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Abstract

Even though metabolites and lipids play critical role in brain function, little is known
about the brain’s metabolome and lipidome composition, and their differences between the
brain and other tissues. The alteration of brain metabolism in cognitive disorders and the
differences between the human brain metabolism and the brain metabolism of other primate
species are similarly unexplored. Neurocognitive disorders are a complex group of diseases
characterized by the disruption of evolutionarily novel cognitive skills, including communica-
tive and social abilities. Metabolite and lipidome measurements in urine and blood plasma
indicate disruption of particular pathways in neurocognitive disorders, including autism spec-
trum disorder (ASD) and schizophrenia (SZ). Yet, the relationship of these findings to brain
remained poorly explored.

In this work, we investigated the alteration in metabolome and lipidome composition in
neurocognitive disorders, including ASD and SZ, comparing prefrontal cortex from cognitively
affected patients and healthy controls. We found a substantial fraction of metabolites and
lipids with concentrations significantly altered in diseases. Some of the changes could be
connected to previous observations made in urine and blood. Furthermore, we found an
excess of human-specific metabolite concentration differences in several pathways altered in
ASD. The human-specific metabolites were identified in comparison between humans and
chimpanzees and macaques. To extend this evolutionary comparison, we analyzed lipidome
evolution in six tissues of 32 species representing primates, rodents, and bats. We showed
that many of the uniquely human lipidome features localize in the brain cortex and cluster
in specific pathways implicated in ASD, SZ and other neurocognitive disorders.

Along with several previous studies, our results support the idea that evolution of cognitive
abilities in human was accompanied by adaptive changes in brain metabolism.
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Chapter 1

Introduction

1.1 Significance of the work

Autism, schizophrenia, and other neurocognitive disorders involve disruption of cognitive
functions related to socialization and communication, the key behavioral traits that separate
humans from other species. Multiple studies focusing on identification of the mechanisms
of neurocognitive disorders mainly investigated the genetic differences between disease and
control groups. These studies showed that autism, schizophrenia, and other neurocognitive
disorders could be linked to a large number of genetic variants, each having a small effect.
In the absence of clear genetic determinants common to the disease, several laboratories
searched for potential biochemical landmarks of autism and schizophrenia by monitoring
concentrations of low weight molecular compounds (metabolites) in urine and blood plasma.
While these studies yielded a number of metabolite concentration differences between dis-
ease and control groups, investigation of metabolic differences in brain samples was still
lacking. The studies presented in my thesis thus represent the first large-scale analyses
of metabolome and lipidome differences in common neurocognitive disorders, autism, and
schizophrenia. We further investigated these disease-associated differences in the context of
evolutionary diversity in brain metabolism in primates and mammals, including identification
of metabolic features unique to humans. In these studies, we identified metabolic pathway
altered in brains of autism and schizophrenia patients. We further determined the overlap of
these disease-associated pathways with human-specific differences identified in our analysis of
brain metabolome and lipidome of humans, chimpanzees, and macaques, as well as broader
evolutionary analysis of 32 mammalian species. The identified pathways represent promis-
ing candidates for in-depth investigation of the disease mechanisms and for further studies
targeting the advanced social and learning abilities unique to humans. We further demon-
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strated that many of metabolome and lipidome alterations in prefrontal cortex detected in
autism, both at the pathway level and at the level of individual metabolites, coincide with
the differences reported in urine and blood samples. This finding underscores the potential
of metabolic studies conducted in non-nervous tissues.

1.2 Project Objectives

The goal of this work is to assess the metabolome and lipidome alteration in cognitive dis-
orders and compare those differences with functional metabolic differences corresponding to
evolutionarily novel, human-specific processes.

Several specific aims were addressed for this purpose:

• Investigate metabolome alteration in prefrontal cortex in autism patients and identifi-
cation of human-specific metabolome changes.

• Study lipidome alteration in prefrontal cortex in several neurocognitive disorders:
autism, schizophrenia, and Down syndrome.

• Examine lipidome evolution in brain and non-neuronal tissues in 32 mammalian species
representing three distinct clades: primates, rodents, and bats.

1.3 Novelty and Practical Use

АA comprehensive study of metabolome and lipidome in ASD was performed. This is the
first large-scale analysis, which was done in the prefrontal cortex, the brain region impli-
cated in high-level cognitive functions and known to be affected in common neurocognitive
disorders. We identified pathways that were not previously linked to ASD, which include
pyrimidine metabolism, beta-alanine metabolism. Additionally, we demonstrated that many
of the metabolome and lipidome alteration found in brain coincide with metabolic pathways
identified in studies carried out in urine and blood.

We were the first who addressed the general mode of lipidome evolution at a large scale
by applying standard evolutionary analysis algorithms to a large lipidome dataset containing
data for 18,000 lipids measured in 6 tissues of 32 mammalian species. We demonstrated that
lipid concentration levels evolve differently compared to genome sequences or gene expression
levels and their evolutionary mode cannot be described adequately by the evolutionary models
developed for genome and transcriptome evolution.
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The practical outcome of this work is the potential of using non-nervous tissues for identi-
fication of key metabolome alteration in cognitive diseases. Our work indicates that metabo-
lites and lipids evolve differently form genes and transcripts, and therefore, might yield very
different results in studies of intra population variation, including disease susceptibility mod-
eling.

1.4 Personal Contribution

Most of the bioinformatics analyses presented in this thesis was performed by the author.
Specifically, all analysis, except identification of metabolic predictors of autism using lo-
gistic regression, within the chapter describing the identification and characterization of
metabolome signature of autism in the human prefrontal cortex was solely performed by
the author. In the chapter describing lipidome alteration in human prefrontal cortex in
three cognitive disorders, the author analyzed lipidome alteration in autism and performed
validation of results based on an independent dataset. In the lipidome evolution chapter,
the author participated in all analysis steps with particular focus on analyses dedicated to
identification and characterization of lipidome differences, which followed phylogeny, as well
as analyses of species-specific lipidome differences, including the ones based on the use of
Ornstein-Uhlenbeck model. The author also performed parallel analysis of molecular traits,
which follow phylogeny, at the levels of transcriptome and genome.

1.5 Publications

The thesis-related results were presented at a scientific conference and published in interna-
tional peer-reviewed journals.

List of publications:

1. Kurochkin I*, Khrameeva E*, Tkachev A, Stepanova V, Vanyushkina A, Li Q, Zubkov
D, Shichkova P, Halene T, Willmitzer L, Giavalisco P, Akbarian S, Khaitovich P.
Metabolome signature of autism in the human prefrontal cortex. (Under review in
Communications Biology) (Chapter 3)

2. Yu Q*, He Z*, Zubkov D*, Huang S, Kurochkin I, Yang X, Halene T, Willmitzer
L, Giavalisco P, Akbarian S, Khaitovich P. Lipidome alterations in human prefrontal
cortex during development, aging, and cognitive disorders. Mol Psychiatry. 2018 Aug
8. doi: 10.1038/s41380-018-0200-8. (Chapter 4)
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(Chapter 5)

List of conferences:
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mals. September 25 - 30, Repino, Russia. (Chapter 5)

3. Metabolomics 2016. Kurochkin I*, Khaitovich P. Metabolic changes in prefrontal
cortex of humans, chimpanzees and macaques during postnatal development. June 27
- 30, 2016, Dublin, Ireland. (Chapter 3)
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Chapter 2

Review of Literature

2.1 Definition of complex phenotypes

From the point of view of the underlying genetic background, human phenotypes are of-
ten classified as either simple or complex. In contrast to simple phenotypes, which can be
explained by the action of a single gene, complex phenotypes, including complex diseases,
are controlled by multiple genes and include interactions between genes and environmental
factors. We define complex traits as those that do not follow readily predictable patterns of
inheritance (Mendelian Inheritance patterns) and commonly exhibit a large variety of pheno-
types. Usually, loci associated with complex traits are spread across the genome and include
genes showing no apparent connection to phenotype [Boyle et al., 2017].

Due to the development of sequencing technology, it became possible to sequence thou-
sands of individuals, giving rise to genome-wide association studies (GWAS). The multiple
GWAS conducted to date for a number of complex traits, including cognitive diseases, has
provided a detailed understanding of the genetic basis of these traits. It was demonstrated
that complex traits are mainly driven by noncoding variants that might affect gene regulation,
in contrast to Mendelian traits, which are primarily caused by protein-coding changes [Boyle
et al., 2017]. In addition to genomic differences, complex traits can be caused by changes
in gene expression levels, splicing, histone modifications and other levels. Moreover, com-
bining information of genomic variations with different molecular levels gave rise to series
of quantitative trait loci (QTLs) studies, in particular, expression QTL (eQTL), metabolic
QTL (mQTL), splicing QTL (sQTL). The primary goal of such studies is to find genetic
variants which explain variation at different molecular levels, in the case of eQTLs genetic
variants which explain the variation of gene expression levels. It was shown that sQTL and
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eQTL could modulate phenotypic traits, such as rheumatoid arthritis, multiple sclerosis,
Alzheimer’s disease, schizophrenia, height, and body mass index [Li et al., 2016].

An example of a successful investigation of relatively simple genetic determinants of a
molecular trait are studies of cholesterol and lipoprotein levels. Multiple studies investigated
levels of cholesterol concentration in blood, as alteration of cholesterol concentrations could
lead to cardiovascular disease and other health problems [Cohen, 2004,Willer et al., 2008,the
ENGAGE Consortium et al., 2009]. In one study, the authors investigated whether rare
sequence variations contribute to low plasma levels of HDL-C. For this purpose, they se-
quenced three candidate genes (ABCA1, APOA1, and LCAT ) in Dallas Heart Study cohorts
including 128 persons with low and 128 persons with high plasma HDL-C levels from each of
four gender and race groups (black men, white men, black women, and white women). They
found that nonsynonymous sequence variants with significant phenotypic effects contribute
to low plasma HDL-C levels in all four gender and race groups. Additionally, they obtained
similar results based on an independent Canadians cohort of 155 persons with low HDL-C
and 108 persons with high HDL-C [Cohen, 2004]. In another study, the authors identified
loci affecting serum levels of TC, LDL-C, HDL-C, and TG across different European popu-
lations and showed that genetic risk scores could explain up to 4.8% of the variation in lipid
concentrations. A similar percentage of lipid concentration variation can be explained by the
body mass index (BMI), which is commonly used as a traditional risk factor for cholesterol
levels [the ENGAGE Consortium et al., 2009].

In the past decade, numerous studies aimed to identify variants with pleiotropic effects
on different complex traits. These studies yielded multiple genetic variants associated with
a given trait with varying strength, commonly explaining no more than one percent of the
phenotype. Furthermore, some of the variants overlapped among multiple traits [Pickrell
et al., 2016, ReproGen Consortium et al., 2015, Cotsapas et al., 2011]. For example, in a
recent study, the authors assessed pleiotropic genetic effect for 42 human traits divided into
five distinct groups: neurological phenotypes, anthropometric and social traits, immune-
related traits, metabolic phenotypes and hematopoietic traits [Pickrell et al., 2016]. They
identified multiple loci that are associated with multiple traits and ranked those loci according
to the number of phenotypes shared between these particular genetic variants. The top locus
based on that ranking was a nonsynonymous variant in SH2B3 gene associated with a number
of autoimmune diseases, lipid traits, heart disease, and red blood cell traits. Besides that, the
top loci included a nonsynonymous variant in SLC39A8 gene associated with schizophrenia,
Parkinson disease, high-density lipoprotein cholesterol, and height and a set of variants near
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APOE gene associated with Alzheimer’s disease, low-density lipoprotein cholesterol, total
cholesterol, triglycerides and high-density lipoprotein cholesterol.

One of the main results of GWAS is what they do not identify genetic variants with a
strong association to the trait. By contrast, most of the identified variants explained less
than one percent of the phenotypic variation. Thus, most of the complex traits cannot be
explained by common variants identified thus far. It is possible that the missing genetic
variance is coming from yet unidentified common genetic variants with small effect sizes.
Another possible explanation could be that missing variation can be explained by rare and
novel variants, which are not present in SNPs database; as a result, GWAS studies are not
able to capture their contribution to complex traits [Frazer et al., 2009]. Other explanations
were offered as well [Frazer et al., 2009,Cohen, 2004, Shao et al., 2008]. Most importantly,
GWAS did not deliver reliable genetic markers for most of the complex traits, including
common disorders.

2.2 Genetic architecture of autism spectrum disorder

Autism spectrum disorder (ASD) is a complex group of diseases characterized by the develop-
mental disruption of complex cognitive traits, particularly the ones underlying communica-
tion and socialization. ASD is a heterogeneous condition characterized by a broad spectrum
of symptoms’ severity and can occur with frequent comorbidities.

Genetic architecture of ASD is characterized by many factors including mode of inheri-
tance (for example, autosomal inheritance, X-linked inheritance, and de novo variation), type
of variation (for example, copy number variation, translocations, indels, and single-nucleotide
variation), mode of action (additive, dominant, recessive or hemizygous) and frequency in
the population [de la Torre-Ubieta et al., 2016,De Rubeis and Buxbaum, 2015] (Figure 2.1).

Two major mechanistic models were proposed to describe the nature of ASD: polygenic
and major gene model [de la Torre-Ubieta et al., 2016]. The polygenic model claims that
many inherited variants cause ASD, each having small effects, together contributing to ASD.
In contrast, major gene model claims that one or several genetic variants, each having a sub-
stantial risk, can cause ASD. Additionally, there is a hypothesis that one dominant mutation
in a gene might be enough to provoke ASD. Major gene model and polygenic model are not
mutually exclusive, as there is support in the literature of both models.

Numerous genetic studies indicate that most ASD cases are likely to be caused by a large
number of genetic variants each having a small effect, including rare events of chromosomal
rearrangements, duplications, and deletions, single-nucleotide variations, and indels. Such
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risk variants of ASD could be both inherited and have risen de novo in the process of meiosis
during gametogenesis. Autosomal de novo loss-of-function SNV has been associated with
the highest risk of ASD development, while transmitted variants that disrupt proteins have
a lower risk [The DDD Study et al., 2014]. Advanced paternal age is believed to increase the
number of de novo SNV and CNV, while advanced maternal age is a known risk factor for
chromosomal aberrations [Sandin et al., 2016,De Rubeis and Buxbaum, 2015].

At the same time, there are rare ASD cases caused by one or several genetic mutations.
The most well-known examples include CHD8, DYRK1A, SCNA2, ARID1B, ADNP, ANK2,
TBR1.

Figure 2.1: Genetic architecture of ASD (reproduced with permission from Nature Medicine
[de la Torre-Ubieta et al., 2016]).

At present, there are ≈1200 genes associated with ASD risk [Sanders et al., 2012, The
DDD Study et al., 2014]. Disruption in these genes was associated with multiple human
disorders. This agrees with the fact that ASD occurs with frequent comorbidities. For
example, ADNP gene that is involved in chromatin remodeling, autophagy, and microtubule
dynamics was shown to be associated with deficiencies in spatial learning, object recognition,
social recognition, and social memory. Besides, knockout of ADNP gene in mouse causes
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embryonic lethality. ANK2 gene has been associated with ASD and cardiac arrhythmia,
while knockout of ANK2 gene in mouse leads to postnatal lethality [De Rubeis and Buxbaum,
2015].

2.3 Metabolome and Lipidome levels

In addition to the genome, it is also possible to assess the differences characteristic of ASD
patients at other levels of molecular phenotype: metabolome and lipidome. The terms
metabolome and lipidome refer to the sum of small molecular weight molecules contained
within cells and tissues. The lipidome represents mostly non-polar compounds, while the
metabolome commonly refers to the polar and amphiphilic ones. In the context of this the-
sis, we define metabolites as the hydrophilic (polar) fraction of small biological molecules
with a molecular weight <1500Da. In contrast, lipids represent the hydrophobic fraction of
small biological molecules with a molecular weight <1500Da. This classification is introduced
due to the methodology of metabolites/lipids extraction.

2.4 Metabolites of the cell and their involvement in neu-

rological disorder

2.4.1 Overview of the metabolome

Hydrophilic (polar) metabolites are omnipresent within the human organism and include
all essential compound classes, such as carbohydrates, amino acids, nucleotides, vitamins,
and coenzymes. According to widely used classification, all the polar metabolites could be
divided into primary and secondary metabolites.

Primary metabolites are molecules of small molecular weight involved in crucial biolog-
ical processes, such as growth, development, energy consumption, cell division, and prolif-
eration and typically involved in many different metabolic pathways [James, 2017]. Sec-
ondary metabolites are non-essential for primary organism activity, but ensure the survival
advantages by enhancing the environmental interactions, stress response and modulating the
metabolism [Breitling et al., 2013].

One of the common primary metabolites that animal tissues utilize as their universal
energy source is glucose. Glucose is metabolized in a variety of pathways, e.g., glycolysis and
gluconeogenesis, pentose and glucuronate interconversions, starch and sucrose metabolism
and others. Animal food is a main source of glucose. However, kidney and liver have ma-
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chinery for de novo synthesis of glucose from non-glucose precursors and release glucose into
the circulation by the breakdown of glycogen [Stumvoll, 1998]. In addition to its energetic
function, glucose metabolism also provides the source for the biosynthesis of neurotransmit-
ters [Mergenthaler et al., 2013], amino acids (e.g. synthesis of alanine from pyruvate) [Garber
et al., 1976] and the agents that are responsible for blood flow regulation [Lombard, 2006].

Another example of a primary metabolite with plenty of functions is adenosine triphos-
phate (ATP). A crucial building component of nucleic acid molecules and the main cellular
energy source, ATP is also involved in extracellular communication as a mediator of both
immunologic responses and stem cell functions [Rossi et al., 2012].

Secondary metabolites, as primary ones, have varied chemical structures. Despite the
diversity of secondary metabolites produced by microorganisms and plants, they are often
synthesized from a small amount of metabolized products, e.g., acetyl-CoA, amino acids,
and intermediates of the shikimic acid pathway and the tricarboxylic acid cycle [Demain and
Fang, 2000]. Antibiotics are a typical example of secondary metabolites that are commonly
used in medicine, agriculture, and basic research [Demain and Fang, 2000].

Primary and secondary metabolites are tightly bound in metabolic pathways and influence
each other via feedback regulation, induction, and catabolite repression [Demain and Fang,
2000]. There are no uniform structures or chemical units specific to polar metabolites except
for their hydrophilicity, and their functions range from storage and transmission of genetic
information to cell signaling.

The average concentration of each metabolite varies from tissue to tissue and depends on
intracellular cell localization. For example, the most abundant polar metabolites found in
serum are D-glucose, urea, ATP, glyceraldehyde, L-lactic acid and fructosamine, L-glutamine,
L-alanine, methanol, glycine, L-lysine, uric acid, and (R)-3-hydroxybutyric acid [Psychogios
et al., 2011]. Interestingly, the concentration of glucose in the human brain, which utilizes it
as a sole energy source, is about 1 mM while the serum the glucose level is 5 mM.

A tissue metabolic profile is heavily influenced by its function. For instance, since one of
the major kidney functions results in urine production, urea concentration in urine may be a
100-fold higher than in plasma and extracellular fluids in humans [Bankir and Yang, 2012].
Nevertheless, changes in the concentration of specific metabolites could indicate stress or
disease condition. For instance, concentrations of compounds involved in purine metabolism
decrease in blood serum of bipolar patients [Gubert et al., 2016]. Similarly, the concentra-
tion of γ-aminobutyric acid in cerebrospinal fluids could indicate the severity of Parkinson’s
disease [Araki et al., 2009], while hypoxanthine and inosine concentrations are known to be
significantly elevated in serum after kidney reperfusion [Domański et al., 2006].
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2.4.2 Metabolome alterations in autism

In the absence of clear genetic determinants, previous studies searched for potential biochem-
ical landmarks of ASD by monitoring concentrations of low molecular weight metabolites in
urine, blood plasma, and brain.

To date, metabolite concentration differences in urine of ASD patients were mostly studied
using systematic metabolomics profiling techniques, yielding results for 20 to 622 metabolites
measured in 14 to 48 ASD patients and comparable control groups [Yap et al., 2010,Ming
et al., 2012, Emond et al., 2013,Mavel et al., 2013, Cozzolino et al., 2014, Nadal-Desbarats
et al., 2014,Ka lużna-Czaplińska et al., 2014,Noto et al., 2014,Diémé et al., 2015,Gevi et al.,
2016, Lussu et al., 2017, Bitar et al., 2018]. Summary of the pathway enrichment analysis
based on those studies is shown in Figure 2.2.

The pioneering study conducted using proton-NMR and involving 39 ASD patients, 28
healthy siblings, and 34 healthy volunteers demonstrated alterations of the amino acid
metabolism and the tryptophan and nicotinic acid metabolic pathways [Yap et al., 2010].
Authors have built OPLS-DA model that distinguished each of three groups in pairwise com-
parisons. They demonstrated that several metabolites separate ASD group from controls.
Among them, acetate, dimethylamine (DMA), N-acetyl glycoprotein fragments (NAG), suc-
cinate, taurine, N-methyl nicotinic acid (NMNA), N-methyl nicotinamide (NMND) and N-
methyl-2-pyridone-5-carboxamide (2PY) were increased in ASD, while glutamate, hippurate,
and phenylacetylglutamine (PAG) were decreased in ASD compared to controls. Comparison
between healthy siblings and other two groups (ASD and controls) using OPLS-DA showed
no differences. To validate metabolites obtained between ASD patients and controls by
OPLS-DA, they used Mann-Whitney test. Only NMNA and NMND remained significantly
different, and there were additional significant differences in other pairwise comparisons be-
tween groups.

Another study identified differences in amino acid metabolism, as well as metabolic sig-
natures of oxidative stress, in the urine of 48 children with ASD and 53 age-matched controls
using a combination of liquid chromatography and gas chromatography coupled to mass spec-
trometry (LC-MS and GC-MS) [Ming et al., 2012]. The authors detected 391 metabolites
with known chemical structures in the urine samples. Among those metabolites, the concen-
trations of 82 of them were significantly altered between the ASD and the control groups (53
were increased in ASD, while 29 were decreased) based on t-test. These 82 metabolites
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Figure 2.2: Pathways enrichment analysis based on metabolite concentration differences in
urine of ASD patients from 12 different studies.
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included amino acids, such as glycine, serine, threonine, alanine, β-alanine, histidine, glu-
tamyl amino acids, and taurine, which were decreased in ASD compared to control group.
The level of antioxidant carnosine was also slightly reduced in ASD. Additionally, the au-
thors demonstrated that metabolites from gut bacteria metabolism of amino acids, carbohy-
drates, and bile acids, were also altered in ASD group. In particular, concentration levels of
2-(4-hydroxyphenyl)propionate and taurocholate sulfate were increased, while the levels of
3-(3-hydroxyphenyl)propionate and 5-aminopentanoic acid were significantly lower in ASD
compared to controls.

Changes in purine metabolism pathway, pyrimidine metabolism pathway, and changes in
several pathways involved in the metabolism of tyrosine, asparagine, tryptophan, and arginine
were further identified in the urine of 30 ASD patients, and 30 age-matched healthy controls
using the combination of NMR and LC-MS approaches [Diémé et al., 2015]. Data obtained
using six analytical modalities (two NMR and four LC-MS techniques) was divided into a
training set consisting of 46 samples, which was used to build OPLS-DA model to find signif-
icant features that separate ASD patients from healthy controls and validation set consisting
of 16 samples, which was used for evaluation of predictions of OPLS-DA models. The au-
thors identified 19 metabolites that significantly contributed towards separation of ASD and
control samples, including methyl guanidine, dihydrouracil, and desaminotyrosine decreased
in ASD, and indoxyl sulfate, N-acetyl-L-arginine, glucuronic acid, and phenylacetylglutamine
increased in ASD compared to controls.

Most recently, a study employing a combination of NMR and LC-MS approaches to in-
vestigate metabolites in urine of 40 ASD patients, and 40 age-matched healthy individuals
reported concentration differences for metabolites related to oxidative stress, including glu-
tathione metabolism, changes in cysteine, methionine, arginine and proline metabolism path-
ways, as well as changes in carbohydrate metabolism, including metabolism of propanoate,
citrate, and sugars [Bitar et al., 2018]. They divided the combined NMR/LC-MS dataset
into a training set (50 samples) used to build the OPLS-DA model to identify significant
features, and a validation set (30 samples) used to evaluate the performance of the classifier.
Based on OPLS-DA model, the authors identified 27 highly contributing metabolites that
separated ASD patients from healthy controls. The detected differences included alteration
of amino acid metabolism, in particular, glycine, serine and threonine metabolism, pheny-
lalanine metabolism, glutamate, arginine and proline metabolism, histidine metabolism, cys-
teine, and methionine metabolism; carbohydrate metabolism, including 2-hydroxybutyric
acid and citric acid, which were decreased in ASD patients compared to controls, and purine
metabolism, in particular, 5-aminoimidazole-4-carboxamide, an intermediate metabolite in
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purine biosynthesis increased in ASD, and guanine decreased in ASD. Additionally, the au-
thors showed that the concentration of trigonelline, which is formed by methylation of the
nitrogen atom of niacin (vitamin B3), was increased in ASD.

Based on the published autism studies, we can conclude that the highest number of altered
metabolic pathways was detected in the studies in which the authors used large numbers of
samples and combined results from multiple analytical platforms (LC-MS, GC-MS, NMR).
This might be due to the fact that autism patients represent a rather heterogeneous group,
so if the larger number of samples is used in the study more changes, we will be able to
pass the significance cutoff due to the statistical power increase. That’s why to get a more
systematic picture of ASD-related changes we may need to increase the number of samples
and combine results from multiple analytical platforms.

Based on pathway enrichment analysis that was performed for each study separately,
we were able to identify 18 pathways, which were enriched in more than a half of autism
metabolic studies. Those pathways can be divided into the following groups: amino acid
metabolism (phenylalanine metabolism; glycine, serine and threonine metabolism; trypto-
phan metabolism; alanine, aspartate and glutamate metabolism; histidine metabolism; ly-
sine degradation; tyrosine metabolism), sugar catabolism pathways (propanoate metabolism;
TCA cycle) and also glutathione metabolism and purine metabolism. Those pathways are
particularly interesting, as they can be used as targets for drug design to alleviate the ASD-
related condition. For example, glutathione concentration is reduced in autism patients, now
glutathione precursor might be prescribed to autism patients as a nutritional supplement.

The first study investigating metabolite concentration differences in blood identified
changes associated with mitochondrial dysfunction, as well as various metabolic pathway
changes, such as disruption of TCA cycle in plasma samples of 52 children diagnosed with
ASD and 30 age-matched healthy children using five mass spectrometry-based methods [West
et al., 2014]. The authors first divided ASD patients and controls into a training set and
validation set. Based on the training set, they trained SVM and PLS classification model to
distinguish ASD patients from controls using 179 selected features. Next, with a 21-sample
independent validation set, they tested their classifier and obtained the best prediction, with
a maximum accuracy of 81% based on 80 feature SVM model. Furthermore, the chemical
structures of metabolites were confirmed using tandem mass spectrometry. They reported the
following alterations in ASD patients: TCA cycle, including citric acid (decreased in ASD)
and succinic acid (increased ASD), and creatinine, the branched-chain amino acid - isoleucine,
were reduced in ASD, while glutaric acid, 3-aminoisobutyric acid, dehydroepiandrosterone
sulfate, aspartate and glutamate levels in blood were elevated in ASD. Moreover, the authors
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demonstrated that homocitrulline was decreased in ASD, which was not previously described
elsewhere.

A more recent study identified concentration differences of 17 metabolites in blood plasma
of 73 ASD patients. Of them, 11 metabolites, additionally validated in an independent cohort,
including sphingosine-1-phosphate and docosahexaenoic acid, were significant predictors of
ASD, as they consistently were in top ranks according to multiple logistic regression models
[Wang et al., 2016].

The only study conducted in brain identified concentration differences of 37 metabo-
lites in the cerebellum of 11 ASD patients and 11 controls using LC-MS. These dif-
ferences were not enriched in any biological pathway [Graham et al., 2016]. The
highest magnitude of metabolic differences with higher concentration in ASD patients
compared to controls was observed for 5,6-dihydrouridine, asparaginyl-hydroxyproline,
phosphatidylglycerophosphate(16:1:ω7/18:0) and CDP-diacylglycerol(18:1/18:2). By con-
trast, 2-octanoyl carnitine, phytyl diphosphate, and N-lignoceroylsphingosine demonstrated
lower concentrations in ASD patients compared to controls.

In addition to studies assessing the concentration levels of multiple metabolites, others
focused on particular compounds, such as markers of mitochondrial dysfunction that are
believed to be associated with disease [Eapen, 2011, Rossignol and Frye, 2012, El-Ansary
et al., 2017]. These studies reported an elevated concentration of glutamate [Shinohe et al.,
2006, Shimmura et al., 2011], as well as glycolysis products, such as lactate and pyruvate,
in the serum of ASD patients [Laszlo et al., 1994]. Other findings included a decreased
concentration of carnitine, the fatty acid carrier from the cytosol to the mitochondria [Filipek
et al., 2004], and glutathione, the reported critical reactive oxygen species neutralizer, in ASD
patients’ blood [James et al., 2004]. By contrast, the concentration of palmitate, one of the
principal energy sources for mitochondria, was increased in ASD plasma samples [Pastural
et al., 2009].

2.5 Lipids of the cell and their involvement in neurologi-

cal disorder

Lipids are essential components of cell plasma membranes. They also function as energy
storage blocks, signaling molecules, and protein recruitment platforms in all cells and tissues,
especially in the brain [Simons and Toomre, 2000, Harayama and Riezman, 2018]. Their
critical role in cell functioning in the brain and other tissues is further supported by their
association with neurological and metabolic disorders, such as ASD, schizophrenia, Alzheimer
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disease, Parkinson disease, as well as diabetes and cancer [Kim et al., 2010,El-Ansary et al.,
2011,Kaddurah-Daouk et al., 2007,Orešič et al., 2012,Solberg et al., 2016,Han et al., 2002,
Wenk, 2005, Adibhatla et al., 2006, Colsch et al., 2008, Ariga et al., 2008, Haughey et al.,
2010, Lamari et al., 2013]. Here, I will focus on the known lipid concentration changes in
ASD and schizophrenia. Similar to metabolites, most of the lipidomics studies were performed
using urine and blood plasma samples.

2.5.1 Diversity of membrane lipid chemical structures

Functions of lipids rely on their chemical structures. LIPID MAPS consortium has classified
lipids into eight classes: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol
lipids, prenol lipids, saccharolipids, and polyketides [Fahy et al., 2009].

The first group is the fatty acyls, which constitute a group of lipid molecules synthesized
by elongation of an acetyl-CoA with malonyl-CoA (or methylmalonyl-CoA). Fatty acyls are
characterized by a repeating series of methylene groups. Fatty acyls are the basic building
blocks of more complex lipids such as glycerophospholipids, glycerolipids, sphingolipids, and
glycolipids [Fahy et al., 2009].

The diversity of glycerophospholipids arises from the combination of two fatty acids, the
linkage, and the head group (Figure 2.3 [Harayama and Riezman, 2018]). The fatty acids
are exceedingly diverse: they can differ in length of the carbon chain and can have mul-
tiple double bonds (polyunsaturated), one double bond (monounsaturated), and no double
bonds (saturated). The sn-1 fatty acid tends to be saturated or monounsaturated, while the
sn-2 fatty acid is more often monounsaturated or polyunsaturated [Yamashita et al., 2014].
The nomenclature of free fatty acids is CN:DB, where CN shows the number of carbons in
the chain and DB corresponds to the number of double bonds. Additionally, the position
of the first double bond in the fatty acid chain is sometimes added, for example, omega-3
(ω3) and omega-6 (ω6), in which double bond is at 3rd or 6th carbon atom in the tail of
the chain. The head group consists of phosphate and alcohol. The alcohol group defines
the lipid class name, for example, choline (phosphatidylcholine, PC), ethanolamine (phos-
phatidylethanolamine, PE), serine (phosphatidylserine, PS), inositol (phosphatidylinositol,
PI) and glycerol (phosphatidylglycerol, PG). Two examples of glycerophospholipids with less
diversity are PS tending to have stearic acid (C18:0) at the sn-1 position, and PI tending to
have stearoyl (C18:0) and arachidonoyl-acyl (C20:4:ω6) chains [Hicks et al., 2006,Yamashita
et al., 2014].

Another class of lipids is glycerolipids. Glycerolipids are similar to glycerophospholipids,
except for the phosphatide group, which is substituted by a hydroxyl group. The diversity
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of glycerolipids is due to the number, length, and type of fatty acid chains. If glycerolipids
have three fatty acid chains, they are named triglycerides (TG), two - diglycerides (DG), one
- monoglycerides (MG).

Figure 2.3: Diversity of lipids composing the membrane: glycerophospholipids, sphin-
golipids, cholesterol and free fatty acids (reproduced with permission from Nature Reviews
Molecular Cell Biology [Harayama and Riezman, 2018]).

The diversity of sphingolipids originates from the length and type of the sphingolipid base,
N-acyl chain, and the head group (Figure 2.3 [Harayama and Riezman, 2018]). N-acyl chains
of sphingolipids are the same sn-1 and sn-2 fatty acids that form glycerophospholipids but
N-acyl chains tend to be more saturated and can be longer than in sn-1 and sn-2 fatty acids
[Grösch et al., 2012]. The head contains one of the following groups: hydroxyl (ceramides),
phosphocholine (sphingomyelin), phosphoethanolamine (ceramide phosphoethanolamines).
Besides that, the head group can include various oligosaccharides (glycosphingolipids).

Another class of lipids is sterols, which contains a common steroid core of a fused four-ring
structure with a hydrocarbon side chain and an alcohol group. This group can be subdivided
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into cholesterol and derivatives, steroids, secosteroids, bile acids, and their derivatives. The
primary sterol lipid in mammals is cholesterol that is an essential component in cellular
membranes (Figure 2.3 [Harayama and Riezman, 2018]).

The remaining three classes: prenols, saccharolipids, and polyketides, are less studied.
The prenol lipids are synthesized from the five-carbon precursors isopentenyl diphosphate and
dimethylallyl diphosphate that are produced mainly via the mevalonic acid pathway [Han,
2016]. To the saccharolipids class belongs the lipids in which fatty acids are linked directly to
a sugar backbone (a glycerol backbone of glycerolipids or glycerophospholipids is substituted
by a sugar) [Han, 2016]. The polyketides are a class of lipids from a plant and microbial
sources, which are synthesized by polymerization of acetyl and propionyl groups [Han, 2016].

2.5.2 Lipid functionality

Lipids can modulate their functions through changes in membrane lipid composition, which
can lead to changes in membrane physicochemical properties (Figure 2.4) [Harayama and
Riezman, 2018].

All lipid characteristics, including fatty acid chains and the head group, affect the shape
of the lipid bilayer and the spontaneous curvature of the membrane [Ernst et al., 2016].
Membrane remodeling processes include fusion and fission. In the process of fusion, the
membrane has negative spontaneous curvature, which is obtained by introducing additional
cone-shaped lipids (small head group compared to the large fatty acid group), such as PE.
Increasing the number of inverted cone-shaped lipids, such as PI, giving membrane a positive
spontaneous curvature property, controls the process of fission [Dowhan and Bogdanov, 2002].

Figure 2.4: Membrane properties affected by lipid composition (reproduced with permission
from Nature Reviews Molecular Cell Biology [Harayama and Riezman, 2018]).
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Lipids with long SFA make membranes thicker and less fluid, while MUFA and PUFA
make membranes more fluid because double bonds make bends in fatty acid chains and
repulse lipids from each other [van Meer et al., 2008]. Therefore, membrane fluidity can
be controlled by the ratio of saturated/unsaturated lipids. Another critical aspect affecting
membrane fluidity is lipid-lipid and lipid-protein interaction.

In most cases, lipid functionality is mediated not by direct changes of membrane proper-
ties, but rather through the proteins with which lipids interact (Figure 2.5) [Harayama and
Riezman, 2018].

Many lipids drag proteins containing lipid-binding domains towards the membrane.
One of the well-studied examples of lipids that interact with lipid-binding proteins is PI.
They have an inositol group, which can regulate its binding activity through phosphoryla-
tion/dephosphorylation process [De Craene et al., 2017]. Besides that, it was shown that the
specificity of binding could be achieved by cooperative binding with various lipids [Vonkova
et al., 2015].

Figure 2.5: Lipids mediate their function through lipid-protein interactions (reproduced with
permission from Nature Reviews Molecular Cell Biology [Harayama and Riezman, 2018]).
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Another type of lipid-protein interaction involves proteins that have lipid-binding pockets.
Some nuclear receptors can regulate their activity by binding membrane lipids, which alter
protein structure. PC, PI, and sphingolipids are among lipid classes that participate in such
interactions [Crowder et al., 2017]. Lipid transfer proteins responsible for spatiotemporal
distribution of membrane lipids via non-vesicular transfer between biological membranes
also contain lipid-binding pockets. Besides transfer function, lipid transfer proteins can act
as chaperones and present lipids to other proteins, for example, nuclear receptors. They can
also serve as lipid sensors that perceive fluctuations of levels of specific lipids [Chiapparino
et al., 2016].

Another class of protein-lipid interaction includes proteins which do not bind directly to
individual lipids, but sense membrane properties. For instance, the proteins that can sense
the curvature contain bin-amphiphysin-rvs (BAR) domain. BAR domains consist of dimeric
alpha-helices that bind to highly curved negatively charged membranes and stabilize mem-
brane curvature [Peter, 2004]. Another important membrane property is a packing defect,
which is characterized by the hydrophobic fatty acid part of the lipid bilayer being exposed
to the aqueous environment. Lipid composition can cause such defects. For example, high
levels of PUFA lead to greater packing defects compared to SFA. Proteins with amphipathic
helices, such as the ALPS motif and the N-terminal region of α-synuclein, bind to packing
defects and stabilize membrane curvature [Antonny, 2011].

The lipid composition of the membrane can affect functions of transmembrane proteins
by changing its conformation by direct lipid-protein binding or indirectly through membrane
properties. Membrane thickness can also affect lateral protein distribution because proteins
need to adjust the length of transmembrane domains according to local lipid composition
[Harayama and Riezman, 2018].

2.5.3 Lipidome alterations in autism

Multiple studies investigating alterations of lipid metabolism in ASD patients focused on
PUFA, as they compose 20% of the dry weight of the brain, and particularly on ω3 docosa-
hexaenoic acid (C22:6:ω3; DHA) and ω6 arachidonic acid (C20:4:ω6; AA), the two most
abundant PUFA in the brain. Multiple studies focused on the investigation of PUFA concen-
tration levels in blood plasma and red blood cells of ASD patients [Vancassel et al., 2001,Bell
et al., 2004,Bu et al., 2006,Wiest et al., 2009,Gordon Bell et al., 2009], as it was shown that
the levels of fatty acids, particularly DHA, in both blood plasma and red blood cells correlate
well with lipid levels in brain [Kuratko and Salem, 2009].

20



In one study, representing the most extensive investigation to date, authors measured
eight different lipid classes CE, FC, PC, PE, LyPC, TG, DG, and FA in blood plasma of
ASD (n = 153) and typically developing (n = 97) children [Wiest et al., 2009]. They showed
that, among cholesterol esters, the two essential fatty acids, C18:3:ω3 and C18:2:ω6 were
decreased in ASD compared to control. For free cholesterol, there were no significant changes
between ASD and control. In phosphatidylcholine class, only C20:2:ω6 was increased in the
ASD compared to control group. In phosphatidylethanolamine class C20:4:ω3, C20:2:ω6,
C20:3:ω9, C18:1:ω9, and C18:1:ω7 were increased in ASD, in contrast to C22:6:ω3 (DHA),
and C24:1:ω9, which were decreased in ASD compared to control. In lysophosphatidylcholine
class, the concentrations of C20:4:ω3 and C18:1:ω9 were higher in ASD compared to control.
In triglycerides, C22:2:ω6 was increased while C15:0 and C22:5:ω6 were decreased in ASD
compared to control. In diglycerides, C22:1:ω9 and C18:0 were lower and C14:0 and C20:3:ω6
were higher in ASD compared to control. In free fatty acids class, the concentrations of
C14:1:ω5 (myristoleic acid) and C20:4:ω6 (AA) were decreased in ASD.

A more detailed analysis of free fatty acid concentrations in blood plasma was based on
the comparison of 26 ASD patients and 26 age-matched controls between 4 and 12 years of
age [El-Ansary et al., 2011]. The authors demonstrate a decrease in the concentration of
most PUFA, which agrees with other studies, and an increase of saturated fatty acids, except
for propionic acid, in ASD patients compared to controls.

Another study investigated triglycerides and cholesterol concentration levels in blood
plasma of 29 boys diagnosed with ASD and 29 unaffected boys from 7 to 12 years of age [Kim
et al., 2010]. The authors showed that average TG concentration levels were increased in
ASD compared to control whereas the average HDL-C level was decreased in ASD They also
demonstrated that there is no difference in concentration levels of TC and LDL-C between
ASD and control groups.

In the largest study conducted to date, the authors compared red blood cells PUFA levels
in ASD and control individuals. In this study, ASD individuals (n = 121) and typically
developing controls (n = 110) with ages between 3 and 17 years were investigated [Brigandi
et al., 2015]. The authors demonstrated that children with ASD had lower DHA and AA
levels than controls in red blood cells. Additionally, they showed that accumulative levels
of all measured ω6 and ω3 fatty acids were lower in ASD individuals compared to controls.
Moreover, authors measured Prostaglandin E2 (PGE2) concentration, which is a metabolite
of AA, in 20 ASD individuals and 20 matching controls and demonstrated that PGE2 was
increased in ASD compared to controls [Brigandi et al., 2015].
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Most recently, AA, DHA and Eicosapentaenoic acid (C20:5:ω3; EPA) were measured in
red blood cells in 85 ASD individuals and 79 controls with ages between 3 and 17 years.
The authors demonstrated that children diagnosed with ASD had lower DHA, EPA and AA
levels, higher AA/EPA ratio, and lower ω3/ω6 ratio than controls [Parletta et al., 2016]. All
these observations agree with the results of another study [Brigandi et al., 2015].

2.5.4 Lipidome alterations in schizophrenia

A pioneering study mapped global lipid changes in schizophrenia before and after treat-
ment with antipsychotic drugs (50 patients, 18-60 years of age) and 16 matching con-
trols [Kaddurah-Daouk et al., 2007] in blood plasma. The authors were able to quantify
over 300 lipids from seven lipid classes: CE, DG, FA, LyPC, PC, PE and TG. None of
these lipid classes differed significantly between schizophrenia patients before treatment and
controls, except for PE class, where MUFA and ω6 PUFA were decreased in schizophrenia
patients compared to controls. The authors demonstrated that PC, PE, and TG were in-
creased while FA were decreased in olanzapine-treated schizophrenia patients compared to
non-treated patients. Usage of the second drug, risperidone, demonstrated rather similar
results: increased PE, PC, and LyPC concentration levels and decreased FA. The third drug,
aripiprazole, demonstrated an increase in PE lipid class treated compared to non-treated
schizophrenia patients. The common effect of drugs is an increase of PE lipid class, as by
taking these drugs patients elevate their PE level, which is lower in schizophrenia patients
compared to controls. This type of experiment is particularly interesting, as using this ap-
proach an optimal drug combination could potentially be found for a particular patient, i.e.
drugs that change only disease altered lipid classes and do not have off-target effects.

Another study that measured lipids in blood plasma was based on 19 patients with
schizophrenia and 34 age and gender-matched healthy twins as controls [Orešič et al., 2012].
Using LC-MS platform, the authors were able to identify 250 lipids belonging to PC, PE,
TG, FA, LyPC, and SM. They demonstrated that LyPC were decreased in schizophrenia
patients compared to controls, while TG levels were elevated.

A more detailed analysis of lipid composition of the red blood cells was performed in
74 schizophrenia patients and 40 control individuals [Tessier et al., 2016]. The authors
measured all major lipid classes: PC, PS, SM, PE and PE plasmalogen using LC-MS/MS
approach. They demonstrated that SM concentration levels have a clear bimodal distribution
in schizophrenia patients (41/33), although a small number of controls showed a low concen-
tration level of SM as well (7/33). The first group of schizophrenia patients characterized by
low SM membrane content demonstrated a decrease in PE, PC, PE plasmalogen while levels

22



of PS were increased compared to controls. The second group of schizophrenia patients was
similar to controls regarding membrane SM composition but levels of PE and plasmalogen PE
were decreased while PC and PS were increased compared to controls. Additionally, authors
showed that the group of schizophrenia patients with decreased SM levels was characterized
by significantly more severe psychopathology and impaired cognitive performance.

Most recently, free fatty acids were measured in blood serum of 110 schizophrenia
patients and 109 controls, using UPLC-QTOF-MS platform [Yang et al., 2017]. The authors
detected 47 free fatty acids that were divided into 8 groups: SFA, MUFA, ω6 PUFA,
ω3 PUFA, TFA, BCFA, OCFA and others. All MUFA and ω6 PUFA were increased in
schizophrenic patients compared to controls, including the following MUFA: C14:1:ω5,
C16:1:ω7, C18:1:ω9, C20:1:ω9, C22:1:ω9, C24:1:ω9 and ω6 PUFA: C20:2:ω6, C20:3:ω6,
C20:4:ω6, C22:2:ω6, C22:4:ω6. As for the remaining classes, even though the majority
of detected lipids (including C22:5:ω3, C17:1:ω7, C19:1:ω9, C16:0) demonstrated elevated
concentration levels in schizophrenia patients compared to controls, there were some lipids
that showed decrease in schizophrenia patients compared to controls, for example, C24:0.

The pioneering study investigating lipidome composition of white and gray matter in the
prefrontal cortex (Brodmann area 9) was based on 15 schizophrenia patients and 15 healthy
controls [Schwarz et al., 2008]. The authors found alterations in levels of FA, PC and ce-
ramides in gray and white matter of schizophrenia patients compared to controls. Specifically,
PC were increased in gray matter but decreased in white matter, FAs were increased in both
gray and white matter, while ceramides were increased only in white matter. Additionally,
to compare the results obtained in the prefrontal cortex with lipid composition of blood,
authors measured red blood cells in 20 schizophrenia patients and 20 healthy controls. They
demonstrated that alterations in concentrations of free fatty acids, as well as ceramide, were
in agreement with the differences found in the cortex.

2.6 Evolutionary models at different molecular levels

2.6.1 Evolutionary studies at the level of genome and transcriptome

Genome sequence and phenotype differences among species are relatively well studied. This
knowledge forms the foundation for evolutionary models that explain observed genetic and
phenotypic divergence and help to identify genetic regions or phenotypic traits influenced by
a specific type of evolutionary selection. Under most, though not all, current models, the
majority of genetic differences observed among species are considered to be evolutionarily
neutral, that is, have no effect on the individual’s survival and reproductive abilities, while
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a few differences are adaptive, that is, increase the individual’s fitness [Otto, 2000, Eyre-
Walker, 2006,Hahn, 2008,Orr, 2009]. Genetic changes with substantial deleterious effects are
removed by purifying selection and are not observed in comparisons among species. Accord-
ingly, some of the main features of genetic evolution include: 1) an overwhelming correlation
between phylogenetic distances and genetic distances; 2) reduced diversity (variation within
species) and divergence (differences between species) of functional sequences compared with
nonfunctional ones; and 3) reduced diversity but increased divergence of sequences containing
adaptive variants.

In contrast to genetic differences, most changes that occur at the level of the phenotype
affect individuals’ survival and reproductive chances and only a few changes are neutral [Nei,
2007, Steiner and Tuljapurkar, 2012]. While the genetic information largely determines the
phenotype, several intermediate steps enable the transition of this information to the pheno-
type level. These steps include changes in epigenetic modification levels of DNA and histone
proteins, RNA and protein expression levels, as well as concentrations of small molecules,
metabolites, and lipids, that participate in all biological processes. Some of these steps, in-
cluding RNA expression levels, have been examined, resulting in evolutionary models parallel
to the one based on genetic data [Wray et al., 2003,Jordan et al., 2005,Stern and Orgogozo,
2008].

One of the large-scale studies investigating the evolution of gene expression levels was
done in 6 tissues (liver, heart, kidney, testis, brain, cerebellum) of 9 species representing
placental mammals, marsupials, monotremes and one bird species (red jungle fowl), which
served as the evolutionary outgroup [Brawand et al., 2011]. To estimate rates of expression
change in different evolutionary lineages in different organs, expression-based phylogenetic
trees were built. The total branch lengths of these trees varied among tissues, with two
neural tissues having the shortest branches and testis having the longest ones. Based on these
observations, the authors suggested that transcriptome change in nervous tissues might be
largely influenced by purifying selection, in contrast to testes, which showed signs of positive
selection. Next, pairwise comparisons between all species were performed and confirmed
an overall increase in gene expression divergence with evolutionary time. Additionally, the
authors estimated gene expression changes on different chromosomes and showed that gene
expression evolution was faster on X chromosome compared to autosomes in the common
ancestor of therian mammals, in contrast to eutherian branches, where the evolution rate on
X chromosome was similar to autosomes. Additionally, using a modified OU model applied
to each gene in each tissue separately, the authors identified genes with potentially adaptive
expression changes.
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Most recently, gene expression was measured in 3 tissues (liver, kidney, and brain) of
33 diverse species of mammals [Fushan et al., 2015]. The primary focus of this work was
the estimation of the relationship between gene expression levels of different species and
their life histories, such as time to maturity, oxygen consumption and maximum lifespan,
in particular. The authors implemented non-phylogenetic OLS method to investigate the
relationship between gene expression and organism trait, as it was shown that life history
variation departs from the model of neutral evolution. The analyses provided evidence that
life histories can explain up to 20% of gene expression variation between species. Next,
Pagel’s λ model [Pagel, 1999] was applied to gene expression levels for each gene separately
to estimate the proportion of genes with expression variation between species explained by
drift. The highest percentage of genes that followed phylogeny, based on Pagel’s λ model, was
observed in the brain. To estimate the number of genes with expression variation explained
by stabilizing constraints, the authors modeled each gene as an OU process with stepwise
Akaike Information Criterion [Ingram and Mahler, 2013]. The highest proportion of genes
having expression consistent with the OU model was also observed in the brain.

2.6.2 Evolutionary studies at the level of metabolome and lipidome

While the evolutionary models describing the changes at the genomic and transcriptomics
levels are relatively well established, the number of studies that investigate the evolutionary
changes at yet another intermediate step connecting the genome with the phenotype – the
level of metabolite and lipid concentration changes - is much smaller.

In a pioneering study, metabolite concentrations were measured in the prefrontal cortex
of humans (schizophrenia patients and controls), chimpanzees and macaques using proton-
NMR spectroscopy. There was an overlap between metabolite changes in schizophrenia and
evolutionary changes observed on the human lineage [Khaitovich et al., 2008]. The authors
compared metabolite concentrations between schizophrenia patients and control individuals
using t-test and identified nine metabolites, including creatine, lactate, glycine, acetate,
choline, phosphocholine, glycerophosphocholine to be altered between those two groups.
Next, they measured changes in concentration on the human and chimpanzee lineages in
the two metabolite groups (changed and non-changed in schizophrenia patients compared to
controls) using the rhesus macaque as an outgroup. They showed that the ratio of the human
to chimpanzee branch length is more than three times higher for the changed in schizophrenia
metabolite group than for the non-changed metabolite group. This work has demonstrated
that metabolic changes are essential for establishment and maintenance of the human-specific
cognitive abilities.
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Another study assessed the metabolome composition in the prefrontal and cerebellar cor-
tex of humans, chimpanzees, and macaques during postnatal development using GC-MS [Fu
et al., 2011]. First, choosing a suitable polynomial model for age and then applying ANCOVA
approach the authors were able to identify metabolites with concentration differences between
species also demonstrating changes with age. They showed that there was a four-fold excess
of human-specific metabolic changes in the prefrontal cortex compared to cerebellar cortex.
Specifically, the human-specific metabolic changes in the prefrontal cortex were enriched in
the following metabolic pathways: long-term potentiation, neuroactive ligand-receptor inter-
action, alanine, aspartate, and glutamate metabolism, and β-alanine metabolism.

Most recently, a study employing a combination of GC-MS and LC-MS approaches as-
sessed the concentration of metabolites in muscle, kidney, prefrontal cortex, cerebellar cortex
and primary visual cortex in humans, chimpanzee, macaques and mouse [Bozek et al., 2014].
They performed ANOVA to find metabolites with significant concentration differences among
the four species within each of the five tissues, and within the combined brain tissues. They
demonstrated that there is an excess of human-specific metabolic divergence in the skeletal
muscle, prefrontal cortex, and in the brain as a whole, but not in the primary visual cortex or
the kidney. Human-specific metabolic changes in the prefrontal cortex were associated with
translational metabolism and neurotransmitter signaling, while human-specific changes in
muscle showed enrichment in carbohydrate metabolism energy and amino acid metabolism.
Similar to the previous studies, the general evolution of metabolite levels was not studied
because the primary focus of the work was to investigate human-specific concentration dif-
ferences in the brain, particularly in the prefrontal cortex and muscle.

The only study where general trends of metabolite and lipid concentration evolution were
studied, which is the most complete metabolome study up to date, detected concentration
levels of metabolites in 4 tissues (brain, heart, kidney, liver) from 26 mammals using GC-MS
data [Ma et al., 2015]. The authors tested if metabolite concentration levels reflected the
phylogenetic tree based on proportion of metabolites with high phylogenetic signals, using
Pagel’s λ [Pagel, 1999] and Blomberg’s K [Blomberg et al., 2003] in each tissue separately.
Additionally, average tip-to-root branch length for each tissue was calculated to estimate
the metabolite divergence. Based on these statistics, the authors showed that brain had
the largest proportion of metabolites with high phylogenetic signals and the shortest tip-to-
root branch lengths compared to the remaining three tissues, arguing that the brain evolved
according to phylogenetic tree, in contrast to other tissues that did not follow phylogeny as
their metabolite concentration levels diverged more between species.
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Similarly, there are only a few studies investigating lipid concentration level differences
at the evolutionary level [Bozek et al., 2015,Li et al., 2017,Bozek et al., 2017].

The pioneering study that estimated the lipidome diversity in muscle, kidney, prefrontal
cortex, cerebellar cortex and primary visual cortex of humans, chimpanzees, macaques, and
mice, was using LC-MS approach [Bozek et al., 2015]. The authors used ANOVA to identify
lipids with concentration levels changing significantly among species or tissues. First, it
was shown that in humans the majority of tissue differences is specific to the brain, and
all lipidome differences were divided into brain-enriched (high concentration levels in the
brain compared to other tissues) and brain-depleted (low concentration levels in the brain
compared to other tissues) lipids. Next, the authors demonstrated that lipid concentrations
measured in chimpanzees, macaques, and mice resembled the lipidome profiles of human
tissues. Finally, the ratios of human-specific to chimpanzee-specific lipids for brain-enriched
and brain-depleted groups were calculated. Based on these ratios, it was concluded that brain-
enriched lipids evolved approximately four times faster than brain-depleted lipids of non-
neural tissues. Even though the authors tried to address evolutionary questions in this study
[Bozek et al., 2015], the species set was limited to humans, chimpanzees, rhesus macaques,
and mice, and therefore did not provide sufficient data for the general analysis of lipid
concentration evolution. Thus, in this study, the authors focused on lipid concentration
changes specific to the human brain.

An even smaller set of species was used in the following study [Li et al., 2017] - humans,
chimpanzees, and macaques. This study focused on developmental changes of the lipidome
composition of the prefrontal cortex using LC-MS. The authors used ANCOVA approach to
demonstrate that the majority of lipids change their concentration significantly along the
lifespan; specifically, more than 60% of these changes occur before adulthood. In addition to
these observations, the authors demonstrate that there is a two-fold excess of human-specific
lipids compared to the number of chimpanzee-specific lipids and the greatest amount of both
human- and chimpanzee-specific differences occurs in early development, while the greatest
divergence of human- and chimpanzee-specific lipids is observed at the human age of 20 to
35. Similar to the previous study, the general evolution of lipid levels was not studied as the
primary focus of the work was on human-specific age-related concentration differences in the
prefrontal cortex.

The most extensive study to date compared lipid concentration levels in six tissues (liver,
heart, muscle, kidney, cortex, cerebellum) from 35 species representing three mammalian
clades: primates, rodents, and bats using LC-MS [Bozek et al., 2017]. Using logistic re-
gression with the elastic net penalty, the authors identified lipids that might predict the
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maximum lifespan of species in 6 tissues. Interestingly, these lipids overlapped significantly
between brain cortex and cerebellum, as well as among three non-neural tissues: liver, muscle,
and kidney. Next, the authors measured dN/dS ratios for enzymes linked to lipid predic-
tors of maximal lifespan and the remaining lipids in short-living and long-living species.
They demonstrated that enzymes linked to lipid predictors of lifespan had a significantly
lower amino acid substitution rate in contrast to enzymes linked to the remaining lipids in
long-living species but not in short-living ones, providing evidence of increased evolution-
ary pressure in metabolic processes of long-living species. Therefore, the general evolution
of lipids was not studied in [Bozek et al., 2017], except for the evolution of one small and
specific group of lipids - lipid predictors of maximal lifespan.
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Chapter 3

Metabolome signature of autism in the

human prefrontal cortex

In this chapter, we investigated concentration levels of 1,366 metabolites in the prefrontal
cortex grey matter from 40 healthy humans and 32 autism patients, as well as 40 chimpanzees
and 40 macaques, with ages spanning the entire postnatal cortical development. We iden-
tified numerous metabolic changes distinguishing autism patients from the controls. Many
of these differences overlapped with the pathways previously detected in urine and blood.
Furthermore, several of these pathways contained an excess of metabolic changes unique to
humans, indicating disruption of the evolutionary novel cortical mechanisms in ASD.

3.1 Materials and Methods

3.1.1 Samples

This study was reviewed and approved by the Institutional Animal Care and Use Ethics
Committee at the Shanghai Institute for Biological Sciences, CAS. Informed consent for the
use of human tissues for research was obtained in writing from all donors or their next of kin.
All non-human primates used in this study suffered sudden deaths for reasons other than
their participation in this study and without any relation to the tissue used.

We used prefrontal cortex (PFC) samples dissected from the frozen postmortem brains
of 40 cognitively unaffected human controls (0-62 years old), 32 ASD cases (2-60 years old),
40 chimpanzees (0-43 years old), and 40 rhesus macaques (0-21 years old). Special care was
taken to dissect gray matter only.
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Control human samples were obtained from the NICHD Brain and Tissue Bank for De-
velopmental Disorders at the University of Maryland, USA, the Maryland Brain Collection
Center, Maryland, USA and the Harvard Brain Tissue Resource Center. ASD samples were
obtained from the NICHD Brain and Tissue Bank for Developmental Disorders and the Har-
vard Brain Tissue Resource Center. All the control and ASD brain samples used in this
study were also part of recently published transcriptomic [Liu et al., 2016] and lipidomic [Yu
et al., 2018] studies.

Chimpanzee samples were obtained from the National Chimpanzee Brain Resource
(NS092988), the Alamogordo Primate Facility, New Mexico, USA, the Anthropological In-
stitute and Museum of the University of Zurich-Irchel, Switzerland, the Biomedical Primate
Research Centre, the Netherlands, Department of Anthropology, The George Washington
University, Washington, DC and Burgers’ Zoo in Arnhem, the Netherlands. Rhesus monkey
samples were obtained from the Suzhou Experimental Animal Center, China. PFC dissec-
tions were made from the frontal part of the superior frontal gyrus. For all samples we
preferentially dissected and analyzed gray matter material.

To identify metabolites affected by postmortem delay in primates, we additionally col-
lected two rhesus macaque samples, dissected 5-6 hours after death. Other macaque samples
used in this study had PMDs lower than 20 minutes.

3.1.2 Sample preparation

Metabolites were extracted from frozen tissue powder using a methanol:methyl-tert-butyl-
ether (1/3 (vol/vol)) solution as described in [Giavalisco et al., 2011]. In brief, 10-15 mg
tissue samples were dissected on dry ice from the frozen tissue without thawing. Dissected
samples were weighed and transferred to pre-cooled 2 ml round bottom reinforced Precellys
tubes containing 2.8 mm zirconia beads. After the addition of a fixed volume (0.5 ml) of pre-
cooled (-20 oC) extraction buffer to each tube, we performed two cycles of homogenization
using the following parameters: stirring intensity 5,000 rpm, homogenization temperature
7 oC, cycle time 45 second, and 15 second break. Several blank extraction samples were
added to the end of each batch (48 samples). The blank samples consisted of the same 2
ml round bottom reinforced Precellys tubes without any sample material subjected to all
extraction procedures. After the addition of a fixed volume (0.5 ml) of extraction buffer,
the homogenates were vortexed and incubated for 30 minutes at 4 oC on an orbital shaker
followed by a 10 minute ultra-sonication in an ice-cooled sonication bath. For each sample,
the homogenate was transferred to a pre-labeled 2 ml Eppendorf tube followed by the addition
of 700 µl of an H2O: methanol (3:1 (vol/vol)) solution containing 0.7 µg of corticosterone and
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ampicillin. Finally, to separate the organic phases from aqueous phases and to precipitate
proteins, after a brief vortexing, the homogenates were centrifuged for 10 minutes at 14,000 g
at 4 oC. Subsequently, 300 µl of the lower aqueous phase containing hydrophilic compounds
were transferred to a pre-labeled 1.5 ml Eppendorf tube and the solvent was evaporated
using a speed vacuum centrifuge at room temperature. Dry metabolic extracts were stored
at -80 oC prior to MS analysis. For quality control, we further constructed a pooled sample
composed by the aliquots of metabolite extracts from all samples used in the analysis.

3.1.3 Mass spectrometry analysis

The dried extracts were resuspended in 200 µl of ice-cold 20% aqueous solution of acetoni-
trile prior to MS analysis. After a brief rigorous vortexing, the samples were incubated for
30 minutes at 4 oC on an orbital shaker followed by a 10 minutes ultra-sonication in an
ice-cooled sonication bath and centrifugation for 10 minutes at 14,000 g at 4 oC. For the MS
analysis, 40 µl of supernatant was transferred to 350 µl autosampler glass vials (Glastech-
nik Grafenroda, Germany). A chromatography separation of metabolites prior to MS was
performed using Acquity I-Class UPLC system (Waters, UK). Metabolites were separated
on a normal phase unbounded silica column RX-SIL (100 mm x 2.1 mm, 1.8 µm, Agilent,
US) coupled to a guard precolumn with the same phase parameters. We used two mobile
phases for the chromatographic separation. Buffer A was water containing 10 mM ammo-
nium acetate and 0.2 mM ammonium hydroxide: acetonitrile (95/5 (vol/vol)) solution (pH
value 8.0), and buffer B was 100% acetonitrile. The gradient separation was: 0 minutes
0% A, 0.01-10 minutes linear gradient from 0% to 100% A, 10-14 minutes 100% A, 14-17
minutes linear gradient from 100% to 0% A, and 17-25 minutes 0% A. The flow rate was
set to 500 µl/minute. The column temperature was maintained at 40 oC. The mass spectra
were acquired in positive and negative mode using a heated electrospray ionization source
in combination with Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo
Scientific, Germany). Negative ion mode samples were run after the positive ion mode cohort
with 6 µl injection of non-diluted samples. Spray voltage was set to 4.5 kV in positive mode
and to 3 kV in negative mode. The remaining MS settings were the same in both ionization
modes: S-lens RF level - 70; heated capillary - 250 oC; aux gas heater temperature - 350 oC;
sheath gas flow rate - 45 arbitrary units; aux gas flow rate - 10 arbitrary units; sweep gas
flow rate - 4 arbitrary units. Full scan resolutions were set to 70,000 at 200 m/z. The full
scan target was 106 with a maximum fill time of 50 ms. The spectra were recorded using
full scan mode, covering a mass range from 100 to 1500 m/z. For quality control, pooled
samples were injected 4 times prior to each ionization mode run in order to condition the
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column and after the completion of both ionization modes. Additionally, a pooled sample
was injected after every 48th sample injections to assess the sensitivity and retention time
consistency of the system, sample reproducibility, and the compound stability over the time
of the MS analysis. Sample randomization was performed twice: before the lipid extraction
and before the mass spectrometry measurements. Those factors we considered in the process
of randomization: diagnosis, age, and species.

3.1.4 Mass spectrometry data processing

MS peaks obtained in positive and negative modes were aligned across samples as described
in [Giavalisco et al., 2011,Bozek et al., 2015]. Metabolite identification was based on the com-
putational matching of m/z values to the Human Metabolome Database (HMDB) [Wishart
et al., 2012] and the LIPID MAPS Structure Database (LMSD) [Fahy et al., 2009] with a
mass tolerance of 10 ppm, allowing [M+H], [M+NH4], and [M+Na] modifications as possible
adducts in positive ionization mode, and [M−H], [M+Formic acid−H], [M−H2O−H] and
[M+Na−2H] modifications in negative ionization mode [Giavalisco et al., 2011,Bozek et al.,
2014].

To eliminate the effects of the measurement order on metabolite concentrations, we com-
puted this effect for each metabolite by fitting a support vector regression model with a gaus-
sian kernel and one set of parameters for all metabolites to the log2 transformed, centered
to the mean = 0, and scaled to standard deviation = 1 concentration values. The resulting
functions were clustered using a k-means algorithm. After a visual evaluation, the clusters
obviously affected by the measurement order were discarded. The concentration values of the
remaining metabolites showing measurement order effects were corrected by subtracting the
average of the corresponding cluster. The metabolite concentrations were then recalculated
to the original magnitude scale. After this procedure, a total of 1,405 peaks remained. The
intensity of these peaks was normalized across samples using upper-quartile normalization
separately in each mode.

To eliminate metabolites with concentrations affected by a postmortem delay, we com-
pared metabolite concentrations in macaque PFC samples collected from 42 individuals of
different ages with a short PMD (post-mortem delay) of less than 20 minutes after death
and with a prolonged PMD of 5-6 hours. For each metabolite, we assessed the difference
between the concentration values in samples obtained after prolonged PMD and the con-
centration values interpolated at the corresponding age from a spline curve fitted to the
concentration values measured in samples with a short PMD with four degrees of freedom.
Metabolites with concentration values in samples with prolonged PMD falling outside the
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95% confidence interval of spline curve predictions were excluded from further analysis. This
procedure excluded 39 (2.8%) of the 1,405 metabolic peaks (Figure 3.1).

Figure 3.1: Concentration profiles of 16 unannotated metabolites, out of 39 metabolites
classified as affected by postmortem delay in our analysis. The points indicate metabolite
concentrations in the PFC of macaque individuals with short postmortem delays (<20 min-
utes, light blue) and two macaque individuals with long postmortem delay (5-6 hours, dark
blue). The lines are the spline curves fitted to the data points with short postmortem delay
individuals with four degrees of freedom. The dashed lines correspond to 95% confidence
interval of spline curve predictions.

3.1.5 Statistical analysis

The resulting 1,366 peaks were used to explore relationships among samples with a multidi-
mensional scaling algorithm (MDS) (Figure 3.3 B and 3.5 A).
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To identify metabolites with concentration differences between ASD samples and unaf-
fected controls, we used an analysis of covariance (ANCOVA) as described in [Somel et al.,
2009,Liu et al., 2016]. Briefly, for each metabolite we chose the best polynomial regression
model with age as a predictor and concentration values as a response based on adjusted R2

criterion. Next, we used the F-test to evaluate whether the addition of disease/control status
parameter significantly improved this model. The test was performed twice, using ASD sam-
ples as a reference for choosing the best polynomial regression model in one run, and control
samples in the other. The resulting p-values were adjusted by the Benjamini-Hochberg (BH)
approach. If the metabolite passed the BH-corrected p-value threshold of 0.05 in both cases,
the compound was classified as an ASD-related metabolite.

To identify patterns of age-related concentration differences for ASD-related metabolites,
we performed hierarchical clustering with 1 - Pearson correlation coefficient as the distance
measure using both ASD and control samples. We used complete-linkage method of hierar-
chical clustering and cut the tree at 4 clusters (Figure 3.3 C). Segregation to a large number
of clusters did not reveal novel patterns and yielded clusters with low numbers of metabolites
(n<20).

To test the overrepresentation of ASD-related metabolites in metabolic pathways, we
performed a pathway enrichment analysis using R package clusterProfiler [Yu et al., 2012]
based on the enzymes that were directly linked to these metabolites according to the KEGG
database annotation [Kanehisa et al., 2017]. Enzymes directly linked to metabolites are
enzymes, which either process or use as co-factor the following metabolites. Those inter-
actions were directly taken from the KEGG database API. Genes directly linked to all the
metabolites detected in our study were used as the background. The results were corrected
for multiple testing using BH correction (Figure 3.4 A).

To test whether the disease status can be predicted using metabolite concentration lev-
els, we implemented logistic regression with l1 regularization, which is a linear model with
an additional penalty on its coefficients that make it possible to train the model while si-
multaneously performing feature selection. Because the feature selection showed substantial
variability among different training subsets of the data, we performed stability selection as
described in [Meinshausen and Buehlmann, 2008], which is a procedure based on multiple
subsampling of the data. Briefly, the dataset was divided into the training and test sets and
the model was trained using the training set with a fixed number of parameters (C=100).
For each trained model, we tested the performance of the classifier using a test set. By com-
bining the results of all the data subsampling combinations (n=500), we calculated the mean
performance and, for each metabolite, the empirical probability of being incorporated into
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the model with a non-zero coefficient (Figure 3.2). We then ranked the metabolites according
to this empirical probability. Based on model performance assessment, we chose a cutoff of
the top 200 metabolites to define the set of model predictors.

Figure 3.2: Area under the receiver operating characteristic curve (ROC AUC) calculated
using logistic regression with optimal parameters performed 500 times on different subsets of
the individuals. The solid line corresponds to average ROC AUC, while the area shows the
standard deviation.

We used two sets of cutoffs (stringent and relaxed) to identify species-specific concen-
tration differences. To identify differences using the stringent cutoff, we used the ANCOVA
approach described in [Somel et al., 2009,Liu et al., 2016] for each species pair twice, using
either species as a reference. If the test was significant for both human/chimpanzee and hu-
man/macaque pairs but not significant for the chimpanzee/macaque pair then the metabolite
was classified as showing human-specific metabolic difference. Similarly, if the test was sig-
nificant for both human/chimpanzee and chimpanzee/macaque pairs, but not significant for
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the human/macaque pair then, the metabolite was classified as showing chimpanzee-specific
metabolic difference. To conduct age alignment between species, we used the age scaling
procedure described in [Li et al., 2017]. To identify differences using the relaxed cutoff, we
calculated distances between species using macaque metabolite concentrations as a baseline.
A metabolite was classified as showing human-specific metabolic difference if its human-
macaque distance was larger than chimpanzee-macaque distance, and the direction of changes
relative to the macaque coincided in humans and chimpanzees. Similarly, a metabolite was
classified as showing a chimpanzee-specific metabolic difference if its chimpanzee-macaque
distance was larger than human-macaque distance, and the direction of changes relative to
macaque coincided between humans and chimpanzees. For each metabolite, the distance was
calculated as the absolute difference between average z-transformed concentrations within
species. To assess human-specificity in each module, we performed 1000 subsampling of the
same number of metabolites and calculated the ratio of human-specific to chimpanzee-specific
metabolic differences for each subsampling (Figure 3.5 B).

We tested the overrepresentation of human-specific metabolic differences defined using
stringent criteria in KEGG pathways using R package clusterProfiler [Yu et al., 2012] as
described above. To test the significance of the overlap between ASD-related and human-
specific pathways, we performed Fisher’s exact test (Figure 3.5 C).

To compare ASD-related metabolites with genes differentially expressed in ASD, we es-
timated gene expression levels using published dataset deposited in the Gene Expression
Omnibus (GEO) under accession number GSE28521 [Voineagu et al., 2011]. The dataset
contains transcriptome data for 19 ASD samples and 17 control samples from three brain
regions: the cerebellum, the frontal cortex, and the temporal cortex. To test whether genes
linked to ASD-related metabolites tended to show an excess of expression levels particular to
ASD, we calculated the proportion of genes with ASD-dependent expression linked to each
metabolite. Genes showing absolute log2 fold change between the average concentrations of
ASD samples and control samples greater than 0.2 were defined as genes with ASD-dependent
expression in this analysis (Figure 3.4 E).

To compare concentrations of metabolites detected in our study with a previously pub-
lished dataset of metabolite concentrations in humans, chimpanzees and macaques [Fu et al.,
2011], we matched metabolites between the datasets using annotation. We then calculated
log2 fold changes between the average metabolite concentrations in humans and the average
metabolite concentrations in macaques (Figure 3.5 D). To test whether log2 fold change val-
ues agreed between datasets, we calculated the Pearson correlation coefficient and performed
Fisher’s exact test.
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3.2 Results

3.2.1 Metabolic data description

We searched for metabolic alterations in autistic brains by measuring concentrations of polar
low molecular weight compounds in the postmortem prefrontal cortex (PFC) samples of 32
ASD patients and 40 control individuals. The control and ASD samples were matched for
sex and sample quality, which was estimated using RNA integrity levels. Each group covered
a broad age range: 2-60 years for ASD patients and 0-61 years for controls. All samples were
represented by the cortical gray matter.

The measurements, conducted in a random order using liquid chromatography coupled
with mass spectrometry (LC-MS) in positive and negative ionization modes, yielded 4,065 and
1,685 distinct MS peaks representing polar compounds (metabolites) with molecular weights
below 2,000Da. Among them, 801 and 209 metabolites were computationally annotated
using probabilistic matching to the Human Metabolome Database HMDB [Wishart et al.,
2012] and the LIPID MAPS Structure Database (LMSD) [Fahy et al., 2009]. The removal
of metabolites with concentrations influenced by the measurement order, experimental batch
effects, and post-mortem delay yielded 1,366 confounder-free metabolic peaks detected in
both ionization mode (Figure 3.3 A). Multidimensional scaling (MDS) of the ASD and control
samples using normalized abundance of these 1,366 metabolites revealed a separation of
very young individuals from the rest (Figure 3.3 B). Correspondingly, age explained 25%
of the total metabolic variation among samples, while ASD accounted for 10%, postmortem
intervals (PMI) accounted for 8%, and other factors such as sex, sample quality, and ethnicity
accounted for less than 5% each.

3.2.2 Metabolic changes in autism

Of the 1,366 detected metabolites, 202 (15%) showed significant concentration differences
between autism and control samples (autism-related metabolites, ANCOVA, BH-corrected p
<0.05). Unsupervised clustering of the temporal concentration profiles of these 202 metabo-
lites revealed four modules (Figure 3.3 C). Genes linked to the 202 autism-related metabolites
based on KEGG annotation were significantly overrepresented in a total of 16 KEGG (the
Kyoto Encyclopedia of Genes and Genomes) pathways [Kanehisa et al., 2017] (hypergeomet-
ric test, BH-corrected p <0.05, Figure 3.4 A).
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Figure 3.3: Identification of metabolic differences in the prefrontal cortex of autism pa-
tients. (a) The number of metabolic peaks detected by LC-MS procedure in positive ([+])
and negative ([-]) ionization modes, after removal of peaks affected by confounding factors.
Darker shades indicate lipid peaks annotated using probabilistic matching to the LIPID
MAPS database and HMDB. (b) The relationship among individuals plotted as the first
two dimensions of the multidimensional scaling (MDS) procedure based on concentrations
of 1,366 metabolites. Circles represent individual samples. Colors represent autism patients
(gray) and control individuals (red). Size of the circles is proportional to the individual’s age
(smaller circles correspond to younger age). (c) Hierarchical clustering dendrogram based on
concentrations of 202 autism-related metabolites and the concentration patterns in the four
cluster modules. The metabolite concentration levels within each module were standardized
to mean = 0 and standard deviation = 1. Points represent mean concentrations in each
individual (red - controls; black - autism). Lines show cubic spline curves fitted to the data.
Pink and gray shaded areas show one standard deviation of the curve estimates.
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Notably, 10 of the 16 pathways were identified at similar significance level using 42
metabolites of the module 3 characterized by the concentration decrease in autism, especially
early in life. These 10 pathways included glutathione metabolism, the pathway showing the
strongest enrichment signal both globally and within module 3. Notably, the glutathione
metabolism pathway contained not only significant concentration differences of glutathione
and linked metabolites, but also genetic variants reported to be associated with autism in
enzymes catalyzing the corresponding reactions (Figure 3.4 B,C). Module 4 containing 52
metabolites was significantly enriched in four of the 16 pathways, including strong enrichment
in purine and pyrimidine metabolism pathways. By contrast, modules 1 and 2 characterized
by elevated concentrations in autism were not substantially overrepresented within the 16
pathways, but were enriched in the four additional module-specific pathways including amino
acid and nicotinamide metabolism.

3.2.3 Metabolic predictors of autism

Metabolite concentration differences between ASD cases and unaffected controls might allow
for the classification of autistic brain samples as a distinct group using a machine-learning
algorithms. To test this, we constructed a predictive model based on logistic regression with
lasso regularization to assign each sample to the ASD or control group using the metabolite
concentrations. We then performed stability selection [Meinshausen and Buehlmann, 2008],
a procedure based on subsampling, to rank the metabolites’ contribution to the model and
to assess the accuracy. Remarkably, the model distinguished ASD and control cases with
more than 95% accuracy, estimated as the area under the ROC curve (ROC AUC), which
corresponds to the area under the curve mapping the true positive rate (sensitivity) to the
false positive rate (1-specificity) for different discrimination thresholds (Figure 3.4 D). Thus,
the AUC ROC provides a measure of the diagnostic ability of the classifier.

The model’s metabolic predictors overlapped significantly with metabolites showing signif-
icant concentration differences in ASD in the ANCOVA analysis (Fisher test, p <0.001). Con-
sistently, KEGG pathways enriched in the top 200 metabolic predictors were in good agree-
ment with pathways obtained in the ANCOVA analysis, with glutathione metabolism and
purine metabolism occupying the top positions for each of the two methods (Figure 3.4 A).
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Figure 3.4: Characterization of metabolic differences identified in the prefrontal cor-
tex of autism patients. (a) Summary of top functional pathways enriched in genes linked
to metabolites represented in different categories using KEGG annotation. The categories
include: all 202 autism-related metabolites identified using ANCOVA (ANCOVA); autism-
related metabolites within each module (Module 1-4); and autism metabolic predictors
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Figure 3.4: identified using logistic regression (log-Regression). Size of circles is proportional
to the number of genes within the pathway linked to metabolites in a given category (smaller
circles correspond to a smaller number of genes). The color of circles indicates BH-corrected
enrichment p-value. (b) Simplified schematic representation of glutathione pathway based
on the KEGG annotation. Circles represent metabolites. Circle colors indicate direction
and significance of the difference. The double coloring of L-γ-glutamyl-L-amino acid and
L-amino acid represent concentration changes of different compounds that fall under this
biochemical annotation. Stars mark genes containing genetic variants associated with the
ASD according to SFARI and GRASP databases. (c) The concentration of five metabolites
from the glutathione metabolism pathway showing a differential concentration in ASD: glu-
tathione, L-γ-glutamylcysteine, L-cysteinylglycine, glutathione disulfide, and 5-oxoproline.
Boxes show the first and the third quartiles and the median of the data, the whiskers ex-
tend to the minimum and maximum data values located within 1.5 interquartile range from
the box. Dots indicate actual concentration values for individual samples. Colors represent
autism patients (gray) and control individuals (red). (d) Average area under the receiver
operating characteristic curve (ROC AUC) calculated using logistic regression with optimal
parameters performed 500 times on different subsets of the individuals. (e) Distributions of
the proportions of genes showing expression difference in autism ( |log2 fold change| >0.2)
among genes linked to each of 202 autism-related metabolites (gray curve) and the other
metabolites detected in our study (red curve). Expression data was taken from [Voineagu
et al., 2011].

3.2.4 Gene expression associated with metabolic changes in autism

To test whether the metabolic differences between ASD and control cases might be caused
by gene expression differences, we examined data from three brain regions measured in
19 ASD patients and 17 controls, including 15 patients and 5 controls from the present
study [Voineagu et al., 2011]. In two cortical regions, but not in the cerebellum, genes linked
to ASD-related metabolites indeed showed significantly more expression differences between
ASD patients and controls than genes linked to metabolites showing no concentration differ-
ence in ASD (KS-test, p <0.05, Figure 3.4 E).

3.2.5 Evolution of metabolic changes in autism

Previous work linked gene expression differences in ASD to developmental gene expression
features unique to humans [Liu et al., 2016]. To assess this link at the metabolite level,
we analyzed metabolite concentrations in the PFC of 40 chimpanzees with ages between 0
and 42 years, and 40 rhesus macaques with ages between 14 weeks post-conception and 21
years. The chimpanzee and macaque samples were measured together with human control
and ASD samples in a random order. A computational analysis of nonhuman primates,
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conducted in parallel with the human samples, yielded concentrations in chimpanzee and
macaque samples for 1,366 metabolites confidently detected in human dataset. A multidi-
mensional scaling (MDS) analysis based on the concentrations of these metabolites revealed
predominant sample separation according to age and species identity (Figure 3.5 A).
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Figure 3.5: Evolution of metabolic differences identified in the prefrontal cortex of autism
patients. (a) The relationship among species and individuals plotted as the first two di-
mensions of the multidimensional scaling (MDS) procedure based on concentrations of 1,366
metabolites. Circles represent individual samples. Colors represent: autism patients (gray),
control human individuals (red), chimpanzees (blue), and macaques (green). Size of the
circles is proportional to the individual’s age (smaller circles correspond to younger age).
(b) The ratio of human-specific and chimpanzee-specific metabolites represented in different
categories: all 1,366 detected metabolites (Detected Metabolome); all 202 autism-related
metabolites identified using ANCOVA (ANCOVA); and autism-related metabolites within
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Figure 3.5: each module (Module 1-4). Boxes show the first and the third quartiles and the
median of the data, the whiskers extend to the minimum and maximum data values located
within 1.5 interquartile range from the box. Dashed gray lines indicate the interwhisker range
of the detected metabolites. (c) Summary of top functional pathways enriched in genes linked
to metabolites represented in two categories using KEGG annotation. The categories include:
all 202 autism-related metabolites identified using ANCOVA (autism-related) and human-
specific metabolites (human-specific). Size of circles is proportional to the number of genes
within the pathway linked to metabolites in a given category (smaller circles correspond to
a smaller number of genes). The color of circles indicates BH-corrected enrichment p-value.
(d) Metabolite concentration differences between humans and macaques measured using our
data (Dataset 1) and a published dataset (Dataset 2) [Fu et al., 2011]. The concentration
differences were calculated as log2-transformed differences between the average concentration
values within each species. Dots represent individual metabolites detected in both datasets
(N=31). Colors indicate plot quadrants.

The identification of significant metabolite concentration differences and their placement
on the evolutionary lineages (ANCOVA, BH-corrected p <0.05) revealed 170 human-specific
and 55 chimpanzee-specific differences defined using strict criteria, and 756 human-specific
and 410 chimpanzee-specific differences defined using relaxed criteria. Human-specific con-
centration differences detected in this study agreed well with the differences calculated using
the published metabolome dataset (Figure 3.5 D, Pearson correlation R=0.71, p <0.01) [Fu
et al., 2011].

Genes linked to human-specific metabolites were significantly overrepresented in a total
of 27 KEGG pathways (hypergeometric test, BH-corrected p <0.05, Figure 3.4 F). Notably,
these pathways overlapped significantly with pathways enriched in ASD-related metabolic
differences, and included purine, pyrimidine, and pyruvate metabolism (Fisher-test, p <0.01,
Figure 3.5 C).

While the ratio of human-specific metabolic differences to the chimpanzee-specific ones
among 202 ASD-related metabolites coincided with the one for all detected metabolites,
their distribution among the four ASD modules was not uniform. Module 1 contained fewer
human-specific metabolic differences compared to the average, while module 4 contained
approximately five times more (Wilcoxon test, p <0.01, Figure 3.5 B). Notably, module 4 was
particularly enriched in metabolic pathways overlapping between ASD-related and human-
specific differences, including purine and pyrimidine metabolism (Fisher test, p <0.1).
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3.3 Discussion

In this study we show that the metabolite composition of the gray matter of the prefrontal
cortex differs substantially between ASD patients and healthy controls. Despite the moderate
statistical power of the study, as many as 15% of metabolites present in the prefrontal cortex
alter their concentrations significantly in ASD. These metabolites form specific age-dependent
concentration patterns and cluster in specific KEGG pathways.

It is noteworthy that, of the 16 pathways altered in the prefrontal cortex of ASD patients
based on ANCOVA results, 10 were reported in studies analyzing metabolite concentrations of
urine and blood samples, which is significantly more than expected by chance (Fisher test, p-
value <0.05). These pathways include glutathione metabolism, purine metabolism, pyruvate
metabolism, propanoate metabolism, TCA cycle, galactose metabolism, starch and sucrose
metabolism, nicotinate and nicotinamide metabolism, cysteine and methionine metabolism,
and arginine and proline metabolism. Metabolic differences clustering in these 10 path-
ways were all reported in ASD patients’ urine [Yap et al., 2010,Ming et al., 2012, Emond
et al., 2013,Mavel et al., 2013,Cozzolino et al., 2014,Nadal-Desbarats et al., 2014,Ka lużna-
Czaplińska et al., 2014,Noto et al., 2014,Diémé et al., 2015,Gevi et al., 2016, Lussu et al.,
2017, Bitar et al., 2018]. Metabolic differences clustering in the TCA cycle, glutathione
metabolism, and pyruvate metabolism pathways were further reported in ASD patients’
blood [Rossignol and Frye, 2012,West et al., 2014,Wang et al., 2016,Laszlo et al., 1994,James
et al., 2004]. Concentration differences of individual metabolites, such as glutathione and
cysteine concentration decrease, as well as a glutathione disulfide and adenosine concentra-
tion increase in ASD patients identified in our study (Figure 3.4 C), were similarly reported
in blood [James et al., 2004]. Furthermore, the same direction and magnitude of the con-
centration differences between ASD patients and controls were observed for glutathione and
glutathione disulfide in the cerebellum and temporal cortex [Rose et al., 2012]. Similarly,
concentration differences of 3-methoxytyramine and 5,6-dihydrouridine that increased in the
cerebellum of ASD patients [Graham et al., 2016] were detected and reproduced in our
dataset. At the gene expression level, the differences reported in the neocortex of ASD
patients [Voineagu et al., 2011] were greater for genes linked to ASD-related metabolites
identified in our study compared to genes linked to the other detected metabolites. Taken
together, these observations confirm the previous results and indicate a general agreement
between ASD-related metabolic differences detected in the brain and differences detected in
the blood and urine analysis. Purine metabolism is particularly interesting, as purinergic sig-
naling is involved in neurodevelopment processes, including cell proliferation, differentiation
and neuron-glia cross-talk [Burnstock, 2011, Burnstock et al., 2011]. Moreover, purinergic
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signaling was shown to be altered in multiple psychiatric disorders, including ASD [Cheffer
et al., 2018].

Our analysis further yielded a number of novel observations. First, we uncovered novel
metabolic differences complementary to previously reported ones. For instance, within the
glutathione pathway, we show that in addition to a glutathione concentration decrease,
two other metabolites, L-cysteinylglycine and L-γ-glutamyl-L-cysteine, display concentra-
tion differences in ASD. Further, enzymes catalyzing reactions involving glutathione, L-
cysteinylglycine, and L-γ-glutamyl-L-cysteine contain genetic variants previously linked to
ASD [Ming et al., 2010,Buyske et al., 2006,Anney et al., 2010].

Second, we identified a number of metabolic pathways that were not previously linked to
ASD, including pyrimidine metabolism, β-alanine metabolism, and three pathways related
to drug metabolism by cytochromes. Metabolic processes in these pathways are connected to
the reported ones. For instance, changes in pyrimidine metabolism might be linked to purine
metabolism alterations, as both pathways involve the essential precursors for RNA and DNA
synthesis and are well interconnected. Furthermore, pyrimidine nucleotides are involved
in polysaccharide and phospholipid synthesis, detoxification processes, as well as proteins’
and lipids’ glycosylation [Loffler et al., 2005]. Notably, functional deficiency of pyrimidine
pathway genes, such as uridine monophosphate synthase (UMPS ), dihydropyrimidine dehy-
drogenase (DPYD), Dihydropyrimidinase (DPYS ), beta-ureidopropionase 1 (UPB1 ), leads
to neurological aberrations, including autism-like features in case of DPD deficiency (DPYD
gene deficiency) [Micheli et al., 2011]. Metabolic changes in beta-alanine pathway might be
linked to pyrimidine metabolism pathway, as the main sources of β-alanine include catabolism
of cytosine and uracil. Moreover, β-alanine concentration is decreased in DPD (DPYD gene
deficiency), DHP (DPYS gene deficiency), BUP-1 (UPB1 gene deficiency) induced pyrim-
idine pathway deficiencies [Micheli et al., 2011]. In addition, key enzymes participating in
cytochrome mediated drug metabolism are also involved in glutathione metabolism pathway.

Third, we show that machine learning algorithms could accurately separate ASD patients
from unaffected controls using brain metabolite concentrations. Notably, metabolites used
by the predictive model cluster in 14 of the 16 pathways were discovered using ASD-related
metabolites identified by ANCOVA.

Fourth, by conducting brain metabolome measurements in nonhuman primates, we show
that ASD-related metabolites falling within module 4 contain an almost 8-fold excess of
metabolic differences unique to humans, compared to the chimpanzee-specific differences.
Accordingly, a number of pathways enriched in ASD-related metabolic differences also show
an excess of human-specific metabolic differences. These pathways include purine, pyru-
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vate metabolism, TCA cycle, and galactose metabolism. Moreover, these results agree with
previous study results obtained using GC-MS, which reported an excess of human-specific
metabolite concentration differences [Fu et al., 2011]. Taken together, these findings align
well with the hypothesis postulating disruption of recently evolved cognitive mechanisms
underlying communication and socialization in ASD.

More generally, our results indicate the presence of substantial brain metabolism alter-
ation in ASD. Remarkably, many of these alterations, both at the pathway level and at the
level of individual metabolites, coincide with the differences reported in urine and blood sam-
ples. This finding underscores the potential of metabolic studies conducted in non-nervous
tissues. At the same time, our brain tissue analysis reveals additional metabolic differences,
contributing to a more systematic understanding of the disease.
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Chapter 4

Lipidome alterations in human prefrontal

cortex in cognitive disorders

In this chapter, we investigated involvement of lipids in brain disorders, for this purpose
we conducted mass spectrometry-based untargeted lipidome profiling in prefrontal cortex of
403 cognitively healthy humans with ages spanning the entire lifespan, as well as 17 autism
(ASD), 27 schizophrenia (SZ) and five Down syndrome (DS) patients. Of the 5,024 hydropho-
bic compounds (lipids) detected in our dataset, 10.8%, 10.4% and 2.6% of detected lipids alter
their concentrations significantly in DS, SZ and ASD, respectively. Lipids associated with
the three disorders have convergent enrichment in glycerophospholipid metabolism and endo-
cannabinoid signaling pathways. Moreover those results were supported by an independent
dataset, which contained 40 cognitively healthy humans and 33 ASD parients.

4.1 Materials and Methods

4.1.1 Samples

Samples from cognitively unaffected human controls were collected from the NICHD Brain
and Tissue Bank for Developmental Disorders and the Maryland Psychiatric Research Center
at the University of Maryland, the Maryland Brain Collection Center, the Netherlands Brain
Bank, and the Chinese Brain Bank Center (CBBC, http://cbbc.scuec.edu.cn, Wuhan,
China). Samples from patients with Down syndrome were collected from the Netherlands
Brain Bank. Samples from patients with autism or schizophrenia were collected from NICHD
Brain and Tissue Bank for Developmental Disorders at the University of Maryland, the Har-
vard Brain Tissue Resource Center and the Maryland Psychiatric Research Center. Brain
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tissue from subjects with autism was obtained through the Autism Tissue Program [Brima-
combe et al., 2007]. Diagnosis of schizophrenia is based on DSM IV-based criteria and was
provided by the participating brain banks. Written consents for the use of human tissues for
research were obtained either from the donors or their next of kin. According to the protocol
of the CBBC, specific permission for brain autopsy and use of the brain tissue for research
purposes was given by the donors or their relatives. All tissue samples were shipped by the
brain banks without accompanying personal identifier information. All human samples in
this project were extracted from the prefrontal cortex (PFC), which were dissected from the
anterior part of the superior frontal gyrus. The sample weights are 12.55 ± 1.65mg. All
samples were well preserved postmortem samples that had been stored at -80oC before RNA
or lipid extraction.

4.1.2 MS sample preparation and measurements

Metabolites were extracted from 10-15 mg of frozen tissue, which was homogenized by a ball
mill to a fine powder, as described elsewhere [Bozek et al., 2015]. In brief: the frozen tissue
was transferred to cooled 2 ml round bottom microcentrifuge tubes and each sample was
re-suspended in 1 ml of a -20oC methanol:methyl-tert butyl-ether (1/3 (vol/vol)) mixture,
containing 1.5 µg of 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids,
850360P). The samples were immediately vortexed before they were incubated for 10 min
at 4oC on an orbital shaker. This step was followed by ultra-sonication in an ice-cooled
bath-type sonicator for additional 10 min. To separate the organic from the aqueous phase
650 µl of a H2O:methanol mix (3/1 (vol/vol)) was added to the homogenate, which was
shortly vortexed before it was centrifuged for 5 min at 14,000 g. Finally, 500 µl of the upper
MTBE phase, which contains the hydrophobic compounds (lipids), were sampled to a fresh
1.5 ml microcentrifuge tube. This aliquot can either be stored at -20oC for some weeks or
immediately dried in a speed vacuum concentrator at room temperature.

Prior to analysis, the dried pellets were re-suspended in 400 µL acetonitrile:isopropanol
(7/3 (vol/vol)), ultra-sonicated and centrifuged for 5 min at 14,000 g. The cleared super-
natant was transferred to fresh glass vials and 2 µL of each sample was injected onto a C8
reverse phase column (100 mm x 2.1 mm x 1.7 µm particles, Waters) using a UPLC sys-
tem (Acquity, Waters, Manchester, UK). In addition to the individual samples, we prepared
pooled samples, namely 10 µl of each sample was mixed. These pooled samples were mea-
sured after every 20th sample, providing us information on system performance including
information on sensitivity, retention time consistency, sample reproducibility and compound
stability.
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The mobile phase for the chromatographic separation consisted of (Buffer A): 1% 1M
ammonium acetate, 0.1% acetic acid in UPLC MS grade water (BioSolve, Valkenswaard,
Netherlands), while Buffer B consisted of 1% 1M ammonium acetate, 0.1% acetic acid in
acetonitrile/isopropanol (7/3 (vol/vol)), Biosolve). The flow rate of the UPLC system was
set to 400 µL/min. The gradient was: 1 min isocratic flow at 45% A, 3 min linear gradient
from 45% to 25% A, 8 min linear gradient from 25% to 11% A, 3 min linear gradient from
11% to 1% A. After cleaning the column for 4.5 min at 1% A, the buffer was set back to 45%
A, and the column was re-equilibrated for 4.5 min, resulting in a final run time of 24 min
per sample.

The mass spectra were acquired using an Orbitrap-type mass spectrometer (Orbitrap-
XL, Thermo-Fisher, Bremen, Germany). The spectra were recorded using full scan mode,
covering a mass range from 100-1500 m/z. The resolution was set to 60,000 with 2 scans
per second, restricting the maximum iontime to 100 ms. The samples were injected using
the heated electrospray ionization source (HESI) and the capillary voltage was set to 3.5 kV
in positive and negative ionization mode. The sheath gas flow value was set to 40, while
the auxiliary gas flow was set to 20. The capillary temperature was set to 200oC, while the
drying gas in the heated electro spray source was set to 350oC. The skimmer voltage was set
to 20 V while the tube lens was set to a value of 140V. The spectra were recorded from 0
to 20 min of the UPLC gradients. Sample randomization was performed twice: before the
lipid extraction and before the mass spectrometry measurements. Persons performing lipid
extraction and lipidome measurement were unaware of sample information, including age and
diagnostic status. The correlation between the measurement order and sample age were not
significant (positive ionization mode: ρ=0.006, P>0.8; negative ionization mode: ρ=-0.002,
P>0.9). Similarly, there was no significant relationship between measurement order and
health status or ethnicity (Wilcoxon rank sum test, nominal P>0.3). The MS preparation
and measurement procedure for autistic samples in DS2 has been described elsewhere [Li
et al., 2017].

4.1.3 Lipidome data preprocessing

MS lipids were extracted and aligned across samples using Progenesis QI software (Version
2.3, Nonlinear Dynamics, Newcastle upon Tyne, UK) according to the vendor description in
order to perform peak peaking. Next the software automatically detects the different isotope
peaks, clustered them together, and reported summed intensity as the monoisotopic mass
retention time feature. The resulting features were next searched against LIPID MAPS with a
mass tolerance of 10 ppm, allowing [M+H], [M+NH4], [M+Na], [M−H2O+H] modifications as
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possible adducts in the positive ionization mode, and [M−H] and [M+oAC−H] modifications
in the negative ionization mode. Finally, only the reliably detected lipids satisfying the
following criteria were retained: a) retention time (RT) ≥ 0.6 min; b) detected in at least
90% of pooled samples and at least 80% of non-pooled samples. Quantile normalization was
applied to the log10-transformed concentration of reliably detected lipids. The batch effect
correction was done based on a linear regression model.

Data preprocessing procedure for lipid concentrations measured in DS2 has been described
elsewhere [Li et al., 2017]. The batch effect correction was done using the fitted support
vector regression model with a Gaussian kernel, considering the concentration of each lipid
as a function of the measuring order of the samples. An upper quartile normalization was
used to normalize the lipid concentration measurements.

4.1.4 Lipid annotation and enrichment analysis

Lipid annotations were performed using mass search with a tolerance of 10 ppm against the
LIPID MAPS database annotation [Fahy et al., 2009], using the list of adducts described
elsewhere [Bozek et al., 2015]. Lipid classes were assigned to the annotated lipids accord-
ing to the LIPID MAPS database classification. Pathways were assigned according to the
KEGG database annotation [Kanehisa et al., 2017]. Overrepresentations of lipid classes and
pathways compared to random sampling from detected lipids with annotations were tested
using one-sided Fisher’s exact tests and hypergeometric tests, respectively, followed by BH
corrections. Significant enrichment was defined as BH-corrected P<0.05.

4.1.5 Disorder-associated lipids identification

Disorder-associated analyses were conducted for patient samples of each neural disorder and
matched control samples, respectively. To eliminate the confounding effects of ages, only
the cognitively healthy samples with matched age ranges as the patient samples, i.e. 18 to
65 years old, were used. The Han Chinese cognitively healthy samples were also removed
from the analysis to avoid confounding the effect of ethnicities. Two latent batches in the
dataset were detected by hierarchical clustering (complete linkage), based on the pairwise
distance between each pair of samples defined as 1− ρ, where ρ is the Pearson’s correlation
coefficient between the two samples across concentrations of all the detected lipids. The
latent batch effect on the lipidome was corrected using the linear model as that for the batch
effect correction.

50



Based on the corrected lipid concentrations, the disorder-associated lipids were identified
using Wilcoxon rank sum test to compare the lipid concentrations in patient samples of each
disorder and the control samples, with nominal P<0.01. Permutation of diagnostic status
1,000 times were used to estimate test significance.

For autism DS1 and DS2 analysis, we used methodology described in chapter 3.1.5.

4.1.6 Quantification of disorder effect on lipid concentration vari-

ance

To estimate the lipid concentration variance explained by the diagnostic status, we fit a linear
model for each lipid, using lipid concentration as the response variable and diagnostic status
as the predictor variable. The disorder effect was quantified as the ratio of the explained
sum of squares (ESS) relative to the total sum of squares (TSS). To perform estimations
with age, sex, PMI distributions and sample size equalized among disorders, we performed
bootstrapping 100 times (sample size=5) and fit two models to each detected lipid. The
null model considered the effect of age, sex and PMI on lipid concentration, while the full
model further considered the effect of the disorder. The proportion of variance explained by
diagnostic status was calculated as the difference of the residual of null model and that of
the full model relative to the residual in the null model.

4.2 Results

4.2.1 The PFC lipidome composition is altered in common cognitive

disorders

Wemeasured the lipidome composition in PFC samples from 26 schizophrenia (SZ), 16 autism
(ASD) and five Down syndrome (DS) patients aged 18 to 65 (Figure 4.1 A). The disorder
samples were measured together with 403 samples from 396 cognitively healthy individuals
in a random order.

For the 18-65 age interval, the diagnostic status explained the largest proportion of the
total lipid concentration variation (6%, permutations, P<0.01), compared to age (4%, per-
mutations, P<0.01) and PMI (1.7%, permutations, P<0.01). Other factors, i.e. ethnic-
ity, sample quality and sex did not affect lipidome composition significantly (permutations,
P>0.15). The effect of the diagnostic status was robust to correction for sample size, age, sex
and PMI for all the three disorders (Wilcoxon rank sum test, Bonferroni-corrected P<0.0001;
Figure 4.2).
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Figure 4.1: Disorder-associated (DA) lipidome changes in the human PFC [Yu et al., 2018].
(a) Age distribution of patients with autism (ASD, green), schizophrenia (SZ, purple), Down
syndrome (DS, pink), and matched controls (blue). Each symbol represents an individ-
ual (circle males, triangle females). Numbers in brackets show numbers of individuals in
each group. (b) Numbers of DA lipids for each disorder (red - higher concentration in dis-
ease, blue - lower concentration in disease). (c) Lipid classes (left) and KEGG pathways
(right) enriched in DA lipids. Colors show P values of hypergeometric tests. FAG: fatty
acyl glycosides, MLPK: macrolides and lactone polyketides, Cer: ceramides, OtherSL: other
sphingolipids, PI: glycerophosphoinositols, PE: glycerophosphoethanolamines. (d) Schematic
representation of DA genetic, gene expression and lipid concentration changes in retrograde
endocannabinoid signaling pathway based on the KEGG annotation. Stars mark genes con-
taining genetic variants linked to corresponding disease. Genes with SZ and ASD related
genetic variants were retrieved from GRASP (P<0.05) and SFARI respectively. Gene expres-
sion level changes were calculated using public data retrieved from GEO (ASD: GSE28521,
SZ: GSE53978, DS: GSE5390). (e) Enrichment of DA genetic variants in genes linked to DA
lipids. The y-axis shows the -log10-transformed P value of the hypergeometric test.
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Statistically, 10.8%, 10.4% and 2.6% of detected lipids altered their concentrations signifi-
cantly in DS, SZ and ASD, respectively (disorder-associated (DA) lipids; Wilcoxon rank sum
test, nominal P<0.01; N=542 for DS, N=525 for SZ, N=131 for ASD; permutations, P<0.01
for SZ and DS, P=0.06 for ASD; Figure 4.1 B). Additionally we demonstrated that there is
a significant difference in gene expression between disease and control samples, represented
by absolute values of log2-transformed fold changes, for genes directly interacting with DA
lipids based on KEGG annotation (Wilcoxon rank sum test, P<0.001; Figure 4.2).

Figure 4.2: Lipidome and transcriptome alterations in the three cognitive diseases [Yu et al.,
2018]. (a) Distributions of the average proportions of lipidome concentration variance ex-
plained by diagnostic status, based on bootstrapping over samples with sample size, age, sex,
and PMI distributions equalized among three disorders 100 times. The background is esti-
mated based on comparisons of randomly selected samples from the matched control samples
to all matched control samples 100 times. (b) Distributions of gene expression differences
between disease and control samples, represented by absolute values of log2-transformed fold
changes, for genes directly interacting with DA lipids based on KEGG annotation (colored
boxes). The gray boxes show background distributions calculated by permuting disease and
controls labels 1,000 times. Stars indicate significant differences between distributions in the
two-sided Wilcoxon rank sum test (***: nominal P <0.001). Gene expression differences
were calculated using public datasets retrieved from GEO: ASD-GSE28521, SZ-GSE53978,
DS-GSE5390.

Of the six disorder-associated lipid groups, sorted by disorders and concentration change
directions, five were enriched in specific lipid classes and all six were enriched in functional
pathways (one-sided Fisher’s exact test, BH corrected P<0.1; Figure 4.1 C). Notably, general
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Figure 4.3: Autism-associated lipidome changes in DS2 [Yu et al., 2018]. (a) Age distribu-
tion of the PFC samples from matched controls (purple) and patients with autism (green)
in DS2. Each symbol represents an individual (circle - male, triangle - female). Numbers
in brackets show numbers of individuals for each group. (b) Nominal P values of hyper-
geometric test in pathway enrichment analysis calculated based on DS1 (x-axis) and DS2
(y-axis) lipids with decreased concentrations in autism samples identified independently in a
respective dataset. Each circle represents one pathway. The black arrow marks three over-
lapping circles corresponding to three pathways with the same enrichment significance level,
with names of these and other pathways enriched in both datasets (nominal P<0.1) listed.
(c) The schematic representation of autism-associated gene expression and lipid concentra-
tion changes in retrograde endocannabinoid (eCB) signaling pathway. The structure of the
pathway is based on the KEGG annotation.

lipid concentration decrease in "retrograde endocannabinoid signaling" and "glycerophos-
pholipid (GP) metabolism" pathways was shared among all three disorders. By contrast,
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pathways enriched in lipids showing increased concentrations in disorders were particular to
each disease (Figure 4.1 C, D).

To assess the validity of these results, we designed a replication experiment and gen-
erated an independently measured lipidome dataset containing 33 PFC samples of autism
patients used in [Liu et al., 2016] and 40 matched controls included in DS2 processed in
randomized order (autism DS2). The analysis, based on 9,058 lipids detected in this dataset,
yielded consistent pathway enrichment results obtained using all 600 independently identified
autism-associated lipids (one-sided Fisher’s exact test, P=0.02), as well as 319 lipids with de-
creased concentrations in autism samples (Pearson correlation coefficient = 0.96, P<0.0001,
Figure 4.3).

An analysis of genetic variants linked to each of the three disorders by genetic and
genome-wide association studies and collected in the corresponding databases (GRASP,
SZDB, SFARI) revealed strong enrichment in genes linked to lipids with decreased concen-
trations in SZ (hypergeometric test, P=0.0004; Figure 4.1 E). This enrichment was robust to
the choice of SZ-associated genetic variants from GRASP [Leslie et al., 2014] and SZDB [Wu
et al., 2016] databases (Figure 4.1 E). A functional analysis of these genes yielded 19 path-
ways containing excesses of SZ-linked genetic variants (hypergeometric test, BH-corrected
P<0.01). These pathways included "phosphatidylinositol signaling", which was also identi-
fied in lipid class analysis (Figure 4.1 C), as well as “long term depression” and "glutamatergic
synapse".

4.2.2 Membrane fluidity alterations inferred based on lipidome

composition

The extent of membrane fluidity, an important biological parameter characterizing membrane
biochemical and physiological properties, could be inferred from the membrane lipidome
composition [Lauwers et al., 2016, Gennis, 1989, Heimburg, 2007]. We assessed membrane
fluidity alterations in ASD, SZ and DS, using the following lipidome features: (i) the total
cholesterol concentration, (ii) the cholesterol to phospholipids ratio, the proportion of (iii)
saturated phospholipids, (iv) glycerophosphocholines and (v) glycerophosphoethanolamines,
which negatively correlating with membrane fluidity, as well as the relative unsaturation
state of fatty acyl chains of (vi) GP, (vii) PC and (viii) PE, which positively correlating with
membrane fluidity [Lauwers et al., 2016, Gennis, 1989, Heimburg, 2007]. In disorders, SZ
samples demonstrated increased membrane fluidity compared to age-matched controls, while
ASD and DS samples had decreased membrane fluidity (Figure 4.4).
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Figure 4.4: Predicted membrane fluidity levels in disorders [Yu et al., 2018]. Relative mem-
brane fluidity estimates in three disorders using the following features (from top to bottom):
(i) total cholesterol concentration, (ii) ratio of cholesterol to phospholipid concentration, pro-
portion of saturated (iii) phospholipids, (iv) PC, (v) PE and relative unsaturation degree of
fatty acyl of (vi) GP, (vii) PC and (viii) PE, respectively. Each cell shows log2-transformed
fold change in disorder compared to age-matched controls. Gray cells represent the absence
of significant changes (Wilcoxon rank sum test, BH-corrected P>0.1).

4.3 Discussion

Lipid concentration changes were reported for specific lipid classes in many cognitive disor-
ders, including SZ [Kaddurah-Daouk et al., 2007,McEvoy et al., 2013,Orešič et al., 2012,Sol-
berg et al., 2016,Tessier et al., 2016,Schwarz et al., 2008,Sethi et al., 2017], ASD [El-Ansary
et al., 2011,Kim et al., 2010], DS [Adelekan et al., 2012], bipolar disorder [Schwarz et al.,
2008,Chung et al., 2007] and Alzheimer’s disease [Chan et al., 2012]. In our study, 27 SZ,
17 ASD and five DS patients samples were measured together with the control group in a
random order. Overall, despite limited sample numbers, our results confirm the existence
of substantial changes in the PFC lipidome composition in all three disorders. Notably, we
demonstrate that SZ-associated genetic variants are robustly enriched in genes linked to lipids
showing decreased concentrations in SZ in our study. Thus, at least in SZ, lipid concentration
changes might be linked to disease causes.
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All three diseases show parallel lipid concentration alterations in two pathways: "retro-
grade endocannabinoid signaling" and "glycerophospholipid metabolism". Retrograde en-
docannabinoid signaling, also known as endocannabinoid (eCB) signaling, was shown to
play an important role in the control of emotional responses, contextual behavior reac-
tions and social interactions [Karhson et al., 2016,Wei et al., 2017]. Changes in concen-
trations of endocannabinoids and cannabinoid receptors were reported in SZ [Eggan et al.,
2008,Muguruza et al., 2013], ASD [Chakrabarti et al., 2015], and Huntington’s disease [Pa-
zos et al., 2008]. In our analysis, lipids with decreased concentrations in autism samples in
DS1 and DS2 are both enriched in eCB signaling pathway (Figure 4.3). Of the two well-
characterized endocannabinoid compounds involved in eCB, arachidonylethanolamide (AEA)
shows a concentration decrease in autism DS2 (Figure 4.3), consistent with results obtained
in model organisms [Karhson et al., 2016,Wei et al., 2017]. The second endocannabinoid,
2-arachydonoyl glycerol (2-AG), shows increased concentration in ASD in both DS1 and
DS2, as well as in SZ. Consistently, a 2-AG concentration increase was reported in the PFC
of SZ patients [Muguruza et al., 2013]. Concentrations of other lipid components of eCB
signaling pathway, eCB biosynthesis and degradation products, were not assessed previously.
Our results indicate that eCB biosynthesis intermediates, i.e. glycerophosphocholines (PC),
glycerophosphoethanolamines (PE) and diacylglycerol (DAG) are mainly decreased in all
three disorders, although DAG concentration increases in DS2 - the only contradictory re-
sult between datasets among seven detected metabolites. The degradation products, i.e.
prostaglandin H2 (PG-G) and arachidonate (AA) are decreased and increased respectively
(Figure 4.1 D, Figure 4.3 C).

For the other pathway showing an overall lipid concentration decrease in the three disor-
ders, "glycerophospholipid metabolism" (GP metabolism), lipid concentration decreases and
increases were both reported in SZ [Kaddurah-Daouk et al., 2007,Orešič et al., 2012,Tessier
et al., 2016,Schwarz et al., 2008,Sethi et al., 2017]. Our results indicate that, similar to eCB
signaling, the disruption of GP metabolism might be a common feature of cognitive dysfunc-
tions. Furthermore, GP metabolism includes metabolism of PC, PE, and DG participating
in eBC biosynthesis. Decreased levels of PC and PE were reported in SZ [Berger et al.,
2006, Schmitt et al., 2004]. Thus, the two pathways showing an overall lipid concentration
decrease in the disorders are linked.

Among lipidome changes particular to each disease, some could be linked to the reported
changes. For instance, a lower concentration of cardiolipin, the critical component of the inner
mitochondrial membrane, in SZ (Figure 4.1 C) matches elevated anti-cardiolipin antibody
levels reported in SZ patients [Chang et al., 2011,Careaga et al., 2013]. Similarly, elevated
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levels of triradylglycerols (TG) in DS match the reported overexpression of genes involved
in energy consumption and oxidative stress in DS patients [Helguera et al., 2013], as TG
represent one of the major energy sources, and were linked to an increase of lipid peroxidation
markers [Pérez-Rodŕıguez et al., 2015].
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Chapter 5

Lipidome evolution in mammalian tissues

In this chapter, we performed large-scale analysis of the lipidome evolution in six tissues of
32 species representing primates, rodents, and bats. While changes in genes’ sequence and
expression accumulate proportionally to the phylogenetic distances, <2% of the lipidome
evolves this way. Yet, lipids constituting these 2% are clustered in specific functions shared
among all tissues. Among species, human show the largest amount of species-specific lipidome
differences. Many of the uniquely human lipidome features localize in the brain cortex and
cluster in specific pathways implicated in cognitive disorders.

5.1 Materials and Methods

5.1.1 Samples

Human samples were obtained from the NICHD Brain and Tissue Bank for Developmental
Disorders at the University of Maryland, the Netherlands Brain Bank, and the Chinese
Brain Bank Center (CBBC, http://cbbc.scuec.edu.cn, Wuhan, China). In accordance
with the protocols of these institutions, specific permission for brain autopsies and the use
of brain tissue for research purposes was given by the donors or their relatives. The use of
human autopsy tissue is considered nonhuman subject research and is IRB exempt under
NIH guidelines. All subjects were defined as healthy with respect to the sampled tissue by
forensic pathologists at the corresponding tissue bank. All subjects suffered sudden death
with no prolonged agony state.
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Primate samples were obtained from Simian Laboratory Europe (SILABE) in Strasburg,
research unit CNRS-MNHM 717 in Brunoy, France, the German Primate Center (DPZ) in
Goettingen, the Max Planck Institute for Anthropology in Leipzig, Germany, the Suzhou
Experimental Animal Center in China, the Anthropological Institute and Museum of the
University of Zurich-Irchel, Switzerland, and the Biomedical Primate Research Centre in the
Netherlands. All nonhuman primates used in this study suffered sudden deaths for reasons
other than their participation in this study and without any relation to the tissue used.

Rodent samples were obtained from the University of Rochester Biology Department,
MDC Berlin, Department of Zoology and Entomology, University of Pretoria, and the animal
center at the Shanghai Institute for Biological Sciences. All mice were from the C57/BL6
strain with no genetic modifications. Bat samples were obtained from Kunming Institute
of Zoology of the Chinese Academy of Sciences. The use and care of the animals in this
research was reviewed and approved by the Biological Research Ethics Committee, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences. All samples were lawfully
acquired and their retention and use were in every case in compliance with national and local
laws and regulations. Additionally, all nonhuman samples acquisition, retention and use were
in every case in accordance with the Institute for Laboratory Animal Research (ILAR) Guide
for the Care and Use of Laboratory Animals.

5.1.2 Normalization of concentrations

To limit potential technical artifacts, mass spectrometric peaks that had zero values in>50%
of individuals were removed. All peak concentration values were then normalized by the
internal standard (IS) - 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine concentration levels
and log2 transformed. Before the log2 transformation, we added 1 to the concentration
values in order to avoid infinite values. Missing concentration values were ignored in further
analyses. Normalized concentrations were transformed into Z-scores for each peak.

5.1.3 Peak annotation

Peaks were matched to the LIPID MAPS database as described [Fahy et al., 2009]. Peaks
showing a correlation>0.7 and a difference in RT of<0.05 that matched the same hydropho-
bic compound in the database search were merged together. This procedure resulted in the
merging of 427−880 peaks in different tissues into composite peaks of size of up to six. As a
result, the data sets contained between 5,313 and 13,067 compounds in different tissues and
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ionization modes and between 13,089 (cerebellum) and 20,669 (heart) compounds in both
ionization modes together (Figure 5.2 B).

We used LIPID MAPS [Fahy et al., 2009], HMDB [Wishart et al., 2012], and KEGG
[Kanehisa et al., 2017] database annotations to assign each identified compound to its lipid
class, subclass, and pathway. Unannotated peaks were excluded from further analysis. About
1,231 peaks were detected and annotated across all six tissues, and were further used to
estimate the relationship among samples with a multidimensional scaling algorithm, after
quantile normalization of concentration values (Figure 5.2 C).

We tested the overrepresentation of lipid classes, subclasses, and pathways in a given
group of peaks (lipids) using a hypergeometric test corrected for multiple testing by the
Benjamini and Hochberg method (Figure 5.3 E and 5.4 E).

5.1.4 Identification of lipids and genes that follow phylogeny

To estimate lipid concentration changes during evolution, we fitted a linear model for each
lipid using concentration differences between any two samples as dependent variables and
phylogenetic distances for the same samples as independent variables. Phylogenetic dis-
tances were obtained from the phylogenetic tree http://www.timetree.org/ [Kumar et al.,
2017]. Based on the linear models, for each lipid we estimated a coefficient of determination
(R2), which in this case is a measure of the relationship between concentration differences and
phylogenetic distances. Additionally, we quantified the phylogenetic signal in lipid evolution
using Blomberg’s K as described in [Ma et al., 2015]. As both approaches yielded similar
results we defined phylogeny-dependent lipids as the ones with R2 ≥ 0.1 (Figure 5.3 A). To
determine the validity of this cutoff, we calculated Spearman correlations between concentra-
tion differences and phylogenetic distances. All lipids with concentration differences between
species following phylogenetic distances demonstrated positive correlation coefficients. More-
over, we obtained qualitatively similar results at a different R2 cutoff (R2 ≥ 0.2).

To construct the background distribution of R2 values, we performed 1,000 permutations
of species labels across samples within clades, and for all samples as well, and repeated
R2 calculation procedure described above for each permutation (Figure 5.3 A). The same
procedure was carried out in Blomberg’s K distribution analysis.

Additionally, we performed permutations for individual lipids. Specifically, in each tissue,
we performed 1,000 permutations of species labels, while preserving data structure, that is, all
individuals representing one species were switched to a new species label together. We then
defined the permutation P value as the proportion of permutations where the coefficient of
determination (R2) or Blomberg’s K was higher than or equal to the original one. All lipids
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defined as phylogeny-dependent by either R2 or Blomberg’s K passed the permutation P
value cutoff of 0.05, and >93% passed the permutation P value cutoff of 0.01 (Figure 5.1).
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Figure 5.1: Dependence between R2 values and R2 permutation p-values calculated for each
lipid separately in six tissues [Khrameeva et al., 2018].

The exact same analysis was performed for the gene expression data set GSE43013 [Fushan
et al., 2015]. For the data set preprocessing, genome annotations were obtained from En-
sembl, release 90. Paired-end reads were downloaded from SRA and mapped using STAR
v2.5.3a with default settings. Average gene expression levels were calculated as FPKM using
RSEM v.1.2.31. Orthologs were obtained from Ensembl biomart, release 90. To eliminate un-
ambiguity, genes that had more than one ortholog in the same species were removed. Further,
FPKM values were log2 transformed, and quantile normalization was applied. Genes that had
missing values in ≥ 50% of individuals were removed. To compare percentages of phylogeny-
dependent protein-coding genes and lipids, we analyzed transcriptome and lipidome data in
a matching subset of three tissues of eight species: H. sapiens, P. troglodytes, M. mulatta,
M. musculus, R. norvegicus, M. auratus, C. porcellus, H. glaber (Figure 5.3 B).

Additionally, we repeated the same analysis for the gene expression data set GSE30352
[Brawand et al., 2011]. To compare percentages of phylogeny-dependent protein-coding genes
and lipids, we analyzed transcriptome and lipidome data in a matching subset of four tissues of
eight species: P. troglodytes, M. mulatta, H. sapiens, C. capucinus, C. jacchus, M. musculus,
H. glaber, and H. armiger for lipidome data and P. troglodytes, M. mulatta, H. sapiens, M.
musculus, G. gorilla, P. pygmaeus, M. domestica, and O. anatinus for transcriptome data.
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5.1.5 Identification of protein coding sequences that follow phy-

logeny

Orthologous coding sequences for mammal species were obtained from the OrthoMaM
database (v9) [Douzery et al., 2014]. We estimated pairwise distances between two or-
thologous sequences using the Jenson-Shannon divergence measure implemented in Spaced
words software [Horwege et al., 2014]. To fit linear models, the obtained Jenson-Shannon
divergences were used as dependent variables, and phylogenetic distances between the same
species were used as independent variables. Based on the linear models, for each protein
sequence we estimated a coefficient of determination (R2). Further steps were performed
exactly as for lipids (see above, Figure 5.6 A).

5.1.6 Analysis of lipid concentration differences within and between

species

To construct the control lipid group, we selected a subset of remaining lipids so as to ensure
its size and concentration distribution were the same as those of phylogeny-dependent lipids.

To estimate intraspecies differences of lipid concentrations among individuals, we cal-
culated pairwise Spearman correlations of concentrations between samples derived from the
same species (Figure 5.3 D). To estimate interspecies differences of lipid concentrations among
individuals, we calculated pairwise Spearman correlations of concentrations between samples
derived from different species (Figure 5.3 C). Since evolutionarily distant species might yield
lower interspecies Spearman’s correlation coefficients than the closely related ones, we addi-
tionally normalized the obtained values by the average phylogenetic distances between this
species and the rest. For all lipids, we defined intraspecies concentration differences as 1
minus the intraspecies Spearman correlation and interspecies concentration differences as 1
minus the interspecies Spearman correlation. All calculations were performed for each tissue
separately.

To confirm our observations, we repeated the analysis for phylogeny-dependent lipids
defined using Blomberg’s K as described in [Ma et al., 2015] at K≥ 1.2 cutoff.

5.1.7 Identification of species-specific lipids

For each lipid, we compared concentrations in one species against all other species using
the Wilcoxon test. If the Wilcoxon test P value was lower than the chosen cutoff (0.01),
the lipid was defined as species-specific (Figure 5.4 A). To balance the number of samples
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per species, we randomly selected three samples in each species, repeated the procedure 100
times, and calculated the sum number of species-specific lipids among 100 iterations for each
species. Because the analysis was applied to each species and each tissue separately, it was
limited to 23 out of 32 lineages containing at least three biological replicates in a given tissue.
Since evolutionarily distant species might yield higher numbers of species-specific lipids than
the closely related ones, we normalized the obtained numbers of species-specific lipids by
the average phylogenetic distances between this species and the rest. To test whether the
observed number of species-specific lipids was higher than expected by chance, we permuted
species labels between samples 100 times, each time calculating the number of species-specific
lipids as described earlier. For each species, we then calculated the permutation P value as
the proportion of permutations resulting in an equal or greater number of significant lipids
at the chosen nominal significance cutoff (0.01, Figure 5.4 B). The analysis was performed
for lipids measured in the negative ionization mode only, which included the majority of
detected lipids.

To confirm our observations with an alternative approach, we estimated the number
of species-specific lipids using the Ornstein-Uhlenbeck (OU) model, as implemented in R
package ouch [Butler and King, 2004]. To find whether changes in optimal lipid concentration
have occurred at a particular branch of the phylogenetic tree, we tested the null hypothesis
that all branches share the same optimum parameter against the alternative hypothesis that
there is a distinct optimum at a different phylogenetic branch corresponding to a particular
species. For each lipid, we built an S0 model (one global optimum across all species) and
S1, S2, . . ., Sx models (different optimums for particular species x). Based on these models,
we used the likelihood ratio test between a species-specific selective regime Sx model and
the S0 model. The likelihood ratio between Sx and S0 had an asymptotic χ2 distribution
(with one degree of freedom) from which a P value could be calculated. If the P value was
lower than the chosen cutoff (0.01), the lipid was defined as species-specific. To balance the
number of samples per species, we randomly selected three samples in each species, repeated
the procedure 100 times, and calculated the sum number of species-specific lipids among 100
iterations for each species. To test whether the observed number of species-specific lipids was
higher than expected by chance, we performed permutations exactly as described earlier for
species-specific lipids defined using the Wilcoxon test.

5.1.8 Comparison with published data set

We defined lipids with human-specific concentration changes as lipids demonstrating
Wilcoxon test P values (for human-vs-other-species comparisons) of < 0.05 in 95% of boot-
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straps in one tissue. Bootstraps were performed via the random selection of three individuals
per species, repeated 100 times. Lipids with missing values in≥ 50% of permutations were
removed. To compare the remaining lipids with a published data set [Bozek et al., 2015]
we selected lipids with a common annotation in both data sets. In cases when multiple
LIPIDMAPS IDs were assigned to each lipid, we selected lipids that shared the greatest
number of LIPIDMAPS IDs in the two data sets. We plotted concentration distributions
for these lipids (Figure 5.4 D). Additionally, we calculated log2-fold changes between human
lipid concentrations and average lipid concentrations of chimpanzees, macaques, and mice
(Figure 5.4 C). To check if log2-fold change values were in agreement between data sets, we
performed the Fisher’s test.

5.1.9 Human-specific gene expression changes

We defined lipids with human-specific concentration changes as lipids demonstrating
Wilcoxon test P values (for human-vs-other-species comparisons) of < 0.01 in 75% of boot-
straps (three random individuals per species) in one tissue. We selected enzymes directly
linked to the lipids according to the KEGG database [Kanehisa et al., 2017], and defined
protein-coding genes with human-specific expression as those showing Wilcoxon test P
values of <0.05 for humans vs. other primate comparisons in one tissue, according to gene
expression values in the public data set GSE30352 [Brawand et al., 2011] (Figure 5.5 A).

We tested the overrepresentation of KEGG pathways in each gene group using a hy-
pergeometric test corrected for multiple testing by the Benjamini and Hochberg method
(Figure 5.5 B and C).

5.2 Results

5.2.1 Lipidome data description

We analyzed lipid concentrations in the liver (LV), muscle (ML), kidney (KD), heart (HT),
brain cortex (CX), and cerebellum (CB) using 669 samples obtained from 32 mammalian
species representing three phylogenetic clades: rodents, primates, and bats [Bozek et al., 2017]
(Figure 5.2 A). Our analysis was based on the quantification of > 18,000 (median=18,708)
mass spectrometry features in each tissue corresponding to hydrophobic compounds (lipids)
detected in at least 50% of the individuals of each species. Among these lipids, close to
7,000 (median=6,994) were annotated in each tissue using computational matching to the
hydrophobic compound database [Fahy et al., 2009] (Figure 5.2 B). A multidimensional
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scaling analysis revealed that the samples segregated predominantly according to organ origin
(Figure 5.2 C).

Figure 5.2: Lipidome data overview [Khrameeva et al., 2018]. (a) Phylogenetic tree of 32
mammalian species used in this study. The colors indicate three main represented clades:
rodents (blue), primates (red), and bats (green). (b) Numbers of lipids detected in each
tissue. Gray bars represent annotated lipids. Here and later the tissues are labeled by a
two-letter code: CB, cerebellum; CX, cortex; HT, heart; KD, kidney; LV, liver; ML, muscle.
(c) The relationship among samples are based on concentrations of 1,231 annotated lipids
plotted in two dimensions using a multidimensional scaling algorithm. Symbols represent
tissues, colors represent clades, and points represent individual samples.

5.2.2 Lipidome differences and phylogenetic distances among

species

Most of the genome sequence differences and a substantial proportion of gene expression
differences among species tend to scale linearly with phylogenetic distances. This indicates
that the majority of these changes might have no effect on survival and reproductive abilities
[Lanfear et al., 2010, Kuraku et al., 2016]. We used linear regression and Blomberg’s K
[Blomberg et al., 2003] approaches, analogous to the ones applied in the genome sequence and
gene expression analyses, to identify lipids that change linearly with phylogenetic distances
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between species (phylogeny-dependent lipids). Surprisingly, on average, only 2% of detected
lipids showed this type of concentration differences (R2: median=1.9%, maximum=9.2% in
CB; Blomberg’s K: median=2.1%, maximum=9.1% in CB; Figure 5.3 A and 5.1).

Figure 5.3: Relationship between lipid concentrations and phylogenetic distances
[Khrameeva et al., 2018]. (a) Percentages of lipids with concentration differences among
species scaling with phylogenetic distances (phylogeny-dependent lipids) in each of six tis-
sues. Stars indicate the significance of the difference between observed number distributions
and random expectation (permutations of species labels, P<0.001). (b) Percentages of phy-
logenetic genes (violet) and lipids (green) defined based on the same criteria in three tissues
in a matching subset of eight species. The expression data was taken from [Fushan et al.,
2015]. (c) Distribution of concentration differences measured in all pairwise comparisons
between species for phylogeny-dependent lipids (blue) and the remaining lipids (light gray).
Stars indicate the significance of the difference between the two distributions (two-sided t-
test P<0.0001, n=66,176). (d) Distribution of concentration differences among individuals
within species for phylogeny-dependent lipids (blue) and the remaining lipids (light gray).
Stars indicate the significance of the difference between the two distributions (two-sided t-test
P<0.0001, n=3,916). (e) Enrichment of phylogeny-dependent lipids in specific lipid classes
and subclasses. Colors indicate BH-corrected enrichment P values.
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Notably, the observed proportions of phylogeny-dependent lipids were still significantly
greater than expected by chance in all six tissues (permutations, P<0.001). The result was
not caused by the selection of species used in the study: a parallel analysis of the transcrip-
tome and lipidome divergence in a subset of three tissues of eight species demonstrated that
30-37% of detected protein-coding transcripts showed phylogeny-dependent expression. For
the lipids, however, the median proportion of phylogeny-dependent differences remained low
(3.3%) (Figure 5.3 B).

On an average, phylogeny-dependent lipids showed fewer lipid concentration differences
among species than the remaining lipids in all six tissues combined (two-sided t-test,
n=66,176, P<0.0001, Figure 5.3 C), as well as in each tissue separately, except the cere-
bellum. Furthermore, phylogeny-dependent lipids showed reduced intraspecies variation
(two-sided t-test, n=3,916, P<0.0001, Figure 5.3 D). These results were not caused by the
difference in concentration levels between phylogeny-dependent and the remaining lipids or
by outlier effects.

Remarkably, despite the relatively low numbers of phylogeny-dependent lipids annotated
in each tissue (Nmin=71, Nmedian=148), they showed unusually strong enrichment in the
same lipid class, fatty amides and its subclass N-acyl amides, in all six tissues (hypergeometric
test, n=3,134, 3,979, 5,858, 5,977, 5,685, and 3,384 in CX, CB, HT, KD, LV, and ML,
respectively, FDR<0.01 in each tissue) (Figure 5.3 E). Several other lipid classes, including
phosphosphingolipids, and fatty acyl glycosides, were also enriched in phylogeny dependent
lipids in one or several tissues.

5.2.3 Species-specific lipidome differences

To further assess the evolutionary dynamics of lipid concentration levels, we identified species-
specific differences defined as significant lipid concentration differences between a given
species and the others (Figure 5.4 A). The analysis was based on lipid concentration mea-
surements from three individuals per species, sampled randomly among all measured species’
individuals. Among all 104 tissue and lineage combinations represented by at least three
biological replicates, only three combinations showed significantly more species-specific lipid
concentration differences than expected by chance (permutations, P<0.05 at Wilcoxon test
P<0.01 cutoff) and five showed a marginally significant trend (permutations, P<0.1 at
Wilcoxon test P<0.01 cutoff) (Figure 5.4 B). Of these eight, three were located in the
human lineage: two significant ones in the brain cortex and kidney and one marginally sig-
nificant one in the heart. The use of an alternative approach, the Ornstein-Uhlenbeck (OU)
model,
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Figure 5.4: Species-specific lipid concentration differences [Khrameeva et al., 2018]. (a)
Numbers of lipids showing significant species-specific concentration differences. The distri-
butions show the numbers of such lipids in each of 23 lineages represented by at least three
biological replicates in a given tissue. (b) Numbers of lipids showing significant species-
specific concentration differences in each of 104 tissue and lineage combinations (normalized
by the phylogenetic distances). Error bars show variations of estimates calculated by way
of the random sampling of three individuals per species. Stars and bar colors indicate the
significance of the difference between observed number distributions and random expectation
(permutations, ** and red - P<0.05, * and pink - P<0.1). Green circles indicate the sig-
nificance of the difference between observed number distributions and random expectation
according to the OU model (permutations, oo - P<0.05, o - P<0.1). The rightmost column
shows the cumulative lineage effect calculated as an average -log10 P value of the difference
between observed and chance numbers of species-specific lipids across tissues. (c) Lipid con-
centration differences between humans and the other three species (chimpanzee, macaque,
and mouse) calculated as log2-transformed fold changes of the average values for 183 lipids
showing a significant human-specific concentration difference in our data (Data Set 1) and
detected in the published data set (Data Set 2) [Bozek et al., 2015]. Colors indicate signs of
log2-transformed fold changes in both data sets. The ellipse shows a 90% confidence interval.
(d) An example of the concentrations in the kidney of one lipid (monogalactosyldiacylglyc-
erol, LMGL05010014) shown in the panel (c). (e) Enrichment of lipids with human-specific
concentration differences in specific lipid classes and subclasses. Colors indicate BH-corrected
enrichment P values.

69



confirmed three out of three combinations located in the human lineage (permutations,
P<0.05 at the OU model P<0.01 threshold). Additionally, the human kidney showed a
marginally significant excess of lineage-specific differences (permutations, P<0.1 at the OU
model P<0.01 threshold). By contrast, an excess of species-specific lipidome differences
in the other lineages was not confirmed by the OU model, except the mouse cerebellum
(Figure 5.4 B).

This result indicates the outstanding character of the lipidome evolution in the human
lineage, while a robust detection of more subtle species-specific signals in the other lineages
might require greater sample sizes. Consequently, the human evolutionary lineage stood out
as having the greatest average lineage-specific lipid concentration divergence compared with
the other examined mammalian lineages (Figure 5.4 B).

The excess of lipid concentration changes in the human linage was not caused by dif-
ferences in the postmortem delay among samples, as estimated based on postmortem delay
effects identified in [Bozek et al., 2015]. This excess was not caused by environmental ef-
fects either, as human-specific lipid concentration changes were enriched in the brain, yet
most lipids composing brain tissue are synthesized in the brain and, therefore, are shielded
from environmental and dietary changes by the blood-brain barrier [Sherman and Brophy,
2005,Piomelli et al., 2007].

Additionally, environmental exposure experiments (stress, exercise, and diet factors) con-
ducted in macaques showed that each of the environmental perturbations induced substan-
tially fewer lipid concentration changes compared with the lipidome differences observed
between chimpanzees and humans [Bozek et al., 2015]. Consistently, the largest effect of
environmental factors was observed in the kidney, and the smallest — in the brain prefrontal
cortex [Bozek et al., 2015]. Moreover, human-specific differences detected in this study were
in agreement with the differences calculated using a published lipidome data set [Bozek et al.,
2015] (Figure 5.4 C and D, Fisher’s test, OR=6.5, P<0.0001).

Lipids showing human-specific concentration changes (HS-lipids) in the brain cortex were
clustered in two specific lipid classes, glycerophosphoethanolamines and diradylglycerols and
their three subclasses (Figure 5.4 E). Similarly, enzymes linked to HS-lipids demonstrated
an excess of human-specific expression changes in the cortex (two-sided t-test, n=257,
P=0.0004) (Figure 5.5 A), and were significantly overrepresented in 11 KEGG pathways
(the Kyoto Encyclopedia of Genes and Genomes; [Kanehisa et al., 2017]) (hypergeometric
test, n= 511, BH-corrected P<0.0001, Figure 5.5 B). Of them, three interlinked pathways,
glycerophospholipid metabolism, glycerolipid metabolism, and linoleic acid metabolism path-
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ways, showed the strongest overrepresentation of both protein-coding genes and lipids show-
ing human-specific expression and concentration levels (Figure 5.5 C).

Figure 5.5: Characterization of lipids showing human-specific concentration levels (HS-
lipids) in cortex [Khrameeva et al., 2018]. (a) Distribution showing numbers of protein-coding
genes with human-specific expression in cortex linked to HS-lipids (violet) and control lipids
(gray). Stars indicate the significance of the difference between the two distributions (two-
tailed t-test P<0.001, n=257). (b) Enrichment of protein-coding genes linked to HS-lipids
in KEGG pathways. Symbols represent pathways. The numbers next to the symbols and the
legend above the panel show the top three enriched pathways. (c) The simplified schematic
representation of the top three enriched KEGG pathways showing HS-lipids and their linked
genes. The background colors indicate the pathways, as in panel (b) legend.
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5.3 Discussion

Recent technical advances in measuring lipidome composition in multiple species allow us to
assess the evolution at a new level of molecular phenotype: the level of lipid concentrations.
Our analysis based on lipidome measurements conducted in six tissues of 32 mammalian
species resulted in several remarkable observations. First, in contrast to genetic and gene
expression data, where 84.8% and 25.6% of differences among species were proportional to
phylogenetic distances, only 1.9% of all lipids’ concentrations scaled with the phylogeny (Fig-
ure 5.6 A). Moreover, unlike genetic and gene expression changes, lipid concentration changes
that followed the phylogeny did not show characteristic features of a neutral evolutionary
model. Specifically, while much more abundant genetic and gene expression changes did not

Figure 5.6: Evolution at lipidome, transcriptome and genome levels [Khrameeva et al., 2018].
(a) Percentages of lipids, protein-coding transcripts and genes with differences among species
accumulating proportionally to phylogenetic distances. (b) Schematic representation of the
suggested lipidome evolution properties in comparison to the other levels of molecular and
organismal phenotype. Left: relative proportions of neutral and functional differences among
species. Right: proportion of evolutionary differences shared among tissues. The vertical
axis shows the relevant levels of organismal organization. The inversion of this proportion
between the transcriptome and lipidome levels reflects the notion that ubiquitously present
transcriptome differences are mainly neutral and lipidome ones are mainly functional.

cluster in any functional categories (hypergeometric test, n=5,206, 5,219, 5,120, 5,206, and
5,062 in CX, CB, HT, KD, and LV, respectively, BH-corrected P>0.1), the few lipids that
followed the phylogeny were grouped in the same particular lipid class, fatty amides, in all
six tissues. These lipids showed smaller amplitude of concentration differences among species
and varied less within species than the rest of the lipidome. Taken together these two ob-
servations, the remarkable agreement between tissues, which otherwise have very different
lipidome compositions, and reduced concentration variation, suggests the importance of fatty
amides in as yet unexplained functions related to an evolutionary “clock-like” lipidome di-
vergence in all tissues. The review of the known features of fatty amides revealed that they
are indeed found in all tissues of mammal species [Zoerner et al., 2011]. However, the evo-
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lution of fatty amides and, in particular, of their most abundant subclass endocannabinoids,
represented by 15% of all fatty amides detected in six tissues, has been studied at the ge-
netic level only [McPartland et al., 2006,Elphick, 2012]. Like the pharmacologically active
compounds in marijuana or cannabis, endocannabinoids exert their effects by binding to
and activating specific cannabinoid receptors CB1 and CB2. The endocannabinoids produce
neurobehavioral effects and have key neurotransmitter roles in the central nervous system,
especially in the perception of pain, stress, and anxiety, in energy balance and in appetite
control [Piomelli, 2003]. Moreover, endocannabinoids have anti-inflammatory and anticancer
properties [De Petrocellis et al., 2000].

We further assessed the possible relationship between the lipidome and species’ pheno-
types by identifying lipid concentration changes unique to each species. Even though the
number of individuals per species was limited, we were able to examine 23 lineages repre-
sented by at least three biological replicates per tissue, and detected a significant excess of
lipidome changes in the human, mouse, and chinchilla lineages, as well as a marginally sig-
nificant trend in the two bat lineages. Notably, the human lineage stood out among the rest
by showing the greatest cumulative species-specific divergence. Due to the small numbers of
individuals examined in our study, it is likely that many species-specific lipid concentration
changes remained undetected. Still, it is noteworthy that among 23 lineages used in the
analysis, the human one showed the most pronounced excess of lipid concentration changes.
Furthermore, of all species, only humans showed a significant excess of lipid concentration
changes in the brain cortex. This result agrees well with observations of accelerated lipidome
evolution in the human brain [Bozek et al., 2015,Li et al., 2017].

Human-specific lipidome changes were most pronounced in the brain cortex and kidney,
but only cortical changes clustered in distinct functional pathways, particularly in glyc-
erolipid, glycerophospholipid, and linoleic acid metabolism. These pathways were implicated
in a number of neurodegenerative disorders such as Alzheimer’s disease [Snowden et al.,
2017], Parkinson’s disease [Cheng et al., 2011], and neurodegeneration with brain iron accu-
mulation [Morgan et al., 2006], as well as other nervous system disorders: hereditary spastic
paraplegia, congenital myasthenic syndrome, Fabry disease, pyridoxine-dependent epilepsy,
and Sjögren-Larsson syndrome [Kanehisa et al., 2017].

To conclude, our observations indicate that lipid concentrations evolve differently com-
pared with genome sequences and gene expression levels. We speculate that lipid evolution
represents phenotypic differences between species more closely than genomic and gene ex-
pression differences do, with a greater proportion of differences accumulating among species
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representing functional changes shared among tissues (Figure 5.6 B), while tissue-specific
lipidome differences might represent species-specific adaptations.
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Chapter 6

Conclusions

In the absence of common genetic determinants of neurocognitive disorders, such as ASD
and SZ, concentrations of low weight molecular compounds in urine, blood plasma, and
brain might provide a more direct link to the molecular signature of the disease. Lipids
and metabolites are essential structural components and signaling molecules of the human
brain, yet our understanding of their involvement in brain functions and dysfunctions is only
beginning to emerge.

In my thesis, I show that despite a relatively small sample size of our study, limited to 32
autism patients and 40 age-matched control individuals, 15% of detected metabolites showed
significant concentration differences between autism and control samples in the prefrontal
cortex grey matter. Those metabolic alterations cluster in specific pathways, suggesting
non-random and possibly functionally important character of the disease-related changes.
Additionally, we found that based on concentrations of 200 metabolites, autism samples
can be separated from the controls with more than 95% accuracy using machine learning
algorithms. These results indicate that brain metabolism is substantially altered in ASD.
Remarkably, many of these alterations, both at the pathway level and at the level of individual
metabolites, coincide with the differences reported in urine and blood of ASD patients. This
fact, together with the high accuracy of autism identification using metabolite concentrations
in the brain, underscores the potential of metabolic studies conducted in non-nervous tissues
to identify informative diagnostic markers of the disease.

The results of our work open an opportunity for the design of ASD diagnostic tools
based on the concentration measurements for a limited set of informative metabolite and
lipid compounds in blood or urine samples. Importantly, the concentration changes de-
tected in blood might be informative of the metabolic changes taking place in the brain,
as we demonstrated for changes in glutathione and purine metabolic pathways. Creation
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of reliable test for ASD diagnostics would ensure timely patents’ medical treatment and se-
lection of better-customized treatment routines. Furthermore, it would open the door for
widespread metabolic biomarker-based clinical practices, providing the collection of stan-
dardized metabolic data from a large number of individuals. This, in turn, would allow the
construction of complex predictive models, leading to improved specificity in disease classi-
fication and treatment selection. Finally, better knowledge of the molecular changes taking
place in the disease will lead to the more rapid development of better medical treatments.

It should be mentioned, however, that design of such diagnostic assays would require
extensive validated using independent sets of samples, and preferably include data for the
brain, blood and urine samples collected using the same experimental, analytical, and statis-
tical frameworks. Also, the number of samples included in such validation studies should be
large, as ASD patients represent a heterogeneous group.

We further considered autism-related changes from the evolutionary perspective, by com-
paring them to the metabolic differences distinguishing humans from closely related non-
human primates: chimpanzees and macaques. We find that some of the pathways affected
in autism demonstrated as high as an 8-fold excess of human-specific metabolic differences
compared to chimpanzee-specific ones, indicating an accelerated evolution of these pathways
on the human lineage. This is potentially interesting, given that autism tends to affect cog-
nitive abilities particularly pronounced in humans and distinguishing our species even from
the closely related primates. Thus, the excess of human-specific metabolite concentration
differences detected in several of pathways altered in ASD might potentially indicate their
involvement in the evolution of cognitive traits unique to humans.

In addition to metabolites, we investigated concentration changes of lipids - non-polar
metabolic molecules - in common cognitive disorders. Specifically, lipidome profiling con-
ducted in the prefrontal cortex of cognitively healthy humans, and ASD, schizophrenia and
Down syndrome patients, identified multiple lipid concentration changes in the prefrontal
cortex in these neurocognitive disorders: 2.6%, 10.4%, and 10.8% of the detected lipids,
respectively.

In the absence of the mature annotation of lipid functionality, analogous to gene-based
annotation, interpretation of these changes remains a challenge. From the methodological
point, to obtain precise annotation of detected metabolite and lipid compounds, we need to
perform MS/MS analysis for all informative compounds. This is particularly important in
the lipidome studies, as based on one-dimensional MS measurements we cannot assign an
annotation to detected compounds unambiguously, given that many combinations of fatty
acids with a head group will yield the same molecular mass. Using MS/MS technique it is
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possible to resolve the actual fatty composition by analyzing fragmentation products. For
example, the combination of fatty acids C18:1/C18:1 or C20:2/C16:0 producing the same
precursor ion mass could be successfully resolved after the fragmentation. This is particularly
important, as lipids from one lipid class could play quite different functional roles.

Nonetheless, functional annotation of the lipid concentration changes detected in our
study in SZ, ASD, and Down Syndrome, even given its limitations, yielded a number of
functional pathways particularly affected in these disorders. Some of these pathways, such as
the disruption of endocannabinoid signaling in SZ, were reported previously. Furthermore,
lipid concentration decrease in SZ could be connected to previously reported genome vari-
ants associated with the disease. In the case of ASD, the lipidome differences were supported
by an independent dataset, consistently demonstrating an alteration in pathways such as
eCB signaling pathway and glycerophospholipid metabolism. These observations indicate
that even limited annotation provided by one-dimensional MS data is useful in identifica-
tion pathways involved in disruption of brain functions and disease development in common
cognitive disorders.

Notably, the evolutionary analysis of lipid concentrations altered in diseases indicated that
the glycerophospholipid metabolism affected in ASD, schizophrenia, and Down syndrome
showed the significant excess of human-specific lipidome differences. This finding further
supports the notion that human brain evolution included metabolic changes affecting both
polar and non-polar compounds. Notably, the connection between human-specific differences
and disease-related ones was reported in ASD at the level of gene expression [Liu et al., 2016]
and in schizophrenia at the metabolome level [Khaitovich et al., 2008]. Altogether, those
results align well with the hypothesis postulating disruption of recently evolved cognitive
mechanisms in schizophrenia and ASD.
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Markuszewski, M. (2014). Identification of organic acids as potential biomarkers in the
urine of autistic children using gas chromatography/mass spectrometry. Journal of Chro-
matography B, 966:70–76.

[Khaitovich et al., 2008] Khaitovich, P., Lockstone, H. E., Wayland, M. T., Tsang, T. M.,
Jayatilaka, S. D., Guo, A. J., Zhou, J., Somel, M., Harris, L. W., Holmes, E., Pääbo,
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Mane, S. M., Šestan, N., Lifton, R. P., Günel, M., Roeder, K., Geschwind, D. H., Devlin,
B., and State, M. W. (2012). De novo mutations revealed by whole-exome sequencing are
strongly associated with autism. Nature, 485(7397):237–241.

[Sandin et al., 2016] Sandin, S., Schendel, D., Magnusson, P., Hultman, C., Surén, P., Susser,
E., Grønborg, T., Gissler, M., Gunnes, N., Gross, R., Henning, M., Bresnahan, M.,
Sourander, A., Hornig, M., Carter, K., Francis, R., Parner, E., Leonard, H., Rosanoff,
M., Stoltenberg, C., and Reichenberg, A. (2016). Autism risk associated with parental
age and with increasing difference in age between the parents. Molecular Psychiatry,
21(5):693–700.

[Schmitt et al., 2004] Schmitt, A., Wilczek, K., Blennow, K., Maras, A., Jatzko, A.,
Petroianu, G., Braus, D. F., and Gattaz, W. F. (2004). Altered thalamic membrane
phospholipids in schizophrenia: a postmortem study. Biological Psychiatry, 56(1):41–45.

[Schwarz et al., 2008] Schwarz, E., Prabakaran, S., Whitfield, P., Major, H., Leweke, F. M.,
Koethe, D., McKenna, P., and Bahn, S. (2008). High Throughput Lipidomic Profiling of
Schizophrenia and Bipolar Disorder Brain Tissue Reveals Alterations of Free Fatty Acids,
Phosphatidylcholines, and Ceramides. Journal of Proteome Research, 7(10):4266–4277.

[Sethi et al., 2017] Sethi, S., Hayashi, M. A. F., Barbosa, B. S., Pontes, J. G. M., Tasic, L.,
and Brietzke, E. (2017). Lipidomics, Biomarkers, and Schizophrenia: A Current Perspec-
tive. In Sussulini, A., editor, Metabolomics: From Fundamentals to Clinical Applications,
volume 965, pages 265–290. Springer International Publishing, Cham.

[Shao et al., 2008] Shao, H., Burrage, L. C., Sinasac, D. S., Hill, A. E., Ernest, S. R., O’Brien,
W., Courtland, H.-W., Jepsen, K. J., Kirby, A., Kulbokas, E. J., Daly, M. J., Broman,
K. W., Lander, E. S., and Nadeau, J. H. (2008). Genetic architecture of complex traits:
Large phenotypic effects and pervasive epistasis. Proceedings of the National Academy of
Sciences, 105(50):19910–19914.

[Sherman and Brophy, 2005] Sherman, D. L. and Brophy, P. J. (2005). Mechanisms of axon
ensheathment and myelin growth. Nature Reviews Neuroscience, 6(9):683–690.

[Shimmura et al., 2011] Shimmura, C., Suda, S., Tsuchiya, K. J., Hashimoto, K., Ohno, K.,
Matsuzaki, H., Iwata, K., Matsumoto, K., Wakuda, T., Kameno, Y., Suzuki, K., Tsujii,
M., Nakamura, K., Takei, N., and Mori, N. (2011). Alteration of Plasma Glutamate and
Glutamine Levels in Children with High-Functioning Autism. PLoS ONE, 6(10):e25340.

[Shinohe et al., 2006] Shinohe, A., Hashimoto, K., Nakamura, K., Tsujii, M., Iwata, Y.,
Tsuchiya, K. J., Sekine, Y., Suda, S., Suzuki, K., Sugihara, G.-i., Matsuzaki, H., Minabe,
Y., Sugiyama, T., Kawai, M., Iyo, M., Takei, N., and Mori, N. (2006). Increased serum
levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology
and Biological Psychiatry, 30(8):1472–1477.

[Simons and Toomre, 2000] Simons, K. and Toomre, D. (2000). Lipid rafts and signal trans-
duction. Nature Reviews Molecular Cell Biology, 1(1):31–39.

90



[Snowden et al., 2017] Snowden, S. G., Ebshiana, A. A., Hye, A., An, Y., Pletnikova, O.,
O’Brien, R., Troncoso, J., Legido-Quigley, C., and Thambisetty, M. (2017). Association
between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cog-
nitive performance: A nontargeted metabolomic study. PLOS Medicine, 14(3):e1002266.

[Solberg et al., 2016] Solberg, D. K., Bentsen, H., Refsum, H., and Andreassen, O. A. (2016).
Lipid profiles in schizophrenia associated with clinical traits: a five year follow-up study.
BMC Psychiatry, 16(1).

[Somel et al., 2009] Somel, M., Franz, H., Yan, Z., Lorenc, A., Guo, S., Giger, T., Kelso,
J., Nickel, B., Dannemann, M., Bahn, S., Webster, M. J., Weickert, C. S., Lachmann,
M., Paabo, S., and Khaitovich, P. (2009). Transcriptional neoteny in the human brain.
Proceedings of the National Academy of Sciences, 106(14):5743–5748.

[Steiner and Tuljapurkar, 2012] Steiner, U. K. and Tuljapurkar, S. (2012). Neutral theory for
life histories and individual variability in fitness components. Proceedings of the National
Academy of Sciences of the United States of America, 109(12):4684–4689.

[Stern and Orgogozo, 2008] Stern, D. L. and Orgogozo, V. (2008). The loci of evolution: how
predictable is genetic evolution? Evolution; International Journal of Organic Evolution,
62(9):2155–2177.

[Stumvoll, 1998] Stumvoll, M. (1998). Glucose production by the human kidney–its impor-
tance has been underestimated. Nephrology, Dialysis, Transplantation: Official Publica-
tion of the European Dialysis and Transplant Association - European Renal Association,
13(12):2996–2999.

[Tessier et al., 2016] Tessier, C., Sweers, K., Frajerman, A., Bergaoui, H., Ferreri, F., Delva,
C., Lapidus, N., Lamaziere, A., Roiser, J. P., De Hert, M., and Nuss, P. (2016). Mem-
brane lipidomics in schizophrenia patients: a correlational study with clinical and cognitive
manifestations. Translational Psychiatry, 6(10):e906–e906.

[The DDD Study et al., 2014] The DDD Study, Homozygosity Mapping Collaborative for
Autism, UK10K Consortium, The Autism Sequencing Consortium, De Rubeis, S., He, X.,
Goldberg, A. P., Poultney, C. S., Samocha, K., Ercument Cicek, A., Kou, Y., Liu, L.,
Fromer, M., Walker, S., Singh, T., Klei, L., Kosmicki, J., Fu, S.-C., Aleksic, B., Biscaldi,
M., Bolton, P. F., Brownfeld, J. M., Cai, J., Campbell, N. G., Carracedo, A., Chahrour,
M. H., Chiocchetti, A. G., Coon, H., Crawford, E. L., Crooks, L., Curran, S. R., Dawson,
G., Duketis, E., Fernandez, B. A., Gallagher, L., Geller, E., Guter, S. J., Sean Hill, R.,
Ionita-Laza, I., Jimenez Gonzalez, P., Kilpinen, H., Klauck, S. M., Kolevzon, A., Lee, I.,
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