling

layers one of the critical decisions for building fast CNNs. As an alternative to

separate pooling layer, downsampling can be performed in the convolutional layer

with stride bigger than one.

• Batch normalization [Ioffe and Szegedy, 2015]. BatchNorm layer normalizes

inputs to zero mean and unit standard deviation. An introduction of batch nor-

malization can drastically speed up training convergence and improve the final

result. Normalization is as ubiquitous as nonlinearity in modern architectures, so

it also can be omitted in the architecture schemes.

Convolutional layers usually have the largest operation count and consume the most of

memory and time in CNNs, as demonstrated in Figure 1.2. Thus, the convolutions are

in the main focus of this work.

Several specific cases and modifications of general convolution, used to save build faster

models are shown in Figure 1.1 and described in detail below.

• 1× 1 convolution. Convolution complexity decreases for smaller spatial sizes of

the kernel, and smallest possible size is 1. In this case convolution (1.1) reduces

to a linear combination of input channels:

V (x, y, k) =

C∑
c=1

W (c, k)U(x, y, c) (1.5)

On top of small operation count, this operation can be efficiently implemented by

matrix multiplication.

• Group convolution. Another way to reduce the cost of convolution is to cut some

of the connections between input and output channels. The idea is implemented

by dividing input and output channels into several groups Gk and cutting all the

7

connections between different groups:

V (x, y, k) =

d∑
i=1

d∑
j=1

∑
c∈Gk

W (i, j, c, k)U(x+ i, y + j, c) (1.6)

Group convolution was originally proposed by [Krizhevsky et al., 2012] as a way

to construct a model what can be parallelized between two GPUs, and later this

concept was revived as a building block of fast CNNs.

• Depthwise convolution. If the number of groups is the same as the number of

input and output channels, the convolution is called a depthwise convolution. In

this case, every channel is filtered independently by a single filter:

V (x, y, k) =
d∑
i=1

d∑
j=1

W (i, j, k)U(x+ i, y + j, k) (1.7)

The number of channels in the output array is fixed in this case to the number of

channels in the input array. Depthwise convolution requires C times less floating

point operations compared to a regular convolution of the same size, but the actual

timings depend on the efficiency of implementation.

In a practical setting, then the available CNN does not fit the speed constraints, there

are several options to be exhausted:

1. Use more powerful hardware.

2. Pick more efficient implementation of convolution operation.

3. Tune the model or use fast approximations.

Switching to the new hardware (which includes a transition from CPU to GPU compu-

tation) is the simplest option, as in modern deep learning frameworks it does not require

any programming. The increase of processing speed and memory size in modern GPUs

is one of the main factors pushing the capabilities of neural networks.

The details of implementation are also hidden in modern frameworks. Although ques-

tions of hardware and implementation are mostly outside of the scope of this work,

some the aspects of implementation may influence the design of approximate speed-up

methods.

The naive implementation of convolution operation (1.4) has multiple nested loops, in

general case six of them. According to Chellapilla et al. [2006], small kernel sizes make

8

U V

W

(a) 3× 3 convolution

U V

W

(b) 1× 1 convolution

U V

W

(c) convolution with two groups

U V

W

(d) depthwise convolution

Figure 1.1: Variants of convolution used in modern CNN designs. (A) Standard
convolution with 3× 3 filters. (B) 1× 1 convolution, which rearranges input maps and
does not capture relations of neighboring pixels. (C) Both input and output maps are
divided into two groups (indicated by blue and green), with no connections between

them. (D) In depthwise convolution, all maps are processed independently.

the inner loops very inefficient as they frequently incur JMP instruction. Additionally,

forward and backpropagation steps require both row-wise and column-wise access to the

input and kernel, a feature that cannot be implemented efficiently with common data

representations.

The issues of naive implementation are addressed by Chellapilla et al. [2006] with an

approach called unrolled convolution. The central idea is to reduce convolution to the

multiplication of two matrices by duplication of input data. The reduction allows using

highly optimized implementations of matrix multiplications (variants of BLAS [Blackford

et al., 2002] libraries) that have been developed over many years for different computing

architectures, including CPU and GPU. The reduction is demonstrated in Figure 1.3.

The construction discussed above has proven to be highly successful and is used in the

majority of modern CNN frameworks, e.g. [Chellapilla et al., 2006, Donahue et al., 2014,

Jia et al., 2014a, Chetlur et al., 2014, Vedaldi and Lenc, 2014, NervanaSystems, 2015].

9

Conv

74.3%

ReLU5.0%
Other

0.1%

Pool
6.6%

FC

14.1%

(a) AlexNet CPU timings

Conv
33.5%

ReLU

4.9%

Other

0.9%

Pool

20.7%

FC
40.0%

(b) AlexNet GPU timings

Conv

78.9%

BatchNorm
8.1%

ReLU

10.0%

Other

3.0%

(c) ResNet-50 CPU timings

Conv
69.6%

BatchNorm15.2%

ReLU

8.8%

Other

6.3%

(d) ResNet-50 GPU timings

Figure 1.2: Timings of different layers for AlexNet and ResNet-50 architectures on
CPU (Intel Core i7-6800K) and GPU (GeForce GTX 1080), measured in Pytorch frame-
work by a built-in profiler. Surprisingly, the modern implementation of convolution on
GPU is so efficient that for relatively shallow architecture such as AlexNet, the largest
part of running time is spent in fully-connected layers. In case of CPU as well as
for deeper architectures, bulk of the time is consumed by convolutional layers. In the
ResNet-50 example, the single fully-connected layer of this architecture takes less than

0.5% of the total running time both on CPU and GPU.

Another way to build a faster implementation for convolution, explored by Mathieu et al.

[2014], is based on Convolutional Theorem which states that circular convolutions in the

spatial domain are equivalent to pointwise products in the Fourier domain. Denoting

Fourier transform as F and inverse transform as F−1, we can express convolution of two

2D maps f and g the following way:

f ∗ g = F−1 (F(f)F(g)) (1.8)

The main benefit of this approach is that its computational complexity does not depend

10

U

V'× =

im2colreshape reshape

PW'

W

V

Figure 1.3: Reducing convolution to matrix multiplication through unrolling. Input
array U is transformed to patch matrix P by the im2col operation. Columns of P are
built from unraveled patches from U , with patch size defined by the size of the filters
in weight array W . The patch matrix P is then multiplied by the weight matrix W ′

(obtained from W by reshaping), resulting in output matrix V ′. The final output array
V is obtained from V ′ by another reshape. Highlighted in blue are one patch in U
with the corresponding column of P , filter in W with the corresponding row of W ′ and
single output pixel produced by this filter in this patch. Not that only of the filters of

W is drawn, as it is hard to visualize four-dimensional array.

on the filter size, which is beneficial for larger filters. The disadvantages are larger

memory requirements for storage of feature maps and filters in the Fourier domain, and

possible slow down in case of small filters. Since filters used in modern architectures are

mostly small, this method is not very common.

Other efficient approaches for implementation of convolutions with small kernels in-

clude usage of Strassen fast matrix multiplication algorithm [Cong and Xiao, 2014] and

Winograd minimal filtering algorithm [Lavin, 2016].

1.4 CNN architectures

In this section, we list several popular architectures that are used further in the text.

LeNet [Lecun et al., 1998] is a simple CNN architecture initially proposed and still

often used for the MNIST dataset. It consists of two convolutional, two pooling and two

fully-connected layers. Original architecture included tanh nonlinearities and RBF units

which are usually replaced by ReLU and regular fully-connected layer in the modern

implementations of this architecture.

11

AlexNet [Krizhevsky et al., 2012] was first CNN successfully trained on a large-scale

dataset, a breakthrough which led to the victory at ILSVRC2012 competition. Being the

first, AlexNet had some peculiar features: filters of varying sizes, including large filters

on the first layers, and relatively low depth. Although modern CNNs exceed AlexNet

in every aspect, it is still often used as a common baseline. AlexNet is fast compared

to the deepest and most accurate of advanced CNNs, but not compared to the fastest

architectures on the same accuracy level.

Early CNN architectures used large convolutional filters, such as 5×5 filters in AlexNet

and LeNet, and AlexNet even had 11 × 11 filters on the first layer. This large size

allowed Krizhevsky et al. [2012] to observe smoothness of trained filters which indicates

that much less is required to define the filter with the help of interpolation or some other

procedure. The similarity of several filters to vertical or horizontal edge detection filters

points to the specific method: separable filters. The works on separability and extension

to tensor decompositions are reviewed in Section 2.1.

VGG is a family of CNNs defined by two key features: considerable depth and exclusive

use of 3×3 filters, which is the smallest size to capture the notion of left/right, up/down,

center [Simonyan and Zisserman, 2015]. The success of VGG architectures launched the

increasing depth of modern CNN architectures: the more layers you can stack, the better.

VGG architectures are very slow and even heavier in number of parameters, mostly due

to massive fully-connected layers. VGGNets are still popular among researchers because

of their simple structure, and even dominate some applications, such as fine-grained

classification and image stylization.

ResNet. As noted by He et al. [2016], some limit of CNN’s depth still exists: when

the network becomes deeper, its accuracy saturates and after reaching some limit starts

rapidly degrading. This problem is not caused by overfitting, but by the failure of the

training process. A novel design approach was proposed to facilitate easier gradient

propagation through the network and therefore help the training process. The main

idea is to organize CNN’s blocks as a residual function

f(x) = h(x) + x (1.9)

where x is the input and h(x) is a block of convolutional layers. Residual training

overcomes accuracy degradation problem and allows to efficiently train CNNs up to

thousand layers deep, although these extreme sizes are only possible on the datasets with

small input sizes, like CIFAR. Members of the ResNet model family are designated by

the number of layers in the network, with medium-sized ResNet-50 being the most widely

used model. Attempts to improve original ResNet architecture include ResNeXt [Xie

12

et al., 2017] which introduces group convolutions to residual block, and DenseNet [Huang

et al., 2017], which creates additional connections between residual blocks.

Inception family also known as GoogLeNet [Szegedy et al., 2015]. The main idea of

the Inception architecture is based on finding out how an optimal local sparse structure

in a convolutional vision network can be approximated and covered by readily available

dense components. This principle led to the construction of Inception block, which con-

sists of several branches, each with filters of a specific size. This block is repeated several

times, resulting in a very deep neural network. Nowadays, the inception family includes

four versions of Inception model [Szegedy et al., 2015, 2016, 2017], the Xception [Chol-

let, 2017] model which uses depthwise separable convolutions and hybrid model called

Inception-ResNet [Szegedy et al., 2017].

Accuracy is prioritized over speed and compactness in the mainstream CNN research,

which has been moving in the direction of increasing CNN depth for some time. Never-

theless, training of the deepest of modern CNNs is not possible without paying attention

to the efficiency of designed architecture. The principles of efficient architecture design

and CNNs designed for maximal speed are covered in detail in Section 2.2.

The correspondence between inference time and accuracy of described CNN architectures

is shown in Figure 1.4. Four charts compare CNN performance on CPU and GPU on

two frameworks, Pytorch and Keras with Tensorflow backend, and the operation counts

are shown on the fifth chart. This comparison reveals the influence of hardware and

software details on the relative performance of different architectures, especially if the

network uses non-standard convolution type, such as group convolution or depthwise

convolution. This phenomenon can be observed with the Xception architecture, which

drastically changes its position relative to the neighboring models, e.g. ResNet-50. These

changes occur not only with the framework and CPU/GPU switch but also between the

different versions of the same framework and different GPU models. Although these

factors are extremely important in practice, we leave most of the details of hardware and

software implementation outside of the scope of this work, and focus on the algorithms

and approximation ideas.

Chronologically first model, AlexNet, lies in the bottom right corner in all versions of the

chart, meaning it is among the fastest and least accurate models. The next generation

models, such as VGG, ResNets and various models from Inception family, occupy the

center and left parts of the diagram. The optimal models lie on the lower convex

envelope of this diagram. The general target of speeding up neural networks is to push

this envelope down and to the left. In my experiments with the Pytorch framework,

the central part of this envelope includes ResNet models and Inception family models.

VGG models in all cases with the exception of GPU computation with Keras, are situated

13

higher, which means they are not optimal. The top left part of the envelope corresponds

to the most accurate models which trade a lot of speed for accuracy. The slowest and

most accurate among models shown on this chart is NASNet, which is created with

automatic architecture search, an approach described in Section 2.3.

14

15 20 25 30 35 40 45
error rate, %

0

100

200

300

400

500

600

tim
e,

 m
s

AlexNet

ResNet-101

ResNet-152

ResNet-18

ResNet-34
ResNet-50

SqueezeNet

VGG11

VGG13

VGG16

VGG19

Inception v4
InceptionResNet

Inception v3

Xception

ShuffleNet

(a) Pytorch CPU

15 20 25 30 35 40 45
error rate, %

0

5

10

15

20

25

30

35

40

45

tim
e,

 m
s

AlexNet

ResNet-101

ResNet-152

ResNet-18ResNet-34
ResNet-50

SqueezeNet
VGG11

VGG13
VGG16

VGG19

Inception v4

InceptionResNet

Inception v3

NASNet-A-Large

Xception
ShuffleNet

(b) Pytorch GPU

15 20 25 30 35 40 45
error rate, %

0

100

200

300

400

500

600

700

800

tim
e,

 m
s

AlexNet
SqueezeNet

InceptionResNet v2

Inception v3

MobileNet
ResNet50

VGG16

VGG19

Xception

NASNet-A-Large

(c) Keras CPU

15 20 25 30 35 40 45
error rate, %

0

20

40

60

80

100

tim
e,

 m
s

AlexNet
SqueezeNet

InceptionResNet v2

Inception v3

MobileNet

ResNet50

VGG16
VGG19Xception

NASNet-A-Large

(d) Keras GPU

15 20 25 30 35 40 45
error rate, %

0

10

20

30

40

50

op
er

at
io

n
co

un
t,

GF
LO

PS

AlexNet

ResNet-101

ResNet-152

ResNet-18
ResNet-34

ResNet-50

SqueezeNet

VGG11

VGG13

VGG16

VGG19

Inception v4
InceptionResNet

Inception v3

NASNet-A-Large

Xception

ShuffleNet

(e) operation count

15 20 25 30 35 40 45
error rate, %

0

20

40

60

80

100

120

140

pa
ra

m
et

er
 c

ou
nt

, 1
06

AlexNet

ResNet-101

ResNet-152

ResNet-18

ResNet-34
ResNet-50

SqueezeNet

VGG11
VGG13

VGG16
VGG19

Inception v4

InceptionResNet

Inception v3

NASNet-A-Large

Xception

ShuffleNet

(f) parameter count

Figure 1.4: The trade-off between the inference time and the ILSVRC Top-1 classi-
fication error for some of CNN architectures. The timings are measured for both CPU
(Intel Core i7-6800K) and GPU (GeForce GTX 1080) with two frameworks: Pytorch
0.3 and Keras with Tensorflow backend. Additionally, the operation and parameter
counts for Pytorch models are presented on the lowest chart. Lines connect groups of
similar architectures. NASNet-A-Large architecture is not shown on the Pytorch CPU
chart as its inference time in this setting was measured at 2.2 seconds, which puts it

too far away from the rest of the points.

15

1.5 Contribution

The thesis has the following contributions:

• We describe a novel CNN speedup algorithm based on low-rank CP-decomposition

of convolutional weights. We show what CP-decomposition can be used to replace

one convolutional layer with four smaller layers, which produce approximately the

same output significantly faster. We implement this method with existing CNN

building blocks so that it can be efficiently incorporated into existing deep learning

frameworks, and, most importantly, the decomposed version of the network can

be finetuned to regain accuracy drop inflicted by approximation.

We evaluate the idea on small optimal optical character recognition task and

ILSVRC dataset and obtain competitive results. These findings are presented

in Chapter 3 and published as [Lebedev et al., 2015].

• We analyze the implementation of a convolutional layer and discover an oppor-

tunity to perform sparse convolution without overhead costs usually associated

with sparse operations. My method uses structured sparsity, essentially chang-

ing filter shapes with special constraints. Then, we impose structured sparsity

on the neural network by training with sparsity-inducing regularizer and prun-

ing. The method is evaluated and carefully compared with baselines on MNIST

and ILSVRC datasets, and state-of-the-art results are obtained. Additionally, we

demonstrate trained sparsity patterns and show what the training process prefers

circular filters in the wide range of training conditions. This contribution is the

subject of Chapter 4 and is published as [Lebedev and Lempitsky, 2016].

• We introduce impostor networks, an architecture that allows performing fine-

grained recognition with high accuracy by combining a light-weight CNN with

radial basis function (RBF) classifier. We develop three methods for joint training

of two parts of the model, and carefully compare them on a variety of fine-grained

classification datasets. Impostor networks are suitable for resource-constrained

platforms, but it is not their only advantage. Particularly, we demonstrate the

reliability of impostor nets in open set scenario, i.e. the situation when the model

is presented with a sample from the class not included in the training set. This

contribution is the subject of Chapter 5 and is published as [Lebedev et al., 2018].

16

Full list of publications:

1. Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Vic-

tor Lempitsky. Speeding-up convolutional neural networks using fine-tuned cp-

decomposition. International Conference on Learning Representations (ICLR),

full conference paper, 2015.

2. Vadim Lebedev and Victor Lempitsky. Fast ConvNets using group-wise brain

damage. Computer Vision and Pattern Recognition (CVPR), 2016

3. Vadim Lebedev and Victor Lempitsky. Speeding-up Convolutional Neural Net-

works: A Survey. Bulletin of the Polish Academy of Sciences: Technical Sciences,

2018.

4. Vadim Lebedev, Artem Babenko and Victor Lempitsky. Impostor Networks for

Fast Fine-Grained Recognition. Arxiv preprint, 2018.

The following works describe related material that has not been included in the thesis.

1. Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, Victor S Lempitsky. Texture

Networks: Feed-forward Synthesis of Textures and Stylized Images. International

Conference on Machine Learning (ICML), 2016.

2. Oleg Grinchuk, Vadim Lebedev, Victor Lempitsky. Learnable visual markers.

Neural Information Processing Systems (NIPS), 2016.

Chapter 2

Related work

This chapter provides a literature review of algorithms for speeding up neural networks,

focusing on approaches that aim at building CNNs that are fast at inference time. In

general, these approaches can be divided into six groups:

• The approaches using tensor decompositions of the weights or activations.

• Methods relying on low-precision arithmetic and other quantization techniques.

This group includes methods that aim to build fully binarized neural networks.

• Approaches that prune the weights of larger networks to build their smaller and

faster equivalents.

• Teacher-student approaches, which train small networks with the aid of bigger

ones.

• Efficient architectures design: methods that pursue a heuristic-driven search for

the smallest possible network that can be trained from scratch to an appropriate

level of accuracy.

• Methods for automatic architecture search that aim to replace human-suggested

heuristics with an algorithm that designs neural networks automatically.

Below, each group is presented within a separate section. Factorization, quantization,

and pruning approaches can all be grouped into a “gradual” speed-up super-group. Such

methods start with a pretrained CNN and then interleave the transformation of convolu-

tional layers with fine-tuning operations. Each transformation step leads to a speed-up

as well as to the drop in accuracy. The subsequent fine-tuning operation recovers part

of the accuracy drop. On the other hand, methods aimed at fast architecture design

(including those that do this in an automated way) aim to design an architecture that

17

18

can be trained from scratch. Finally, the teacher-student methods take the middle path,

as they usually create the final architecture in a two-step process, which first trains a

slow teacher network and then trains a fast student network using the guidance from

the teacher.

2.1 Tensor decompositions

The convolution layers, which correspond to the bulk of the inference time in modern

CNNs, are based on the generalized convolution operation:

V (x, y, k) =
d∑
i=1

d∑
j=1

C∑
c=1

W (i, j, c, k)U(x+ i, y + j, c) , (2.1)

where U denotes the input 3D array containing C 2D image maps, V denotes the output

3D array containing N 2D image maps, and W is a four-dimensional weight array.

The convolutional layer is thus defined by its four-dimensional weight arrat W . The

idea behind tensor decomposition methods is to decompose this array into a product

of low-dimensional tensors, resulting in several fast convolutions with fewer operations.

Filter decomposition for speeding-up convolutions was initially developed not in the

context of CNNs. [Rigamonti et al., 2013] considered denoising tasks and approximated

convolutional filters by a shared set of separable filters, leading to substantial speedups

with minimal loss in denoising accuracy.

The approach based on separable filters was then extended to convolutional layers of

CNNs in [Jaderberg et al., 2014b]. The convolutional weights with square d × d filters

are approximated and replaced by a product of two tensors with 1× d and d× 1 filters

and K feature maps between them. The parameter K (the decomposition rank) regu-

lates the speed-accuracy trade-off: small K leads to fast but inaccurate models, while

large K allows to reproduce original convolution closely but with high computation time.

Carefully tuning K for every approximated layer is a crucial part of speeding up the

neural network within this algorithm. Jaderberg et al. [2014b] describes two optimiza-

tion approaches, depending on whether the objective minimized by the decomposition

procedure measures the error of the filter reconstruction or the error of the unit acti-

vation reconstruction. Of the two approaches, the latter is more practical as it can be

made a part of the CNN fine-tuning process, which optimizes the training loss used to

train CNN over all parameters of the network (although end-to-end fine-tuning was not

pursued).

19

method operations

full convolution CNd2

two-component[Jaderberg et al., 2014b] Kd(C +N)
monochromatic approximation[Denton et al., 2014] CC1 +Nd2

biclustering+svd[Denton et al., 2014] CC1K1 + C1N1K1K2d
2 +NN1K2

biclustering+outer product[Denton et al., 2014] K(CC1 + C1N1d
2 +N1N)

cp-decomposition[Lebedev et al., 2015] K(C + 2d+N)
cp-decomposition[Astrid and Lee, 2017] K(C + d2 +N)

Table 2.1: Per-pixel operation counts for different approximations of convolutional
layers, with the focus on CP-decomposition approaches. The number of operations
depends on the size d of the square filters, the number of input channels C and the
output channels N , as well as the hyper-parameters specific to approximation methods:
the decomposition rank K, and the number of clusters C1 and N1 for input and output

channels for the clustering methods from [Denton et al., 2014]

Originally, the separability was enforced on the pretrained network only, but [Jaderberg

et al., 2014b] also note that low-rank filters can be learned in a discriminative manner,

i.e. from scratch and at the same time with the rest of the network. This idea was later

incorporated into Inception architectures, starting from the second version [Szegedy

et al., 2016].

Several weight tensor compression methods based on clustering were proposed by [Den-

ton et al., 2014]. The starting idea is to cluster the tensor slices along one or two of the

four dimensions (referred to as biclustering), to split up the tensor according to cluster

boundaries and then to approximate resulting slices by centroid values (”monochromatic

approximation”), via the SVD decomposition, or via the canonical polyadic (CP) decom-

position obtained by greedy approach (outer product decomposition). The CP decom-

position is one of the generalizations of the SVD decomposition to higher-order tensors

(a review [Kolda and Bader, 2009] on such decompositions is highly recommended). The

splitting reduces decomposition ranks required for good approximation, but this comes

at the cost of increasing the number of tensors that need to be approximated. Another

shortcoming of this approach is in a rather large number of hyper-parameters, which

makes it increasingly hard to tune for optimal performance.

Another algorithm that applies the CP-decomposition to the convolutional weights is

described in [Lebedev et al., 2015] and Chapter 3. Instead of clustering, the focus of this

work is on tuning the performance of CP-decomposition, which is done in two phases.

The first phase starts with better initial approximation obtained by the non-linear least

squares algorithm (instead of the greedy one used in [Denton et al., 2014]). The second

stage finetunes the whole network after the decomposition is applied.

Finetuning the model after decomposition is non-trivial, especially if the decomposition

is applied to several layers. Even if the single layer is decomposed, numerical instabilities

20

inside the four convolutional layers introduced by CP-decomposition often lead to the

explosion of gradients during fine-tuning. The key problem is that CNN block designed

to follow the structure of tensor decomposition does not have non-linearities between

the convolutions. When multiple layers are decomposed, the fine-tuning can be done

either once after all the decompositions are applied, or iteratively, after every single

decomposition. The iterative approach was explored by by [Astrid and Lee, 2017],

who also argues for Tensor Power Method [Allen, 2012] to be the most appropriate

for obtaining initial decomposition. Training from scratch with the architecture closely

related to one obtained with CP-decomposition was implemented in [Jin et al., 2014].

The work [Zhang et al., 2016] suggests an alternative way to speed up neural networks

by applying the low-rank assumption to activations rather than to the weight tensor.

This assumption splits one convolutional layer in two, while the weights of each of the

two new layers are obtained by solving optimization problems. The focus on activations

instead of the weights has two advantages: first, the nonlinearities can be taken into

account in the optimization problem formulation, and secondly, in case of multiple layers

approximations, the activations of the original network can be used as a target. This

idea, called the asymmetric reconstruction limits the accumulation of error from layer

to layer. Finally, as in the previous approaches, the whole network can be fine-tuned.

All the methods listed above replace single convolutional layer by a block of smaller

convolutions. The comparison of these blocks is presented in Figure 2.1.

Other higher-order tensor decompositions have been used for CNN speed-up. Tucker

decomposition was applied for speeding up and compression of CNNs in [Kim et al.,

2015] and [Wang and Cheng, 2016]. Tensor Train (TT) decomposition was applied to

fully connected layers of convolutional neural networks by [Novikov et al., 2015]. The

main focus of that work is compression, not the speed-up, but the achieved compression

rates of up to 200000 times are extremely impressive.

2.2 Fast Architecture Design

The research in CNNs has led to the emergence of several popular families of the archi-

tectures. Historically, the search for architectures was driven by the desire to push the

classification accuracy (most importantly in the annual ILSVRC [Russakovsky et al.,

2015] challenge), while the inference speed was of a secondary concern.

The tensor decomposition approaches are closely related to the task of designing optimal

architectures, which is the topic of this section. The methods, described in this section

train the designed architectures from scratch, and the design choices are often directly

21

d× d,N

(a) full

d× 1,K

1× d,N

(b) two
components
[Jaderberg

et al., 2014b]

d× d,K

1× 1 N

(c) response
approximation
[Zhang et al.,

2016]

1× 1,K

1× d dw

d× 1 dw

1× 1, N

(d)
CPD [Lebedev

et al., 2015]

1× 1,K

d× d dw

1× 1, N

(e)
CPD [Astrid
and Lee, 2017]

Figure 2.1: CNN blocks used by tensor decomposition methods to replicate a single
convolutional layer. Each layer here is labeled with its kernel shape and the number of
filters. ’dw’ stands for depthwise convolution, in which case the number of the channels

in the input is the same as on the output.

20 25 30 35 40 45
error rate, %

0

2

4

6

8

10

12

14

16

tim
e,

 m
s

MobileNet

AlexNet

ResNet-101

ResNet-152

ResNet-18

ResNet-34

ResNet-50

SqueezeNet

VGG11
VGG13

VGG16
VGG19

Inception v3

Xception

ShuffleNet

(a) GPU

20 25 30 35 40 45
error rate, %

0

100

200

300

400

500

600

tim
e,

 m
s

MobileNet

AlexNet

ResNet-101

ResNet-152

ResNet-18

ResNet-34

ResNet-50

SqueezeNet

VGG11

VGG13

VGG16

VGG19

Inception v3
NASNet-A-Mobile

Xception

ShuffleNet

(b) CPU

20 25 30 35 40 45
error rate, %

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

op
er

at
io

n
co

un
t,

GF
LO

PS

MobileNet
AlexNet

ResNet-101

ResNet-18

ResNet-34
ResNet-50

SqueezeNet

VGG11

Inception v3

NASNet-A-Mobile

Xception

ShuffleNet

(c) operation count

Figure 2.2: Diagram of ILSVRC accuracy and inference time for fastest of available
CNN architectures. The timings are measured both on CPU (Intel Core i7-6800K) and
GeForce GTX 1080 GPU with Pytorch 0.3. Operation count, the hardware-independent
measure of model complexity is also shown on the right. Efficient CNNs described in this
sections are marked with blue points. NASNet-A-Mobile is excluded from the left chart
because it’s inference time on GPU is too high compared to other models. According
to the claims of the authors, efficient models such as MobileNet and ShuffleNet are
supposed to be faster compared to regular models such as AlexNet. In this experiment,
fast models appear to be fast only in terms of operation count, but not in the actual
execution time. This result is probably caused by a relatively inefficient implementation

of depthwise separable convolution in Pytorch.

d× d,N

1× 1, N

1× 1, N

(a) NiN

1× 1, N4

1× 1, 3× 3, N2

concat

(b) SqueezeNet

3× 3, dw

1× 1, N

(c) MobileNet

1× 1, N4

shuffle

3× 3 dw

1× 1, N

(d) ShuffleNet

1× 1, N2

1× 3, dw

2× 1 pooling

3× 1, dw

2× 1, N

(e) EffNet

Figure 2.3: Sequences of convolutional layers used for fast and compact architectures
described in Section 2.2. The notation follows Figure 2.1. In case of ShuffleNet, 1 × 1

convolutions are also group convolutions.

22

influenced by preceding works on tensor decomposition, such as in the case of [Jin et al.,

2014].

One of the first prominent attempts at building an architecture, which emphasizes ef-

ficiency is the Network-In-Network (NIN) architecture proposed in [Lin et al., 2014].

The basic idea behind NIN is to replace non-linearities within the convolutional network

with a more complex function. Multilayer (two-layer) perceptron, which is known to

be a universal approximator, is chosen as a replacement. By sharing the weights of the

perceptrons across spatial dimensions one ends up with two 1 × 1 convolutional layers

interleaved with standard non-linearities.

The SqueezeNet [Iandola et al., 2016] is a compact architecture that achieves AlexNet-

level performance with 50× fewer parameters. The ideology behind SqueezeNet is based

on three principles:

1. Utilize 1× 1 filters instead of 3× 3 filters whenever possible. Smaller filters have

fewer parameters and need fewer operations.

2. When 3× 3 filtering has to be applied, minimize the number of input channels.

3. Downsample late in the network to give most layers chance to work with large

high-resolution maps.

The first and the second principles ensure that the model is both small and fast, while

the third design principle boosts the accuracy. All three principles combined yield a

very small model with a slightly smaller inference time than AlexNet (which serves as

the base model).

The MobileNet architecture [Howard et al., 2017] is prominent among CNN architectures

designed for optimal size and inference time. The main idea is to separate filtering and

feature construction functions of a convolutional layer into two layers: the depthwise

convolution and 1 × 1 convolution (i.e. a pointwise convolution). This combination is

called a depthwise separable convolution and was first popularized in [Xie et al., 2017].

The MobileNet also employs simple but effective tricks to control architecture perfor-

mance: the network width (the number of channels) is controlled by the width multi-

plier α, and the input resolution is controlled by the resolution multiplier ρ. In general,

changing the network width and the input resolution is a simple way to control trade-offs

between the speed and the number of parameters on the one hand and the accuracy on

the other. Such knob, however, had not been thoroughly investigated in research papers

prior to [Howard et al., 2017].

23

In comparison with SqueezeNet, MobileNet is capable of achieving higher accuracy with

approximately same model size and one-tenth of mult-add operations. This advantage in

operation number, however, is hard to translate into actual inference speed-up on GPU

because depth-wise convolution is not as efficiently implemented on GPU as a regular

convolution.

Still, separating the depth-wise and intra-channel convolutions has become a popular

idea. In modern architectures, this idea leads to 1 × 1 convolution being dominant in

the total computation cost of the model. The only way to squeeze 1 × 1 convolutions

even further is to turn them into group convolutions [Krizhevsky et al., 2012], which

only mix channels within certain groups of channels. Such grouping, however, would

mean that the whole network is divided into thin columns with no connection between

them. ShuffleNets [Zhang et al., 2017] address this problem by using the channel shuffle

operation. Shuffling of channels between the convolutions allows enjoying the low costs

of group convolutions without splitting the network into disjoint parts. The ShuffleNet

architecture uses an even smaller number of operations for the same accuracy level

compared to MobileNet. Whether this advantage translates to actual timings depends

on the efficiency of the available implementations of depthwise and group convolutions.

Another variation of MobileNet building block is the EffNet architecture [Freeman et al.,

2018], motivated by a careful study. EffNet utilizes depthwise separable convolutions

and pushes it even further by splitting 3× 3 convolution into pair of convolutions with

1 × 3 and 3 × 1 kernels. The downsampling along one dimension is performed with

strided convolution, and along other - via 2× 1 pooling.

The final logical step in the movement towards smaller filters in CNNs would be a

complete rejection of convolutions with filers larger than 1 × 1. The problem with this

kind of CNN is that adjacent pixels would not be connected, and the receptive fields

will always be 1× 1. ShiftNets [Wu et al., 2017] solve this problem using channel shifts,

which allows adjacent pixels in different channels to connect through 1×1 convolutions.

Channel shift is a cheap operation, but ShiftNet often requires to increase the number

of channels in the network to achieve the same level of performance. The proposed

building blocks of ShiftNet and other architectures listed above are shown in Figure 2.3.

Figure 2.2 shows runtimes, operation counts, and the ILSVRC accuracies of the described

architectures.

The principles of lightweight architecture design are also beneficial for the design of large

“heavy-weight” architectures. In a practical setting, the memory on the GPU and the

time for the experiments are always limited, so the depth of the CNN architecture is

limited as well. Since the CNN performance usually increases with depth, it is desirable

to stretch this limit by designing architectures efficiently. In this arena, the Inception

24

architecture [Szegedy et al., 2015] is built on the premise of approximating sparsity with

existing building blocks. It was gradually refined [Szegedy et al., 2016] to minimize the

computational cost and to maximize the performance. Towards this end, convolution

decomposition was introduced in the fourth version [Szegedy et al., 2017]. Finally, depth-

wise convolutions were introduced to the Inception architecture in [Chollet, 2017]. The

ResNet architecture [He et al., 2016] (as well as its further development ResNeXt [Xie

et al., 2017]) also makes use of similar efficient architecture principles. The training

of extremely deep CNNs (150 layers for ImageNet-sized inputs) simply cannot be done

without careful management of computation resources.

Finally, we note once again, that efficient architecture design is not limited to clas-

sification tasks, as segmentation and detection require specialized architectures that

nevertheless may share the same principles. This subject is beyond of the scope of

this review, but good benchmarks that track both speed and accuracy are provided

for the Cityscapes dataset [Cordts et al., 2016] in the case of segmentation and the

KITTI benchmark [Geiger et al., 2012] in the case of 2D and 3D detection.

2.3 Automatic architecture search

Usually, the neural network architectures are hand-constructed by human experts, who

are guided by general principles of efficient architecture design. A lot of choices in

the architecture construction are left to intuition and guessing. The situation asks for

automatic algorithms for architecture search that are reviewed in this section, naturally

expanding Section 2.2. As automated architecture search is a rapidly developing field

at the spearhead of modern deep learning research, this section only covers the most

influential works in this sub-field.

Automatic architecture search is essentially a hyperparameter optimization, which is

a general problem that can be tackled by several approaches, such as grid search or

Bayesian optimization [Shahriari et al., 2016]. The case of CNN brings several compli-

cations. First, the function evaluation becomes very expensive. Second, the number

of hyperparameters is very large and may vary across the optimization space. Thus,

hyperparameter optimization for CNN requires specialized approaches.

Perhaps the first successful attempt at automatic architecture search is a neural architec-

ture search (NAS) algorithm [Zoph and Le, 2017] which utilizes reinforcement learning.

The CNN architecture is predicted by a recurrent neural network that sequentially pro-

duces CNN hyperparameters: filer sizes, strides, numbers of filters. Possible branchings

25

and skip connections are modeled using an attention mechanism that decides which con-

nection between the current layers and the previous layers are to be introduced in the

next step.

NAS requires an extremely large amount of computational resources even when per-

formed on small datasets. Thus in the experiments with the CIFAR-10 dataset, the au-

thors report testing 12800 architectures during the search process and using 800 GPUs

simultaneously. This makes architecture search for larger datasets such as ImageNet

impossible.

Larger datasets can be approached in two ways: by designing more efficient search

algorithms, or by ensuring that the results obtained on a small dataset are transferable

to the larger datasets. Both approaches are implemented in [Zoph et al., 2017]. First,

the modular structure is imposed on a target CNN. This way, only the architecture of a

block has to be predicted instead of the whole network, making the search space much

smaller. Second, CIFAR-10 and ImageNet versions of architectures can be made of the

same blocks with a different number of poolings (or strided convolutions) between them.

Architectures built this way beat human-constructed architectures on ImageNet.

The neural architecture search can be further accelerated by sharing parameters between

different architectures [Pham et al., 2018, Cai et al., 2017] or by predicting the final

performance of architecture based on the first epochs at the beginning of the training

process [Baker et al., 2017]. With these enhancements, hundreds of GPUs are no longer

necessary for automatic architecture search. Thus, [Cai et al., 2017] reports closely

reproducing the original neural architecture search results using five GPUs instead of

800.

Reinforcement learning (RL) is not the only possible way to search in the space of

CNN architectures. A genetic algorithm was carefully compared with the RL baseline

in [Real et al., 2018]. They conclude that a genetic algorithm can match RL with quicker

convergence.

Still, all the variations of approaches which divide architecture construction and evalu-

ation require evaluating thousands of CNNs. The resource consumption can be drasti-

cally reduced if the architecture search and CNN training are done at the same time.

MorphNets [Gordon et al., 2017] simultaneously learn CNN weights and change its ar-

chitecture by iterating between the two stages. In the first stage, the network is thinned

by the sparsity inducing regularizers. In the second stage, new channels are added uni-

formly to all layers. This algorithm allows CNN to adapt thickness of its layers to the

particular task. Without the need to train large numbers of models, the training time

of MorhNets is similar to regular CNN training, meaning the algorithm can be directly

26

applied on ImageNet. The downside of this approach is that the search space is limited

to changing layer widths

2.4 Quantization

A switch to low-precision arithmetic or quantization is a straightforward way to speed

up computations, as well as to compress and to minimize memory requirement for a

neural network. This general idea produces a spectrum of approaches, which starts

from using slightly lower precision and ends with the complete switch to binary weights

and activation. While the binarization offers a compelling perspective of extremely low

time and memory cost, it is not possible yet to fully transition to binary CNNs without

substantial accuracy drops.

The problems faced by quantization and binarization are apparent. First, in the case

of quantized weights, it is hard to implement gradient descent, since the idea of quanti-

zation contradicts the process of accumulating small changes. Second (and related), if

the activations are quantized, the backpropagation process becomes complicated. This

section surveys some of the ways to deal with these problems.

The list of approaches for improving the speed of neural networks on CPUs [Vanhoucke

et al., 2011] includes 8-bit quantization. Several facts which facilitate quantization are

listed. Firstly, because of the sigmoid activation function, activations stay in the [0, 1]

interval, so no scaling is needed. Secondly, because of the linear nature of the operation

together with range compression by sigmoid, quantization errors tend to propagate sub-

linearly. That said, modern CNNs rarely use sigmoid activations, so this argument may

no longer be valid, although sublinearity of error propagation still holds with ReLU ac-

tivation. Moreover, [Hinton et al., 2012] notes that neural networks are not only robust

towards the noise, but the training performance can be enhanced by noise injection.

Thus, noise-like distortions injected by the quantization process may not be detrimental

if this process is properly tuned. Therefore, if the hardware allows it, low precision

arithmetic is a viable technique for speeding up neural networks.

The problem of the compression of fully-connected weights matrix W was addressed

in [Gong et al., 2014]. The compression often goes hand-in-hand with the improvement of

the speed, and some techniques are applicable both to convolutional and fully connected

layers, so this work turns out to be very influential for speeding up CNNs. The following

approaches are compared in [Gong et al., 2014]:

27

• Truncated SVD-decomposition approximates weights matrix W ∈ Rn×c as a

product of smaller matrices:

W ≈ Ŵ = USV T = U ′V T (2.2)

where U,U ′ ∈ Rn×k and V ∈ Rc×k. The input multiplication by W is then replaced

by two multiplications with U ′ and V T . The compression and speed-up rate are

controlled by the number of components in the decomposition k.

• Binarization, which is the simplest and the most radical way to compress pa-

rameters by applying thresholding:

Ŵij =

1 Wij > 0

−1 Wij < 0
(2.3)

Binarization compresses data from full 32 bit precision to 1 bit, with the fixed

compression rate of 32×.

• Scalar quantization: all entries of matrix W are clustered by the k-means algo-

rithm, and the centroid values ct are used for the approximation

Ŵij = ct where t = argmin
z
|Wij − cz| (2.4)

• Product quantization [Jegou et al., 2011] divides matrix W into several subma-

trices [W1,W2 . . .Ws], then each submatrix is clustered by kmeans and compressed

independently.

As opposed to the previous results for the convolutional layers, matrix decomposition

performed poorly according to [Gong et al., 2014]. Simple scalar quantization and prod-

uct quantization achieved much better results, and, surprisingly, the simplest binariza-

tion technique also worked reasonably well. Obviously, simplicity and high compression

rate make binarization a very promising approach, but its capabilities are very lim-

ited unless one can properly train binarized networks and compensate the accuracy

drop incurred by binarization. A multitude of attempts at reconciling binarization with

backpropagation and gradient descent were done in the recent years.

The initial development of algorithms for neural network quantization was mostly done

in the area of speech recognition, which is not covered in this thesis. For images, [Anwar

et al., 2015] presents an algorithm for training quantized CNNs. The basic idea is to

keep two versions of the weights: quantized Ŵ and full precision W . The algorithms

repeat the following steps:

28

1. Obtain quantized weights with some sort of quantization procedure q applied to

high-precision weights:

Ŵ = q(W) (2.5)

2. Perform a feed-forward pass with quantized weights and compute the loss function.

The activations are kept in full precision.

3. Backpropagate the error gradients with quantized weights and full precision acti-

vations. The gradients are then used to update the full-precision weights.

This sequence allows circumventing the problems with backpropagation and gradient

descent for quantized weights. Different quantization levels are used for different layers

and the main benefit here is the model compression.

The presented results on MNIST and CIFAR10 datasets exceed uncompressed CNNs

in some cases. This effect is attributed to the regularizing effect of quantization which

reduces the CNN capacity (a similar effect was reported in [Hinton et al., 2012]). At the

same time, there are other well-studied ways to reduce capacity, such as regularization,

dropout, and simply reducing the number of filters inside CNN. The latter method also

leads to speed-up and compression. Overall, the main disadvantage of [Anwar et al.,

2015], shared with many others in the field, is that the experiments are limited to small

networks with 32× 32 inputs. Such CNNs have a relatively low capacity and are quick

to experiment with. And yet, the main challenge of speeding up CNNs lies in the area of

bigger CNNs (such as those trained for ImageNet classification and other similar tasks),

to which good results on small images do not always transfer.

The BinaryConnect [Courbariaux et al., 2015] approach pushes the principle of split-

ting high-precision and quantized weights further to achieve full binarization, i.e. training

of the convolutional networks with binary weights. The binarization procedure (2.3) is

modified in a probabilistic fashion:

ŵ =

1 with probability p = σ(w)

−1 with probability 1− p
(2.6)

where σ is the hard version of sigmoid function

σ(x) = clip(
x+ 1

2
, 0, 1) (2.7)

which is chosen because it is much less computationally expensive compared to the

regular sigmoid function. The high-precision weights are clipped into [−1; +1] interval

during training. A probabilistic approach is in general desirable from the theoretical

29

point of view. On the other hand, the cost of random number generation accumulates

if used on every step.

At train time, BinaryConnect repeats the following steps:

1. For every high-precision weight w, pick ŵ = ±1 according to (2.6).

2. Perform feed-forward pass with binarized weights ŵ.

3. Backpropagate with binarized weights ŵ and update high-precision weights w.

Two ways of the model evaluation in test time are considered:

• Use the binarized weights ŵ. Forward propagation with binary weights can be

much faster since it replaces floating-point multiplications by multiplications with

±1, which is just a sign change.

• Use the real-valued weights w. This way, the binarization is only treated as a

regularization technique, and no acceleration in test time is achieved.

Additionally, [Courbariaux et al., 2015] proposes generating binarized weights multiple

times as test time to obtain the ensemble of models, but ensembling contradicts with the

speed-up task and preserving full-precision weights contradicts compression. Competi-

tive results are presented for CIFAR10, SVHN, and permutation-invariant MNIST, both

for the real-valued and binarized weights. Again, as in the case with [Anwar et al., 2015],

classification accuracy sometimes exceeds the full-precision baseline for small datasets.

Two extensions of this approach are presented in the follow-up paper [Lin et al., 2016].

First of all, ternary weights are introduced. Ternary weights are obtained by a stochastic

procedure similar to (2.6). Every weight w is assumed to lie in the interval [−1, 1]. This

interval is divided into two sub-intervals [−1, 0] and [0, 1] and the probability of picking

1, 0 or −1 is determined by the procedure (2.6) applied to the respective interval. The

second important innovation is the elimination of multiplications in the backward pass.

The layer activations are quantized into 3 or 4 bits and multiplication is replaced by

bit-shifts.

The comparison of learning curves shows that binary and ternary networks behave simi-

larly both with and without backward pass quantization: initially, convergence is slower,

but the final result can be better. Again, this is attributed to the regularizing effect of

quantization.

In a subsequent paper on binarized neural networks [Hubara et al., 2016a], the details

on the practical implementation and timings are provided. Shift-based versions for

30

batch normalization [Ioffe and Szegedy, 2015] and ADAM optimization [Kingma and

Ba, 2014] algorithm are presented. A custom CUDA kernel is written for binary matrix

multiplication, and its speed is compared to cuBlas on 8192×8192 matrix multiplication.

The binary kernel is reported to be 3.4× faster. The number of possible binary filters is

limited by the filter size. For example, with 3 × 3 filters there are 23×3 = 512 possible

filters. This is a sign of extremely limited capability of binary networks but also an

opportunity to save some computation time by applying unique filters only once. The

preliminary result on the ILSVRC challenge with AlexNet architecture is 36.1% top-1

accuracy, which corresponds to ∼ 20% accuracy drop compared to the full-precision

architecture.

Another interesting and more successful attempt at binarizing large CNNs is the XNOR-

Net [Rastegari et al., 2016]. Here, the weight binarization setting is considered as an

approximation problem of the following kind:

I ∗W ' α(I ∗B) , (2.8)

where ∗ denotes convolution, I is the input array, α is a scaling factor, W is the array

containing high-precision weights and B is its binary version. It can be shown that the

optimal values of elements ofW are indeed obtained by the simple binarization procedure

(2.3), and the optimal value for the scaling factor is an average of the absolute values

of W . Training the binary weights network is done by repeating the same three steps

from [Anwar et al., 2015, Courbariaux et al., 2015], i.e. obtaining binarized weights from

high precision weights, doing forward and backward passes with binarized weights, and

applying updates to the full precision weights.

The next step is to binarize both weights and activation, resulting in the so-called

XNOR-networks. The approximation problem of the following form is considered:

I ∗W ' (sign(I) ∗ sign(W))�Kα , (2.9)

where � is an element-wise multiplication and K is the array with scaling factors for

every patch in I. This approximation leads to ×58 speed-up in terms of the number of

the floating point operations, while the actual timings will depend on the cost of binary

operations, which depends on the hardware and implementation details.

XNOR-Nets training also requires the following rearrangement of the traditional CNN

block sequence, in order to minimize the information loss in binarization:

1. Batch normalizations are put at the beginning of the block.

2. Following batch normalization, the binary activation layer computesK and sign(I).

31

full precision binary weights XNOR-Nets
AlexNet 56.6 56.8 44.2

ResNet-18 69.3 60.8 51.2

Table 2.2: ImageNet (ILSVRC) classification accuracy of binarized CNNs
from [Rastegari et al., 2016]. The accuracy drop is large compared to tensor decom-
position methods, but the speed-up and compression rates assosiated with binarization

are much higher.

3. Binary convolution is applied to the result of the binary activation layer.

4. Optionally, pooling is applied.

The blocks of layers composed in the same way are then applied several times.

Overall, the accuracy of binarized XNOR-networks is shown in the table 2.2. Interest-

ingly, the accuracy for full-precision AlexNet and its version with binarized weights is

the same, although this effect does not hold for larger architectures. Thus for ResNet-18,

XNOR-Net loses more than 10% of accuracy compared to the full-precision network.

Generally speaking, binarization is an approach with low flexibility: it promises ex-

tremely large speedups, but often incurs substantial accuracy drop which may be unac-

ceptable in practical applications. One way to cover this gap is to dial compression rate

back and return from binarization to low-bit quantization. Towards this end, quantiza-

tion with different compression rates is considered in [Hubara et al., 2016b]. A quantized

version of AlexNet with 1-bit weights and 2-bit activations achieves 51% accuracy. Vary-

ing quantization levels for weights, activations, and gradients are tried in [Zhou et al.,

2016]. Another way to boost the accuracy of binarized CNN is by increasing the number

of channels. This approach was found beneficial in [Mishra et al., 2017]

Yet another quantization based approach with more flexibility is Lookup-based CNN

(LCNN) introduced in [Bagherinezhad et al., 2017]. Interestingly, LCNN utilizes ideas

of decomposition, quantization, and sparsity at the same time. First of all, the convo-

lutional weights W are decomposed into the sum of vectors of the dictionary matrix D,

with coefficients C and indices I:

W (i, j, :, t) =

s∑
ξ=1

C(ξ, i, j)D(I(ξ, i, j), :) (2.10)

The two spatial dimensions and the last dimension corresponding to the output channel

index are not affected by the decomposition. Following this insight, one may take advan-

tage of the fact that the general convolution can be expressed trough 1× 1 convolutions

32

AlexNet ResNet-18

accuracy speedup accuracy speedup

CNN 56.6 1× 69.3 1×
LCNN-accurate 55.4 3.2× 62.2 5×

LCNN-fast 44.3 37.6× 51.8 29.2×

Table 2.3: LCNN accuracy on ImageNet (ILSVRC) classification task. The perfor-
mance of LCNN can be tuned by changing dictionary size and the number of compo-
nents in the decomposition. Two variants of the algorithm are shown in this table. The
speed-ups are measured in terms of FLOPs, and the actual “wall-clock” speed-ups are

likely to be much lower on most architectures.

and shift operations:

V (x, y, t) =
d∑
i=0

d∑
j=0

S∑
s=1

W (i, j, s, t)[shift
ij

U](x, y, s) , (2.11)

where shifti,j indicates the spatial shift operation. Combining (2.10) and (2.11) yields

the following way to perform generalized convolutions:

V (x, y, t) =

d,d∑
i=0,j=0

shifti,j

s∑
ξ=1

C(ξ, i, j)S (2.12)

where the array S contains the result of 1×1 convolutions of the input U with the filters

from D. Shifts, scaling and 1 × 1 convolution, which is implemented through matrix

multiplication, are all relatively inexpensive multiplication. The cost of this pipeline can

be regulated by changing the dictionary size.

Direct training of the proposed lookup based convolution is a combinatorial optimization

problem. To get around this complication, the lookup and scale stage are reformulated

using a standard convolution with sparsity constraints. Reported speedups of LCNN

reach 37.6×, as shown in the table 2.3. However, this value refers to the number of

floating point operations, which may not translate well to actual timings, especially for

the architecture that heavily relies on the lookups (which are known to be relatively

slow on most architectures).

To summarize, weight quantization or binarization is an effective technique for CNN

compression. As for the speed-up, the published works paint a mixed picture. It is

clear that quantization of CNN weights or activations allows for faster computations,

but the actual speedup depends on a particular low-level implementation. Most of the

time researchers do not publish such implementations, and when they do, it appears

that existing implementations of floating point operations are very well optimized and

the actual speedups brought by quantization methods are not nearly as high as the

operation-count based prediction suggests.

33

2.5 Pruning

Pruning away parts of the convolutional weights is a natural way to reduce the complex-

ity of the convolutional operation. This approach, applied for speeding up convolutions

in neural networks, is a popular research topic with a very large number of publications.

Starting from the optimal brain damage [LeCun et al., 1990], this is perhaps the oldest

approach among listed in this review.

Most of the pruning approaches follow the same pipeline. Starting from the pretrained

baseline, the following two steps are applied, possibly iteratively. First, the importance

of neurons is calculated according to some criterion. The least important neurons are

pruned. Then, the network is fine-tuned leading to partial recovery of the accuracy drop.

In the case of the iterative process, sparsity-inducing regularizer may be applied during

the fine-tuning stage.

Three basic choices have to be made to implement this pipeline. First, the desired

sparsity structure must be chosen. Second, the importance (pruning) criterion should

be selected. Finally, a sparsity-inducing regularizer should be chosen (if the approach

uses one). Below, different design choices along these three axes are reviewed.

Sparsity structure. Pruning individual weights does not necessarily results in a speed-

up. Assume the convolution is implemented through im2col and matrix multiplication,

as described by [Chellapilla et al., 2006]. In this implementation, most of the computa-

tion time is spent inside the matrix multiplication

V̂ = Ŵ Û (2.13)

where V̂ is the output in the matrix-reshaped form, Ŵ is the convolutional weights array

also reshaped as a matrix and Û = im2col(U) is the patch matrix obtaining by copying

and rearranging of input array U by the im2col operation. The columns of the patch

matrix correspond to input patches of size dx × dy × S.

As some elements of W will be replaced by zeros by the pruning algorithm, one can

switch to some sparse representation for W . In the lack of the structure of the sparsity,

sparse matrix multiplication carries significant overhead compared to dense matrix mul-

tiplication. As shown in Figure 2.4, sparse version becomes faster only if the density of

W is well below 0.1, which is unreachable in the practical setting without a significant

drop in accuracy. The only way to overcome this problem is to arrange elements of W

into groups and to use structured sparsity. While the use of im2col is not the only way

to implement generalized convolution, other implementations follow similar patterns and

likewise cannot benefit from medium levels of unstructured sparsity.

34

0 0.2 0.4 0.6 0.8 1

0

50

100

150

density

ti
m

e,
m

s

dense
sparse

Figure 2.4: The comparison of matrix multiplication with sparse (CSC representation)
and dense weight matrices. Sparse version becomes more efficient only for densities
smaller than 0.1. These CPU (Intel Core i7-6600U) timings are computed via numpy
and scipy.sparse libraries for matrices with sizes corresponding to 3 × 3 convolutions
with 64 channels and 64 × 64 maps. The elements of the matrices are sampled from

the uniform distribution over [0, 1).

The consideration discussed above calls for the use of structured sparsity during pruning.

The finest possible division into groups is considered in [Lebedev and Lempitsky, 2016]

and [Liu et al., 2015a]. Their algorithms remove columns from the weight matrix Ŵ

and corresponding rows from patch matrix Û . The removal is facilitated by the custom

version of the im2col function which omits elements corresponding to deleted parts of Ŵ

while constructing the patch matrix. With this kind of structured sparsity, the original

matrix multiplication is replaced with the multiplication of smaller matrices, which are

still dense. This leads to the speedups that are almost directly proportional to density.

A related but orthogonal approach to structured sparsity called perforation was proposed

in [Figurnov et al., 2016]. The main idea is to remove columns from the patch matrix

Û . Since columns correspond to image patches, this means the convolution will not be

computed for some subsets of points in the image. The output value in these points can

be interpolated or effectively omitted if the next layer performs the pooling operation.

Several additional ways to organize sparsity are proposed in [Wen et al., 2016] and [Shin

et al., 2018]. Each of them is defined by the specific way of slicing the four-dimensional

weight array W :

• Slicing in the form of W (i, j, s, :) is the same as in the group-wise sparsity approach

and produces non-square filters. It is the finest division that can be implemented

efficiently, but it requires specialized implementation.

35

• Removing W (i, j, :, :) cuts all filters in the layer simultaneously. This slicing can

be used to trim the filter size, for example from 5× 5 to 3× 3.

• A whole filter corresponds to slice W (:, :, s, :). With such slice set to zero, the s-th

output channel will be filled with zeros. The complexity of the network then can

be decreased by removing slices from the weight arrays of the current and the next

convolutional layers.

• Removing W (:, :, :, t) cuts all the connection with t-th input channel, which means

this channel can be removed.

• Removing W (:, :, s, t) cuts all the ties between the s-th input and the t-th output

channels. This slicing can be used to turn full convolution into group convolu-

tion [Krizhevsky et al., 2012].

• Finally, in the case of residual architecture, the convolutional weights W can be

set to zeros completely. This operation removes the whole residual block of the

network.

Pruning criteria. Here, we follow the notation of [Molchanov et al., 2016], which

contains a similar review of criteria, and denote the pruning criterion by Θ. The simplest

criterion is the absolute value of the weight:

Θ(w) = |w| (2.14)

It was successfully used in [Han et al., 2015] for pruning individual weights, and then

in [Lebedev et al., 2015] for groups. This criterion is consistent in the sense that if the

weight already equals zero it can be safely pruned, but small non-zero weight can be

disproportionally important if it acts on a large activation or pushes some points across

the decision surface.

Another choice is to focus not on the weights, but on the activations a:

Θ(a) =
∑
i

a2
i (2.15)

Since ReLU non-linearity naturally produces sparse activations, there is a realistic chance

to find groups of neurons which can be safely pruned. The average percentage of zeros

is a different metric proposed in [Hu et al., 2016] for this situation.

Mutual information measures the dependence of two random variables. In theory, mutual

information between activation group and targets I(a, y) would be an excellent pruning

criterion, but the direct computation is too complex, and available approximations are

not performing well according to [Molchanov et al., 2016].

36

Taylor expansion of the objective function can be used to estimate its change after

the perturbation caused by the pruning process. For example, the original Optimal

Brain Damage paper [LeCun et al., 1990] used the criterion based on the second-order

Taylor decomposition. Assuming that C is the learning objective, the approach makes an

assumption that ∂C
∂wi

= 0 (“extremal approximation”), which holds when the learning has

fully converged. Assuming that the mixed derivatives could be neglected, the approach

then uses the non-mixed second-order derivatives as the pruning criterion:

Θ(wi) =
1

2

∂2C

∂w2
i

wi (2.16)

The necessity to compute second derivatives made this approach unpopular, since this

capability was not implemented in the deep learning frameworks until recent years. The

works [Molchanov et al., 2016, Figurnov et al., 2016] avoid the extremal approximation

and use the following criterion:

Θ(ai) =

∣∣∣∣∂C∂aiai
∣∣∣∣ (2.17)

This criterion is expressed through the values which can be computed by the standard

back-propagation process. In general, a comparison of pruning criteria listed above per-

formed by [Molchanov et al., 2016] demonstrated the superiority of the Taylor-expansion

based criteria.

The ThiNet approach [Luo et al., 2017] focuses on pruning filters and proposes a special

criterion for this case. The key observation is that if the filter is pruned from the i-th

layer, the corresponding output channel will be empty, and the same channel should

be pruned in the kernel of the (i + 1)-th layer. The next, (i + 2)-th layer will then be

the first subsequent layer, whose input data size is not affected by the change. Thus, a

natural pruning criterion relies on the reconstruction error of the inputs to the (i+2)-th

layer. After the pruning, the channel scaling computed via least squares can be used to

reduce the error, although this step cannot replace the fine-tuning.

Regularizer. The pruning process can work without sparsity-inducing regularization,

but the sparsity-inducing regularization can help the pruning process while incurring a

minimal computational overhead. The L1 regularizer Ω1(w) = λ|w| induces unstruc-

tured sparsity, but for structured sparsity, L2, 1 regularization can be used:

Ω2,1(w) = λ
∑
i

√∑
j∈gi

wi (2.18)

Here, gi are the weight groups, defined by one of the ways described above. A smart

approach for achieving filter-level sparsity was proposed in [Liu et al., 2017]. They notice

that in modern CNNs, convolutions are almost always followed by batch normalization.

37

The filter level sparsity can then be achieved simply by the L1 regularization imposed

on the scaling factors within batch normalization.

2.6 Teacher-student approaches

Teacher-student approaches follow the idea that a CNN model can be trained on the

outputs of another model (a teacher), as opposed to regular training on labeled data.

This approach allows to transfer knowledge from one model to another and to incor-

porate unlabelled or synthetic data into the training process (as an unlabeled example

can still be passed through the pretrained teacher model). Originally, such transfer

was performed from a non-interpretable model such as a neural network to more inter-

pretable ones, such as decision trees [Craven and Shavlik, 1996], or a set of rules [Thrun,

1995]. Another natural purpose for the teacher-student approach would be to transfer

knowledge from large, slow and accurate models to small and fast ones.

Towards this end, [Bucila et al., 2006] propose to compress an ensemble of models into

a single neural network. First, an ensemble of classification models is trained on a

certain annotated dataset. An ensemble is expected to be more resistant to overfitting

compared to a single model. This ensemble is used to label a large amount of synthetic

data, generated by several simple random sampling procedures, and finally, a single

model is learned on the resulting synthetic dataset. [Bucila et al., 2006] state that this

approach can alleviate the overfitting problem for neural networks without time and

memory costs of building an ensemble. It should be noted, though, that this work was

done on small datasets with fully-connected neural nets, and utilized data generation

methods that are not directly applicable to images. With modern CNNs, the viability

of this approach is limited by the following facts: datasets are already very large and

the models are too large to build large ensembles.

A specific way of representing labels for synthetic data is a key detail of knowledge

transfer algorithm. The description of same ensemble compression idea in [Zeng and

Martinez, 2000] elaborates on the importance of preserving not just the labels, but

whole vectors of a posterior probability distribution over the output classes. Such vectors

capture richer information about the actual content of data samples, making knowledge

transfer process more efficient.

This idea of utilizing full probability distribution is further expanded in [Hinton et al.,

2014]. The proposed distillation procedure requires training a student model on the

soft version of the outputs of the original (teacher) model. Let zi be the raw outputs

of the neural network, and pi be the output probabilities. These probabilities are then

38

calculated according to the softmax formula:

pi =
exp zi/τ∑
j exp zj/τ

z , (2.19)

where τ is the temperature parameter. Let pS be the probabilities for the student

model, and pT be the probabilities of original teacher model. The student model is

trained to approximate both the correct labels y and the outputs of teacher model using

the following loss function:

L = H(pS , py) + λH(pS , pT) , (2.20)

where H is the cross-entropy and py is the one-hot distribution corresponding to the

ground truth. A high temperature τ effectively regularizes the student model, while

the lower temperature allows transferring knowledge in finer detail. In practice, the

temperature parameter τ has to be tuned manually. It can be shown that in the limit

of high temperature this procedure is equivalent to training on raw outputs zi (the

regime which was utilized in [Li et al., 2014] for acoustic model compression). Results

on MNIST, an automatic speech recognition task and large-scale image classification

task are presented, and a significant rate of model compression is achieved for all tasks.

Most impressively, it is shown that knowledge transfer can be successful even if one of

the classes is missing from the dataset used for the transfer since the information about

this class is still carried through soft labels of other classes.

The idea of distillation was extended to multiple layers of deep networks in the FitNets

approach [Romero et al., 2015]. They introduce the notion of a hint, which is defined as

the output uT of the teacher’s hidden layer, and connect thus layer with a hidden layer of

the student CNN, which they call the guided layer. The guidance process is implemented

via the addition of the Euclidean distance between the hint and the guided layer output

uS to the loss function (2.20). When the layer sizes of the hint and the guided layer

differ, the linear regressor r that maps the hints to the guided layer activations is added

into the training leading to the following term (the guidance loss):

Lh =
1

2
‖uT − r(uS)‖2 (2.21)

The fact that the student now not only has access to the outputs of the teacher but also

receives insights from the internal data representation, leads to faster convergence and

better performance of the method.

Teacher-student approach is a powerful tool which can be used to help training of

39

(a) easy (b) confusing

Figure 2.5: Samples from ILSVRC validation set toilet paper class. Some samples
are easy to classify, while others are confusing. Powerful model capable of producing
the correct labels for the samples on the right is an overkill for the samples on the left.

quantized networks. It has been successfully applied to the training of quantized net-

works [Polino et al., 2018] and ternary networks [Alemdar et al., 2017].

In the modern era of neural networks, most papers focus on the situation where both

the teacher and the student are neural networks. While it is logical to use the best

method available as a teacher, the need for the faster student may lead to different

kinds of models. Thus, [Frosst and Hinton, 2017] proposes to use soft decision tree as

a student model. Decision tree, in theory, can provide very high speed-ups, but in this

paper only results on MNIST and Connect4 datasets are presented, while the achieved

MNIST accuracy of 96.76% is below modern standards.

2.7 Adaptive methods

Pushing to the limit the idea of automatic architecture tuning, we get the model which

processes samples from the same dataset differently. This kind of model may adapt to

the complexity of the sample, processing easy samples quickly and spending more time

on the complex ones. An example of complexity range in the ILSVRC dataset is shown

in Figure 2.5.

Variable complexity is natural for object detection algorithms with proposal genera-

tion step: the bigger is the time budget, the more proposals should be generated and

evaluated. For image classification and other tasks solved with a single CNN, network

structure has to be changed to change inference time.

A natural way to achieve variable inference time is through variable depth, which can

be easily done ResNet-type architecture by removing some of its blocks. This was first

proposed and explored by [Huang et al., 2016], as a measure to reduce training time for

extremely deep models. Thus, in the training time network has varying depth during

training and large fixed depth during test stage.

40

Figure 2.6: Ponder cost maps for images from ILSVRC validation. Higher ponder cost
corresponds to longer computation by SACT algorithm [Figurnov et al., 2017]. Large
areas of low ponder cost associated with uniform image areas demostrate the capability
of SACT to reduce redundancy on these images. Top: low ponder cost (19.8-20.55),

middle: average ponder cost (23.4-23.6), bottom: high ponder cost (24.9-26.0).

The architecture that changes depth adaptively, called Adaptive Computation Time

(ACT), was proposed by [Graves, 2016] for recurrent neural networks. A special branch,

added to each layer, predicts a halting score h, a single value lying in the [0, 1] range.

These halting score can be interpreted in the probabilistic or deterministic fashion. In the

first case, halting is simply a probability to stop at the current layer. In the second case,

the computation stops then the sum of halting scores exceeds 1. To avoid the unlimited

growth of computation time, a special loss term called ponder cost which penalizes low

halting scores is introduced. Maps of ponder cost demonstrate what SACT provides an

attention mechanism, as shown in Figure 2.6.

The ACT was extended for the image processing as Spatially Adaptive Computation

Time(SACT) by [Figurnov et al., 2017]. SACT applies ACT mechanism for every spa-

tial location, i.e. halting score computation and decision to finish is done separately for

each location. This means that computation will continue for some positions when it

is finished for others. Such a process can be implemented through perforated convolu-

tion [Figurnov et al., 2016], which is described in the Section 2.5.

The approaches listed above regulate depth by halting, which is a logical way to address

the difference between easy and complicated samples of the same nature. In other

cases, it may be desirable to have some specialization on higher layers of the network.

[Wang et al., 2017] proposes to use dynamically routed networks (SkipNets) instead

of ACT. Training SkipNets is challenging, as skipping some layers in the middle of

data flow is an inherently discrete decision, and the attempts to train it with some

sort of soft approximations lead to substantial accuracy drop at test time when hard

thresholding have to be introduced. As a result, the complex learning algorithm which

uses soft approximations and reinforcement learning during different stages is required.

41

SkipNets outperform ACT and SACT for classification tasks, although the final results

on ImageNet (up to 30% speedup for ResNet-101 and only 12% for ResNet-50) are not

very impressive.

Complex learning procedures are avoided by [Bolukbasi et al., 2017], who builds a model

from pretrained CNNs. In the case of ImageNet, three networks are used: AlexNet,

GoogleNet, and ResNet-50. The combined model evaluates the AlexNet first and then

makes a decision to adopt AlexNet’s answer or go to one of the more complex models,

or to the both of them. Resulting adaptive model shows up to a 2.8× speedup then

compared to ResNet-50 with 1% loss of top5 accuracy, although the results are worse

for top1 accuracy. By comparison with efficient architectures from Section 2.2 and

Section 2.3, this approach is limited in the sense that it can not be both faster and more

accurate than any of the used preexisting CNNs.

[Teerapittayanon et al., 2016] propose BranchyNet, a single neural network having sev-

eral side-branches with jointly trained classifiers. BranchyNet utilizes its lower branches

to allow the samples to exit early, thus reducing the cost of inference. The entropy of

an output distribution is used as a measure of confidence in the prediction. Then the

confidence goes over the threshold, the computation stops. Tuning the threshold value

allows controlling speed-accuracy tradeoff without retraining the model.

2.8 Problem-specific approaches

Most of the approaches listed above are developed and compared on classification prob-

lems. Deep learning in computer vision, however, is not limited to classification. In

recent years deep learning has been successfully applied to a wide variety of tasks, and

for some of them time constraints are critical and very specific approaches can be applied

to satisfy these constraints.

Probably the most notable example of progress in fast problem-specific approaches in

computer vision is an object detection.

Regions with CNN (R-CNN). R-CNN[Girshick et al., 2014] works in two stages. On

the first stage, selective search algorithm produces an excessive number of proposals.

Then, CNN accesses each proposal and classifies it them as a false positive or one of

the object classes. R-CNN is slow because it runs image patches through CNN multiple

(thousands) times. R-CNN can be naively accelerated by accelerating CNN with any of

the approaches listed in the previous sections, but the more advantageous choice is to

redesign the core algorithm to minimize the number of forward passes.

42

R-CNN runs a neural network on a lot of intersecting patches independently. This source

of redundancy was realized and exploited by [Girshick, 2015]. Faster R-CNN shares all

the feature extraction steps: the fully-convolutional neural network is run only once, it

produces output data with some spacial resolution, and the final descriptor of the region

is obtained by pooling. Faster-RCNN does not run convolutional networks multiple times

but still requires a separate step to generate proposals and evaluates them separately.

The next generation of object detection algorithms, such as Faster R-CNN[Ren et al.,

2015] and YOLO[Redmon et al., 2016, Redmon and Farhadi, 2016, 2018], completely

abolishes region proposal step. Instead, the regions are proposed by the same single

network which computes features on the whole image.

To summarize, the object detection started with limited usage of CNNs inside the larger

complex pipeline and came toward large CNN trained for multiple objectives.

Similar trends can be observed in the area of texture generation and image stylization.

An initial introduction of CNNs as feature extractors to this area by [Gatys et al.,

2015], who introduces an image style similarity function f computed on top of features

extracted from the VGG network. The problem of texture generation is then reduced to

the minimization of f with respect to pixel values of the generated image. Minimization

problem is solved by an iterative algorithm, which requires passing data through VGG

network on every iteration. Again, speeding up this network would never be as fruitful

as redesigning the algorithm, which was done by [Ulyanov et al., 2016] and [Johnson

et al., 2016]. They proposed to train a separate image generator network, using f to

write down its loss function. Then trained, this network generates samples of the same

quality as an iterative algorithm, but thousands of times faster.

2.9 Summary

Some approaches, such as tensor decomposition based methods, seem to reach satura-

tion, as many decompositions have been tried and it hard to come up with a novel idea.

With other approaches, e.g. those based on binarization, there is a lot of work on algo-

rithms and implementation that can be done in the future. Here, transferring impressive

speed-ups in terms of the number of operations into actual wall clock speed-ups remains

a challenge.

Designing efficient architectures is probably the most practical approach, as it does

not require complex multi-stage processes that interleave modifications and finetuning

stages. While it seems that in the future these architectures will be constructed auto-

matically, some basic modules or design ideas are likely to come from humans rather

43

than from automated search. Still, while automatic architecture search is a young area

of research, it has already made an impact and it is safe to assume that it will continue

to grow in importance in the nearest future.

There is probably a reasonable space for the search of the optimal combination of ap-

proaches from several groups, notably from those that speed-up existing architectures

(tensor decomposition, quantization, pruning, teacher-student approaches). While these

groups are not “orthogonal” as they exploit similar kind of redundancy in the original

architecture, there may still be considerable benefits in combining approaches from dif-

ferent groups. Automated discovery of optimal mix-and-match combinations may be

promising.

Despite the large body of work on the topic, the area of research concerned with speed-

ing up CNNs (as well as designing efficient architectures “from scratch”) is far from

saturation, and we firmly believe that significant improvements can and will be made in

the nearest future.

Chapter 3

CP-decomposition of

convolutional weights

A group of works reviewed in Section 2.1 have achieved significant speed-ups of CNN

convolutions by applying various tensor decompositions to the weights and activations

of convolutional layers. In this chapter, we focus on the low-rank CP-decomposition,

and apply it to the weights of the convolutional layer, to obtain a sequence of four new

convolutional layers with small filters. These layers work faster, have fewer parameters

and use only existing CNN building blocks. Once a convolutional layer is approximated

and replaced, it is straight-forward to fine-tune the entire network on training data using

back-propagation.

The CNNs obtained with the proposed method are somewhat surprisingly accurate,

given that the number of parameters is reduced several times compared to the initial

networks. Practically, this reduction in the number of parameters means more compact

networks with reduced memory footprint, which can be important for architectures with

limited RAM or storage memory. Such memory savings can be especially valuable for

feed-forward networks that include convolutions with spatially-varying filters (locally-

connected layers).

On the theoretical side, these results confirm the intuition that modern CNNs are over-

parameterized, i.e. that the sheer number of parameters in the modern CNNs are not

needed to store the information about the classification task but, rather, serve to facili-

tate convergence to good local minima of the loss function.

In the following section, we review the concept of CP-decomposition, revisit two of

related works [Denton et al., 2014, Jaderberg et al., 2014b] most similar to one described

in this chapter, and move on to describe the proposed method.

44

45

3.1 Method

3.1.1 Related works

Using low-rank decomposition to accelerate convolution was suggested by [Rigamonti

et al., 2013] in the context of codebook learning, and then applied to CNNs by [Jaderberg

et al., 2014b]. A decomposition suggested by [Jaderberg et al., 2014b] Figure 3.1b

effectively approximates the 4D array of weights as a composition (product) of two 3D

tensors (below, we call it two-component decomposition).

Once the decomposition is computed, [Jaderberg et al., 2014b] perform local fine-tuning

with L2 loss on the deviation between the full and the approximated convolutions outputs

on the training data. Differently from [Jaderberg et al., 2014b], our method fine-tunes

the entire network based on the original discriminative criterion. While [Jaderberg et al.,

2014b] reported that such discriminative fine-tuning was inefficient for their scheme, we

found that in our case it works well, even when CP-decomposition has large approx-

imation error. Below, we provide a theoretical complexity comparison and empirical

comparison of our scheme with [Jaderberg et al., 2014b].

In the work that is most related to ours, [Denton et al., 2014] have suggested a scheme

based on the CP-decomposition of parts of the convolutional weights obtained by biclus-

tering (alongside with different decompositions for the first convolutional layer and the

fully-connected layers). Biclustering of [Denton et al., 2014] separately splits the two

non-spatial dimensions into subgroups and uses resulting grouping to cut weight tensor

into a bunch of smaller tensors to reduce the effective ranks in the CP-decomposition.

CP-decompositions of the convolutional weights in [Denton et al., 2014] have been com-

puted greedily, increasing the approximation rank by one at each step without changing

the approximation obtained on the previous step. Although the decomposition allows

separating all four dimensions of the tensor, Denton et al. [2014] abandons the separa-

tion of the spatial dimensions, mentioning that the resulting gain was minimal. In this

chapter we essentially simplify the approach of [Denton et al., 2014] by not perform-

ing biclustering and applying CP-decomposition directly to the full tensor. The greedy

computation of CP-decomposition is also replaced with non-linear least squares method.

Finally, we use all four components of the decomposition and, as discussed above, we

finetune the whole network with backpropagation, whereas [Denton et al., 2014] only

fine-tunes the layers above the approximated one.

46

3.1.2 CP-decomposition

Tensor decompositions are a natural way to generalize low-rank approach to a multidi-

mensional case. Recall that a low-rank decomposition of a matrix A of size n×m with

rank R is given by:

A(i, j) =
R∑
r=1

A1(i, r)A2(j, r), i = 1, n, j = 1,m, (3.1)

and leads to the idea of separation of variables. The most straightforward way to separate

variables in case of many dimensions is to use the canonical polyadic decomposition (CP-

decomposition, also called as CANDECOMP/PARAFAC model). This decomposition,

first proposed by Hitchcock [1927], was later rediscovered multiple times (see [Kolda and

Bader, 2009] for a detailed review). For a d-dimensional array A of size n1 × · · · × nd a

CP-decomposition has the following form

A(i1, . . . , id) =
R∑
r=1

A1(i1, r) . . . Ad(id, r), (3.2)

where the minimal possible R is called the canonical rank. The profit of this decomposi-

tion is that only (n1 + · · ·+nd)R elements have to be stored instead of the whole tensor

with n1...nd elements.

In two dimensions, the low-rank approximation can be computed in a stable way by

using singular value decomposition (SVD) or, if the matrix is large, by rank-revealing

algorithms. Unfortunately, this is not the case for the CP-decomposition when d > 2,

as there is no finite algorithm for determining the canonical rank of a tensor [Kolda and

Bader, 2009]. Therefore, most algorithms approximate a tensor with different values

of R until the approximation error becomes small enough. This leads to the point

that for finding good low-rank CP-decomposition certain tricks have to be used. A

detailed survey of methods for computing low-rank CP-decompositions can be found

in [Tomasi and Bro, 2006]. Tensorlab [Sorber et al., 2014] software package was used

to calculate CP-decomposition. In the variety of available optimization techniques, we

chose the non-linear least squares (NLS) method. This method minimizes the Frobenius

norm of the approximation residual (for a user-defined fixed R) using Gauss-Newton

optimization [Phan et al., 2013].

Such NLS optimization is capable of obtaining much better approximations than the

strategy of greedily finding the best rank-1 approximation of the residual vectors used

in [Denton et al., 2014]. The fact that the greedy rank-1 algorithm may increase tensor

rank can be found in [Stegeman and Comon, 2010, Kofidis and Regalia, 2002]. A simple

47

example highlighting this advantage of the NLS is also presented in appendix to Lebedev

et al. [2015].

3.1.3 Convolutional weights approximation

The generalized convolution that maps an input array U(·, ·, ·) of size X×Y×C into an

output array V (·, ·, ·) of size (X−d+1)×(Y−d+1)×N using the following linear mapping:

V (x, y, k) =
d∑
i=1

d∑
j=1

C∑
c=1

W (i, j, c, k)U(x+ i, y + j, c) , (3.3)

Here, W (·, ·, ·, ·) is a 4D array of convolutional weights of size d×d×C×N with the

first two dimensions corresponding to the spatial dimensions, the third dimension cor-

responding to different input channels, the fourth dimension corresponding to different

output channels. The spatial width and height of the filters are denoted as d.

The rank-R CP-decomposition (3.2) of the 4D convolutional weights has the form:

W (i, j, c, k) =
R∑
r=1

W x(i, r)W y(j, r)W c(c, r)W k(k, r) , (3.4)

where W x(·, ·), W y(·, ·), W c(·, ·), W k(·, ·) are the four components of the composition

representing 2D tensors (matrices) of sizes d×R, d×R, C×R, and N×R respectively.

Substituting (3.4) into (3.3) and performing permutation and grouping of summands

gives the following expression for the approximate evaluation of the convolution (3.3):

V (x, y, k) =

R∑
r=1

W k(k, r)

 d∑
i=1

W x(i, r)

 d∑
j=1

W y(j, r)

(
C∑
c=1

W c(c, r)U(x+i, y+j, c)

)
(3.5)

48

Based on (3.5), the output array V (·, ·, ·) can be computed from the inputs U(·, ·, ·) via

a sequence of four convolutions with smaller filters (Figure 3.1):

U c(x, y, r) =
C∑
c=1

W c(c, r)U(x, y, c) (3.6)

U cy(x, y, r) =

d∑
j=1

W y(j, r)U s(i, y + j, r) (3.7)

U cyx(x, y, r) =

d∑
i=1

W x(i, r)U cy(x+ i, y, r) (3.8)

V (x, y, k) =
R∑
r=1

W k(k, r)U cyx(x, y, r) , (3.9)

where U s(·, ·, ·), U cy(·, ·, ·), and U cyx(·, ·, ·) are intermediate tensors (map stacks).

3.1.4 Implementation and Fine-tuning

Computing U c(·, ·, ·) from U(·, ·, ·) in (3.6) as well as V (·, ·, ·) from U cyx(·, ·, ·) in (3.9)

represents 1×1 convolutions that essentially perform pixel-wise linear re-combination of

input maps. Computing U cy(·, ·, ·) from U c(·, ·, ·) and U cyx(·, ·, ·) from U cy(·, ·, ·) in (3.7)

and (3.8) are “standard” convolutions with small filterss that are “flat” in one of the

two spatial dimensions.

In this chapter, we use Caffe [Jia et al., 2014b] framework to implement the resulting

architecture, utilizing standard convolution layers for (3.7) and (3.8), and an optimized

1×1 convolution layers for (3.6) and (3.9). The resulting architecture is fine-tuned

through standard backpropagation (with momentum) on training data. We can fine-

tune all network layers including layers above the approximated layer, layers below the

approximated layer, and the four inserted convolutional layers. However, the gradients

within the inserted layers are prone to gradient explosion, so one should either be careful

to keep the learning rate low, or fix the weights in some or all of the inserted layers,

while still fine-tuning layers above and below.

3.1.5 Complexity analysis

Initial convolution operation is defined by NCd2 parameters (number of elements in

the tensor) and requires the same number of “multiplication+addition” operations per

pixel.

49

For [Jaderberg et al., 2014b] this number changes to Rd(C +N), where R is the rank of

the decomposition (see Figure 3.1 and [Jaderberg et al., 2014b]). While the two numbers

are not directly comparable, assuming that the required rank is comparable or several

times smaller than C and N (e.g. taking R ≈ CN
C+N), the scheme [Jaderberg et al., 2014b]

gives a reduction in the order of d times compared to the initial convolution.

For [Denton et al., 2014] in the absence of bi-clustering, the complexity is R(C+d2 +N),

and for our approach it is R(C + 2d + N) (again, both for the number of parameters

and for the number of “multiplications+additions” per output pixel). Almost always,

d � T , which for the same rank gives a further factor of d improvement in complexity

over [Jaderberg et al., 2014b] (and an order of d2 improvement over the initial convolution

when R ≈ CN
C+N).

The bi-clustering in [Denton et al., 2014] makes a “theoretical” comparison with the

complexity of proposed approach problematic, as on the one hand bi-clustering increases

the number of tensors to be approximated, but on the other hand, reduces the required

ranks considerably (so that assuming the same R would not be reasonable). We therefore

restrict ourselves to the empirical comparison.

3.2 Experiments

In this section, the approach is tested on two network architectures, small character-

classification CNN and a bigger net trained for ILSVRC. Most of the experiments in

this chapter are devoted to the approximation of single layers, when other layers remain

intact apart from the fine-tuning.

Several measurements are made to evaluate the models. After the approximation of the

convolutional weights with the CP-decomposition, the accuracy of this decomposition

is calculated, i.e. ‖W ′ − W‖/‖W‖, where W is the original weights and W ′ is the

obtained approximation. The difference between the original weights and approximation

may disturb data propagation in CNN, resulting in the drop of classification accuracy.

This drop is measured before and after the fine-tuning of CNN. Furthermore, the CPU

timings are recorded for the models and the speed-up compared to the CPU timings of

the original model are reported (all timings are based on Caffe code run in the CPU

mode on image batches of size 64). Finally, the reduction in the number of parameters

resulting from the low-rank approximation is calculated. All results are reported for a

number of ranks R.

50

3.2.1 Character-classification CNN

For the experiments with a smaller network, we chose character classification CNN

described in [Jaderberg et al., 2014b] as a suitable baseline. The network has four con-

volutional layers with maxout nonlinearities between them and a softmax output. It

was trained to classify 24 × 24 image patches into one of 36 classes (10 digits plus 26

characters). Our Caffe port of the publicly available pre-trained model (referred below

as CharNet) achieves 91.2% accuracy on the test set (very similar to the original). As

in [Jaderberg et al., 2014a], the second and third convolutional layer are considered.

These layers constitute more than 90% of processing time. Layer 2 has 48 input, and

128 output channels and filters of size 9×9, layer 3 has 64 input and 512 output channels,

filter size is 8 × 8. The results of separate approximation of layers 2 and 3 are shown

in Figure 3.2a and Figure 3.2b. Tensor approximation error diminishes with the growth

of approximation rank, and when the approximation rank becomes big enough, it is

possible to approximate weights accurately. However, our experiments show that accu-

rate approximation is not required for the network to function properly, especially after

finetuning. For example, while approximating layer 3, network classification accuracy is

unaffected even if the approximation error is as big as 78%.

Since the decomposition greatly reduces number of parameters, it can be also seen as a

powerful regularization technique, particularly useful for overparametrized models such

as CharNet. Network with decomposed layer overfits less and can reach better accuracy

on the test set after some finetuning.

Combining approximations. Decomposition can be applied to multiple layers of

a neural network, which is verified by the following experiment. Firstly, layer 2 was

approximated with rank 64. After that, the drop in accuracy was made small by fine-

tuning of all layers but the new ones. Finally, layer 3 was approximated with rank 64,

and for this layer, such approximation does not result in a significant drop of network

prediction accuracy, so there is no need to fine-tune the network one more time. The

network derived by this procedure is 8.5 times faster than the original model, while

classification accuracy drops by 1% to 90.2%. Comparing with [Jaderberg et al., 2014a],

CP-decomposition achieves almost two times bigger speedup for the same loss of accuracy

([Jaderberg et al., 2014a] incurs 1% accuracy loss for the speedup of 4.2× and 5%

accuracy loss for the speedup of 6×).

3.2.2 AlexNet

To prove the viability of our method for larger networks and more complicated tasks,

we move on to the image classification on ImageNet dataset. Following [Denton et al.,

51

2014], first experiments with AlexNet architecture are performed on the second convo-

lutional layer (filter size 5×5, 96 input and 256 output channels), and pre-trained model

shipped with Caffe is used as a baseline. Various network properties for several different

ranks of approximation are demonstrated in Figure 3.2c. It can be noticed that conv2

of the considered network demands far larger rank (comparing to the CharNet experi-

ment) for achieving proper performance. Overall, in order to reach the 0.5% accuracy

drop reported in [Jaderberg et al., 2014b] it is sufficient to take 200 components, which

also gives a superior layer speed-up (3.6× vs. 2×) achieved by Scheme 2 of [Jaderberg

et al., 2014b]. The running time of the conv2 can be further reduced with the price of

a slight increase in misclassification rate: rank 140 approximation leads to 4.5× speed-

up at the cost of ≈ 1% accuracy loss surpassing the results of [Denton et al., 2014].

Along with conventional full-network fine-tuning we tried to refine the obtained tensor

approximation by applying the data reconstruction approach from [Jaderberg et al.,

2014b]. Unfortunately, we failed to find a good SGD learning rate: larger values led

to the exploding gradients, while the smaller ones did not allow to sensibly reduce the

reconstruction loss. A probable cause of this effect is the instability of the low-rank

CP-decomposition [De Silva and Lim, 2008]. One way to circumvent the issue would be

to alternate the components learning (i.e. not optimizing all of them at once), which is

the scope of the future work. Another way of dealing with instability follows from the

observation that it is not caused by increasing depth of CNN (as proven by the recent

advances in training extremely deep networks), but by stacking convolutional layers with-

out nonlinearities between them. Introduction of nonlinearities changes the structure

of decomposition, rendering existing methods of calculating low-rank CP-decomposition

useless. However, the data-based approach of [Jaderberg et al., 2014b] is still applicable

in this setting. Finally, strong regularization also may be able to solve the problem.

3.2.3 NLS vs. Greedy

One of the main contributions of this chapter is pointing out that greedy CP-decomposition

works worse than more advanced algorithms such as non-linear least squares (NLS), and

evaluation of this degradation in the context of speeding up CNNs. Comparisons on

the second layers is performed for both CharNet and AlexNet, and for CharNet, the

combination with fine-tuning is also evaluated. Additionally, the random initialization

using the scheme of [Glorot and Bengio, 2010] was tested for CharNet. The results

in Table 3.1 clearly demonstrate two related things. Firstly, NLS decomposition leads

to significantly higher accuracy whether with fine-tuning or without. The advantage is

greater for the more complex network (AlexNet). Secondly, the output of the fine-tuning

clearly depends on the quality of the approximation. This observation concurs with the

52

N

d

d

C

(a) Full convolution

C

C

d

R

R

d

N

(b) Two component decomposition [Jaderberg et al., 2014b]

C
d

d

R

NRRRC

(c) CP-decomposition

Figure 3.1: Tensor decompositions for speeding up a generalized convolution. Gray
boxes correspond to 3D tensors (map stacks) within a CNN, with the two frontal sides
corresponding to spatial dimensions. Arrows show linear mappings and demonstrate
how scalar values on the right (small boxes corresponding to single elements of the
target tensor) are computed. Initial full convolution computes each element of the
output array as a linear combination of the elements of a 3D slice that spans a spatial
d × d window over all input maps. [Jaderberg et al., 2014b] approximate the initial
convolution as a composition of two linear mappings with the intermediate map stack
having R maps (where R is the rank of the decomposition). Each of the two mappings
computes each target value based on a spatial window of size 1 × d or d × 1 in all
input maps. Finally, CP-decomposition approximates the convolution as a composition
of four convolutions with small filters, so that a target value is computed based on a
1D-array that spans either one pixel in all input maps, or a 1D spatial window in one

input map

53

4 16 64 256
0.2

0.4

0.6

0.8

1

A
p

p
ro

x
im

a
ti

o
n

er
ro

r

4 16 64 256
0.01

0.1

1

10

50

A
cc

u
ra

cy
d

ro
p

(%
)

no FT

FT

4 16 64 256

200

400

Rank

P
a
ra

m
et

er
s

re
d

u
ct

io
n

(×
)

4 16 64 256

20

40

60

80

100

S
p

ee
d

-u
p

(×
)

(a) CharNet conv2

4 16 64 256
0.2

0.4

0.6

0.8

1

4 16 64 256
0.01

0.1

1

10

50 no FT

FT

4 16 64 256

200

400

Rank

4 16 64 256

20

40

60

80

100

(b) CharNet conv3

100 140 200 250 300
0.2

0.4

0.6

0.8

1

100 140 200 250 300

1

10

100
no FT

FT

100 140 200 250 300

5

10

15

20

Rank

100 140 200 250 300

2

4

6

(c) AlexNet conv2

Figure 3.2: Various properties and performance metrics of different ap-
proximated CNNs plotted as functions of the approximation rank. First
row: weight array approximation error. Second row: drop of the classification accu-
racy of the full model with approximated layers w.r.t the accuracy of the original model;
dashed lines correspond to the non-tuned CNNs, solid lines depict the performance after
the fine-tuning. Note the log-scale. Cases where the accuracy has actually improved are
plotted at the bottom line. Third row: empirical speed-up of the approximated layer
w.r.t. the original layer. Fourth row: ratio between the numbers of parameters in the

original and the approximated layers.

54

CharNet,R=16 CharNet,R=64 CharNet,R=256 AlexNet AlexNet AlexNet
No FT FT No FT FT No FT FT R=140 R=200 R=300

Random – 9.70 – 7.64 – 6.13 – – –
Greedy 24.15 2.64 4.99 0.46 1.14 -0.31 65.04 7.29 4.76

NLS 18.96 2.16 1.93 0.09 0.31 -0.52 3.21 0.97 0.30

Table 3.1: Accuracy drop for the greedy and the non-linear least-squares (NLS) CP-
decomposition. The results are given for the second layers of CharNet and AlexNet, for
different decomposition ranks R, and the numbers correspond to the accuracy drop of
the entire CNN. Original networks achieve 91.24% (CharNet) and 79.95% (AlexNet).
For AlexNet, results are presented without finetuning, and for CharNet the effect of fine-
tuning (FT) is also evaluated. NLS computation of the CP-decomposition invariably

leads to better performance, and the advantage persists through fine-tuning.

hypothesis that the large number of parameters in CNN is needed to avoid poor local

minima. Indeed, CP-decomposition radically decreases the number of parameters in a

layer. While good minima may still exist (e.g. the NLS+FT result), optimization is

prone to sticking in a much worse minima (e.g. the Random+FT result).

3.3 Conclusion

This chapter demonstrated that a rather straightforward application of a tensor decom-

position method (NLS-based low-rank CP-decomposition) combined with the discrimi-

native fine-tuning of the entire network can achieve considerable speedups with minimal

loss in accuracy. Additionally, good classification performance on the low decomposi-

tion ranks corresponding to large approximation error demonstrated low-rank structure

presented in the convolutional weights.

However, the finetuning of the decomposed model is complicated by the instability of

the decomposition. In the experiments of this chapter, we have successfully avoided this

problem by fixing the subset of layers during the fine-tuning stage, which may limit the

final performance. This limit becomes tighter as more and more layers are decomposed.

The proposed method is particularly effective in case of relatively shallow neural net-

works with large filters, as demonstrated in the experimental section with the CharNet

example. Unfortunately, modern CNNs evolved in the direction of smaller filters and

larger depth, severely narrowing the practical applications of CP-decomposition method.

The perfect approach for speeding up the neural network would allow to simultaneously

speed up as many layers as needed and finetune the whole network with the ease of the

original training process. In the next chapter, we present a different approach which has

the desired properties.

Chapter 4

Group-wise Brain Damage

The original Optimal Brain Damage work [LeCun et al., 1990] describes a carefully

designed “brain-damage” process that can prune the coefficients of a multi-layer neural

network very significantly while incurring minimal or no loss of the prediction accuracy.

Such process resembles the biological learning processes in mammals, in whose brains

the number of synapses peak during early childhood and is then reduced substantially

in the process of synaptic pruning [Chechik et al., 1998]. The optimal brain damage

algorithm and its variants, however, impose sparsity in an unstructured way. As a

result, while a large number of parameters can be pruned, the attained level of sparsity

in the network is usually insufficient to achieve substantial computational speedup on

modern architectures.

This chapter presents a simple approach that modifies the standard generalized convolu-

tion process by imposing structured “brain-damage” on the convolutional weights. This

approach, combined with a particular choice of structure, allows obtaining considerable

speed-up of convolutional layers in neural networks.

This structure is motivated by the observation that the majority of current implemen-

tations of generalized convolutions (including the most efficient one at the time when

experiments presented in this chapter were performed) [Chellapilla et al., 2006, Donahue

et al., 2014, Jia et al., 2014a, Chetlur et al., 2014, Vedaldi and Lenc, 2014, NervanaSys-

tems, 2015] compute generalized convolutions by reducing them to matrix multiplica-

tions (this reduction is also referred to as unrolling, or the im2col operation, and was

described in detail Section 1.3). While unstructured brain damage in a convolutional

layer, i.e. shrinking some of the convolutional weights to zero, will make one of the fac-

tor matrices (the filter matrix) sparse, it will not make the overall multiplication run

faster. The idea therefore is to group together the entries of convolutional weights array

in a certain fashion and to shrink such groups to zero in a coordinated way. By doing

55

56

this, one can eliminate rows and columns from both factor matrices that are multiplied

when convolution is reduced to matrix multiplication. Repeated elimination of rows and

columns makes both factor matrices thinner (but still dense) and results in faster matrix

multiplication.

Conventional group sparsity regularizer [Yuan and Lin, 2006] embedded into stochastic

gradient descent minimization is able to accomplish group-wise brain damage efficiently.

The use of group sparsity thus allows optimizing receptive fields in the convolutional net-

work. This approach makes the case for the natural idea of using structured sparsity as

a simple way to optimize connectivity in deep architectures. In our experiments, speed-

up factors exceed those obtained by tensor-factorization based methods. For example,

experiments show that group-wise brain damage can accelerate the bottleneck layers of

AlexNet (’conv2’ and ’conv3’) by a factor of 8.5× simultaneously while incurring only

modest (1%) loss of the prediction accuracy.

4.1 Method

4.1.1 Group-Sparse Convolutions

In the section below, the reduction from generalized convolution to matrix multiplication

introduced in Section 1.3 is reviewed in more details, and itss implications to the sparsity

structure are discussed.

Generalized convolution within a convolutional layer transforms an input stack of C

maps of size W ′×H ′, which can be treated as a three-dimensional array Uwhc, into an

output stack of N maps of size W ′′×H ′′ which form a three-dimensional array Vwhn.

The exact relation between W ′, H ′ and W ′′, H ′′ depends on the padding and stride

settings within the layer, and the approach presented in this chapter can handle any

padding/striding settings seamlessly. The transformation is defined by the following

formula:

V (x, y, k) =

C∑
c=1

∑
i=1..d
j=1..d

W (i, j, c, k)U(x+i, y+j, c) (4.1)

Here, W is a four-dimensional array of convolutional weights (kernel tensor) of size

d×d×C×N with the first two dimensions corresponding to the spatial dimensions, the

third dimension corresponding to input maps, the fourth dimension corresponding to

57

*

*

c
1
-map

c
2
-map

c
1

c
2

c
1
-filters

k
1

cc
2

k
2

k
3

k
1

k
2

k
3

k
1

k
2

k
3

c
1

c
2

c
1
-filters

c
2
-filters

c
2
-filters

c
1
-map

c
2
-map

k
1
-map

k
2
-map

k
3
-map

k
1
-map

k
2
-map

k
3
-map

c
1

c
2

patch matrix P

c
2

patch matrix P
filter matrix F

filter matrix F

Figure 4.1: Standard Generalized Convolution (top) vs. Generalized Convolution
after Group-wise Brain Damage (bottom). In both cases, diagram for two input maps
are shown (C = 2, blue-green color coding), and three output maps are highlighted
(k1, k2, k3 color-coded red-orange-yellow). Also, two stacial locations l1 and l2 are
highlighted. In both cases, the output map stack is obtained by reshaping the product
of the filter matrix and the patch matrix. In the standard case, the filters and the
patches sampled during the formation of the patch matrix are dense. After group-
wise brain damage, both the filters and the patch sampling patterns are group-sparse
(one sparsity pattern per input map), which results in a much thinner filter and patch

matrices and thus leads to much faster matrix multiplication/convolution.

output maps. The spatial width and height of the kernel are denoted as d (for simplicity,

square-shaped kernels and odd d are assumed).

The implementation of (4.1) can be reduced to the multiplication of two dense ma-

trixes [Chellapilla et al., 2006]. The reduction proceeds as follows:

• The weights array W is transformed into the filter matrix F of size N × d2C by

mapping a sequence of C flattened 2D filters W (:, :, c, k) into a k-th row of the

matrix.

• The input map stack U is reshaped into the patch matrix P of size d2C ×W ′′H ′′,
where the l-th column corresponds to a certain output location l = (x, y) and

is stacked from the C patches extracted from C input maps, all centered at this

location and reshaped in a row-wise fashion into column vectors.

58

• The filter matrix F is multiplied by the patch matrix P resulting in a matrix Ṽ

of size N ×W ′′H ′′ that contains all the elements of V (each column corresponds

to a certain location and contains the values of this location in the N output

maps). The multiplication implements (4.1) exactly, as each row-by-column prod-

uct within the multiplication corresponds to one instance of the computation (4.1)

for certain (x, y, k). The output array (map stack) V can be obtained from Ṽ by

reshaping.

The construction discussed above has proven to be highly successful and is used in the

majority of modern CNNs “backends”, e.g. [Chellapilla et al., 2006, Donahue et al., 2014,

Jia et al., 2014a, Chetlur et al., 2014, Vedaldi and Lenc, 2014, NervanaSystems, 2015].

The key idea is to train CNNs with sparse convolutional kernels that are consistent with

this construction.

Such consistency can be achieved if the sparsity patterns are aligned in a certain way.

Formally, group-wise brain damage introduces a sparsity pattern Qc for every input

map c ∈ 1 . . . C. The sparsity pattern is defined as a subset of the full spatial d-by-d

grid, i.e. Qc ⊂ {1 . . . d} ⊗ {1 . . . d}. The convolutional operation then becomes a slight

modification of (4.1):

V (x, y, k) =

C∑
c=1

∑
(i,j)∈Qc

W (i, j, c, k)U(x+i, y+j, c) (4.2)

The reduction of (4.2) is an almost straightforward replication of the procedure [Chel-

lapilla et al., 2006]. The only modifications are (Figure 4.1):

• When the filter matrix is assembled, each 2D filter W (:, :, c, k) is reshaped into a

row-vector of length |Qc| by including only non-zero elements. The filter matrix

thus becomes of size N ×
∑C

c=1 |Qc|.

• When the patch matrix is assembled, each 2D patch at location l = (x, y) in map

c is reshaped into a column vector of size |Qc| by sampling the input map U(:, :, c)

sparsely at locations (x+i−d+1
2 , y+j−d+1

2), where (i, j) ∈ Qc. The patch matrix

thus becomes of size
∑C

c=1 |Qc| ×W ′′H ′′.

As a result of this modification, the multiplication of two dense matrices of sizes T ×d2C

and d2C × W ′′H ′′ is replaced by the multiplication of two dense matrices of sizes

N ×
∑C

c=1 |Qc| and
∑S

c=1 |Qc| ×W ′′H ′′, which results in the d2C/
∑C

c=1 |Qc|-times re-

duction in the number of scalar operations. In our experiments with the reference imple-

mentation of [Jia et al., 2014b] the wall-clock reduction in the convolution time between

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

density

re
la

ti
ve

ti
m

e

CPU
GPU

Figure 4.2: The blue curve shows speed-up versus density level τ , measured for
forward propagation in the second convolutional layer of AlexNet on CPU (Intel Core
i7-4960X) and GPU (GeForce GTX TITAN Black). The measurements are averaged
over 100 runs, and speed-up is reported relative to the original dense layer, so the value
larger than 1.0 corresponds to slower evaluation. Importantly, the observed speedup is
almost linear in the sparsity level (diagonal). The green curve shows the layer speedup
on a GPU. While a certain constant overhead can be seen, we believe that (part of) it

can be eliminated via more elaborated GPU implementation.

the original implementation and the group-sparse convolution was almost matching the

“theoretical” speed-up factor (Figure 4.2).

The idea of group-sparse convolution can be applied to obtain fast CNNs in at least two

ways. First, the fast version of the network can be trained from scratch, and secondly,

it can be obtained by modification of pretrained architectures (i.e. performing “brain

damage”).

4.1.2 Fixed sparsity pattern

Predefined group-sparsity pattern. The simplest solution considered here is to

choose the sparsity patterns ΩS in advance in a data-independent manner, and enforce

these patterns during the learning of the network. One particular case of this approach is

a simple reduction of the spatial size of filters to a minimum, e.g. three-by-three, or even

smaller rectangular pattern all the way to one-by-one (this is in line with a recent work

of [He and Sun, 2015] where they consider 2× 2 filters for some of their architectures).

Note, that structured sparsity approach allows for all kinds of non-rectangular filters,

and it becomes very useful in the experiments.

60

One of the downsides of this approach is that when designing an architecture with

multiple convolution layers, there are no clear design principles that can guide the choice

of the filter shapes. In contrast, the methods discussed below can start with larger

filters and then shrink their sizes towards optimally-shaped small filters. Furthermore,

the restriction of the filter size can make learning process susceptible to poorer local

minima. Even when good architectures with very sparse filters exist, it may not be

possible to reach them by gradient descent without first considering a less-constrained

more parameter-reach architecture with large dense filters.

Training with group-sparsity regularizer. Rather than fixing the group-sparsity

pattern in advance, it is possible to find it as a part of learning process while the

network is trained. A classical way to achieve this is through the use of group-sparsity

regularization [Yuan and Lin, 2006, Roth and Fischer, 2008, Jenatton et al., 2011]. Let

us consider a regularizer based on l2,1-norm:

Ω2,1(W) = λ
∑
i,j,c

‖Γijc‖ = λ
∑
i,j,c

√√√√ N∑
k=1

W (i, j, c, k)2 , (4.3)

where the vector Γijc denotes the group of the weights array entries W (i, j, c, :). The

effect of the regularizer (4.3) is in shrinking some of such groups to zero in a coordinated

fashion. When an entire group Γijc is set to zero, one can set the pixel (i, j) in the

sparsity pattern Ωc to zero, thus increasing the group-sparsity.

For a convolutional layer that is being pruned, the gradient of (4.3), i.e.:

∂Ω2,1(W)

∂W (i, j, c, k)
= λ

W (i, j, c, k)√∑N
z=1W (i, j, c, z)2

(4.4)

can simply be added to the gradient of the learning loss while performing stochastic

gradient updates in the course of learning. The coefficient λ in (4.3) and (4.4) controls

the strength of the regularization w.r.t. the main learning loss.

Generally, using the regularizer (4.3) will result in a group-sparsified weights array with

some of Γijc having only near-zero entries. Because of the stochastic nature of SGD and

non-differentiability of l12 norm near zero, the entries in these groups will not be exactly

zero, and further postprocessing is needed to nullify the near-zero groups and to set the

sparsity patterns ΩCf accordingly.

61

4.1.3 Sparsifying with Group-wise Brain Damage

While it is possible to train CNNs with group-sparse convolutions from scratch, the

main focus of this work is developing algorithms that can speed-up existing pretrained

networks, as these networks take excessive time for training. Towards this end, two ap-

proaches have been developed. The approaches that can accelerate pretrained networks

by inflicting group-wise brain damage in a way that the drop in the prediction accuracy

is kept small.

Group-wise sparsification with fine-tuning. The implementation of this approach

is also based on the group-sparse regularizer (4.3). It starts with the input CNN and

runs the learning process on the dataset D with the added regularizer (4.3). After a

certain amount of iterations, a predefined number of groups Γijc with the smallest l2-

norm is set to zero. For a desired density level τ ∈ [0, 1] and respective speedup 1/τ ,

d2C (1− τ) groups are set to zero, making the respective QC sparse.

This approach has two complications. Firstly, for a given density τ it was generally hard

to set appropriate regularization strength λ in advance without trying several values.

Secondly, for small τ (large speedup) the appropriate regularization strength λ typically

leads to an excessive regularization, as many groups end up being biased towards zero

but not close to zero. Because of that, the prediction accuracy for such λ experienced

significant drop in the process of learning as compared to the input CNN.

Fortunately, one can recover from most of this drop by the subsequent fine-tuning of

the network, that follows after the brain-damage process. For the fine-tuning, the spar-

sity patterns QC was fixed and the learning process was resumed without group-sparse

regularization, for an excessive number of epochs. As a result of such fine-tuning, the

network adapts to the imposed sparsity patterns, while the prediction accuracy goes up

and recovers most of the drop.

Gradual group-wise sparsification. Two complications discussed above can be

avoided with an alternative approach, which combines the brain-damage and the fine-

tuning processes, and furthermore avoids most of the need for a manual search for good

meta-parameter values. The approach also often leads to considerably better results.

A new kind of regularizer was developed for this approach, called truncated l12 regular-

izer:

ΩT
2,1(K) = λ

∑
i,j,c

min(‖Γijc‖, θ) (4.5)

The gradient of (4.5) equals (4.4) when ‖Γijc‖ < θ and is zero otherwise. Informally

speaking, the value of θ controls which groups are considered “promising” and are being

62

shrinked towards zero, and which groups are considered to be too far from zero and

therefore stay unaffected by the regularizer (4.5).

A special validation set is created to monitor the performance of the network during brain

damage process, and maximum tolerable accuracy drop δ on this dataset is chosen. The

training process starts with the pretrained network, and the regularizer (4.5) is applied

with varying θ. Specifically, θ is increased (intensifying brain damage) if the accuracy

drop on hold-out set is less than δ and decreased, thus relieving certain groups from the

effect of the regularizer, if the drop is greater than δ.

To perform the actual sparsification, an additional threshold ε�δ is introduced. In

the process of learning, when the norm of a certain group falls below the threshold (i.e.

‖Γijc‖ < ε) the group is greedily fixed to zero and eliminated from the array. The sparsity

thus monotonically increases through the process, and training is carried on until the

sparsification process stalls, i.e. the system keeps training with Γ and performance drop

oscillating, while no new groups have their lengths fall under ε for a number of epochs.

In all performed experiments, all increments and decrements of θ were based on five-

percent quantiles of the groups. I.e. every time θ is adjusted in a steps to bring 5% of

groups Γijc in or out of the ‖Γijc‖<θ “territory”.

Overall, we find the whole procedure to be rather insensitive to the choices of λ and ε.

It is more practical, and it often leads to higher sparsity levels and speed-ups than those

attainable by the pruning with the fine-tuning approach. Most importantly, one could

use the same λ and ε, as well as the same shared value of θ when pruning several layers

simultaneously.

Hovewer, in case of deep architectures, simultaneous pruning is complicated by the fact

that some layers are inevitably pruned faster than the others. When the average achieved

density is sufficiently small, these layers are left allmost empty, creating a bottlenecks

inside the network and effectively stopping the pruning in the rest of the network. We

deal with this problem by implementing rescaling described in [Neyshabur et al., 2015].

Since the CNNs are build of linear operations, the ouputs of the network are not going

to change if weights of l-th convolutional layer ar multiplied by the constant kl, given

that

n∏
i=l

kl = 1 (4.6)

where n is the number of the layers participating in the rescaling. We set kl = 1
max‖Γijc‖ ,

then normalize the set of kl to satisfy (4.6) and multiply the convolutional weights by

63

0 2 4 6 8 10
0.9

0.92

0.94

0.96

0.98

1

group density (%)

a
cc

u
ra

cy
l2,1-regularizer
l1-regularizer

fixed

Figure 4.3: Accuracy vs. density level on MNIST dataset (LeNet architecture) for
various CNNs with group-sparse convolutions. The following approaches are compared:
training with l2,1 and l1 regularizations followed by sparsifications, and training with
predefined sparsity patterns ΩS (black dots). Overall, training with l2,1 regularizer ob-
tains the best result that can be further improved by fine-tuning without regularization.

the corresponding kl. Repeated every several training iterations, this procedure allows

to avoid bottleneck generation.

4.2 Experiments

Implementation details. Our implementation is based on Caffe [Jia et al., 2014b] and

modifies their original convolution, which is implemented as two subsequent transforma-

tions (im2col and matrix multiplication). To implement the group-sparse convolution

we focused on the forward propagation step and CPU computation. Most of the meth-

ods can be extended for backprop step and for GPUs, however making such extensions

efficient is non-trivial. Experiments presented in this chapter only require the modifica-

tion of im2col function, so that it can fill in the patch matrix while following certain

sparsity patterns.

Datasets. The following experiments are performed. Firstly, training CNNs with

group-wise brain damage and from scratch is compared with baselines in a small-scale

setting. We use MNIST dataset [Lecun et al., 1998] for these small-scale experiments.

Next, a large-scale problem is considered, namely ImageNet (ILSVRC) image classifica-

tion and the task of accelerating of a pretrained architecture, namely the Caffe version

of AlexNet [Krizhevsky et al., 2012]. Additionally, some results for one of the VGGNet

networks [Simonyan and Zisserman, 2015] are presented.

64

method density speed-up accuracy drop

Accelerating the second convolutional layer of AlexNet
Denton et al. [2014]
Tensor decomposition + Fine-tuning 2.7x ∼ 1%

Lebedev et al. [2015]
CP-decomposition + Fine-tuning 4.5x ∼ 1%

Jaderberg et al. [2014b]
Tensor decomposition + Fine-tuning 6.6x ∼ 1%

Training with fixed sparsity patterns 0.12 8.33x 0.82%
Training with fixed sparsity patterns 0.2 5x 0.16%

Group-wise sparsification + Fine-tuning 0.1 10x 1.13%
Group-wise sparsification + Fine-tuning 0.2 5x 0.43%
Group-wise sparsification + Fine-tuning 0.3 3.33x 0.11%
Group-wise sparsification + Fine-tuning 0.4 2.5x -0.09%

Gradual group-wise sparsification 0.11 9.0x 0.28%
Gradual group-wise sparsification 0.05 20x 1.07%

Accelerating the second and the third convolutional layers of AlexNet

Training with fixed sparsity patterns 0.12 8.7x 1.54%
Training with fixed sparsity patterns 0.35 2.9x 0.36%
Training with fixed sparsity patterns 0.54 1.9x -0.53%

Group-wise sparsification + Fine-tuning 0.2 5x 1.50%
Group-wise sparsification + Fine-tuning 0.3 3.33x 1.17%
Group-wise sparsification + Fine-tuning 0.5 2x 0.57%

Gradual group-wise sparsification 0.12 8.5x 1.04%

Accelerating all five convolutional layers of AlexNet

Training with fixed sparsity patterns 0.34 3.0x 1.34%

Gradual group-wise sparsification 0.31 3.2x 1.43%

Table 4.1: Accelerating convolutional layers of the pretrained AlexNet ar-
chitecture: results of the two variants of the method for various sparsity levels along-
side tensor-decomposition based methods (note: the results for [Jaderberg et al., 2014b]

are reproduced from [Lebedev et al., 2015]).

4.2.1 MNIST experiments

LeNet architecture was chosen for small-scale MNIST experiments. We trained the

LeNet architecture on the MNIST dataset from random initialization while adding the

group-sparse regularization (section 4.1.2) while varying the regularization strength λ

and picking the optimal one for each sparsity level. The sparsification affects both

convolutional layers of LeNet, and the same density level τ is enforced in both layers. A

number of baselines were also considered:

• A simple baseline that trains the network without regularization and then simply

eliminates (sets to zero) a certain number of groups Γijc with the smallest l2-norms.

The performance of this baseline was clearly below all other methods and it is not

reported.

65

(a) sparsity 1− τ = 0.9 (b) sparsity 1− τ = 0.8 (c) sparsity 1− τ = 0.6

Figure 4.4: The sparsity patterns obtained by group-wise brain damage on the second
convolutional layer of AlexNet for different sparsity levels. Nonzero weights are shown
in white. In general, group-wise brain damage shrinks the receptive fields towards the

center and tends to make them circular.

• Picking sparsity patterns QS in advance. We consider filters with only one cen-

tral non-zero entry and filters with two adjacent central non-zero elements. These

options correspond to the density of 4% and 8% respectively. The former is es-

sentially equivalent to a non-convolutional network, where almost all processing

happens in the fully-connected layers.

• Another baseline is a simpler non-group-wise sparsification obtained by training

with l1-norm regularizer (with varying λ) but then nullifying groups |Γijc based

on their norms.

The results of the proposed method and the baselines are shown in Figure 4.3. The right-

most plot shows the comparison of the l1-envelope, l2,1-envelope, and the performance of

the group-wise brain damage applied to the network trained without sparsity-inducing

regularizer. The use of group-sparsity regularization boosts the performance of group-

wise brain damage very considerably. Twenty-fold acceleration of convolutional layers

can be obtained while keeping the error low (2.1%, reduced to 1.71% after fine-tuning).

Using l1-regularizer followed by optimal brain damage works worse than l2,1-regularizer.

Pre-fixing sparsity patterns achieves good results, which are still worse than training

with group-sparsity regularizer. Note also that all methods except the baseline with the

pre-fixed patterns can be improved via fine-tuning.

4.2.2 ILSVRC experiments

AlexNet (Caffe reimplementation) architecture that has five convolutional layers. In this

section, the following subtasks are considered: (i) accelerating the second convolutional

layer (which is the slowest of all layers), (ii) accelerating the second and the third layers

(which are the two slowest layers), (iii) accelerating all five convolutional layers (which

together take the vast majority of the forward-propagation time). When reporting the

66

final density in subtasks (ii) and (iii), we weigh the densities in different layers by the

forward propagation times.

As an additional baseline, we evaluate the variant of the method that trims the network

according to some predefined sparsity pattern and then learns the network while keeping

the same fixed pattern. Namely, the following symmetric centered patterns are consid-

ered: vertical or horizontal block 1×3, the 3×3 cross pattern, 3×3 square or diamond

shape inside 5×5 filter.

For the first two subtasks, we evaluate the method sparsity-inducing regularizer for

various sparsity levels. For every desired density level τ , the optimal value of λ have to

searched in large range with ten-fold increments. For each τ we pick λ that results in

the minimal accuracy drop after pruning before fine-tuning. After picking the optimal

λ, fine-tuning is performed with fixed sparsity patterns. Figure 4.4 demonstrate sparsity

patterns ΩS obtained for different sparsity levels.

Finally, for all three subtasks, we evaluate the most advanced of presented methods,

namely gradual group-wise pruning. The parameters λ and ε are set to 0.01 and 0.1

respectively, and the evaluation set of ILSVRC2012 is split randomly into two halves.

One half is used solely to estimate the drop of the classification accuracy in the dynamical

adjustment of θ, and the other serves for the estimation of the final performance drop.

Acceptable performance drop is chosen to be 1% of top-1 accuracy, the same as in the

previous chapter.

As shown in Table 4.1, the results of gradual sparsification outperform the tensor factor-

ization methods as well as sparsification with fine-tuning considerably, achieving higher

group-sparsification/speed-up for similar prediction accuracy drop. Notably, the pro-

posed approach is more successful in speeding-up AlexNet than a number of approaches

based on tensor decomposition. Figure 4.5 further visualizes the process of the simulta-

neous gradual brain damage inflicted on all five layers of AlexNet.

“External” computer vision task. Convolutional layers of large networks pretrained

on large annotated training sets such as ILSVRC can be used as universal spatially

localized features in a variety of ways [Liu et al., 2015b, Azizpour et al., 2015], which

is particularly valuable for problems with considerably smaller training sets. Recently,

[Babenko and Lempitsky, 2015] showed that descriptors obtained by sum-pooling of the

features that emerge in the last convolutional layer of a pretrained network can be used as

state-of-the-art holistic descriptors for image retrieval. Comparison of AlexNet as a base

model and the network with the simultaneous group-sparsification of all convolutional

layers from Table 4.1 with 3.2x speedup revealed a negligible drop in performance for

the INRIA holidays dataset [Jégou et al., 2008] from 0.783 mAP to 0.780 mAP, and a

67

0 2 4 6

·105

0

0.2

0.4

0.6

0.8

sparsity (1− τ)

conv1
conv2
conv3
conv4
conv5

0 2 4 6

·105

0

1

2

3

accuracy drop (%)

validation set
test set

0 2 4 6

·105

0

0.2

0.4

0.6

regularized groups

Figure 4.5: The process of sparsification of all five layers in AlexNet. The left plot
shows the monotonic growth of the sparsity levels of the five convolutional layers as
the iterations progress. The middle plot shows the relative prediction accuracy drop
for the current system for the validation part and for the hold-out test set. Finally,
the right part visualizes the process of the adjustment of θ threshold in the truncated
l2,1 regularization. This plot shows the percentile of groups Γijc with the l2-norm less
than θ. θ is increased or decreased dependent on whether the performance drop on the

validation set is greater or smaller than 1.2%.

reasonably small drop for the Oxford Building dataset [Philbin et al., 2007] from 0.45

to 0.41.

VGGNet results. We have also applied the gradual group-wise sparsification to the

slowest convolutional layer of VGGNet (the deeper 19 layer version of [Simonyan and

Zisserman, 2015], starting from its Caffe Zoo version. The sparsification obtained the

density τ = 0.13 with only 0.2% top-1 accuracy drop. Interestingly, unlike the ex-

periments with AlexNet where empty sparsity patterns ΩS (“dead feature maps”) are

rare, in this example such all-zero patterns were present (29 out of 64), suggesting that

this manually designed architecture contains an excessive number of feature maps in

this layer. This result also suggests that pruning is suitable even for networks with

very small initial filter sizes in convolutional layers (3× 3 for VGGNet). When applied

to all convolutional layers of the VGG network, the method obtains different densities

for different layers, creating undesirable bottlenecks in the network that slow down the

learning process. With help of rescaling, uniform sparsification reached density τ = 0.45,

corresponding to more than 2× speedup with 0.7% accuracy drop.

4.3 Conclusion

In this chapter, we have described a novel approach for speeding up CNNs that uses the

group-wise brain damage process to prune the convolutional filters. The method can

68

be applied to the specific layers or for the whole network simultaneously. The approach

takes into account the way generalized convolutions are reduced to matrix multiplications

and removes the entries of the convolution kernel in a group-wise fashion. The exact

sparsity patterns can be learned from data using group-sparsity regularization. When

applied after learning with such regularization and followed by fine-tuning, group-wise

brain damage obtains state-of-the-art performance for speeding up CNNs.

Filter shapes, discovered by the pruning process, are roughly circular in most cases. This

observation could be taken into account in the future architecture design work. Also,

the process treated AlexNet and VGGNet differently, eliminating entire feature maps in

the latter case, which demonstrates that the proposed method can in practical setting

mimic different types of structural constraints described in Section 2.5, thus eroding the

border between pruning and architecture search approaches.

Chapter 5

Impostor Nets

The ability to perform fine-grained recognition is one of the hallmarks of the recent

progress in deep learning. The best of fine-grained classifiers [Cai et al., 2017, Zheng

et al., 2017, Kong and Fowlkes, 2017, He and Peng, 2017], however, use very deep

convolutional networks (CNNs) such as those based on the VGG-architecture [Simonyan

and Zisserman, 2015], which means that they are ill-suited for the deployment on mobile

platforms and other platforms that lack GPUs, unless each image is processed remotely.

At the same time, having a fine-grained classifier “in your pocket” and without the need

for a remote server connection is what makes such classifiers particularly useful.

A natural question is then, whether it is necessary to have a very big and deep CNN

typically designed for large-scale visual recognition, in order to perform fine-grained

classification? To address this question, this chapter focuses on building fine-grained

classifiers that perform well and yet do not require a deep, computation- and power-

hungry CNN to perform classification well.

Towards this goal, we suggest a new architecture. This architecture combines a com-

pact CNN with a non-parametric classifier, squeezing a maximal performance from such

combination. This combination is natural, as the non-parametric classifier is able to

compensate for the inability of a compact CNN to achieve linear separation of similar

visual classes.

The non-parametric classifier that is used in the proposed system is a radial basis func-

tion classifier, which takes the high-dimensional output of an underlying CNN and then

performs classification by combining proximity-based votes from a set of points in the

embedding space. The described architecture is thus similar to the RBF-solver archi-

tecture recently proposed in [Meyer et al., 2017], and also reminiscent of many works on

metric learning (as several works evaluate k-NN classifiers on top of the learned metrics).

69

70

In the above-mentioned approaches, the voting points are the mappings of the training

examples by the learned embedding networks. The distinguishing property of the pro-

posed approach from both [Meyer et al., 2017] and metric learning approaches, is that

in this case the voting points are not tied to the training samples. Instead the voting

points are initialized to the images of the training examples under the CNN mapping,

but drift away from such initialization as the learning progresses. Extra flexibility re-

sulting from the lack of ties between the training examples and the voting points results

in a significant boost of the classification accuracy.

The evaluation is performed on two popular fine-grained datasets (Caltech-UCSD Birds [Wah

et al., 2011] and Stanford Cars [Krause et al., 2013]). To diversify the evaluation,

we also perform experiments on the Landmarks-clean dataset [Gordo et al., 2017] of

landmark images, treating landmark recognition as a classification problem [Li et al.,

2009]. In all cases, the classification accuracy of an underlying moderately-sized network

(SqueezeNet [Iandola et al., 2016] in most of the performed experiments) is boosted con-

siderably using proposed approach, while the additional computation cost is minimal.

we also validate the idea that the memory overhead over the baseline CNN can be de-

creased using standard compression schemes without affecting the classification accuracy

strongly.

Finally, the open-set ability of impostor networks is validated. The performed exper-

iments demonstrate that impostor network can identify images that do not belong to

training classes, and find that this ability also exceeds the standard classification net-

works.

5.1 Method

An impostor network is an image classifier consisting of a convolutional network fθ with

learnable parameters θ that maps an input image x into a d-dimensional space Y as

well as a dataset of reference points c1, . . . , cM in Y with assigned class labels l1, . . . , lM

that define class kernel densities in Y.

A trained impostor network classifies an image x by first mapping it to Y:

y = fθ(x) (5.1)

and then computing a set of weights w1, . . . , wM using the Gaussian kernel g(·, ·;σ)

traditionally used in the RBF networks:

wj = g(y, c; σ) = exp

(
−‖y − cj‖2

2σ2

)
, (5.2)

71

Figure 5.1: The schematic view of the ”loose” impostor networks training. The train-
able parameters include the CNN weights (that determine the mapping from training
images to their embeddings shown as circles) and the set of impostor vectors (shown
as squares). Each impostor possesses a class label, denoted by its color. Gradients
of some loss terms are shown with arrows. They include the attraction term between
an embedding of a training image and an impostor of the same class, as well as the
repel term between an embedding of a training image and an impostor of another class.
Additionally, loss terms penalize the deviation between the corresponding impostors
and embeddings (shown with strings). At test time, the non-linear decision boundary

of the classifier is determined by the position of impostors of various classes.

where σ is the standard deviation of the used kernel, which serves as a meta-parameter

of the model. The value of σ is set by validation (although it can be included into

the gradient-based learning formulation). The classification process then predicts the

probability of the image x belonging to a certain class l using the radial basis function

prediction rule:

p(l(x) = l) =
1∑M

j=1 g(y, cj ;σ)

M∑
j=1

g(y, cj ;σ) [lj = l] , (5.3)

where [lj = l] is an Iverson bracket.

The parameters of the embedding network and the reference set are obtained from

training data given in the form of training examples x1, . . . ,xM with labels l1, . . . , lM .

We introduce the same number of reference points c1, . . . , cM , and associate each training

example xj with the reference point cj (the particular ways of such association are

discussed below). The label lj is retained by the reference point cj , and thus is used

after the training to classify new examples according to the RBF classification rule (5.3).

Since each ci serves as a certain representative of the training example xi at test time,

it is called ci an impostor and the resulting architecture is called an impostor network.

5.1.1 Motivation

The estimation of class probabilities using the rule (5.3) can be performed efficiently

even for a large number M given that the bandwidth σ is sufficiently small. Under

72

this condition, the approximate nearest neighbor search can be used to retrieve an

(approximate) set of close neighbors of the embedding vector y, for which the weights

g(y, cj ;σ) are not very close to zero. For a reasonably small M (in practice up to

several tens of thousands, as in initial experiments), even an exhaustive computation of

all weights in (5.3) constitutes a small fraction of the computation time, whereas the

majority of the inference time is spent on the CNN computation in (5.1).

Compared to a standard CNN classifier, which utilizes linear classification on top of

the feature hierarchy, the convolutional network inside the proposed architecture is used

in conjunction with a highly non-linear RBF-classifier (5.3). Consequently, given a

reasonable set of impostors, many fewer convolutional layers may be needed for the

embedding fθ in order to fit the resulting non-linear decision boundary defined by (5.3).

This explains why in the experiments below impostor networks are able to achieve higher

classification accuracy compared to CNNs with similar architecture.

5.1.2 Training impostor networks

There are several possible approaches how the parameters θ of the CNN fθ and the

impostor set c1, . . . , cM can be learned from a set of training examples x1, . . . ,xM .

Tied impostors. In the approach based on tied impostors, the learning results in

ci = fθ(xi), i.e. each impostor is tied to the embedding of the training example xi.

The learning process can then be performed by minimizing the classification loss first

introduced in [Goldberger et al., 2005]:

L(θ, c1, . . . , cM) = − 1
M

∑M
i=1 log

∑
j 6=i g

(
fθ(xi),cj ;σ

)
[lj=li]∑

j 6=i g

(
fθ(xi),cj ;σ

) (5.4)

subject to cj = fθ(xj) (5.5)

Each term in (5.4) approximates the probability estimate (5.3) for the correct class la-

bel of a training example (where the corresponding impostor is bypassed to avoid severe

overfitting). The learning formulation (5.4-5.5) is, in fact, very similar to the one pro-

posed in [Meyer et al., 2017] (and can also be regarded as an approach for deep metric

learning). In practice, enforcing the hard constraint (5.5) during the optimization is

non-trivial. Indeed, to evaluate the terms in (5.4) for a minibatch requires one requires

to compute embeddings cj = fθ(xj) for all close neighbors of the minibatch members.

To address this challenge, [Meyer et al., 2017] suggested to maintain the cached copies

(effectively, the impostors) of the embeddings at all times, that gradually become obso-

lete, as the optimization proceeds. The cached copies are updated by resetting to the

actual embeddings once in several epochs. Such resetting leads to some problems, as it

73

effectively leads to abrupt and considerable change of the optimization objective, and

may result in learning instabilities.

Fixed impostors. A simpler alternative, which in our experiments proved surprisingly

efficient, is to fix the impostors at the beginning of the optimization process and never to

update them. Thus, given the initial CNN parameters θ0, every impostor ci is initialized

to fθ0(xi), and then the optimization of the objective (5.4) is performed over θ, while ci

are excluded from the optimization, and the constraint (5.5) is disregarded.

In our experiments, the initial state of the network parameters θ0 corresponds to the

result of the training on the well-known ILSVRC classification task. Given a good

initialization θ0, the initialized impostor set c1, . . . cM are likely to create reasonable

decision boundaries in the high-dimensional space Y, which may be simpler to fit for

the CNN fθ than to achieve linear separability of the classes. This explains why such a

simple scheme, when initialized to a pretrained θ0, can outperform the standard CNN

(starting with the same pre-initialization) considerably.

Loose impostors. The third scheme that can be seen as a generalization of the tied

impostor scheme, which avoids its pitfalls. Here the impostor set is once again made

a part of the optimization, however the hard constraint (5.5) is replaced with the soft

penalty that drives the deviation between ci and fθ(xi) down, leading to the following

learning formulation:

L(θ, c1, .., cM) =
1

M

M∑
i=1

 λ ‖fθ(xi)− ci‖2 − log

∑
j 6=i

g
(
fθ(xi), cj ;σ

)
[lj = li]∑

j 6=i
g
(
fθ(xi), cj ;σ

)
 . (5.6)

Here, the parameter λ controls the relative weight of the attachment loss. We have

found that the performance of the method is rather insensitive to λ and set it to 1 in

our experiments. The loss (5.6) is differentiable w.r.t. all parameters of the impostor

network, including both the CNN parameters and the impostor positions. One can

therefore use standard stochastic gradient-based techniques to minimize it.

During a single training epoch, every impostor ci participates in the classification of

training samples multiple times. Each time, the partial gradient of the loss (5.6) with

respect to ci is computed and the impostor position ci is updated accordingly (i.e. pulled

towards the embeddings of the training examples of the same class or pushed away from

the embeddings of the training examples of different classes). Once during every epoch,

when the training example xi is included in the mini-batch, the impostor ci is also pulled

towards the embedding fθ(xi).

74

In the loose impostor formulation, untying the impostors from the embeddings of the

training examples as well as from their initial approximations greatly increases the ca-

pacity of the model without increasing its computational complexity at test time. This

is because the coordinates of impostors effectively become learnable parameters. This

may both have a beneficial effect of decreasing underfitting and the negative effect of

increasing overfitting. Also, compared to the tied impostors scheme, the gradients of

the loss function in the loose scheme are computed without ignoring any terms and

without cached approximations, making the learning process more stable. Compared to

the fixed impostor scheme, the process can potentially improve the decision boundary

(if the initialization θ0 is highly sub-optimal). In the experimental section, we carefully

compare all three impostor learning schemes.

5.2 Experiments

This section presents the experimental evaluation of the proposed impostor networks

with various datasets and base CNN architectures.

Datasets. The experiments are performed on three fine-grained categorization datasets:

1. Caltech-UCSD Birds dataset (CUB-200-2011) [Wah et al., 2011], containing 11,788

bird images (5994 train and 5794 test images) of 200 classes.

2. Stanford Cars dataset [Krause et al., 2013], containing 16,185 car images (8144

train and 8041 test images) of 196 classes.

3. Landmarks-clean dataset [Gordo et al., 2017], containing 35423 images of 671

different landmarks (30837 train and 4586 test images). While usually used with

landmark protocols, the task of landmark recognition may also be treated as a

classification problem [Li et al., 2009].

4. Fungi 2018 dataset (part of 2018 version of iNaturalist Horn et al. [2017] contest)

contains 85578 training images and 4182 validation images of 1394 fungi species.

For training the network all the datasets are split into train/validation/test subsets.

The validation subset is used to tune the meta-parameters (including σ). The main

performance measures are the standard classification accuracy and the inference time

on both CPU and GPU.

Experimental details. During both training and applying the networks, the input

images are resized to 256 × 256. When training, random cropping, and mirroring are

75

also applied. For the Cars and Birds datasets, we follow [Meyer et al., 2017] and use

the provided bounding boxes to crop the object of interest in the image. Learning rates

for all the schemes and the σ parameter of the RBF-classifier in the impostor networks

were tuned on the validation subsets. For training, we use the Adam optimizer [Kingma

and Ba, 2014] with the weight decay parameter equals 5 × 10−4. All experiments were

performed in the PyTorch [Paszke et al., 2017] framework.

The protocol for training the impostor networks includes the following steps:

1. The CNN is initialized with weights, obtained from the pretraining on ILSVRC.

If the desired embedding dimensionality dem does not equal to the dimensionality

of the last fully-connected layer dfc, the size of the last fully-connected layer is

changed to be dfc×dem, and the corresponding weights are initialized by a random

matrix.

2. All the train images are passed through the CNN and the outputs of the last

fully-connected layer are used as initial impostor vectors c1, . . . , cM .

3. The impostors and the values of the matrix in the last layer of the network are

divided by the average impostor L2-norm 1
M

∑M
i=1 ||ci||. This normalization trick

is important in practice, as the typical scale of distances between impostors varies

greatly with dem and the scale of the last layer parameters. Due to this variability,

the σ parameter has a very wide range of possible values, which makes it hard to

tune. The division by the average norm allows the scale of distances to stay the

same across different dem and initializations.

4. The standard backpropagation is applied to minimize the corresponding impostor

network loss: (5.5) or (5.6).

Due to a small number of images in the evaluation datasets, the RBF classification rule

is computed with exhaustive search, i.e. distances to all impostors are calculated.

Compared approaches. The state-of-the-art methods for fine-grained recognition [Si-

mon et al., 2017, Zheng et al., 2017] focus solely on the classification accuracy and it

could take up to dozens of seconds to use them on mobile platforms. This work, however,

is focused on targeting the demanding operating point of ”lightweight” approaches. In

particular, we consider the methods and network architectures that could be employed

on non-GPU platforms and used in real-time, i.e. the inference should be faster than 10

FPS on CPU devices. Given these limitations, the following schemes are compared:

76

1. CNN: for this baseline the ILSVRC-pretrained network is fine-tuned on the par-

ticular dataset using the standard cross-entropy loss. The inference in this scheme

is very efficient as it requires the only forward pass.

2. CNN-extra: to verify that simply adding more parameters into the CNN would

not result in the accuracy boost, we compute this additional baseline, which mimics

the CNN variant, except that an extra fully-connected layer with dem neurons is

inserted before the last layer

3. ImpostorNet-tied: the impostor network with impostors tied to the embeddings

of the training examples. We follow [Meyer et al., 2017] and recompute the im-

postors every tenth epoch. Resetting impostors more frequently (e.g. after every

epoch) was also tried but resulted in a worse performance.

4. ImpostorNet-fixed: the impostor network with impostors fixed to the initial

positions determined by the ILSVRC-pretrained network.

5. ImpostorNet-loose: the impostor network with loose impostors that are part

of the optimization process. Here, we stick to the value λ = 1 (in our initial

experiments we observed that changing this parameter does not improve the final

result).

All the networks in the compared schemes are initialized by the weights from the CNN,

pretrained on the ILSVRC dataset [Russakovsky et al., 2015]. The train images’ impos-

tors are always initialized by the corresponding image embeddings, obtained with the

initialization weights. For one of the three datasets, we have evaluated the following

network architectures: SqueezeNet [Iandola et al., 2016] (PyTorch SqueezeNet version

1.1 was used), AlexNet [Krizhevsky et al., 2012], ResNet-18 and ResNet-50 [He et al.,

2016]. As SqueezeNet stood out in terms of accuracy/efficiency trade-off in this compar-

ison, this architecture was used for the remaining two datasets. Unless noted otherwise,

the embedding dimensionality for ImpostorNets is set to 512.

Classification accuracy. The classification accuracy for all the compared methods is

demonstrated in Table 5.1. Several key observations can be made from it:

1. For the Birds dataset, where different architectures are compared, the advantage

of impostor networks is the most substantial for the most efficient Squeezenet ar-

chitecture. For the more powerful architectures, the advantage of proposed scheme

is much smaller. We believe that the reason for such behavior is that the architec-

tures with a large number of parameters are able to make different classes linearly

separable and the non-linear decision boundary is less useful.

77

Table 5.1: Classification accuracy on the Birds, Cars and Landmarks datasets for
three versions of impostor networks and the CNN trained with cross-entropy loss (in-
cluding the variant with additional learnable parameters). Impostor networks provide
a substantial performance improvement on the Birds and Cars datasets in the case of

SqueezeNet architecture.

Birds Cars Landmarks

SqueezeNet AlexNet ResNet-18 ResNet-50 SqueezeNet SqueezeNet

CNN 70.72 65.58 79.61 82.35 78.65 92.48

CNN-extra 69.30 65.28 80.08 82.58 76.67 92.67

tied 70.04 62.10 75.68 80.54 80.84 93.65

fixed 75.47 66.97 80.05 82.68 79.87 93.02

loose 76.01 67.30 80.58 82.14 85.05 92.83

2. The version with loose impostors outperforms the baseline and versions with tied

and fixed impostors in several cases and never performs much worse. We attribute

this fact to the extra learning capacity of this scheme, explain it by the fact that

in the ”loose” version the impostors are trained jointly with the networks, hence

many more model parameters adapt to the particular dataset.

3. The advantage of impostor nets cannot be explained simply by having extra pa-

rameters in the decision function. In fact, adding more parameters into the CNN

does not necessarily improves the performance (CNN-extra vs. CNN).

4. The advantage of impostor nets on the Landmarks-clean dataset is small. This

may be due to already saturated performance on this dataset.

Additional experiments were performed to explore ImpostorNets performance in different

situations.

RBF-SVM baseline. To prove the necessity of joint learning of ConvNet weights

and impostor positions in embedding space, we compare ImpostorNets with RBF-SVM

classifier trained on fixed feature vectors extracted from the last hidden layer of ConvNet.

This experiment was performed for Squeezenet architecture on Birds dataset and yielded

the accuracy of 69.2%, lower than original ConvNet and every ImpostorNet version.

Fungi 2018. We have performed additional experiments on Fungi 2018 dataset to

confirm the applicability of impostor networks for larger datasets. Impostor networks

in the ”loose” version with SqueezeNet architecture achieved an accuracy of 26.6%,

compared with 25.7% of original ConvNet.

Dependence on the embedding dimensionality dem. The dimensionality of the

embeddings and the impostors dem has a large influence on the impostor networks per-

formance. Figure 5.2 demonstrates the classification accuracy on the Birds dataset as

a function of dem for the ”fixed” version of the impostor network. As expected, larger

78

32 64 128 256 512 1024
0.66

0.68

0.7

0.72

0.74

0.76

embedding dimension

a
cc

u
ra

cy

2 4 8 16 32 full

0.735

0.74

0.745

0.75

code size, [bytes]

Figure 5.2: Left – the classification accuracy of ”fixed” impostor networks on the
Birds dataset as a function of the impostors dimensionality dem. Larger dem results in
higher performance but also increases the memory consumption and the computational
complexity of RBF classification (although the computational cost still remains very
small compared to the network inference time). Right – same accuracy as a function of
the compressed impostor representation size (which is given in bytes). The impostors
could be compressed to as little as 16 or 32 bytes with negligible accuracy drop compared

to uncompressed impostors.

dimensionalities result in more powerful models (due to larger number of parameters).

On the other hand, the large dem values increase the memory consumption and RBF

classification complexity. In most of the experiments dem is set to 512.

Initialization variants. In the ”fixed” scheme the impostors are not updated during

training and are fully defined by the initialization weights. In this experiment, we com-

pare several different ways to initialize the ”fixed” impostors with the SqueezeNet archi-

tecture. The initialization with the weights, obtained with pretraining on the ILSVRC

dataset, results in 76% classification on the Birds dataset. As expected, the random

initialization of impostors results in poor classification performance of 16.1%. Another

reasonable way is to initialize the impostors with the weights obtained after finetuning

on the Birds dataset with cross-entropy loss. This initialization results in slightly higher

final performance of 76.9%. However, this increase in the accuracy comes at the cost of

the additional CNN training.

Impostors compression. Here we investigate the performance of the ”fixed” version

of the proposed approach when impostors are represented by the compact PQ codes

to reduce memory consumption. In particular, the optimized version of PQ (OPQ [Ge

et al., 2014]) was chosen for compression. Figure 5.2–right demonstrates the classification

accuracy on the Birds dataset as a function of the code size (presented in bytes). In

this experiment, we initialize the impostors, compress them with OPQ, and then train

the impostor network using the compressed vectors as the impostor set c1, . . . , cM . The

graph shows that the original 512-dimensional impostors could be compressed to 16 or 32

bytes with only negligible accuracy drop. Note, that the usage of PQ codes for impostors

79

does not prevent the efficient RBF classification, as the distances to the compressed

impostors could be computed efficiently both on CPU and GPU [Johnson et al., 2017].

Overall, the total memory consumption of the impostor networks is dominated by the

memory required to store CNN weights if the impostors are PQ-compressed. E.g. for

the Birds dataset, the size of the SqueezeNet model is about 4.8MB, while the impostors,

compressed to 16 bytes, require only 92KB of additional memory.

2D visualizations. Visualizing relation between impostors and embeddings, while de-

sirable, is hard to because of embedding space have high dimensionality, and traditional

visualization techniques such as t-SNE can introduce artifacts. However, we can train

a separate toy model with two-dimensional embedding space. This toy model allows to

directly observe impostors and embeddings, and some observations can be made.

The learning process for ImpostorNets trained on MNIST dataset is visualized on Fig-

ure 5.3. Both impostors and embedding start from the single pile in the central area at

the first epoch, and the classification loss tries to scatter this pile, so both the impostors

and embeddings start their travel outside. Starting from the epoch 2, it is clearly seen

that embeddings lead and impostors follow.

The strength of bond between impostors and embeddings is controlled by parameter λ.

The effect of varying λ on two-dimensional embedding space is presented on 5.4. Small

λ allows embeddings to travel almost independently of impostors, similarly to the fixed

impostors setting. Large lambda λ makes mismatch loss produce very large gradients

and makes model rigid, leading to a bad fit.

5.2.1 Timings

In this section, the timings of ImpostorNets are measured both on CPU and GPU. The

GPU timings are recorded on single Tesla K40m with CUDA 8.0, and for CPU timings,

Intel Xeon CPU E5-2650 v2 2.60GHz was used.

Note, that the state-of-the-art approaches for fine-grained classification rarely take in-

ference timings into consideration and do not report them. To position the proposed

approach among the previous works, we also compute the timings for two recent ap-

proaches, which have their models publicly available [Simon et al., 2017, Zheng et al.,

2017]. Figure 5.5 shows the timings, achieved by ImpostorNets as well as the timings of

the state-of-the-art approaches. All the timing are computed on the Birds dataset.

The top part of Figure 5.5 demonstrates the timings of impostors networks with dif-

ferent architectures. The timings of CNN forward pass and distances computation are

reported separately to demonstrate that the contribution of the latter is quite small for

80

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
embeddings
impostors

1 epoch

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

2 epochs

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

3 epochs

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

5 epochs

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

10 epochs

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

20 epochs

Figure 5.3: A learning process for ImpostorNets with 2D embedded space on MNIST
digits dataset. Embeddings are designated by crosses and impostors by squares, corre-
sponding impostors and embeddings are connected by straight line, and classification
label is encoded by color. 1 in 500 of samples from the dataset is drawn to avoid clutter.

In the middle of the learaning process impostors are dragged behind embeddings.

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

λ = 1

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

λ = 10

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

λ = 100

Figure 5.4: The influence of λ parameter on the distribution of 2D embeddings and
impostors for MNIST digits dataset achived after fixed number of iterations. Small
lambda on the left allows embeddings to travel large distance almost separately from
impostors, similarly to the fixed impostors scenario. On the right, large lambda makes
optimization difficult and ImpostorNet stucks in the position close to the initial state.
Central panel corresponds to optimal scenario, in which both impostors and embeddings

move.

81

all architectures, even with exhaustive nearest neighbor search. Of course, for larger

training sets exhaustive search could be inefficient and the approximate methods should

be used.

The bottom parts of Figure 5.5 compares the ”loose” version of ImpostorNets with

the existing approaches in terms of time-accuracy trade-off on the Birds dataset. The

black points correspond to the performance of two recent methods, α−pooling [Simon

et al., 2017] and multiple attention with different parameters (MA-ConvNet-2 and MA-

ConvNet-4) [Zheng et al., 2017]. The blue points correspond to the performance of

CNN trained with the standard cross-entropy loss. Finally, the orange points denote the

performance of the proposed system (loose impostors).

In general, the proposed impostor networks improve the classification accuracy with a

negligible increase in the computational cost. The improvement is most noticeable for

the ”lightweight” SqueezeNet architecture, what makes the proposed system an excellent

choice for mobile platforms. Note, the state-of-the-art methods [Simon et al., 2017,

Zheng et al., 2017] achieve higher classification accuracy, but their runtimes are orders

of magnitude slower on both CPU and GPU, which restricts its usage in practice.

5.2.2 Open set recognition.

This experiment demonstrates that the proposed impostor networks could be successfully

used in the ”open set learning” scenario when the images of the classes unseen during

training could be submitted to a network at test time. The ability to detect the inputs

of unknown classes is an important practical property for many application scenarios

of fine-grained recognition. Here, we investigate the ability to detect unknown classes

based on the confidence (entropy) of network predictions.

It is well-known that the CNNs trained with the standard cross-entropy loss tend to be

overconfident even when they are wrong [Guo et al., 2017]. Interestingly, the proposed

impostor networks are able to express uncertainty due to the usage of RBF classification

at the final step. To support this claim, the following experiment is performed. we

train the cross-entropy CNN and the three variants of the impostor networks with the

same SqueezeNet architecture on the Birds dataset. The models are then evaluated on

two test sets: Test1 set containing birds images and Test2 set containing the non-bird

images from the ILSVRC dataset. For each of these sets, we pass the images through

the networks and compute the entropy of the class labels probability distribution. The

histograms of the entropy values are presented on Figure 5.6. For the standard CNN,

two distributions are very close, which means that the degree of the network confidence

82

Figure 5.5: Top panels: the CPU and GPU (Tesla K40) timings for the impostor
networks with different CNN architectures on the Birds dataset. Blue bars correspond
to the computational times of CNN forward pass, while orange bars correspond to the
RBF classification rule computation. The RBF contribution into the total runtime
is negligible for all architectures. Bottom panels: comparison of the ”loose” impostor
networks with the state-of-the-art approaches in terms of the runtime-accuracy trade-off
on the Birds dataset. The proposed impostor networks are orders of magnitude faster

the state-of-the-art methods with a decent decrease in the classification accuracy.

83

Figure 5.6: Histograms of entropy values of the probability distributions obtained
with the cross-entropy CNN and the impostor networks with the Squeezenet architec-
ture. All the networks were trained on the Birds dataset and applied to the sets of
bird and non-bird images. The cross-entropy CNN is almost equally confident on the
images of both seen and unseen classes. The ”fixed” and ”loose” impostor networks are
able to detect their uncertainty based on much higher entropy values on the non-bird
images. The number on each plot corresponds to the Kolmogorov-Smirnov distance

between the distributions of the entropy values.

is the same for seen and unseen classes. The fixed and loose impostor networks clearly

tend to be less confident in their predictions for the images of unseen classes.

5.2.3 Intuition behind the ”loose” impostors

Finally, we perform an experiment that allows obtaining an intuition about mutual

positions of the image embeddings and the corresponding ”loose” impostors in the em-

bedding space. This experiment uses the training images of Anna’s hummingbird class

84

(a) Anna’s hummingbird

(b) tanager

Figure 5.7: Examples from two classes of the Birds dataset: Anna’s hummingbird
(top panel) and scarlet tanager (bottom panel). On both panels, samples with the
smallest distances between their embeddings and the corresponding impostors (loose
scheme) are shown in the top row, and samples with the largest distances are in the
bottom row. The largest distances correspond to samples that are generally hard to
classify. Anna’s hummingbirds exhibit pronounced sexual dimorphism: males have the
characteristic bright magenta crown, while females are much bleaker. Indeed, all the
specimen on the top row are males and on the bottom row — females. For scarlet
tanager, the classification is complicated then its black wings are not clearly seen, as
they are the defining feature which separates scarlet tanager from a similar class of

summer tanager.

85

of the Birds dataset and computes the distances between their embeddings and the

corresponding impostors. The bottom row of Figure 5.7 demonstrates top-5 images

with the largest embedding-impostor distances. These images are hard to classify as

they exclusively contain female hummingbirds, which lack the distinctive coloring of

male Anna’s hummingbirds. The top row of Figure 5.7 visualizes top-5 images with

the smallest embedding-impostor distances. These images correspond to easy samples

of brightly colored male hummingbirds, with embeddings which are far away from the

decision boundary in the embedding space.

5.3 Conclusion

This chapter describes a new framework of impostor networks that consist of the deep

convolutional network with a non-parametric classifier on top. The CNN and the RBF

parts are learned jointly, and we explore three possible ways to perform such joint

learning. While the RBF part could benefit the CNN of any architecture but the most

significant accuracy boost is achieved for the efficient SqueezeNet architecture what

makes the impostor networks a good choice for resource-constrained settings, e.g. mobile

platforms.

On top of an accuracy increase for compact architectures, impostor networks exhibit

several others advantageous properties, including robustness in open-set scenario and

possibility to adjust training data without complete retraining of CNN part. Detailed

exploration of these characteristics could transform impostor nets into a useful general

purpose method for pattern recognition, but this topic lies outside of the scope of this

thesis.

Chapter 6

Conclusion and Discussion

The goal of this thesis is to address the problem of low execution speed, associated

with modern convolutional neural networks and explore different approaches to solve

this problem. The direct comparison of proposed approaches is complicated by the

hardware change and the evolution of deep learning frameworks which occurred during

our work on the contents of this thesis (the importance of these factors is demonstrated

in Chapter 1). Nevertheless, in this section, we summarize the contents of the thesis,

provide some comparisons and define the area of applicability for each method.

In Chapter 2 we have provided a systematic review of the literature on the topic of speed-

ing up convolutional neural networks. The approaches are divided into several groups:

tensor decompositions, quantization, pruning, teacher-student, manual and automatic

search for efficient architectures, and adaptive models.

In Chapter 3 we have proposed a method for speeding up convolutions in neural networks

with low-rank CP-decomposition of convolutional weights. The method implementation

is based on existing building blocks of CNNs which allows for easy deployment, and

most importantly, finetuning of the model, although the instability of CP-decomposition

complicates the finetuning process. The experimental results demonstrate impressive

speed ups with minimal accuracy drops for several architectures.

The main limiting factor of CP-decomposition method in the form tested in this thesis

is the layer-wise application, which limits its performance for deeper networks. On the

other hand, the explicit decomposition along spatial dimensions is effective for the large

filters. Thus, the CP-decomposition method is the most effective for shallow networks

with large filters, as demonstrated by the experiments on the character recognition task.

The relevance of this method decreases as the modern architectures are becoming deeper

and deeper, and the filters larger then 3× 3 are rarely used.

86

87

Applied to the convolutional layer with C input and N output channels and d × d

filters, which uses NCd2 mult-add operations per pixel, decomposed convolution requires

R(C+2d+N) operations per pixel, where R is the rank of decomposition. The speedup

ratio NCd2

R(C+2d+N) depends on the parameters of the layer, as well as on the rank R, which

could not be estimated in advance. Thus, the estimation of the performance of this

method requires experimentation.

Chapter 4 describes a novel method for speeding up CNN through pruning. We demon-

strate that group sparsity regularizer embedded into stochastic gradient descent min-

imization can accomplish group-wise brain damage efficiently. The experiments show

that a carefully designed group-wise brain damage procedure can sparsify existing neural

networks considerably. It is demonstrated what efficient neural networks may operate

non-rectangular filters of different shapes.

The main advantage of brain damage method over CP-decomposition is in the fact that

all the layers can be pruned simultaneously. This property allows the method to obtain

competitive results for the deepest architectures and stay relevant, as demonstrated by

the continuing streak of publications with the variations of pruning techniques. The

performance of this method is not tied to the filter size.

Sparse convolution requires τNCd2 operations, where τ is the sparsity level. Similarly to

the case of CP-decomposition, the minimal achievable value of sparsity level τ cannot be

estimated in advance. The empirical comparison on the case of acceleration of a single

layer of AlexNet architecture demonstrates the advantage of brain damage method.

Although 5× 5 filters of this layer are not very large, most of the modern networks rely

on even smaller 3× 3 layers.

In Chapter 5, a new framework of impostor networks is proposed for efficient fine-grained

classification. The impostor networks consist of the deep convolutional network with a

non-parametric classifier on top. The CNN and the RBF parts are learned jointly, and

we investigate three possible ways to perform such joint learning.

This approach does not modify the structure of convolutional layers, and the speedup

comes from the possibility to solve the same task with lighter architecture. This approach

could benefit any CNN, but the most significant advantage is expected from light ar-

chitectures, lacking the capacity to achieve a complete linear separability on the target

dataset. This theoretical consideration is confirmed by the experiments demonstrating

that the maximal advantage is achieved for the compact SqueezeNet architecture, mak-

ing the impostor networks an excellent choice for resource-constrained settings, such as

smartphones and wearable devices.

88

With so many different directions of speeding up neural networks, it is crucial to deter-

mine the most promising ones regarding both practical application and future research.

Our ability to predict future depends on the level of maturity of the research topic. Ten-

sor decompositions stand out as a particularly well-developed field, with several methods

ready for practical applications, established influence on other approaches and little ex-

pectancy for groundbreaking discoveries. Binarization of neural networks also has been

studied for some time, but the separation between research and practical application

in this area still exists. This situation could drastically change in the future with the

development of the new kinds of hardware architectures.

The single most promising approach in the field is probably an automatic architecture

search, as it has a potential to absorb and combine the advantages of other methods,

including tensor decompositions, all kinds of quantization, pruning and teaches-student

approaches. Although initial work on the topic [Zoph and Le, 2017] is known for using

computational resources which are unattainable for most researchers, the situation is

changing for the better.

One may also notice what high computation cost is inseparably tied to the very idea

of deep learning, which is to stack multiple layers of linear operations. Thus, some

speed barrier exists, and to go below it, we have to switch to an entirely new kind

of models. At this point, convolutional neural networks are so ubiquitous in computer

vision, and their capabilities are so beyond of other algorithms, that it is hard to imagine

their replacement by something else. Possibly further development of teacher-student

approaches will allow transferring the capabilities of CNNs onto much faster models,

such as trees.

The basic approach explored in this thesis is top-to-bottom: we try to bring the execution

time of an existing neural network down. The task to build fast visual recognition

algorithm can be approached from the opposite direction, in the bottom-to-top fashion.

Such an approach starts with extremely fast models [Kumar et al., 2017, Gupta et al.,

2017, Garg et al., 2018] which can currently solve only relatively simple tasks and tries

to expand them for visual recognition. While it is not presently clear if it is possible, the

advances in this direction have the potential to change the landscape for fast methods

for computer vision completely.

Bibliography

Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot. Ternary neu-

ral networks for resource-efficient AI applications. In International Joint Conference

on Neural Networks, 2017.

Genevera Allen. Sparse higher-order principal components analysis. In International

Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimization of deep

convolutional neural networks for object recognition. In Acoustics, Speech, and Signal

Processing (ICASSP), International Conference on, 2015.

M. Astrid and Seung-Ik Lee. Cp-decomposition with tensor power method for convolu-

tional neural networks compression. In Big Data and Smart Computing, 2017.

Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan

Carlsson. From generic to specific deep representations for visual recognition. In

Conference on Computer Vision and Pattern Recogonition (CVPR), 2015.

Artem Babenko and Victor Lempitsky. Aggregating local deep features for image re-

trieval. In International Conference on Computer Vision (ICCV), 2015.

Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. LCNN: Lookup-based

convolutional neural network. Conference on Computer Vision and Pattern Recogo-

nition (CVPR), 2017.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Practical neural network

performance prediction for early stopping. arXiv preprint arXiv:1705.10823, 2017.

L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley,

James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, and Greg Henry. An

updated set of basic linear algebra subprograms (BLAS). ACM Transactions on

Mathematical Software, 2002.

89

Bibliography 90

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural

networks for efficient inference. In International Conference on Machine Learning

(ICML), 2017.

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In

Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2006.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Reinforce-

ment learning for architecture search by network transformation. arXiv preprint

arXiv:1707.04873, 2017.

Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic pruning in development: a

computational account. Neural computation, 1998.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neu-

ral networks for document processing. In Tenth International Workshop on Frontiers

in Handwriting Recognition, 2006.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,

Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep learning.

arXiv preprint arXiv:1410.0759, 2014.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. Con-

ference on Computer Vision and Pattern Recogonition (CVPR), 2017.

Jason Cong and Bingjun Xiao. Minimizing computation in convolutional neural net-

works. In International conference on artificial neural networks, 2014.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,

Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes

dataset for semantic urban scene understanding. In Conference on Computer Vision

and Pattern Recogonition (CVPR), 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Train-

ing deep neural networks with binary weights during propagations. Advances in Neural

Information Processing Systems (NIPS), 2015.

Mark Craven and Jude W Shavlik. Extracting tree-structured representations of trained

networks. In Advances in Neural Information Processing Systems (NIPS), 1996.

Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank

approximation problem. SIAM J. Matrix Anal. Appl., 2008.

Bibliography 91

Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-

ploiting linear structure within convolutional networks for efficient evaluation. arXiv

preprint arXiv:1404.0736, 2014.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and

Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual

recognition. In International Conference on Machine Learning (ICML), 2014.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry

Vetrov, and Ruslan Salakhutdinov. Spatially adaptive computation time for residual

networks. arXiv preprint arXiv:1612.02297, 2017.

Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. Perforat-

edCNNs: Acceleration through elimination of redundant convolutions. In Advances

in Neural Information Processing Systems (NIPS), 2016.

I. Freeman, L. Roese-Koerner, and A. Kummert. EffNet: An Efficient Structure for

Convolutional Neural Networks. arXiv preprint arXiv:1801.06434, 2018.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision

tree. arXiv preprint arXiv:1711.09784, 2017.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition. Competition and cooperation in

neural nets, 1982.

Vikas K. Garg, Ofer Dekel, and Lin Xiao. Learning small predictors. arXiv preprint

arXiv:1803.02388, 2018.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm of artistic

style. arXiv preprint arXiv:1508.06576, 2015.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?

The KITTI vision benchmark suite. In Conference on Computer Vision and Pattern

Recogonition (CVPR), 2012.

Ross Girshick. Fast R-CNN. In International Conference on Computer Vision (ICCV),

2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies

for accurate object detection and semantic segmentation. In Conference on Computer

Vision and Pattern Recogonition (CVPR), 2014.

Bibliography 92

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In International Conference on Artificial Intelligence and

Statistics (AISTATS), 2010.

Jacob Goldberger, Geoffrey E Hinton, Sam T. Roweis, and Ruslan R Salakhutdinov.

Neighbourhood components analysis. In Advances in Neural Information Processing

Systems (NIPS), 2005.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convo-

lutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Albert Gordo, Jon Almazán, Jerome Revaud, and Diane” Larlus. Deep image retrieval:

Learning global representations for image search. In European Conference on Com-

puter Vision (ECCV), 2017.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Tien-Ju Yang, and Edward Choi.

Morphnet: Fast & simple resource-constrained structure learning of deep networks.

arXiv preprint arXiv:1711.06798, 2017.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint

arXiv:1603.08983, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern

neural networks. International Conference on Machine Learning (ICML), 2017.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi

Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and

Prateek Jain. ProtoNN: Compressed and accurate kNN for resource-scarce devices.

In International Conference on Machine Learning (ICML), 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and con-

nections for efficient neural network. In Advances in Neural Information Processing

Systems (NIPS), 2015.

Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost. In

Conference on Computer Vision and Pattern Recogonition (CVPR), June 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. Conference on Computer Vision and Pattern Recogonition

(CVPR), 2016.

Xiangteng He and Yuxin Peng. Fine-grained image classification via combining vision

and language. In Conference on Computer Vision and Pattern Recogonition (CVPR),

2017.

Bibliography 93

Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan

R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580, 2012.

Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. NIPS Deep Learning Workshop, 2014.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products.

Journal of Mathematics and Physics, 1927.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Alexander Shepard, Hartwig Adam,

Pietro Perona, and Serge J. Belongie. The inaturalist challenge 2017 dataset. arXiv

preprint arXiv:1707.06642, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming:

A data-driven neuron pruning approach towards efficient deep architectures. arXiv

preprint arXiv:1607.03250, 2016.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks

with stochastic depth. In European Conference on Computer Vision (ECCV), 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In Conference on Computer Vision and Pattern

Recogonition (CVPR), 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-

gio. Binarized neural networks. Advances in Neural Information Processing Systems

(NIPS), 2016a.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

Quantized neural networks: Training neural networks with low precision weights and

activations. arXiv preprint arXiv:1609.07061, 2016b.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,

and Kurt Keutzer. Squeezenet: AlexNet-level accuracy with 50x fewer parameters and

<0.5MB model size. arXiv preprint arXiv:1602.07360, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Bibliography 94

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Deep features for text spotting.

In European Conference on Computer Vision (ECCV), 2014a.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional

neural networks with low rank expansions. In British Machine Vision Conference

(BMVC), 2014b.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak ge-

ometric consistency for large scale image search. In European Conference on Computer

Vision (ECCV), 2008.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest

neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2011.

Rodolphe Jenatton, Jean-Yves Audibert, and Francis Bach. Structured variable selection

with sparsity-inducing norms. The Journal of Machine Learning Research, 2011.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In ACM Multimedia, 2014a.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014b.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened convolutional neural

networks for feedforward acceleration. arXiv preprint arXiv:1412.5474, 2014.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with

GPUs. arXiv preprint arXiv:1702.08734, 2017.

Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual losses for real-time style

transfer and super-resolution. International Conference on Machine Learning (ICML),

2016.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ra-

minder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,

Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William

Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,

Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit

Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

Bibliography 95

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gor-

don MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,

Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana

Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,

Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy

Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay

Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-

datacenter performance analysis of a tensor processing unit. In Proceedings of the

44th Annual International Symposium on Computer Architecture, 2017.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun

Shin. Compression of deep convolutional neural networks for fast and low power

mobile applications. arXiv preprint arXiv:1511.06530, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

International Conference on Learning Representations (ICLR), 2014.

Eleftherios Kofidis and Phillip A Regalia. On the best rank-1 approximation of higher-

order supersymmetric tensors. SIAM J. Matrix Anal. Appl., 2002.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Rev.,

2009.

Shu Kong and Charless C. Fowlkes. Low-rank bilinear pooling for fine-grained classifi-

cation. In Conference on Computer Vision and Pattern Recogonition (CVPR), 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations

for fine-grained categorization. In 4th International IEEE Workshop on 3D Represen-

tation and Recognition, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems (NIPS), 2012.

Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient machine learning

in 2 KB RAM for the internet of things. In International Conference on Machine

Learning (ICML), 2017.

Andrew Lavin. Fast algorithms for convolutional neural networks. Conference on Com-

puter Vision and Pattern Recogonition (CVPR), 2016.

Bibliography 96

Vadim Lebedev and Victor Lempitsky. Fast ConvNets using group-wise brain damage.

In Conference on Computer Vision and Pattern Recogonition (CVPR), 2016.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Vic-

tor S. Lempitsky. Speeding-up convolutional neural networks using fine-tuned cp-

decomposition. International Conference on Learning Representations (ICLR), 2015.

Vadim Lebedev, Artem Babenko, and Victor Lempitsky. Impostor networks for fast

fine-grained recognition. arXiv preprint arXiv:1806.05217, 2018.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 1998.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten

zip code recognition. Neural computation, 1989.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances

in Neural Information Processing Systems (NIPS), 1990.

Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. Learning small-size DNN with

output-distribution-based criteria. In Interspeech, 2014.

Yunpeng Li, David J. Crandall, and Daniel P. Huttenlocher. Landmark classification

in large-scale image collections. In International Conference on Computer Vision

(ICCV), 2009.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. International Conference

on Learning Representations (ICLR), 2014.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural

networks with few multiplications. International Conference on Learning Represen-

tations (ICLR), 2016.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky.

Sparse convolutional neural networks. In Conference on Computer Vision and Pattern

Recogonition (CVPR), 2015a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray

Kavukcuoglu. Hierarchical representations for efficient architecture search. arXiv

preprint arXiv:1711.00436, 2017.

Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. The treasure beneath convolu-

tional layers: Cross-convolutional-layer pooling for image classification. In Conference

on Computer Vision and Pattern Recogonition (CVPR), 2015b.

Bibliography 97

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method

for deep neural network compression. Conference on Computer Vision and Pattern

Recogonition (CVPR), 2017.

Michael Mathieu, Mikael Henaff, and Yann Lecun. Fast training of convolutional net-

works through FFTs. In ICLR2014, 2014.

Benjamin J. Meyer, Ben Harwood, and Tom Drummond. Nearest neighbour radial basis

function solvers for deep neural networks. arXiv preprint arXiv:1705.09780, 2017.

Asit K. Mishra, Eriko Nurvitadhi, Jeffrey J. Cook, and Debbie Marr. WRPN: wide

reduced-precision networks. arXiv preprint arXiv:1709.01134, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning

convolutional neural networks for resource efficient transfer learning. arXiv preprint

arXiv:1611.06440, 2016.

NervanaSystems. NervanaGPU. https://github.com/NervanaSystems/nervanagpu,

2015.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Data-

dependent path normalization in neural networks. arXiv preprint arXiv:/1511.06747,

2015.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensoriz-

ing neural networks. In Advances in Neural Information Processing Systems (NIPS),

2015.

Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss,

and Eric S Chung. Accelerating deep convolutional neural networks using specialized

hardware. Microsoft Research Whitepaper, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. International Conference on Learning Representations

(ICLR), 2017.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture

search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped gauss–

newton algorithms for candecomp/parafac. SIAM Journal on Matrix Analysis and

Applications, 34(1):126–147, 2013.

https://github.com/NervanaSystems/nervanagpu

Bibliography 98

James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object

retrieval with large vocabularies and fast spatial matching. In Conference on Computer

Vision and Pattern Recogonition (CVPR), 2007.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation

and quantization. International Conference on Learning Representations (ICLR),

2018.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised

learning using graphics processors. In International Conference on Machine Learning

(ICML), 2009.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-

Net: Imagenet classification using binary convolutional neural networks. In European

Conference on Computer Vision (ECCV), 2016.

E. Real, A. Aggarwal, Y. Huang, and Q. V Le. Regularized evolution for image classifier

architecture search. arXiv preprint arXiv:1802.01548, 2018.

Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. arXiv preprint

arXiv:1612.08242, 2016.

Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Conference on Computer Vision and Pattern

Recogonition (CVPR), 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks. In Advances in Neural

Information Processing Systems (NIPS), 2015.

Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning separable

filters. In Conference on Computer Vision and Pattern Recogonition (CVPR), 2013.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo

Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. International Conference

on Learning Representations (ICLR), 2015.

Volker Roth and Bernd Fischer. The group-lasso for generalized linear models: unique-

ness of solutions and efficient algorithms. In International Conference on Machine

Learning (ICML), 2008.

Bibliography 99

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 2015.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas.

Taking the human out of the loop: A review of bayesian optimization. Proceedings of

the IEEE, 2016.

Richard Shin, Charles Packer, and Dawn Song. Differentiable neural network architec-

ture search. In International Conference on Learning Representations (ICLR), 2018.

Marcel Simon, Yang Gao, Trevor Darrell, Joachim Denzler, and Erik Rodner. Gener-

alized orderless pooling performs implicit salient matching. International Conference

on Computer Vision (ICCV), 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. International Conference on Learning Representations

(ICLR), 2015.

L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab v2.0. http://tensorlab.net,

2014.

Alwin Stegeman and Pierre Comon. Subtracting a best rank-1 approximation may

increase tensor rank. Linear Algebra Appl., 2010.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going

deeper with convolutions. In Conference on Computer Vision and Pattern Recogoni-

tion (CVPR), 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.

Rethinking the inception architecture for computer vision. In Conference on Computer

Vision and Pattern Recogonition (CVPR), 2016.

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet

and the impact of residual connections. Association for the Advancement of Artificial

Intelligence, 2017.

Surat Teerapittayanon, Bradley McDanel, and HT Kung. BranchyNet: Fast inference

via early exiting from deep neural networks. In International Conference on Pattern

Recognition (ICPR), 2016.

Sebastian Thrun. Extracting rules from artificial neural networks with distributed rep-

resentations. In Advances in Neural Information Processing Systems (NIPS), 1995.

http://tensorlab.net

Bibliography 100

Giorgio Tomasi and Rasmus Bro. A comparison of algorithms for fitting the PARAFAC

model. Comp. Stat. Data An., 2006.

Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A

large data set for nonparametric object and scene recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2008.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. Texture net-

works: Feed-forward synthesis of textures and stylized images. International Confer-

ence on Machine Learning (ICML), 2016.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neu-

ral networks on CPUs. In NIPS Deep Learning and Unsupervised Feature Learning

Workshop, 2011.

A. Vedaldi and K. Lenc. MatConvNet – convolutional neural networks for matlab. arXiv

preprint arXiv:1412.4564, 2014.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD

Birds-200-2011 Dataset. Technical report, California Institute of Technology, 2011.

Peisong Wang and Jian Cheng. Accelerating convolutional neural networks for mobile

applications. In ACM Multimedia, 2016.

Xin Wang, Fisher Yu, Zi-Yi Dou, and Joseph E Gonzalez. SkipNet: Learning dynamic

routing in convolutional networks. arXiv preprint arXiv:1711.09485, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-

tured sparsity in deep neural networks. In Advances in Neural Information Processing

Systems (NIPS), 2016.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir

Gholaminejad, Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter

alternative to spatial convolutions. arXiv preprint arXiv:1711.08141, 2017.

Saining Xie, Ross Girshick, Piotr Dollr, Zhuowen Tu, and Kaiming He. Aggregated

residual transformations for deep neural networks. In Conference on Computer Vision

and Pattern Recogonition (CVPR), 2017.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67, 2006.

Xinchuan Zeng and Tony R Martinez. Using a neural network to approximate an en-

semble of classifiers. Neural Processing Letters, 2000.

Bibliography 101

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep con-

volutional networks for classification and detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2016.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An ex-

tremely efficient convolutional neural network for mobile devices. arXiv preprint

arXiv:1707.01083, 2017.

Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learning multi-attention convolu-

tional neural network for fine-grained image recognition. In International Conference

on Computer Vision (ICCV), 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-

Net: Training low bitwidth convolutional neural networks with low bitwidth gradients.

arXiv preprint arXiv:1606.06160, 2016.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.

International Conference on Learning Representations (ICLR), 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable

architectures for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problems and datasets
	1.3 CNN building blocks
	1.4 CNN architectures
	1.5 Contribution

	2 Related work
	2.1 Tensor decompositions
	2.2 Fast Architecture Design
	2.3 Automatic architecture search
	2.4 Quantization
	2.5 Pruning
	2.6 Teacher-student approaches
	2.7 Adaptive methods
	2.8 Problem-specific approaches
	2.9 Summary

	3 CP-decomposition of convolutional weights
	3.1 Method
	3.1.1 Related works
	3.1.2 CP-decomposition
	3.1.3 Convolutional weights approximation
	3.1.4 Implementation and Fine-tuning
	3.1.5 Complexity analysis

	3.2 Experiments
	3.2.1 Character-classification CNN
	3.2.2 AlexNet
	3.2.3 NLS vs. Greedy

	3.3 Conclusion

	4 Group-wise Brain Damage
	4.1 Method
	4.1.1 Group-Sparse Convolutions
	4.1.2 Fixed sparsity pattern
	4.1.3 Sparsifying with Group-wise Brain Damage

	4.2 Experiments
	4.2.1 MNIST experiments
	4.2.2 ILSVRC experiments

	4.3 Conclusion

	5 Impostor Nets
	5.1 Method
	5.1.1 Motivation
	5.1.2 Training impostor networks

	5.2 Experiments
	5.2.1 Timings
	5.2.2 Open set recognition.
	5.2.3 Intuition behind the ''loose'' impostors

	5.3 Conclusion

	6 Conclusion and Discussion
	Bibliography

