
MACHINE-LEARNING INTERATOMIC

POTENTIALS FOR MULTICOMPONENT

ALLOYS

Doctoral Thesis

by

KONSTANTIN GUBAEV

DOCTORAL PROGRAM IN MATERIALS SCIENCE AND

ENGINEERING

Supervisor

Professor Alexander Shapeev

Moscow - 2019

c© Konstantin Gubaev 2019

Machine-Learning Interatomic Potentials for Multicomponent

Alloys

Konstantin Gubaev

Skolkovo Institute of Science and Technology

Abstract

Atomistic simulations are a useful and sometimes irreplaceable tool which

helps in providing insights into the structure and behavior of materials, which

are often hard or impossible to obtain with other methods. For sufficiently

accurate simulations of this kind, quantum-mechanical (QM) models of inter-

atomic interaction are used. However, the computational complexity of QM

models is such that they can be used for simulations of up to few hundreds

of atoms at most.

This thesis describes the atomistic modeling approach, which relies on us-

ing a special type of machine-learning interatomic potentials—the moment

tensor potentials (MTPs)—for approximating the quantum-mechanical po-

tential energy surface using non-linear functions of local descriptors of atomic

environments. In conjunction with the active learning algorithm of optimal

training set construction this allows for performing simulations (molecular

dynamics or structure relaxations) with much faster evaluation of energies,

forces, and stresses in atomistic systems, referring to costly QM calculations

only for the training data generation.

The proposed approach is applied to the search for the stable Cu-Pd,

Co-Nb-V, and Al-Ni-Ti alloys, and to the prediction of the properties of

small organic molecules. These results show high approximation capabilities

of the MTPs and significant speed-up in searches for the new structures in

comparison with approaches relying on DFT only.

1

Publications

1. K. Gubaev, E. V. Podryabinkin, G. L. Hart, and A. V. Shapeev. Ac-

celerating high-throughput searches for new alloys with active learning of

interatomic potentials. Computational Materials Science, 156:148-156, 2019.

2.K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev. Machine learning of

molecular properties: Locality and active learning. The Journal of Chemical

Physics, 148(24):241727, 2018.

2

Acknowledgments

First of all, I want to thank my supervisor Alexander Shapeev for accepting

me to Skoltech as his PhD student and for introducing me to the field of

atomistic modeling. Without his guidance, especially at the early stages of

my research, I would not have been able to achieve the results I present in my

thesis. Also, I want to thank my colleagues from the Multiscale Modelling

group at Skoltech: Ivan Novikov, Evgeny Podryabinkin, Evgenii Tsymbalov,

Tatiana Kostiuchenko, Edgar Makarov, and Mozhdeh Shiranirad. I have

learned something good from each of you, and I hope backward is true as

well.

These acknowledgments would not be complete without mentioning the

Skoltech professors, which made my (and not only mine) life in Skoltech inter-

esting and productive. I want to thank Ivan Oseledets (together with Evgeny

Frolov and Maksim Rakhuba) for the Numerical Linear Algebra course, which

is exemplary brilliant and, in my opinion, is absolutely necessary for any tech-

related educational institution. Also, I would like to thank Zeljko Tekic, an

ultimately inspiring man and teacher, who continuously puts his effort into

making innovators out of scientists—not many people can (and do) that. I

give my special thanks to Artem Oganov, a prominent researcher and a won-

derful pedagogue: every lecture he delivers is an immersion into a miraculous

and astonishing world of science.

3

Contents

Abstract 1

Publications 2

Acknowledgments 3

List of abbreviations 7

List of the machine-learning models of interatomic interac-

tion 7

List of figures 9

List of tables 10

1 Introduction 11

2 Review of the Models of Interatomic Interaction 14

2.1 Empirical Potentials . 15

2.2 Quantum-Mechanical Models 18

2.3 Density Functional Theory . 20

2.4 Machine-Learning Potentials 22

2.5 Discussion . 25

3 Methodology of Machine-Learning Potentials 26

3.1 The Training Procedure . 26

3.2 Constructing a Machine-Learning Potential 33

3.3 Energies, Forces, and Stresses 37

3.4 Moment Tensor Potentials . 40

3.5 Training the Moment Tensor Potentials 46

3.6 Active Learning . 49

3.6.1 Generalized D-optimality Criterion 49

3.6.2 Active Learning with Validation Set 52

4

3.6.3 Active Learning in Crystal Structure Prediction 53

3.7 Discussion . 56

4 Results and Discussion 60

4.1 Crystal Structure Prediction for Alloys 61

4.1.1 Cu-Pd Alloys . 63

4.1.2 Co-Nb-V Alloys . 66

4.1.3 Al-Ni-Ti Alloys . 69

4.1.4 Discussion . 74

4.2 Predicting the Properties of Organic Molecules 74

4.2.1 Fitting Enthalpy on QM9 76

4.2.2 Random Choice of the Training Dataset 76

4.2.3 Active Learning . 80

4.2.4 Fitting the QM7 Database 82

4.2.5 A Nonlocal Model . 83

4.2.6 Discussion . 86

5 MLIP Software 87

5.1 Installation . 87

5.2 MLIP Commands . 87

5.2.1 The “train” Command 89

5.2.2 The “calc-errors” Command 90

5.2.3 The “select-add” Command 91

5.2.4 The “relax” Command 92

5.2.5 The “convert-cfg” Command 93

5.2.6 The “self-test” Command 95

5.2.7 The “help” Command 95

5.2.8 The “list” Command 95

5.3 Examples . 95

5.3.1 Linux Bash Scripts with Binary MLIP 95

5.3.2 Integration with LAMMPS 98

5.3.3 Python Implementation (mlippy) 100

5

5.3.4 MLIP Calculator for ASE 107

6 Perspectives of this work: big picture and impact 109

7 Conclusion 113

6

List of abbreviations

QM - quantum-mechanics

DFT - density functional theory

MD - molecular dynamics

MC - Monte Carlo

MLIP - machine-learning interatomic potential

EAM - embedded atom method

GGA - generalized gradient approximation

MAE - mean average error

RMSE - root-mean square error

BFGS - Broyden – Fletcher – Goldfarb – Shanno

PES - potential energy surface

CSP - crystal structure prediction

AL - active learning

HOMO - highest occupied molecular orbital

LUMO - lowest unoccupied molecular orbital

List of the machine-learning models of inter-

atomic interaction

MTP - moment tensor potential

MPNN - message passing neural networks

DTNN - deep tensor neural networks

HIP-NN - Hierarchically Interacting Particle Neural Network

GAP - Gaussian approximation potential

SOAP - smooth overlap of atomic positions

HDAD - histogram of distances, angles and dihedrals

BOB - bag of bonds

BAML - bonds, angles, machine learning

7

MBTR - many-body tensor representations

MTM - moment tensor model

nlMTM - non-local moment tensor model

List of Figures

1 Energy partitioning scheme 16

2 Fitting inconsistent data . 31

3 Fitting noisy data . 32

4 Overfitting and underfitting 33

5 Fitting PES with MLIP . 38

6 Descriptors of the atomic neighborhood 42

7 MTP computational scheme 47

8 Correlation between extrapolation grade and force error 51

9 Relaxation with active learning 57

10 MTP retraining . 58

11 Structural relaxation . 59

12 Cu-Pd convex hull . 65

13 Cu-Pd convex hull . 66

14 Co-Nb-V convex hull . 67

15 The Co3Nb2V structure . 68

16 Al-Ni-Ti convex hull . 72

17 Accurate and robust potentials 73

18 Fitting QM9, random selection of the training set 77

19 Fitting QM9, active and random selections of the training set 79

20 Mean numbers of atoms in a molecule for active and random

selections . 82

21 Scatter plot of the formation enthalpy predicted by machine

learning . 83

22 Nonlocal model of molecular properties 85

8

23 Limitation of the local moment tensor model 85

24 Simulations at different length scales 111

9

List of Tables

1 Al-Ni-Ti new stable structures 71

2 Fitting QM9, models comparison 78

3 Fitting QM7, models comparison 84

4 MLIP commands . 88

10

1 Introduction

Over the last decades it has been a growing demand for the new mate-

rials possessing some unique properties required by arising complexity of

technological solutions. Designing a spacecraft, an artificial organ or more

powerful electronic device are critical yet challenging goals requiring a great

mobilization of developers from science and engineers from industry. More-

over, such technological solutions cannot be implemented without a great

diversity of materials with specially hand-picked properties, such as metal-

lic alloys. Designing the concept of a new material, creating its physical

samples and testing them requires a lot of efforts. The traditional materi-

als development is guided though trial-and-error approach, varying species

concentrations and/or other conditions and measuring the properties of the

obtained material, which results in a big amount of intermediate attempts

and non-guaranteed results. Moreover, due to big amount of constituting

components in contemporary alloys, the number of potential species concen-

trations (and, hence, resulting alloys) is enormous, and taking into account a

relatively slow throughput of testing facilities, the development cycle of a new

multicomponent alloy can constitute years or decades. Thus, the necessity

for more thoughtful and selective strategy in alloys design is arising.

Recent advances in computer hardware and development of quantum-

mechanical (QM) packages, allowing for accurate calculation of materials

properties, created an opportunity to replace certain amount of laboratory

work by simulations, thus allowing to speed-up the search for new materials.

Depending on the purpose of the study and the phenomena to be investigated,

these simulations involve different time and length scales, and, respectively,

different modeling methods. To simulate the properties a bulk material at the

engineering scale (e.g, a girder or a bridge) the continuum models are used,

e.g., finite elements or finite volume models. They are based on solving gov-

erning differential/integral equations for continuum media on space and time

grids. A vast of physical processes including heat, mass, and charge transfer

or behaviour of material under the load are studied with continuum models.

11

Continuum models require a prior knowledge about the materials properties,

e.g., transport coefficients, and are suitable for simulating properties of the

constructions from already known materials.

Assessing the properties of a new material needs to be done by simulating

processes occurring on the atomic scales (about 1 nm or less). If one needs

to calculate a phase transition temperature, elastic constant or a phonon

spectrum of some material, he or she needs to treat the material as a system

of interacting particles, either atoms or molecules. In such case, one of the

most common choices is to perform a molecular dynamics (MD) simulation,

solving the Newton’s equations for each particle at each time step. For this

purposes a model of interatomic interaction is required, which would predict

forces acting on atoms, depending on the atomic positions.

Models of interatomic interaction fall into two categories. The first cate-

gory is quantum-mechanical models, often called ab initio or first-principles

models. They allow calculations of high accuracy and are fully transferable,

i.e., can in principle be applied to study of any atomistic system. Disadvan-

tage of this type of models is their slow computational speed: even with the

most powerful computational facilities, performing a QM simulation of the

system containing more than a thousand of atoms over more than a nanosec-

ond of physical time is infeasible. This way, only small length and time scales

can be approached with QM models. The second type of models describing

the interatomic interaction is empirical (or semi-empirical) models. As oppo-

site to QM models, empirical models allow fast calculations of large atomistic

systems (up to millions of atoms) over the long times (up to milliseconds),

but their accuracy is often not sufficient for a quantitative analysis. In addi-

tion, empirical models by their nature do not take into account the states of

the electrons, thus some electron-related properties like band gap, magnetic

or optical properties usually can be investigated only with QM models. More

detailed overview of interatomic interaction models is provided in Section 2.

Molecular dynamics and Monte Carlo (MC) simulations using either QM or

empirical models are successfully applied to solving of many problems in ma-

12

terials science. At the same time, a lot of processes like phase transitions or

dislocations movement require accuracy of QM models and computational

speed of empirical models to be properly simulated. Numerous attempts to

design approximate QM models were made, but none of them resulted in a

model with favourable accuracy/speed trade-off.

There is a bunch of atomistic simulation problems for which both QM

and empirical models are unsuitable, which leaves the space for a new class of

interatomic interaction models: the machine-learning interatomic potentials

(MLIPs). The idea of MLIP is to construct a parameterized functional form

describing a dependence of the potential energy (or any other property of in-

terest) of the atomistic system on the positions and types of the constituting

atoms. This functional form possesses certain flexibility: by adjusting the

values of its parameters it can approximate different relations. In the most

typical case the potential energy of the atomistic system depending on the

positions and types of constituting atoms is to be approximated. Once this

approximation is constructed, the MLIP is said to be trained to reproduce

QM (and sometimes experimental) data. Once the MLIP is trained, it is

able to reproduce the reference data with much greater speed if compared

to QM calculations. Despite the accuracy of such a MLIP would be essen-

tially limited by the accuracy of reference data used, still in many cases it is

much more better than of empirical models. The field of MLIPs is in active

development now, and many research groups are pursuing this direction, as

MLIPs can significantly extend the opportunities of MD/MC approaches in

materials modeling. More information about usage of MLIPs for atomistic

simulations can be found in Section 2.4.

The present thesis describes my research devoted to the development of

special type of MLIPs and using it to solve the problems of computational

materials science. The MLIPs described in this thesis were originally pro-

posed for single-component systems by my supervisor Alexander Shapeev [76]

and were extended by me to the case of multiple components. The special

functional form of these MLIPs allows to systematically improve the accu-

13

racy in cost of increasing the computational time consumption. More details

about the MLIPs used in my research can be found in Section 3. Essential

part of the methodology used in my research is the active learning algorithm

of the training set construction. It was originally proposed in [60] and was

adapted by me to multicomponent systems. It allows to compose the training

set in a way, which prevents MLIP from extrapolation, and can be used to

sample the configurational space while simulation “on the fly” (see Section

3.6.3). The MLIPs developed in my research were applied to the discovery

of Cu-Pd, Co-Nb-V, and Al-Ni-Ti stable alloys (Sections 4.1.1-4.1.3) and to

the predictions of the properties of 5-component organic molecules (Section

4.2). The MLIPs described in this thesis, together with the active learning

algorithm, are implemented in a C++ and Python software packages. The

overview and basic functionality of the software are provided in Section 5.

The concluding remarks are given in Section 7.

2 Review of the Models of Interatomic Inter-

action

In this Section an overview of different interatomic interaction models will

be given. The term interatomic interaction model is sometimes replaced by

the force field or interatomic potential terms. Note, that not every inter-

atomic interaction model can be called interatomic potential, as it assumes

the explicit functional form of the potential energy; instead, the interatomic

interaction model can mean some procedure (see, e.g, Section 2.3), which

results in a certain potential energy value for each atomistic system. Never-

theless, I still will use the term interatomic potential, implying the broader

sense of it, not limited to a case of explicit analytic function.

Interatomic potential provides a functional dependence of the energy of

the atomistic system (further I will call it configuration) on the positions and

types of the constituting atoms:

E = E(x). (1)

14

From here x will be used to denote the configuration, meaning x = {ri, zi},
where ri and zi denote the position vector and the atomic number of the ith

atom in configuration.

2.1 Empirical Potentials

The empirical (sometimes called semi-empirical) potentials are used to avoid

solving the governing quantum-mechanical equations. Instead, they provide

an explicit analytical form with some coefficients found from fitting exper-

imental or quantum-mechanical data. Majority of the empirical potentials

are local, i.e., they account for interaction of each atom only with its nearest

neighborhood, usually within some cutoff radius. The non-local potentials

are usually used for charged systems, where the contribution of the long range

Coulomb forces is essential. For local potentials the energy E is partitioned

into the contributions V of individual atomic neighborhoods. Function V is

called an interatomic potential. To define a neighborhood of the ith atom

ni, we let rij be the position of jth atom relative to the ith atom (thus,

rij is a vectorial quantity) and zj be the type of the jth atom. Then the

neighborhood of the ith atom ni is the collection of rij and zj, and the (1)

can be rewritten as:

E(x) =
∑
i

V (ni), (2)

The locality of the potential is expressed by the requirement that V (ni)

depends only on atoms that are closer to the atom i than some cutoff distance

Rcut, which is usually around 5 Å. In metallic systems this typically means the

closest neighbors up to some (second, third, or even fourth) order are included

in the atomic environment. An illustration of an atomic neighborhood is

sketched in Figure 1.

The differences between various local potentials are contained solely in

the function V . Below some of the most widespread potentials are listed:

1. Pair potentials

15

𝑟𝑖1𝑟𝑖6

𝑟𝑖4 𝑟𝑖3

𝑟𝑖2𝑟𝑖5
ni

I

I

I

II

IIII

II

Figure 1: Partitioning scheme: energy E is composed from the contributions

Vi of neighborhoods ni. The neighborhood ni of the ith atom is described by

the relative positions rij and the types zj (I or II in this illustration) of the

neighboring atoms.

16

Pair potentials by their nature include only two-body interactions, i.e.,

the total energy of a configuration can be written as the sum of the all

two-body contributions:

E =
∑
i

∑
j>i

φ(ri, rj), (3)

where condition j > i is introduced not to consider each pair of in-

teracting particles twice. Alternatively, (3) can be written in the local

form:

V (ni) =
1

2

∑
j 6=i

U(rij), (4)

where function U(rij) is called a pairwise potential. Some of the pair

potentials are:

Lennard-Jones potential:

U(rij) = 4ε((σ/rij)
12 − (σ/rij)

6). (5)

Morse potential:

U(rij) = ε(e−2α(rij−r0) − 2e−α(rij−r0)) (6)

Note, that Lennard-Jones and Morse potentials can be used as non-

local potentials as well. However, typically these potentials are used

with some cutoff radius to account for screening of interatomic inter-

actions and therefore can be considered local.

2. Three-body potentials

Three-body potentials account for three-body interactions:

E =
∑
i

∑
j 6=i

U(ri, rj) +
∑
i

∑
j 6=i

∑
k 6=i,j

W (ri, rj, rk). (7)

These potentials include Tersoff and Stillinger-Weber potentials. While

two-body terms sometimes are associated with bond lengths, three-

body terms are usually associated with angles between bonds.

17

3. Many-body potentials

The most widespread empirical potential for metals is the embedded

atom method (EAM) potential [18]. It originates from the idea of

embedding each atom into the electronic gas with a density, affected

by other atoms. This interatomic potential has the following form:

V (ni) =
1

2

∑
j 6=i

φ(rij) + F (ρi), (8)

where φ(rij) is the pairwise repulsive term, F is the non-linear (e.g., a

polynomial) embedding function and ρi stands for the electron density

at the position of the atom i and is composed from the contributions

of the neighboring atoms:

ρi =
∑
j 6=i

f(rij), (9)

where f(rij) is some scalar function. There are other many-body po-

tentials resembling the form of EAM, e.g., Finnis-Sinclair potentials

[80].

2.2 Quantum-Mechanical Models

The quantum-mechanical models are based on the solutions of different ap-

proximations of the time-independent Schroedinger equation:

ĤΨ = EΨ. (10)

Ψ in (10) means the total wave function of the system, including both nuclear

and electronic degrees of freedom Ψ = Ψ(ri, Ri), where ri and Ri are electrons

and nuclei positions respectively. As in general case the solution of the

equation (10) is not possible, the Born-Oppenheimer approximation is often

used. It “freezes” the nuclei, as they move much slower than the electrons

due to three orders of magnitude mass difference and comparable electrostatic

forces. This approximation allows separating of the total wave function Ψ

onto electronic ψ(ri) and nuclear χ(Ri):

18

Ψ(ri, Ri) = ψ(ri, Ri)χ(Ri),

splitting the equation (10) onto electronic and nuclear parts which can

be solved consequently.

Hamiltonian H of the system with Ne electrons interacting with each

other (U(ri, rj)) and with an external field generated by the nuclei (Vi) can

be written as:

Ĥψ =
(Ne∑
i=1

(− ~2

2me

∇i
2) +

Ne∑
i=1

V (ri) +
Ne∑
i=1

Ne∑
j>i

U(ri, rj)
)
ψ = Eψ. (11)

The Born-Oppenheimer approximation greatly simplifies (10), as the re-

sulting equation (11) should now be solved with respect to the electronic wave

functions only. Still, (11) cannot be solved in general case and requires fur-

ther simplifications, e.g., density functional theory (see Section 2.3). Though

no electronic (or nuclear) spins were considered in the derivation of (11), they

can be included in (11) directly as its derivation takes into account only spa-

cial degrees of freedom.

There are approaches which search the solution of (11) in a form of a

linear combination of atomic orbitals, e.g., Hartree-Fock, post-Hartree-Fock

methods. Among these are tight-binding model which treats electrons as

”belonging” to atoms and uses linear combination of atomic orbitals to de-

termine the electron energy levels. The opposite (in a sense of binding to

atoms) approximation - nearly free electron model (modification of a free

electron model) treats electrons as a gas with only weak interaction with

ions, which allows for correct prediction of many features of the electronic

structure, especially in metals, when outer electrons are essentially delocal-

ized. Hybrid functionals in DFT (Section 2.3) also employ predictions by

Hartree-Fock theory, and they are capable of calculating many chemical sys-

tems with high accuracy, introducing corrections to the exchange-correlation

functionals (Section 2.3). Apart from relatively ”heavy” methods like DFT

hybrid functionals or, etc., quantum Monte Carlo (which operates with ex-

act many-body wavefunction and treats quantum effects directly) some QM

19

models are semi-empirical and adjusted for relatively fast calculations, pro-

viding approximate yet often accurate predictions for large systems, which

evaluation with more costly methods would be prohibitively long; e.g., linear

scaling DFT, which incorporates some screening of interatomic interaction

leading to O(N) cost scaling with the number of atoms, versus O(N3) for

conventional DFT.

2.3 Density Functional Theory

One of the most widespread approaches if density functional theory (DFT),

which in particular is very useful for metals and alloys, providing an appealing

trade-off between accuracy of calculations and computational speed. This

method I used in my research to calculate ab initio properties of alloys,

and due to aforementioned it deserves a special attention and more detailed

description. Conventional DFT cost scales as O(N3) with the number of

atoms, while it exists also a “linear scaling DFT” implementation with O(N)

scaling, less accurate but still applicable, especially for large systems.

The DFT is a QM approach based on the two Hohenberg-Kohn theorems:

1. The external potential (and hence the total energy) is a unique func-

tional of the electron density.

2. The energy functional that delivers the ground state energy of the

system, gives the lowest energy if and only if the input density is the true

ground state density. For any positive integer N and potential ν(r), a func-

tional F [(r)] exists such that

E(ν,N)[n(r)] = F [n(r)] +

∫
ν(r)n(r)d3r

obtains its minimal value at the ground-state density of N electrons in the

potential ν(r). The minimal value of E(ν,N)[n] is then the ground state energy

of this system.

Hohenberg-Kohn theorems allow to reformulate the (11) for a system of

Na atoms (nuclei) with charges Zj and Ne electrons in terms of the electron

density function instead of the wave function Ψ(r1, ..., rNe ,R1, ...,RNa):

20

E[n(r)] =T [n(r)] +
Natoms∑
j=1

∫
R3

e2Zjn(r)

|r −Rj|
d3(r) +

∫∫
R6

e2n(r)n(r′)

|r − r′|
d3(r)d3(r′)

+ EXC [n(r)] +

∫
R3

Vext(r)n(r)d3(r),

(12)

where T [n(r)] is the kinetic energy term, single and double integrals

are the electron-nuclei and electron-electron Coulomb repulsion respectively,

Vext(r) is the external potential, and term EXC [n(r)] includes other not pre-

cisely known factors such as exchange-correlation interaction.

The electronic density n(r) is given by:

n(r) =
Ne∑
i=1

|ψi|2.

To account for spin degrees of freedom, similarly to (2.3) spin-up and

spin-down densities can be introduced, calculated from corresponding spin-

up and spin-down wave functions ψi.

Since the exact form of the term EXC [n(r)] is unknown, we can rewrite the

equation (12) describing Ne interacting particles in some external potential

Vext(r), as a a system of equations (Kohn-Sham equations, [88]) of non-

interacting particles in the effective Kohn-Sham potential:

(
− ~2

2me

∇i
2 + VKS(r)

)
ψi(r) = eiψi(r), i ≤ Ne, (13)

where the Kohn-Sham potential includes the functionals, correspond-

ing to the external potential Vext(r), the Coulomb interaction of electrons∫ e2n(r′)
|r−r′| d

3r′ and the exchange-correlation interaction between electrons VXC [n(r)].

VKS(r) = Vext(r) +

∫
R3

e2n(r′)

|r − r′|
d3r′ + VXC [n(r)] (14)

The form of VXC [n(r)] is still unknown, and all the effects not explicitly

included in (14) are put into VXC [n(r)].

21

This way, the many-particle problem (11) is replaced by a set of single-

particle problems (13) without any loss of generality. To solve (13) we need

to find the wave functions ψi, assuming that we know VKS(r). VKS(r), in

turn, depends on the electronic density distribution n(r), which is uniquely

defined by a set of ψi. Thus, the equations (13) need to be solved self-

consistently, e.g., iteratively. Usually one starts from some initial guess for

n(r), then calculates the VKS(r) and solves the (13) with respect to ψi, which

delivers the new density distribution n(r). These steps are then repeated

until convergence is reached.

Having the form of VXC [n(r)] unknown, different approximations are in-

troduced. The simplest and the most computationally efficient is the local-

density approximation (LDA), which assumes that VXC(r) depends only on

n(r) at this point of space, i.e., is local: VXC(r) = VXC(n(r)). The gener-

alized gradient approximation (GGA) is more computationally demanding,

but in many cases much more accurate. It takes into account the depen-

dence on the spatial derivative of the electron density in a certain point:

VXC(r) = VXC(n(r),∇n(r)).

2.4 Machine-Learning Potentials

Machine-learning interatomic potentials (MLIPs) are a class of interatomic

interaction models, which have large amount of numerical parameters, which

are to be found from the training procedure (see Section 3.1). Note, that

empirical potentials may also have adjustable parameters, e.g., ε and σ from

(5) or coefficients of the expansion of embedding function from (8) or electron

density function (9). Still, the MLIPs and empirical potentials differ in a

number of ways:

1. Functional form

Empirical potentials have functional forms which are physically inspired

and reflect some analytical knowledge about the system, e.g., the en-

ergy of the system can be explicitly decomposed onto contributions

22

of different physical factors, like presence of different types of bonds.

MLIPs instead have functional forms motivated by usage of different

types of regressors (kernel-based models with different kernels, neural

networks).

2. Interpretation and number of parameters

Empirical potentials typically have from few to few dozens of param-

eters, which often carry direct physical meaning, like the depth of the

potential well ε and equilibrium interatomic distance σ in (5). As oppo-

site, MLIPs involve hundreds, thousands or even tens of thousands of

parameters which carry no direct physical meaning and are essentially

some coefficients in the representation of the approximated function.

3. Universality

Empirical potentials are designed for each system specifically, and ad-

justing of their parameters is done with a thorough control from the

human side. Often a few versions of the same empirical potential for a

certain system can be introduced, aimed at better reproduction of dif-

ferent physical quantities. MLIPs are much more universal in a sense

that the procedure of finding their parameters is general and not case-

dependent (see Section 3.1).

All the aforementioned differences are the natural outcomes of the idea

of MLIPs: to provide a flexible functional form, which is able to accurately

approximate the reference quantum-mechanical data within the training do-

main, and does this much faster than the QM calculations. The MLIPs

available in the literature can be classified as the ones based on neural net-

works and the ones based on different kernels.

The neural network-based models include: MPNN (message passing neu-

ral networks [29]), DTNN (deep tensor neural networks [73]), HIP-NN (Hi-

erarchically Interacting Particle Neural Network [50]) and SchNet [71]. The

common feature of neural network-based models is large amount of internal

parameters, which results in large datasets, required for a proper training (see

23

Section 2). At the same time, such models usually are capable of achieving

high accuracy.

Some of the existing approaches are based on different kernels: kernels

based on Coulomb matrix [68, 67], GAP (Gaussian approximation potentials

[81], relying on Gaussian kernels), the SOAP (smooth overlap of atomic

positions) kernel [19], HDAD (histogram of distances, angles and dihedrals

[24]), BOB (bag of bonds [33]), BAML (bonds, angles, machine learning

[39]), MBTR (many-body tensor representations [41]).

Even with all variety of ML methods developed for atomistic modeling

in recent years, this only reflects the immaturity of the present MLIPs field

and continuous attempts to search for more generic, more accurate and more

robust approaches. Of course, all the ML methods enlisted in this section

suit for certain problems they were developed for, however they possess cer-

tain drawbacks, motivating the development of yet another ML approach,

e.g.: the GAP [81] requires much more computational time to achieve the

same accuracy compared to the single-component MTP (see [76]), NN-based

models usually require a lot of training data (see [32]), cluster expansion

is limited to lattice-based structures. From my personal point of view, the

drawbacks of contemporary MLIPs are a consequence of one of the follow-

ing reasons: the concept of a MLIP can be too “physically-motivated” (e.g,

EAM potentials) or vice-versa, largely inspired by ML and thus not well ap-

propriate for describing the physical (atomistic) systems. Physically inspired

models can suffer from lack of flexibility in their functional forms, thus fail-

ing to capture complex (features of interatomic interactions not reflected in

“physics” of their design. On the other hand, ML-based models can neglect

or not fully account for the origin of the data they are fit to, which results in

excessive attempts required to capture basic physics phenomena (e.g., non-

differentiable ML models like random forest predicting energy but not forces,

which are essentially the derivatives of the energy). From this perspective

the MTPs incorporate a balance between physically inspired descriptors and

flexible polynomial functional form (see Section 3.4) making approximation

24

of PES accurate with relatively small number of parameters [32] and allow-

ing for making more accurate MTPs by employing more complex functional

form. In addition, the active learning approach (Section 3.6) developed for

MTPs solves the sampling problem (Section 3.2), which arises in any simu-

lation involving ML models and can be more difficult to overcome, then the

problem of accurate MLIP fitting.

2.5 Discussion

Models of interatomic interaction are designed to perform simulations of ma-

terial properties on the atomic level. The simulations can vary in their space

and time scales, number of particles, types of the atomistic systems, desired

accuracy, etc. Depending on the concrete simulation scenario, different types

of interatomic interaction models can be used. For accurate simulation of

small (up to hundreds of atoms) atomistic systems the quantum-mechanical

models (among which DFT is very popular) are used. For the simulations

involving large time scales and large numbers of atoms (up to millions) the

only choice is using empirical potentials, which in general provide moderate

accuracy, sufficient for qualitative analysis only at best.

Contemporary technological challenges are connected with materials prop-

erties, which often cannot be properly simulated either by empirical or quantum-

mechanical potentials, as they require conducting numerical experiments of

both high accuracy and large numbers of atoms (e.g., nucleation events or

dislocation movements). At the same time, machine-learning interatomic

potentials exploit hidden relations in quantum-mechanical data, which allow

reproducing of computationally expensive quantum-mechanical calculations

at comparatively low cost. MLIPs therefore are a promising alternative to

QM and empirical models, as they potentially enable simulations of quantum-

mechanical accuracy and computational speed comparable to that of empir-

ical potentials.

25

3 Methodology of Machine-Learning Poten-

tials

In this Section I provide in detail the mathematical background of machine-

learning interatomic potentials (MLIPs), the main problems connected to

the usage of MLIPs and the ways of solving them. As well, in this Section

the moment tensor potentials (a special type of MLIPs I use in my work)

are presented, together with the active learning approach to training. In this

section by “we” I mean me and my colleagues (most likely my supervisor),

with whom I developed this methodology.

3.1 The Training Procedure

We first formulate a problem of fitting a MLIP on some dataset in a machine

learning framework. Suppose there is a large number, N , of configurations

whose structure (and composition) is encoded by x(1), . . . , x(N). The task is to

construct a function F that predicts a certain property (e.g., an atomization

energy) of each configuration as F (x(1)), . . . , F (x(N)). The function F , which

I refer to as the model, is constructed based on data—the properties of the

first n (n < N) configurations, y(1), . . . , y(n), which are called the labels. We

call the set {x(1), . . . , x(n)} together with {y(1), . . . , y(n)} the labeled dataset

or the training set. The labeled dataset is often chosen randomly. The model

has a number m of free parameters θ = (θ1, .., θm). We organize them in a

vector θ of length m, which is found from minimizing the total loss functional

L(θ) =
n∑
j=1

(
yj − F

(
θ, x(j)

))2 −→ min (15)

in a procedure called training (see Section 3.1). Once the solution θ̄ of the

problem (15) has been found, the accuracy check is performed, typically

via calculating the so-called mean average error (MAE) or root-mean square

error (RMSE) on some set of configurations {X(1), . . . , X(K)} with known

properties {Y (1), . . . , Y (K)}:

26

MAE =
1

K

K∑
j=1

|Yj − F
(
θ, X(j)

)
|, (16)

RMSE =

√√√√ 1

K

K∑
j=1

(
Yj − F

(
θ, X(j)

))2
. (17)

If the errors (16) are measured on the training set, they are called training

errors and reflect the quality of fitting.

The key components of training and the possible problems which should

be taken into account are described below.

1. Functional form

This is the factor of the model F (θ) itself, namely its functional form,

meaning characteristics of the algebraic functions incorporated in F (θ).

Unsuitable representation

If you approximate a function y(x) = x8+x4 on the interval (−100, 100)

with odd polynomials F (θ, x) = θ1x
5 + θ2x

3 + θ3x you will completely

fail, as y(x) is an even function. The solution is to change the repre-

sentation of F (x). Another problematic case is fitting a discontinuous

function, like a Heaviside function H(x), with continuous model F (x).

Insufficient amount of parameters

If you approximate a function y(x) = x8+x4 on the interval (−100, 100)

with polynomials of order 5: F (θ, x) = θ1x
5+θ2x

4+θ3x
3+θ4x

2+θ5x+θ6

you will also fail, as F (θ, x) is a lower order polynomial compared to

y(x), thus an accurate fit is not possible. The solution is to include

polynomials of higher order into the representation of F (x). The prob-

lems of this kind are sometimes called an underfitting (see Figure 4a).

2. Training set

This factor includes peculiarities of the approximated data. In practice,

y(x) is obtained via some procedure (either experimental or computa-

tional), with a possibility of:

27

Inconsistency of data

This problem can arise in a case of mixing data from different sources,

e.g., experimental and computational data, or even computational data

obtained with different methods. If for some close values x0 and x1 the

corresponding values of y(x0) and y(x1) differ much, it can result in bad

convergence of the optimization algorithm and, moreover, unphysical

behaviour of the trained model. Also, as energy is defined up to an ar-

bitrary constant, these constants may vary for different computational

models (e.g., different pseudopotentials in DFT). The problem of data

inconsistency is illustrated in Figure 2: combining data from different

sources leads to incorrect deformation energy dependence learned by

MLIP.

Noisy data

By the term “noisy data” the data with uncertainty is meant, when for

each argument x different values y(x) can be observed (or measured):

y(x) = x8 +x4± ε(x), see Figure 3. The noise present in data can be of

different kind and different techniques are used to cope with it. Some

of the techniques are similar to the ones which prevent overfitting, e.g.,

regularization or early stopping techniques (see this section further).

Not properly sampled data

This means the data points present in the training set do not cover some

vital parts of the input parameters region. E.g., if you approximate a

function y(x) = x4 + x3 + x2 + x + 1 at x points of this kind: {-500,-

400,-200,200,300,600} you will only approximate the left and the right

branches of the y(x) = x4 curve, but not the up-down oscillation near

the roots of the equation x4 + x3 + x2 + x + 1 = 0, as much denser

points concentration near x = 0 is needed to capture it. This problem

is discussed in more details in Section 3.2 and is illustrated on Figure

5.

3. Optimization procedure

28

The algorithm of solving the optimization problem (15) can signifi-

cantly affect the training errors. Most likely, the parameters of MLIP

θ can take continuous values ranging from − 8 to + 8. Thus, training of

the model F (θ) with m parameters means finding the best parameters

out of the space Rm, which is not a trivial task.

Ideally, while minimizing the functional (15) one wants to find the best

solution among the all possible ones, i.e., the global minimum. The

problem is then called a global optimization problem. However, in gen-

eral case it is unsolvable in principle, as even if there are 100 (instead of

infinite number) different values for each component of θ, for m = 100

one should calculate 100100 values of the functional (15), which is not

possible due to the limitations on computational resources. Exact so-

lution o the optimization problem L(θ) can be found only in case of

polylinear or polyquadratic L(θ). i.e., the minimizing functional has

linear/quadratic dependence on the internal parameters. In general,

the algorithm of finding a global minimum for problems like (15) with

nonlinear and non-quadratic dependence of the L(θ) (15) w.r.t. model

parameters does not exist. Therefore in practice the training procedure

is aimed on finding the sufficiently good local minimum, out of poten-

tially infinite number of all local minima. For this task algorithms of

local optimization are used.

Majority of the local optimization algorithms require derivatives of the

loss function w.r.t. model parameters ∂L(θ)
∂θ

to solve the problem (15),

as it provides a direction in a parameter space, along which the function

(15) can be decreased. One of the algorithms which do not require the

calculation of the derivatives ∂L(θ)
∂θ

is the Nelder-Mead [20] algorithm.

In my research I use one of the most popular algorithms, the Broyden

– Fletcher – Goldfarb – Shanno (BFGS) [36] algorithm, as it shows

better convergence that the conjugate-gradient [79] or Nelder-Mead

algorithms.

Any of the local optimization algorithms will converge to some local

29

minimum with no guarantee of it being better than other local min-

ima. Therefore, to solve a global optimization problem, some extra

techniques are used to search for several possible solutions in different

regions of parameter space Rm. Unlike genetic algorithms [28], which

solve the global optimization problem as it is, one can use the simulated

annealing [85] or the basin-hopping [86] techniques to acquire different

local minima with the local optimization algorithms. This means that

for a fixed model F (θ) and a fixed training set {x(1), . . . , x(n)} one can

find several sets of parameters θ, each corresponding to some partic-

ular value of L(θ). The L(θ) in this case is a measure of accuracy:

the smaller L(θ) is, the more precise approximation of the training set

takes place.

Another difficulty which can arise in training of a ML model is the over-

fitting problem. It happens when a ML model, being trained on a particular

training set, learns the artificial features of this set, not reflecting the actual

relations behind the data, see Figure 4c. Typically this occurs when the

number of parameters, m, is too large. While training errors measure the ac-

curacy of approximation of the training set itself, the capabilities of MLIP to

approximate the data, not contained in the training set should be measured

on a separate set not used for training. Usually such set is called holdout set

or testing set. Sometimes some validation set (not intersecting with either

training set or holdout set) is used to control the accuracy during training,

stopping the optimization procedure when the accuracy on the validation set

starts to decrease, which is a sign of overfitting. This is the early stopping

technique widely used for deep neural networks (which can have orders of

104− 105) parameters. Such terms as holdout set, validation set, and testing

set can be used interchangeably in literature. If the errors (16) are measured

on a set of configurations, not intersecting with the training set, in this thesis

they are called validation errors.

30

Potential
energy

Strain

Data source 2
– MLIP1

– MLIP2

– MLIP3

Data source 1

Potential
energy

Strain

Data source 2
– MLIP1

– MLIP2

– MLIP3

Data source 1

(a) (b)

Figure 2: Illustration of the problem of fitting MLIP to the energies of

strained configurations obtained from different sources of data. Both MLIP1

and MLIP2 fitted to the data from corresponding sources reproduce phys-

ically correct curves with deformation energy growing monotonically with

increasing strain. MLIP3 is fitted to the combined data, which results in

unphysical dependence of the deformation energy on strain due to the in-

consistency of data. On the graph (a) the energy values from different data

sources have different energy shifts. On the graph (b) the energy shifts are

equalized, but different forms of potential energy dependencies still result in

an unphysical behaviour of MLIP3.

31

Potential
energy

Strain

–MLIP1

–MLIP2

Figure 3: Illustration of the problem of fitting MLIP to the energies of

strained configurations, calculated with noise. MLIP2 suffers from overfit-

ting, as it learns the non-existing features of the data, induced by the noise.

MLIP1 learns the noise-averaged data, which can be achieved by regulariza-

tion or early stopping as well as by selecting a MLIP with less number of

parameters.

32

x

y

x

y

x

y

Underfitting OverfittingGood fitting

(a) (b) (c)

Figure 4: If model has too few parameters, underfitting (a) occurs, i.e., the

model is not flexible enough to accurately represent the data. If model has

too many parameters, overfitting (c) can occur, i.e., the model has too much

flexibility and learns the specific features of the training set. The optimal

fit (b) is therefore a matter of choosing the proper model and the proper

training set.

3.2 Constructing a Machine-Learning Potential

Any MLIP, before it can be used to predict certain properties of atomistic sys-

tems (typically these are energies, forces and stresses) should first be trained,

e.g., some values should be assigned to parameters θ. Then the MLIP is able

to approximate the quantum-mechanical property F qm of configuration x:

F (θ, x) ≈ F qm(x) (18)

The multidimensional space consisting of configurations with all possible

combinations of atomic positions and types (relevant to a certain simulation)

is called the configurational space. The dependence F (x) or (in the most

frequent case when F means energy) E(x), which means the mapping of

each point of configurational space x to some specific value of energy E(x),

is called the potential energy surface (PES). Solving the optimization problem

(15) delivers the best set of parameters θ (in some sense) to approximate the

PES.

33

A typical way of using MLIPs is to employ them as force-fields in MD/MC

simulations. The problem is that the set of configurations {x(1), . . . , x(n)},
which the MD will “visit”, is not known in advance. As MLIPs allow much

faster calculation of the properties F (θ, x(j)) then QM packages do, MLIPs

are typically used in simulations involving much larger system sizes and sim-

ulation times, than those attainable with QM packages. Thus, it is often

not possible to systematically measure the accuracy of certain MLIP dur-

ing the simulation, as generating QM data for all respective configurations

is too computationally expensive and experimental data might not exist at

all. Sometimes indirect criteria are introduced, like correspondence of some

physical quantities calculated during the simulation to their reference values.

However, when the simulation is aimed on providing new information, which

is not available from other sources, the question of reliability of the results

remains open, as there are no robust methods of checking the accuracy (and,

therefore, applicability) of MLIP in a certain simulation. The same problem

arises for the empirical potentials as well.

In a situation, when the direct measurement of MLIP accuracy is not

possible, each user relies on its own experience to construct a reliable MLIP.

By “construction” the following procedure is meant:

1. Preparation of the training set

It is worth to note that MLIP, being essentially a machine-learning

model, can only interpolate the relation yj = F qm(x(j)) incorporated in

the provided training set, but not more than that. In the Figure 5 you

can notice three cases of approximating a PES of a system containing

two atoms, acting via the Lennard-Jones potential (5). On the Figure

5a the part of configurational space, covered by the training set (the

training domain) does not contain samples with small and big r, thus

leading to incorrect behaviour of the trained MLIP at the corresponding

distances. On the Fig.5b the training domain does not cover the poten-

tial energy well, and, consequently, the trained MLIP fails to reproduce

it. On the Figure 5c the training samples are chosen in a proper way,

34

thus MLIP learns all the features of the approximated PES. From this

1-dimensional example it may seem that a simple uniform coverage of

the configurational space is the best choice to form a training set. But

in a more realistic case of fitting a many-body local MLIP to the PES

of a bulk metal using a cutoff radius of 5 Å, the number of atoms in the

neighborhood (see Figure 1) would be about few dozens, let us take 20.

In a case of one component, each atom would have three scalar degrees

of freedom, thus leading to about 60 arguments in a function V (n) (not

exactly 60 due to the symmetries). If the minimum distance between

two atoms equals 2 Å, and the distances on the interval from 2 to 5 Å

are discretized with 0.1 Å step, this leads to a 30 points per distance

and to 3020 configurations required for the uniform sampling, which is

by far impossible. This problem is called a curse of dimensionality,

and it arises from a high amount of independent variables (about 100

in our case) on which the approximated function depends. As far as the

uniform sampling is prohibited by a curse of dimensionality, typically

other approaches are undertaken.

2. Sampling

As illustrated by Figure 5, the MLIP will approximate PES well within

the training domain (still one should care about the underfitting or

overfitting problems, see Figure 4). Thus, while designing MLIP for

simulations of particular atomistic systems, the training set should be

composed from configurations resembling the ones expected to occur

during the simulation. The procedure of collecting such configurations

is called sampling. While sampling some force field is used to run

an MD and collect the snapshots (the MD trajectory). Afterwards

this some representative subset of snapshots is selected (namely their

geometries) and put into ab initio calculations to obtain the reference

energies, forces and (sometimes) stresses.

For example, to simulate a crystalline structure of a bulk iron at 300K,

a training set should consist of configurations with lattice type and

35

lattice parameter close to the ones of iron at 300K (BCC lattice with

a 2.856Å lattice constant). During simulation the atoms will displace

from their equilibrium positions due to thermal fluctuations, and the

proper training set should include not only on-lattice configurations,

but the “shaken” ones as well. The sampling can be done with a

Lennard-Jones potential with relevant parameters, by performing an

MD simulation with NVT ensemble and saving the trajectory. Next,

some amount of configurations is picked, corresponding to time steps

not close to each other (in order to exclude correlated configurations),

and after calculation of ab initio energies/forces/stresses these config-

urations enter the training set.

In this sampling approach it is assumed that even with some simple

(therefore computationally fast) interatomic interaction model MD can

“visit” appropriate configurations, which would provide necessary input

for training of the model. Still, in many cases this is only the first step,

while the next is to use the MLIP, trained on such training set, to run

another MD, saving its trajectory. Then a new training set is obtained

and a new MLIP is trained. This iterative procedure can be repeated

several times, till the MLIP is fully trained; however, there is no strict

and systematic criterion for this condition.

3. Validation of MLIP

To check the MLIP capabilities of describing the atomistic systems of

interest, typically some simulations are performed, aimed at comput-

ing some materials properties, which then can be compared to known

experimental/theoretical data. Note, that a small error on the training

set does not guarantee the good performance of MLIP, as it will be used

to calculate the properties of configurations not present in the training

set.

A common way of checking the performance of the potential outside

the training set is using a validation set (see Section 3.1). However, it

36

is not always possible to construct a validation set. It requires config-

urations relevant to the simulation of interest with provided ab initio

energies/forces/etc., which is not always possible. The reasons can be:

the potential can be used for large supercell calculations, for which ab

initio calculations are not possible, or the configurations from the sim-

ulation are not known in advance, because the trajectory of the MD

is known only during actual simulation. Therefore, sometimes valida-

tion of the potential is done versus more “high-level” quantities like

vacancy migration energy barrier, elastic moduli or heat capacity: the

potential can be used to calculate some of these quantities with further

comparison to their known values. This allows for estimation of the po-

tential quality: if the potential reproduces some quantities well, it can

be expected that it will properly predict other properties of interest.

Obviously this is not a systematic criterion as opposite to the active

learning approach, see Section 3.6.

3.3 Energies, Forces, and Stresses

We next describe in detail the model used in the present thesis and its func-

tional form F . In (15) the model F can approximate any property of the

configuration. We consider the energy as an approximated property and

thus we use E to denote it. Next, by the machine-learning model I mean

the moment tensor potentials (MTPs) described in the Section 3.4. They are

parametrized with a set of parameters θ which are found from minimizing

the loss functional, expressing that the predicted energy E is close to the

reference quantum-mechanical energy Eqm. The loss functional (15) is then

written as:

L(θ) =
N∑
j=1

(
E
(
θ, x(j)

)
− Eqm

(
x(j)
))2

+ Cc

m∑
i=1

θ2i , (19)

where N is the size of the training set, x(j) are the configurations in the

training set, Eqm
(
x(j)
)

are their reference energies, and Cc
∑m

i=1 θ
2
i is the so-

37

U(r)

r

Training
samples

True PES

PES predicted
by MLIP

(a)

U(r)

r

True PES

Training
samples

PES predicted
by MLIP

(b)

U(r)

r

True PES

Training
samples

PES predicted
by MLIP

(c)

Figure 5: Fitting of Lennard-Jones potential with MLIP. In cases (a) and (b)

the training samples do not cover some regions of the configurational space,

which leads to incorrect form of the reproduced PES in this regions. When

the interior of the configurational space is covered evenly (case (c)) the form

of the PES is reproduced correctly.

38

called soft constraint term, introduced to distinguish different but equivalent

solutions based on their norm (see Section 3.5 for details). In a case of fitting

not only to the energies, but also to the forces and stresses, the loss function

is extended with additional summands:

L(θ) =Ce

N∑
j=1

(
E
(
θ, x(j)

)
− Eqm

(
x(j)
))2

+ Cf

N∑
j=1

nj∑
k=1

(
fk
(
θ, x(j)

)
− fqm

k

(
x(j)
))2

+ Cs

N∑
j=1

3∑
a=1

3∑
b=1

(
σab
(
θ, x(j)

)
− σqm

ab

(
x(j)
))2

+ Cc

m∑
i=1

θ2i , (20)

where index k enumerates the atoms in the configuration j of size nj;

fk
(
θ, x(j)

)
and fqm

k

(
x(j)
)

are the predicted and the reference forces acting

on atom k, σa
(
θ, x(j)

)
and σqm

ab

(
x(j)
)

are predicted and reference virial stress

components. Multipliers Ce, Cf , and Cs determine the relative weights of

energies, forces, and stresses in the loss function and, consequently, in the

fitting procedure. Their typical values for the case of MTP fitting (see Section

3.1) values are:

Ce = 1, (21)

Cf = 10−2Å2,

Cs = 10−3Å6,

while typical values for Cc are in the 10−8 − 10−6eV 2 range. The numbers

from (21) come from practice and reflect the condition of optimal relative

importance of the energy, forces, and stresses factors in the fitting procedure.

I.e., too small or too large value of any coefficient from (21) will result in

neglecting/overprevailing of a certain factor among the others.

The expression for the energy E(j) of configuration x(j) is composed from

the contributions of individual atomic neighborhoods:

39

E(j) = E
(
θ, x(j)

)
=

nj∑
i

V (nji), (22)

where index i enumerates the atoms of the configuration x(j) and nji de-

note their neighborhoods. Using the partitioning scheme for energy (22)

forces acting on atoms are calculated as:

fk
(
θ, x(j)

)
= −

∂E
(
θ, x(j)

)
∂rkj

= −
nj∑
i=1

∂V (θ, nji)

∂rkj
, (23)

where rkj is the position of atom k in configuration j. Virial stress in an

atomistic configuration with the lattice volume Ω is given by:

σab =
1

2Ω

nj∑
k,l=1

(xla − xka)fklb ,

where fklb is the b component of the force applied on atom k by atom l. As

is shown further, the function V is differentiable with respect to atomic coor-

dinates, thus forces and stresses can be calculated for any set of parameters

θ and for any configuration.

3.4 Moment Tensor Potentials

Mathematically, each atom in the neighborhood introduces four degrees of

freedom, on which ni depends: three continuous coordinates in Euclidean

space, and a discrete variable representing the type of the atom. Typically,

neighborhoods include few dozen atoms, which means that the function V (ni)

depends on the order of hundred scalar variables. To somewhat reduce the

dimensionality, all physical symmetries are embedded into V (n) so they will

not have to be learned by the model. These symmetries arise from isotropy

and translational symmetry of the physical space, and from the fact that the

interaction between atoms does not depend on their ordering.

40

As in the work [76] devoted to the single-component moment tensor po-

tentials, V (n) is linearly expanded through a set of basis functions Bα:

V (n) =
∑
α

ξαBα(n). (24)

The basis functions, in turn, depend on the set of moment tensor descriptors

Mµ,ν(ni) =
∑
j

fµ(|rij|, zi, zj) rij ⊗ ...⊗ rij︸ ︷︷ ︸
ν times

, (25)

where the index j enumerates all the atoms in the neighborhood ni.

To define the basis functions, we choose a cut-off radius Rcut and in-

troduce, as described below, a representation of the neighborhoods which is

invariant with respect to rotations and permutations of chemically equivalent

atoms. Note that the translation invariance is already built into (2). The

symbol “⊗” stands for the outer product of vectors, thus in (25) rij⊗ ...⊗rij
is the tensor of rank ν. This way, each descriptor in (25) is composed of

the radial part fµ(|rij|, zi, zj) which depends only on the relative distances

between atoms and on their types and on the angular part rij ⊗ ... ⊗ rij
resembling the moments of inertia. It should be emphasized that Mµ,0 are

the standard two-body descriptors of atomic environments that do not con-

tain information about angles between bonds. The general moment tensor

descriptors Mµ,ν remain two-body and thus offer an alternative way of in-

cluding the angular information—the traditional way is to include at least

three-body descriptors. The functions fµ(|rij|, zi, zj) depend only on the

interatomic distances and atomic types, therefore we call them radial func-

tions. The terms rij ⊗ ... ⊗ rij contain the angular information about the

neighborhood ni.

We next explain how to construct the basis functions from the moment

tensor descriptors, following which we present a simple illustration of the

structure of the descriptors and basis functions. The functions Bα(ni) enu-

merate all possible contractions of any number of Mµ,ν(ni) yielding a scalar.

Note that Mµ,ν(ni) are invariant, by construction, with respect to translations

41

𝑖
𝑟𝑖1

𝑟𝑖2

𝑟𝑖3

𝑖

𝑀µ,ν 𝑟𝑖𝑗 , 𝑡𝑖 , 𝑡𝑗

ni

Figure 6: For the purpose of fitting the interatomic interaction energy E,

the neighborhood ni is described by the moment tensors Mµ,ν exhibiting all

the physical symmetries that E has. The descriptors Mµ,ν depend on dis-

tances rij and chemical types ti, tj in all pairs of atoms in the neighborhood,

including the central i and the peripheral ones j.

42

of the system and permutations of equivalent atoms. Their scalar contrac-

tions are invariant with respect to rotations of the neighborhood. Thus the

resulting function V (n) also has these symmetries. Although all the descrip-

tors Mµ,ν(ni) are composed of two-body terms depending only on rij, their

contractions B(ni) can depend on many-body terms of higher order.

For the purpose of illustration assume, for the moment, that the vec-

tors rij are two-dimensional and that they are expressed in polar coor-

dinates (ρ, θ) centered at the ith atom. Let us look closer at the term

rij ⊗ ... ⊗ rij ≡ r⊗ν , which is a tensor of rank ν. E.g., r⊗0ij is a scalar

with no angular information, while r⊗1ij = rij = |rij|(cos θij, sin θij) does con-

tain angular information. A vectorial contraction is simply a dot product:

rij · rik = |rij| |rik| cos(θij − θik)—in this way angular terms are introduced

into the potential. An arbitrary function of angle can be expanded into a

sum of powers of cosine. Such higher-order terms are contributed to the

potential by higher-rank tensors, e.g.,

r⊗2ij = rijr
>
ij = |rij|2

(
cos2 θij sin θij cos θij

sin θij cos θij sin2 θij

)
.

The contractions of two matrices are given by the Frobenius product

r⊗2ij :r⊗2ik = |rij|2|rik|2 cos2(θij − θik).

A more complicated expression can be constructed with a matrix and two

vectors:

(r⊗2ij rik) · ri` = |rij|2|rik||ri`| cos(θij − θik) cos(θij − θi`).

Terms of this form are rotationally invariant. Permutation invariance is

achieved by summing those terms over all atoms in the neighborhood weighted

by the radial functions.

As an illustration, assume that there are two radial functions,

fµ(ρ, zi, zj) = exp
(
− |ρ−Rµ|2

2σ2

)
,

43

µ = 1, 2, where ρ has the meaning of distance to the central, ith atom. In

the sum (25) they “extract” two shells of atoms, around the distances R1

and R2 from the ith atom, smeared over the width of σ. We did not, but

could assume the dependence of these functions on the types of atoms zi

and zj—this would discriminate the importance of these atom types to these

two shells. Thus, M1,0 and M2,0 are the atom count in these two shells and

both can serve as basis functions. Mi,1 are vectorial quantities indicating

eccentricity of these shells: if Mi,1 = 0 then the ith shell is symmetric (to

the first order) while Mi,1 6= 0 indicate that there are “more atoms” in the

direction Mi,1 than in the opposite direction.

As vectorial quantities, Mi,1 are not the valid basis functions, however,

the valid ones are Mi,1 ·Mi,1 indicating the magnitude of eccentricity and

Mi,1 ·Mi,2 indicating how these two eccentricities are aligned with respect to

each other. One can make many more basis functions from these quantities,

e.g., Mi,0(Mi,1 ·Mi,1), (Mi,1 ·Mi,1)(Mi,1 ·Mi,2), etc. One can then continue

by analogy: Mi,2 are the second moments of inertia of these shells indicating

the degree to which these shells are “squeezed” in the respective directions,

forming the basis functions Mi,2 :Mj,2, (Mi,2Mj,1) ·Mk,1, (Mi,2Mj,2Mk,1) ·M`,1,

etc. We remark that this way of enforcing symmetries in the potential is

related to the ideas from Refs.[46, 38].

For the purpose of choosing which (out of the infinite number of) basis

functions to include in the interatomic potential, we define the degree-like

measure, level, of Mµ,ν by levMµ,ν = 2µ + ν and the level of Bα obtained

by contracting Mµ1,ν1 , Mµ2,ν2 , . . ., as levBα = (2µ1 + ν1) + (2µ2 + ν2) +

Thus, to define an MTP we choose some levmax and include in (24) each Bα

with levBα ≤ levmax. Thus, by increasing levmax one can increase the num-

ber of parameters in the potential, including the contributions of three-body,

four-body, etc., terms. In this sense, V (n) has a systematically improv-

able functional form. By increasing levmax models with more parameters are

emerged, capable of more accurate fitting but requiring more computational

time and more data to train. Also the calculations of energy, forces, and

44

stresses are performed slowly for MTPs with higher levmax.

The radial functions fµ(|rij|, zi, zj) from (25) have the form:

fµ(ρ, zi, zj) =
∑
k

c(k)µ,zi,zjQ
(k)(ρ), where (26)

Q(k)(ρ) := Tk(ρ)(Rcut − ρ)2.

Here Tk(ρ) are the Chebyshev polynomials on the interval [Rmin, Rcut]. The

term (Rcut − ρ)2 was introduced to ensure smoothness with respect to the

atoms leaving and entering the cut-off sphere. Taking into account that in

real systems atoms never stay too close to each other, it is always possible

to choose some reasonable value for Rmin.

The difference from the single-component MTPs [76] is that now the

functions fµ(ρ, zi, zj) depend on the types of the central and the neighboring

atoms. The graphical scheme of the V (n) function is illustrated in the Figure

7. Note, that V (n) is linear with respect to parameters {ξα}, while the

parameters {c(k)µ,zi,zj} propagate through several layers of calculations: fµ →
Mµ,ν → Bα → V and resemble the deep layers weights in neural networks.

As follows from (26) a number of parameters c
(k)
µ,zi,zj exist for each pair

of species and each µ. Note that the number of these parameters is propor-

tional to n2, where n is the number of species, while number of parameters ξα

from (24) does not depend on the number of species. Thus, the total number

of model parameters θ = ({ξα}, {c(k)µ,zi,zj}) to be found in the minimization

procedure (19) grows less than quadratically with the number of species,

despite accounting for many-body interactions in V (n). It was proven [76]

that the descriptors of the form (25) provide a complete description of an

atomic neighborhood, in a sense that any function of atomic neighborhood

with the same symmetries as V (n) can be approximated as a polynomial of

these descriptors with an arbitrary accuracy. The proof [76] holds only for a

single-component case. While for a multicomponent case this may not nec-

essarily be true, the introduced nonlinear parameterization (26) of the new

degrees of freedom (namely, the atomic types) with polynomial approxima-

tors is still an approach, which further (Section 4) is shown to be worthwhile.

45

Despite the magnetic moments of the atoms are neglected in the current im-

plementation, they can be included in the current implementation by adding

a dependence of the radial functions fµ(ρ, zi, zj) from (25) on the magnetic

moments of atoms in each pair participating in the tensor moment construc-

tion. The below formula provides generalized radial functions expression for

a case of collinear magnetic moments:

fµ(ρ, zi, zj,mi,mj) =
∑
k

c(k)µ,zi,zjQ
(k)(ρ)

∑
k1,k2

c(k,k1,k2)µ,zi,zj
Q(k1)(mi)Q

(k2)(mj),

(27)

where (28)

Q(k)(ρ) := Tk(ρ)(Rcut − ρ)2.

In this implementation the magnetic moments of atoms are treated as

independent variables on which the potential energy depends. This adds

two dimensions (as radial functions are constructed for pairs of atoms) to

a space of independent variables on which fµ(ρ, zi, zj,mi,mj) depends, and

two additional sums in the expansion of this function through polynomials

Q(k)(ρ). In a general case of 3-d magnetic moments, it will be 6 additional

dimensions and 6 sums over corresponding indexes.

The only means by which the MTPs can describe charged systems are

screening of electrostatic interaction, which makes the locality assumption

(2) applicable. In the case of essentially non-local electrostatic interaction

the charges should be included explicitly within hypothetical non-local im-

plementation.

3.5 Training the Moment Tensor Potentials

While training of a single-component MTP means solving the overdetermined

system of linear algebraic equations (a single-component MTP is linear w.r.t

its parameters [76]), which is purely procedural and straightforward task,

training a multicomponent MTP requires solving the non-linear optimization

46

𝑓1

𝐵1

𝑓2
𝐵2

𝑓µ

𝐵𝛼

𝑉𝑖

𝑇1

𝑇2

𝜉1

𝜉2

𝑐µ𝑙𝑚
(𝑘)

𝑇𝑘 𝜉𝛼

𝑀1

𝑀2

𝑀µ,𝜈

𝑐1𝑙𝑚
(1)

ni

𝑙 = 𝑧𝑖

𝑚 = 𝑧𝑗−1

𝑟 = 𝑟𝑖𝑗−1

𝑚 = 𝑧𝑗

𝑟 = 𝑟𝑖𝑗

𝑚 = 𝑧𝑗+1

𝑟 = 𝑟𝑖𝑗−1

𝑗

.

Neighbor 𝒋 + 𝟏

Neighbor 𝒋 − 𝟏

Neighbor 𝒋

Figure 7: Computational scheme of the moment tensor potentials. The num-

ber of basis functions Bα (and respective coefficients ξα) is a tunable hyper-

parameter. The dependence of Vi on the types of atoms in ni is incorporated

in radial functions fµ(ρ, zi, zj).

47

problem in high-dimensional space. For being able to use the gradient-based

optimization methods like gradient descent one needs to compute the first (at

least) derivatives of the loss function (19) w.r. its parameters, which takes

much more computational effort then calculating just a loss function value.

Therefore I have implemented a back-propagation algorithm for derivatives

calculation which calculates all the loss function derivatives w.r.t MTP co-

efficients (which are hundreds) only 4.8 times slower than the actual loss

function calculation.

Another important question arising during non-linear optimization is

choosing the optimization method. I have tried both simulated annealing

and basin-hopping techniques of global optimization (see Section 3.1) to-

gether with BFGS to find several solutions of the problem (15). It turned

out that while training of MTPs, different solutions of the problem resulted

in the same accuracy, and the difference in the parameters θ was caused

only by inner symmetries of the model, i.e., existence of different parameter

sets θ1 and θ1, such as F (θ1) = F (θ2) and, consequently L(θ1) = L(θ2). It

is worth to note, that finding a local minimum consumes some amount of

computational time, and finding several local minima requires several times

more, as the local optimization algorithm is launched several times. In such

circumstances finding several local minima providing the same accuracy is a

waste of computational time.

Therefore, I ended up with just one local optimization as the training

procedure. However, symmetries present in the model can (and actually do)

hamper the convergence of local optimization algorithms like BFGS, as there

can be back and forth stepping along the direction between two identical

solutions. To get rid of identical solutions we introduced an artificial penalty

which results in preferring some solutions against others, thus allowing the

optimization algorithm to converge more unequivocally:

L(θ) =
n∑
j=1

(
yj − F

(
θ, x(j)

))2
+ C

m∑
i=1

θ2i , (29)

where C is some small positive number.

48

Since m is the only tunable hyperparameter of our model (more details

in Section 3.4), our testing has found that a good rule of thumb for choosing

it is n > 2m.

3.6 Active Learning

While constructing a machine-learning potential the problem of sampling

arises (see Section 3.2): to run an MD simulation of some process of interest

(e.g., a molecular reaction or a phase transition) one should have training

set of representative configurations relevant to a certain simulation. In order

to sample such configurations, one needs a potential visiting proper parts

of the configurational space. This, in turn, can be done with the potential

already trained on representative configurations. While traditional iterative

resampling-retraining approach does not offer systematic success criterion

and is not always efficient, we propose the active learning approach, which

makes possible to sample the configurational space and run a simulation

at the same time. The approach we propose is based on the so-called D-

optimality criterion, which provides a numerical criterion for “novelty” of

a certain configuration for interatomic potential (namely, MTP). This es-

sentially means proximity of the configuration to the training set of MTP.

MTP ”extrapolates” when configuration does not belong to the interior of

the configurational space, covered by the training set. Definition and detailed

description of the extrapolation grade concept is given in section 3.6.1.

Depending on the problem to be solved, active learning can be imple-

mented in a different ways. In this thesis two scenarios of active learning

usage are provided: active learning with validation set (Section 3.6.2)and

active learning in crystal structure prediction (Section 3.6.3).

3.6.1 Generalized D-optimality Criterion

Recently the active learning approach has been proposed, designed for in-

teratomic potentials with a linear dependence on the model parameters [60].

This approach is based on a D-optimality criterion for selecting the training

49

dataset, which is equivalent to choosing atomistic configurations maximizing

the determinant of the matrix of the linear equations on the model param-

eters. The model proposed in this paper has a nonlinear dependence on

its parameters θ, therefore we propose a generalization of the D-optimality

criterion to the nonlinear case. To that end, we assume that the values of

the parameters θ̄, which are found from the training procedure (Section 3.1)

are already near the optimal ones and we hence linearize each term in the

function (15) with respect to the parameters:

y(i) − F
(
θ, x(i)

)
≈ y(i) −

∑
j

(θj − θ̄j)
∂F

∂θj

(
θ̄, x(i)

)
.

One can then interpret the fitting as the solution of the following overdeter-

mined system of equations with respect to θj:

m∑
j=1

θj
∂F

∂θj

(
θ̄, x(i)

)
= y(i) + θ̄j

∂F

∂θj

(
θ̄, x(i)

)
,

i = 1, . . . , n,

where n is the size of the training set {x(1), . . . , x(n)}. The matrix of this

system is a tall Jacobi matrix

B =

∂F
∂θ1

(
θ̄, x(1)

)
. . . ∂F

∂θm

(
θ̄, x(1)

)
...

. . .
...

∂F
∂θ1

(
θ̄, x(n)

)
. . . ∂F

∂θm

(
θ̄, x(n)

)
 ,

where each row corresponds to a particular configuration from the training

set.

Next, a subset of configurations yielding the most linearly independent

rows in B is selected for training. This is equivalent to finding a square m×m
submatrix A of maximal volume (i.e., with maximal value of |det(A)|). We

have implemented it by using the so-called MaxVol algorithm [30].

We define the “novelty” grade (extrapolation grade) γ(x∗) as the maximal

factor by which |det(A)| can grow if x∗ is added to the training set. According

to Ref.[30] it can be calculated as

γ(x∗) = max
1≤j≤n

(|cj|),

50

where

c =

(
∂F

∂θ1

(
θ̄, x∗

)
. . .

∂F

∂θn

(
θ̄, x∗

))
A−1 =: b∗A−1.

Thus, if γ(x∗) ≥ 1 the configuration contains new information and can

be included into the training set. In practice, some threshold γtrsh > 1 is

used to prevent configuration with not sufficiently high extrapolation grade

γ(x∗) < γtrsh from entering the training set. The principle of sampling the

configurations based on their extrapolation grade γ is further embedded into

the active learning approaches, used in different simulation scenarios.

Obviously, to some extent the extrapolation grade correlates with the

error which MTP is expected to have for a certain configuration. Though, the

authors emphasize that the essence of this criterion is measure of proximity of

configuration to the training domain of certain MTP. Nevertheless, it would

be illustrative to provide such dependence for a case of MTP designed for a

TiN binary system 8. The MTP used for this test has 50 parameters and

configurations are taken from NPT simulations of B1 TiN at 300K.

Figure 8: The illustration of a connection between extrapolation grade and

the absolute force error of MTP.

51

3.6.2 Active Learning with Validation Set

The problem solved in this case can be formulated in a following way: given

a set of configurations (e.g., molecules or periodic structures) and a MLIP

with fixed functional form (but non-fixed coefficients), it is needed to select

a subset of configurations by training on which the MLIP will exhibit the

best accuracy of predicting the properties (e.g., formation energy) of the

remaining configurations (called validation set in this case).

On the one hand, the training set should represent the full variety of

configurations to prevent extrapolation while evaluating properties of config-

urations from the validation set. On the other hand, the size of the training

set is typically limited by the amount of experiments or ab initio calcula-

tions can be conducted in a reasonable time. It has been shown [40] that

the optimal choice of the training set of a fixed size can, in principle, sig-

nificantly reduce the validation errors, if one was allowed to use the labels

y(i) (see Section 3.1) of all the available data. However, a practical selection

algorithm needs to choose configurations for the training set based only on

the unlabeled data x(i) (as our proposed algorithm does), since one wants to

compute the labels only after selection.

The active learning algorithm we propose effectively detects configura-

tions on which the MLIP extrapolates. Hence, training on such configurations

prevents extrapolation and thus ensures reliable treatment of the remaining

configurations at the evaluation stage. We next describe our active learning

procedure applied to a problem of selecting the best subset for training from

some pre-defined set. This procedure forms the training set iteratively, each

time increasing its size by not more than 10%. The steps are the following:

0. Start with a random initial training set of a small size.

1. Train the model on the current training set.

2. Using the active learning algorithm [60] select configurations with γ ≥
γtrsh, and add either all such configurations or the configurations with

52

the highest γs, such that the size of the training set increases by 10%

or less.

3. Unless satisfied with the current model (see the discussion below), go

to the step 1.

The loop stops (as mentioned in the step 3) when the difference in accu-

racy of the models on several consecutive iterations is too small. We have

observed that sometimes the accuracy improvement on one particular itera-

tion may be small, while on the next one it can increase again. Therefore,

tracking improvement on several iterations of the cycle is more reliable cri-

terion.

3.6.3 Active Learning in Crystal Structure Prediction

Crystal structure prediction (CSP) is aimed at searching the most stable

structures for a given atomic composition or a range of compositions. Meth-

ods for crystal structure prediction involve evaluation of energies for large

amounts of different structures and selecting the most stable ones (with the

lowest formation energies). The structures to be checked are typically pro-

vided by some generative algorithm [35, 52] or are selected from some pool of

structures [54] containing a diverse set of geometries and compositions, the

more the better. Applying MLIP to CSP yields similar problems to using

MLIP in MD: MLIP should predict properties of configurations not present

in a training set, with a chance of extrapolation resulting in an inaccurate

prediction for a given structure. Using the active learning approach it is pos-

sible to perform a simulation in which evaluation of the occurring structures

and their sampling for the training set is done simultaneously.

In a crystal structure prediction one needs to perform relaxations (see

Figure 11) of different crystal structures with MLIP. Therefore, the train-

ing set should include all the representative structures, so that the potential

does not have to extrapolate while searching for the stable structures. In

cluster expansion-like approaches in which the energies of the relaxed struc-

tures are predicted based on representation that uses unrelaxed structure

53

geometries, extrapolation results in higher prediction errors [58]. However,

in our approach structural relaxation is performed explicitly, and we accel-

erate the relaxation process by using a machine-learning potential instead

of DFT, see the scheme Figure 9. Because of the added flexibility of the

MTP (as compared to cluster expansion), avoiding extrapolation is even

more important—it is crucial to the reliability of the algorithm—as highly

unphysical structures can arise during the relaxation if the extrapolation is

severe.

Here we describe a special case of crystal structure prediction—construction

of the convex hull for metallic alloys. Convex hull is a geometrical surface

in a compositional space (see Section 4.1 for details) containing the stable

structures for all possible concentrations of constituting elements. Next we

describe the algorithm for constructing a convex hull using the active learning

approach.

It is assumed that the starting training set is empty and is only composed

algorithmically as is described below. This allows for excluding the human

factor on this stage and therefore making the procedure more generic and

more automatized. One can, however, still start from some initial set of

configurations to end the procedure faster with some final training set as the

result (which is still more or less the same regardless of the initial training

set). To benefit from the active learning approach one should not provide too

much configurations from the beginning, to leave the space for new incoming

configurations. While the size of the final training set would be about 2m,

where m is the amount of parameters in the MTP, we recommend to take

not more than roughly m/2 configurations for initialization.

Input The input to the algorithm is:

1. A set of candidate structures among which one expects to find

the ground state structures. It is possible to select much broader

and more diverse set of structures as compared to the approaches

based solely on DFT. Note, that they will change their geometries

during relaxation, but not compositions.

54

2. A functional form of MTP, E = E(θ, x).

Initialize θ randomly and let the training set be empty.

3. A quantum-mechanical model Eqm(x).

In this thesis it means DFT as implemented in VASP 5.4.1.

4. Two thresholds γtsh and Γtsh, such that Γtsh > γtsh > 1.

If the extrapolation grade γ(x∗) is greater than 1, the algorithm

makes two decisions: to add x∗ to the training set if γ(x∗) > γtsh

and to terminate the relaxation if γ(x∗) > Γtsh (assuming in the

latter case that MTP cannot make reliable predictions of energy,

forces, and stresses for x∗), as explained below.

Step 1 For each candidate structure perform structure relaxation with the

current MTP (defined by the current values of θ). There can be two

outcomes of the relaxation: (1) the relaxation is completed successfully

and equilibrium structure appears as a result, (2) the relaxation was not

successful because a structure emerged on which the MTP attempted

to extrapolate. More precisely, the following scenarios can emerge:

a. The relaxation successfully converges to an equilibrium config-

uration and on each configuration from the relaxation trajectory

the MTP does not significantly extrapolate, i.e., the extrapolation

grade of each intermediate configuration is less than Γtsh. During

the relaxation there could be, however, configuration with extrap-

olation grade exceeding γtsh—in this case such a configuration is

added to the preselected set (see Figure 9 and Section 3).

b. At some step of the relaxation a configuration with extrapolation

grade exceeding Γtsh is emerged. This means that MTP cannot

provide a reasonable prediction as it extrapolates significantly on

this configuration and needs to be retrained with more ab initio

data. The relaxation is then terminated. The last and all the

previous configurations with the grade exceeding γtsh are added

to the preselected set.

55

Step 2 Out of the preselected set from the step 1b, select a smaller number

of configurations that will be added to the training set. The preselected

set can be very large and contain hundreds of thousands configurations

(note that during the first iteration of the algorithm all the relaxations

will be terminated according to the scenario (b), as the training set is

empty and the MTP extrapolates on every configuration). Therefore

the active learning algorithm is used to select up to few hundred most

representative configurations, according to the D-optimality criterion

from Section 3.6.1. It extends the training domain of the MTP as much

as possible while keeping the amount of ab initio calculations relatively

small. After the calculation, ab initio energies, forces, and stresses of

the selected configurations are added to the training set.

Step 3 Fit the MTP to the updated training set. As the size of the training

set grows with each iteration of the algorithm, this step will take more

and more time on each subsequent iteration, but still this time is a

small fraction of the time spent on ab initio calculations.

Step 4 Repeat the steps 1–3 unless all the relaxations have successfully

converged to the respective equilibrium configurations.

As the MTP is repeatedly refitted during the relaxation on a dynamically

updated training set, we call this algorithm as “relaxation while learning

on-the-fly”.

3.7 Discussion

In this section the detailed description of the research methodology of the

present thesis was provided. There were introduced: MTPs (a special type

of MLIPs), the active learning approach (the way of automatic composition

of the training set which prevents MLIP extrapolation during simulation),

and the nuances of MLIPs training.

MTPs cannot predict the long-range ordering in materials as they are

essentially local (see Section 2.1). Due to the same reason MTPs by their

56

Add configuration to
the pre-selected set

C
o

n
fi

gu
ra

ti
o

n

Get an
extrapolation

grade

Relaxation

Selection

Selected set:
Get QM data and add to the training set

E,
 F

, S

MTP:
calculate E, F, σ

Terminate the
relaxation

γ≥Γ𝑡𝑠ℎ

γ< γ𝑡𝑠ℎ

γ≥γ𝑡𝑠ℎ γ< Γ𝑡𝑠ℎ

γ

Figure 9: Relaxation with active learning. If MTP encounters an extrapola-

tive configuration (γ ≥ γtsh), this configuration is added to the preselected

set for further selection. In the case of significant extrapolation (γ ≥ Γtsh)

the relaxation is terminated. For configurations with γ < Γtsh, the MTP

provides energies, forces and stresses. If no configuration with γ ≥ Γtsh is

encountered, the relaxation stops at some equilibrium configuration.

57

Off-equilibrium
structures

Training
domain

PES

MTP
Extrapolation!

Relaxation path

Potential
energy

Equilibrated (relaxed)
structures

(a)

Off-equilibrium
structures

Training
domain

Relaxation path

Potential
energy

PES

MTP

Training set
extension

Equilibrated (relaxed)
structures

(b)

Figure 10: If an MTP encounters some extrapolative configuration during

relaxation, as shown in (a), the relaxation is terminated and restarted after

retraining the MTP, as shown in (b).

58

Formation energy,
meV/atom

-0.07 -0.08 -0.09

1) Candidate
structure 2) Intermediate structures

(Relaxation trajectory)

3) Equilibrium structure
(forces ≈ 0, strains ≈ 0)

Cu Cu

Cu Cu

Pd Pd

Cu Cu

Cu Cu

Pd Pd

Cu Cu

CuCu

Pd

Pd

= changing of

atomic positions

and lattice cell

Figure 11: Graphical illustration of the relaxation process. By relaxation

trajectory we mean a sequential list of structures that occur during the re-

laxation, which have similar but distinct atomic displacements and lattice

parameters. To perform relaxation we treat energy of configuration as a

function of atomic positions and lattice vectors. As we know the derivatives

of energy function w.r.t. this variables (calculated from forces and stresses),

we use BFGS algorithm (as in Section 3.1) for minimizing energy, which

simultaneously provides zero forces and stresses.

59

nature learn the short-range order by intrinsically assigning different energy

contributions to different atomistic environments. This way, more energeti-

cally favourable short-range orderings will be distinguished among all possible

orderings.

The active learning approach proposed in this section allows for ”explor-

ing” the unknown parts of the configurational space during a simulation: e.g.,

if an atomistic system during an MD is in the state preceding a phase transi-

tion, the system will evolve towards the new phase with increasing number of

extrapolative configurations occurring. Whether the phase transition will be

reproduced correctly depends on many factors, among which the accuracy

of the MTP fitting is crucial. However in principle, atomistic simulations

with active learning are designed to be suitable for such problems without

the a priori knowledge about the studying system: the only source of infor-

mation which ”guides” the simulation is the QM values for energies, forces

and stresses.

Due to the same reasons, the active learning approach can be applied to

the simulations involving alloys with interstitial elements like C or H. The

main difficulty here is: potential variety of local neighborhoods with H or C

atoms (on which MTP should learn) is enormously huge to be represented

in some generic training set, and most likely too unpredictable for being

represented by a hand-made training set. Nevertheless, in active learning

approach the MTP learns on relatively small amount of the representative

atomic neighborhoods containing H and C, thus making such a simulation

tangible from the computational point of view.

4 Results and Discussion

In this section the application of MTPs and the active learning approach to

studying the properties of multicomponent systems is described. The two

major parts of this section include CSP for binary and ternary alloys, and

prediction of the properties of organic molecules.

60

4.1 Crystal Structure Prediction for Alloys

Advances in computer power, improvements in first-principles methods, and

the generation of large materials databases like AFLOWLIB [16], OQMD

[69], CMR [48], NOMAD [2], and Materials Project[42] have enabled modern

data analysis tools to be applied in the field of materials discovery [44, 3, 62].

There have been growing efforts in computational search for materials with

superior properties, including metallic alloys [59, 17, 34], semiconductor ma-

terials [37], and magnetic materials [70]. In this work we consider the problem

of predicting stable phases in multicomponent alloys. A typical prediction

algorithm consists of sampling structures across the configurational space

and evaluating their energies. The sampling is done by searching through

structures that are either selected from some carefully assembled pool of pos-

sible structures, often called crystal prototypes [54], or are generated by some

sampling algorithm, see, e.g., Refs.[35, 52]

The evaluation of the energy of the structures in the pool is often done

with density functional theory (DFT). Even despite its favorable accuracy/

efficiency trade-off as compared to other quantum-mechanical algorithms,

the DFT calculations remain the bottleneck in materials prediction work-

flows, making an exhaustive search impractical. Machine learning (ML) for

materials prediction has the potential to dramatically reduce the number of

quantum-mechanical calculations performed and thus reduce the computa-

tional expense of predicting new materials via computation. The reduction

of the computational time is achieved by constructing a surrogate model that

“interpolates” the quantum-mechanical training data and makes subsequent

energy evaluations much faster (by orders of magnitude). This is similar

in spirit to the cluster expansion method which has been broadly used in

different materials discovery applications [89, 43, 83, 37]. Cluster expansion

is quite successful when the stable structures are derivatives of a particular

structure (fcc, bcc, etc.) but is not useful when this is not the case. Its

accuracy also converges slowly when atomic size mismatch is not negligi-

ble [58]. Additionally, more classical machine-learning algorithms such as

61

decision trees [55], support vector machines [84], and other ML algorithms

[75, 87] have been tried. However, in comparison to the standard machine

learning approaches the moment tensor potentials-based [76] approach we

demonstrate here provides broader applicability and can achieve higher ac-

curacy as it is generic and apart from the charge and magnetism neglecting

does not have any fundamental constraints on the fitted data, allowing for

its effective application to different classes of materials.

The two important features of our approach are a completely general form

for the interatomic potentials and an active learning algorithm for generating

and refining the training set. In our approach, a ML model reproduces DFT

for off-equilibrium structures that are not restricted to any lattice. Further-

more, the model learns the DFT interaction actively (on-the-fly) while equi-

librating the candidate structures, completely automating the construction

of the training set. Thus, structural optimization of the candidate struc-

tures can be performed via the interatomic potentials, rather than via DFT,

further accelerating the construction of the training set.

Our method is based on moment tensor potentials (MTPs [76]) and the

active learning algorithm [60]. Namely, we solve the following problem: given

a set of elements, find the most stable structures (in the sense of lying on

the convex hull of formation enthalpies) consisting of these elements, each

characterized by composition, unit cell geometry and atomic positions within

the unit cell. In this work we extend the interatomic potential [76] and ac-

tive learning algorithm [60] to handle atomistic configurations with multiple

types of atoms, similarly to the approach used in organic chemistry pre-

dictions [32].The differences between the algorithms from Ref.[32] and this

work include that (1) we need derivatives of the energy, whereas in Ref.[32]

we needed only the energy (or other predicted properties); and (2) that in

Ref.[32] we were concerned with the selection from a finite set of predefined

structures, whereas in this work we need to solve the problem predicting

the energy with a fitted potential and assembling the training set used for

the fitting at the same time (in other words, exploring the potential energy

62

landscape and constructing the training set at the same time).

The idea of applying neural networks, as a broad class of machine-learning

algorithms, to constructing interatomic potentials was pioneered in Ref.[10].

Application of Gaussian process regression, another class of machine-learning

algorithms, was then proposed in Ref. [7]. The promising results obtained

in these works have motivated many research groups to pursue this research

direction [4, 8, 9, 11, 23, 27, 53, 57, 51, 77, 45, 81, 21, 22, 31, 82, 13, 49, 47,

15, 76, 72]. However, the application of such algorithms to the problem of

materials prediction has proven difficult since following such a methodology

requires one to collect all the representative structures in the training set

which is as hard as predicting materials structure itself. In our view, it is

the active learning [60, 61, 9, 12, 78] that paves the way for machine-learning

interatomic potentials to accelerate computational materials discovery.

4.1.1 Cu-Pd Alloys

To test the applicability of our algorithm (Section 3.6.3) to the prediction of

stable alloy structures we first used it to construct the Cu-Pd convex hull.

We chose the Cu-Pd system because the structure of both pure Cu and Pd is

fcc, while the stable equimolar CuPd structure is a bcc derivative structure.

This system is a good test of whether or not our MTP-based model is able

to simultaneously handle multiple lattice types.

We generated configurations with bcc, hcp, and fcc lattices with 12 or less

atoms in the unit cell and populated them with Cu and Pd atoms in differ-

ent combinations. This provided us with 40,000 candidate structures served

as the input to our relaxation while learning-on-the-fly algorithm. We then

equilibrated them and constructed a convex hull based on their relaxed ener-

gies. As follows from the scheme from Section 3.6.3, the training set increases

on each iteration. The final training set was formed by 523 configurations.

The energy MAE, RMSE (σ) and max. error measured on this training set

were equal to 1.9 meV/atom, 2.3 meV/atom, and 10.1 meV/atom respec-

tively. We call this training set “final” since an MTP trained on this set is

63

able to relax all the candidate structures without exceeding threshold for the

extrapolation grade. We used levmax = 16 (refer to Section 3.4) to construct

the MTP with about 200 parameters θ.

Figure 12 shows the convex hulls constructed by the MTP and by high-

throughput DFT calculations as reported in AFLOW. To make a direct com-

parison possible, both convex hulls were post-relaxed with DFT using the

same settings (such as pseudopotentials, k-point mesh, etc.). As a result, we

have found a structure with 16.6% concentration of Pd that is not presented

in the AFLOW library and has energy per atom 0.5 meV below the AFLOW

convex hull level. Though such a shallow ground state (0.5 meV is compara-

ble to thermal energy of one atom at 6K temperature, thus this minimum can

easily be escaped due to thermal fluctuations in any realistic scenario) is typ-

ically not significant beyond academic interest, Cu-rich phases are believed

to have an effect on the experimental Cu-Pd phase diagram and have been

discussed in Refs.[5, 6] as a way of explaining the peculiar “off-stoichiometry”

behavior on the Cu-rich side of the phase diagram.

It is illustrative to show the convex hull predicted by MTP and not

post-relaxed with DFT. In Figure 13, only structures within the 4σ (10

meV/atom) interval from the MTP convex hull are shown. Visually, the

MTP convex hull looks slightly different due to the approximation errors of

MTP leading to different relative levels of the structures on the “energy per

atom” axis. Still, MTP reproduced the stable phases present in AFLOW

library.

During the entire procedure, most of the computational expense (about

90%) was DFT calculations. In total, we did 523 single-point DFT calcula-

tions on VASP. We used PAW PBE GGA potentials, the energy cutoff was

taken 500 eV, and K-mesh was generated automatically generated with a pa-

rameter KSPACING=0.15. If we relaxed all the 40,000 configurations using

DFT, it would have taken about 10,000 times more computing time.

64

F
or
m
at
io
n
en
er
gy
,

eV
/a
to
m

0. 0.2 0.4 0.6 0.8 1.

0.

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

Atomic Percent Palladium

(a)

F
or
m
at
io
n
en
er
gy
,

eV
/a
to
m

0. 0.2 0.4 0.6 0.8 1.

0.

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

Atomic Percent Palladium

(b)

Figure 12: Comparison of the convex hulls (a) as obtained from AFLOW and

re-calculated with DFT, and (b) as found by MTP and re-calculated with

DFT. We have discovered a structure at 16.6% Pd which is 0.5 meV lower

than AFLOW’s convex hull.

65

F
or
m
at
io
n
en
er
gy
,

eV
/a
to
m

0. 0.2 0.4 0.6 0.8 1.

0.

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

Atomic Percent Palladium

Figure 13: Convex hull constructed by MTP and structures with formation

energy within 10 meV/atom above the convex hull.

4.1.2 Co-Nb-V Alloys

We next test our algorithm on constructing a convex hull for the ternary

Co-Nb-V system in the region where the concentration of Co is 50% or more.

The choice is motivated by the several Co-Nb and Co-V binaries present in

this region of the phase diagram, which our approach should predict. The

number of initial candidates was about 27,000 and they were bcc-like and

close-packed (fcc, hcp, etc.) configurations with 8 or less atoms in the unit

cell and different concentrations of Co, Nb and V.

The MTP was trained on-the-fly and the final training set consisted of

383 configurations with energy MAE, RMSE and max. error of MTP as 6.2

meV/atom, 8.1 meV/atom, and 29 meV/atom respectively. They were calcu-

lated with VASP DFT using PAW PBE GGA potentials, the energy cutoff

400 eV, and K-mesh generating automatically with a parameter KSPAC-

ING=0.15. To consider magnetic properties of Co present in this alloy, we

initialized calculations with parallel magnetic moments assigned to Co atoms,

and zero magnetic moments assigned to Nb and V atoms, thus searching for

a ferromagnetic ground state of a certain structure.

The resulting convex hull is shown in Figure 14. Remarkably, we have

discovered a new structure with composition Co3Nb2V. It has a formation

66

Figure 14: Convex hull of the Co-Nb-V system constructed by MTP in the

Co-rich region.

67

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 15: The Co3Nb2V discovered by MTP. The unit cell is shown in (a),

while layer-by-layer plots in vertical and side projections are shown in (b)–

(g). Co* show were the next (periodically extended) layer of Co atoms are

positioned. The structure was found, although no similar crystal prototypes

were used.

68

energy of 50 meV/atom below the AFLOW convex hull. Its unit cell and

a layer-by-layer plot are shown in Figure 15. We remark that geometrically

this structure is different from any of those in the initial pool—e.g., the Nb

atoms have 16 nearest neighbors with distances between 2.76 and 2.98 Å. It

would hence be impossible to accurately treat such a configuration for both

an on-lattice model, such as cluster expansion, and an off-lattice model unless

such a crystal prototype was known and explicitly added to the training set.

This demonstrates the capabilities of our approach, combining an accurate

off-lattice model and active learning.

4.1.3 Al-Ni-Ti Alloys

Finally, we applied our algorithm to the Al-Ni-Ti system. This system is

well-studied and has many known ternary structures, some of which have

over 20 atoms in the unit cell, therefore we considered this system a good

test for our approach. We hence chose a set of candidate structures consisting

of two parts: the first part has 1463 structures which were used in AFLOW

as crystal prototypes.

The second part was generated for us by the authors of the algorithm

from Ref.[35], which enumerates all possible unit cells with different symme-

tries (bcc, fcc and hcp) and different number of atoms; we have chosen unit

cells containing up to 12 atoms, which results in 375,000 binary and ternary

structures.

Including crystal structure prototypes adds extra difficulties: the struc-

tures may contain short interatomic distances (if, e.g., the original structure

from which the prototype was derived had carbon-metal bonds which are

shorter than typical metal-metal distances) and also smaller volume than

that of the typical Al-Ni-Ti structures. Both of these features of the pro-

totypes might result in unphysical structures with large stresses and forces

which, in turn, lead to large MTP prediction errors. To make the unit cells of

the candidate structures less deformed, we adjusted their volumes enforcing

69

the relation:

v(nAl, nNi, nTi) = nAlvAl + nNivNi + nTivTi, (30)

where v(nAl, nNi, nTi) is the volume per atom assigned to the unit cell with

concentrations of Al, Ni, Ti equal to nAl, nNi, nTi respectively and vAl, vNi,

vTi are the volumes per atom for equilibrium fcc-Al, fcc-Ni, hcp-Ti structures

respectively. Resizing the unit cells in this way provides an initial guess for

their volumes (a kind of Vegard’s law for different lattice types.)

To circumvent the large prediction errors that might occur for proto-

type structures with bond lengths and neighborhoods atypical of alloys, we

performed a two-step relaxation as explained below. We used levmax = 20

(see Section 3.4) to construct the MTP with about 650 parameters. This

makes the potential more accurate, but requires more data for training, than

with levmax = 16. First, we did the same procedure as for the Cu-Pd and

Co-Nb-V systems, which provided us with the training set of 2393 configura-

tions with ab initio energies, forces and stresses. They were calculated with

VASP DFT using PAW PBE GGA potentials with energy cutoff 400 eV,

and K-mesh generated automatically with a parameter KSPACING=0.15.

To consider magnetic properties of this alloy, we initialized calculations with

parallel magnetic moments assigned to Ni atoms, and zero magnetic moments

assigned to Al and Ti atoms, thus searching for a ferromagnetic ground state

of a certain structure. The MTP trained on this set has energy MAE, RMSE

and max. error as 18 meV/atom, 27 meV/atom, and 91 meV/atom respec-

tively.

We next relaxed the 377,000 configurations and constructed a convex hull.

Next, we picked all the configurations whose formation energy per atom is

lower than 4σ (≈ 100 meV) from the convex hull level. This left us with

62,000 configurations.

Second, we repeated the procedure of relaxing the 62,000 configurations

on-the-fly from scratch, starting from an empty training set. During this

process a new training set with 976 structures was formed by the active

learning algorithm. The MAE, RMSE, and max.errors on this training set

70

were 7 meV/atom, 9 meV/atom, and 24 meV/atom respectively.

This way we constructed a convex hull based on more accurate formation

energies, than would be possible after the first step.

Formula Energy relative to the convex hull

Al4Ni8 −7.38 meV

Al1Ni11 −1.18 meV

Al1Ni9Ti2 −0.34 meV

Table 1: New Al-Ni-Ti structures found in this study. The “level below the

convex hull” was computed using DFT.

To perform a comparison with the AFLOW convex hull, from the 62,000

relaxed configurations we eliminated all the configurations with formation

energy per atom higher than 4σ from the convex hull level, where now σ = 9

meV/atom. This left us with about 7000 configurations, which were subse-

quently relaxed with DFT. After this, we constructed a final convex hull using

the DFT formation energies. It has all the structures, present in AFLOW,

and three new structures discovered by MTP (see Figure 16). Their chemical

formulas are given in Table 1 together with their position below the AFLOW

convex hull level. Interestingly, all the structures are Ni-rich which makes

their discovery relevant to the application of Ni-based alloys.

Taking into account that after the first step we have obtained an MTP

capable of relaxing all the 377,000 configurations, we call it the “robust”

potential. After the second step we have obtained an MTP which is trained

on (and thus able to relax) the low-energy near-equilibrium structures only.

We refer to this MTP as the “accurate” potential. We attribute the differ-

ence in accuracies of the robust and accurate potentials to the fact that, at

the second step, the trajectories of relaxations started from near-equilibrium

structures (within the accuracy of the robust potential), see an illustration

in Figure 17. This reduces the region in the configurational space in which

the MTP is fitted, thus improving the accuracy in comparison to the first

step.

71

structures discovered with MTP

Ni

Al Ti

Figure 16: Al-Ni-Ti convex hull constructed by MTP and compared to the

one from AFLOW. The MTP convex hull contains all the structures from

AFLOW plus three newly discovered ones.

72

Off-equilibrium
structures

Candidate structures

Relaxation trajectories
(intermediate

structures)Equilibrated
structures

Figure 17: The accurate potential is trained on a smaller domain of config-

urational space than the robust one. Thus, the accurate potential provides

more accurate predictions at the interior of the “Relaxed structures” region.

73

4.1.4 Discussion

We have developed an algorithm for constructing a convex hull of stable

alloy structures based on the moment tensor potentials (MTPs) to approxi-

mate ab initio energies, forces and stresses of atomistic configurations. This

way the calculations for atomistic systems can be done much faster than

with DFT, while the accuracy is comparable to that of DFT. The active-

learning algorithm forms a training set automatically, removing the need for

its manual design—the most tedious part of application of ML to atomistic

modeling. We have verified the applicability of our algorithm by construct-

ing the convex hulls for the Cu-Pd, Co-Nb-V and Al-Ni-Ti metallic alloy

systems and comparing them to the convex hulls from AFLOW library. For

all the systems we have discovered new stable structures, which are not listed

in the AFLOW library. We attribute this to the large amount of candidate

structures (40,000 for Cu-Pd, 27,000 for Co-Nb-V, 377,000 for Al-Ni-Ti) we

explored, which would be impossible to equilibrate using DFT. Instead, we

performed relaxations using fast MTP calculations, referring to DFT only for

the training data generation. In the cases covered by this paper, the amount

of single-point DFT calculations was about 1% of the total amount of relaxed

configurations. In comparison to the high-throughput DFT calculations, the

speedup is three to four orders of magnitude.

4.2 Predicting the Properties of Organic Molecules

A permanent demand for the discovery of new compounds in numerous fields

of industry requires development of the computational tools for prediction of

molecular properties. There are many quantum-mechanical algorithms that

are able to accurately predict properties of, theoretically, arbitrary atomic

systems, however in practice these algorithms are too computationally ex-

pensive to be applied to a very large number of molecules. Density functional

theory, which is frequently used due to its favorable trade-off between accu-

racy and computational cost, is still too time-consuming for high-throughput

(rapid) screening of a large number of molecules.

74

In this work we propose a new algorithm of fitting of molecular properties.

Our model resembles neural networks in the sense of employing several com-

puting layers. We show that our model requires less training data to achieve

the chemical accuracy when compared against the state-of-the-art approaches

on the existing benchmark tests. For example, on the benchmark database

consisting of 130k molecules [63] the majority of recent state-of-the-art algo-

rithms achieve chemical accuracy only when trained on tens of thousands of

samples, while our model does it with only few thousands of samples. We

attribute this to our local model of interatomic interaction that effectively

relates the molecular properties to the atomic environments and makes pre-

dictions for the molecules not present in the training set by accounting for

contributions of the individual atomic environments.

The other problem we address with our algorithm is the issue of iden-

tifying the so-called outliers. In the discovery of new molecules the most

“interesting” molecules are often the most atypical ones. This is a challenge

for ML approaches: if no molecules with similar structure are present in the

training set, ML models extrapolate and commit large prediction errors for

these outliers. In the proposed active learning algorithm we have a criterion

for detecting the outliers (even if their ab initio properties are unknown,

see Section 3.6.2), reducing the errors by including the molecules with the

most different geometries and compositions in the training set. This pre-

vents the cases when we are trying to predict properties of molecules that

are too different from any of the training samples; instead the properties of

the molecules outside the training set are interpolated by the ML model and

are thus predicted accurately.

This paper has the following structure: we first formulate the problem

of prediction of molecular properties in an ML framework and present our

machine-learning model as a solution. Then, in Section 3.6 we describe

our active learning algorithm. In Section 4 we compare our algorithm to

the existing algorithms [14, 33, 63, 64, 65, 39, 73, 24, 29, 41] on the two

benchmark datasets: QM9 [63] and QM7 [33]. The concluding remarks are

75

given in Section 4.2.6.

We have conducted a number of tests in order to clarify the following

three questions: what accuracy can our model achieve on a dataset when

trained on its randomly chosen subset, how the accuracy can be improved

using our active learning technique (Section 3.6), and how many training

samples are required to reach the chemical accuracy, 1 kcal/mol. We remind

that we use the following terminology: the training set is the set on which we

train our model and the validation set consists of the full database excluding

the training set. All errors quoted below are measured on the validation set.

We have tested the models of level 16, 20 and 24 denoted by MTM16,

MTM20, MTM24. The fitting of the models was done with the BFGS opti-

mization algorithm, by performing between 2000 and 5000 iterations.

4.2.1 Fitting Enthalpy on QM9

First, we fit our model on the so-called QM9 dataset [63] consisting of 130831

molecules formed by C,H,O,N,F atoms with up to nine heavy (C,O,N,F)

atoms. This is a subset of the originally proposed database [66] consisting of

166 billion of organic molecules. The number 130831 excludes 3054 molecules

from the database that failed a consistency test, as reported in Ref.[63]. Fol-

lowing the existing works [64, 65, 73, 29, 41] we demonstrate the performance

of our method by fitting the enthalpy (or atomization energy) at 300 K.

4.2.2 Random Choice of the Training Dataset

To investigate the accuracy of the MTMs with different number of parameters

we have calculated the learning curves showing the dependence of the mean

absolute error (MAE) on the training set size, see Figure 18. Our results

are averaged over three independent random choices of the training set. As

expected, the models with fewer parameters show good results for small

training datasets, but are outperformed by the models with more parameters

as the number of training samples grows.

We next compare different models by how fast (i.e., with what training

76

MTM16
MTM20
MTM24

500 1000 2000 5000

1

2

5

10

Training set size

M
A
E
,k
ca
l/m
ol

Figure 18: Random selection of the training set: dependence of MAE on the

training set size. Different curves show different models: the higher is the

number, the more parameters the model has.

dataset size) they reach chemical accuracy. Table 2 lists the prediction errors

for the MTMs and the existing state-of-the-art methods when training on

random training sets. While filling this table, we used MTM16 for the 1k

training set size, MTM20 for the 3.5k training set size, and MTM24 for the

10k training set size. For the sizes of 25k and 50k we used the MTM28 model

which has more parameters to fit then MTM24. At the same time, from Fig.

18 it can be seen that using either MTM20 or MTM24 models still provides

competitive results.

The aSLATM [40] model reaches the chemical accuracy with the training

set size about 3200, while the learning curve from Figure 18 shows that

MTM24 model requires almost the same number, 3500 molecules to reach

such accuracy. We obtained the results for MTM16, MTM20, and MTM24 by

doing 2000 iterations of the BFGS algorithm and 5000 iterations for MTM28.

For a more accurate comparison with aSLATM, we trained MTM24 model on

10 different random samples of training set with 3000 molecules by doing 3000

iterations of BFGS. This provided us with a validation MAE of 1.006±0.0316

77

Training set size

Model 1k 3.5k 10k 25k 35k* 50k 110k

DTNN[73] - - 1.2 1.0 - 0.94 -

BAML[39] - - 2.4 - - - -

∆B3LY P
MP7 −ML[65] 4.8 - 3.0 - - - -

MPNN[29] - - - - - - 0.39

HDAD[24] - - - - 1.0 - 0.58*

HIP-NN[50] - - - - - 0.35 0.26

SchNet[71] - - - - - 0.59 0.31

aSLATM[40] 1.8 0.98” - - - - -

MTM† 1.8 1.0+ 0.86 0.63 - 0.41 -

Table 2: Comparison of the MAE of prediction of atomization energy

(kcal/mol) by different models for different training set sizes.
†this work

*As estimated from the graphs in Ref.[24].

+The error can be decreased by further training, see the text.

”as estimated from the graph in Ref.[40]

kcal/mol.

As can be seen from Table 2, for training set sizes not more than 10k MTM

shows a better learning curve than the existing state-of-the-art methods and

only the model from the Ref.[40] shows nearly equal results. The works

using deep NNs (Refs.[71] and[50]) show better accuracy for training set

sizes over 50k. Ref.[73] and[24] need 25k and 35k training samples to attain

the chemical accuracy, respectively. We note of another work [29] that also

reaches the chemical accuracy, but it only reports MAE of 0.55 kcal/mol

while training on 110k molecules plus another 10k molecules used as a hold-

out set for the early stopping criterion.

78

Random

Active

Active 2

1000 3000 5000

1

2

5

8

Training set size

M
A
E
,k
ca
l/m
ol

(a)

Random

Active

Active 2

1000 3000 5000

2

4

6

8

10

Training set size

R
M
S
,k
ca
l/m
ol

(b)

Random

Active Active 2

1000 3000 5000

20
50

100

150

200

300

Training set size

M
ax
.e
rr
,k
ca
l/m
ol

(c)

Figure 19: Active and random selections of molecules: dependencies of MAE

(a), RMSE (b) and maximal error (c) on the training set size for the MTM24

model. Active and Active 2 lines stand for scenarios, when MTM can and

can not pick configurations from the set on which the errors are measured.

79

4.2.3 Active Learning

While the MAE of MTMs trained on random training sets is small, the

corresponding maximal error is of the order of 100 kcal/mol, resulting in the

outliers for which the atomization energy prediction is too inaccurate. To get

rid of the outliers we have applied the active learning algorithm as described

in Section 3.6. We started with a random training set of 1k molecules and it

takes about 20 iterations to reach the training set size of 6k molecules. At

each iteration, our training procedure takes an amount of time proportional

to the training set size, while the selection always takes nearly constant time,

approximately the same as required to train a model on a training set with

1k molecules.

Figure 19 shows the graphs of the MAE, RMSE and maximal absolute

errors depending on the training set size, comparing random and active se-

lection. The “Active” curve corresponds to the scenario of actively selecting

molecules from the entire set of molecules and measuring the error on the

remaining set. In the “Active 2” scenario we instead separate out a vali-

dation set of 30k molecules on which we measure error, while selecting and

learning from the remaining 100k molecules. The error bars correspond to

the 95% confidence interval as measured on three independent runs, in each

of which the initial training set of 1000 molecules and the validation set in

the “Active 2” scenario were random. We have used the MTM24 model. It

has about 2000 parameters to fit, which explains why the error on the Figure

19 exhibits overfitting when trained on less than 2000 molecules.

In the active learning approach (see Section 3.6), the training set tends

to be as diverse as possible in the sense of spanning the largest volume of

configurational (or molecular) space. The most extrapolative molecules lie on

the boundaries of this volume and if the amount of molecules is less than or

close to the number of model parameters we would not have sufficient amount

of training samples in-between the boundaries. With the random selection

we cover the configurational space more evenly, which results in lower RMSE.

From the part of the graph starting from 4000 training samples (this is twice

80

the number of model parameters, as we suggested as a rule of thumb in

Section 3.1) we can see that there is no improvement in MAE (though it

is rather close to the random-sampling MAE), but the RMS and maximal

errors are lower that for the random sampling.

From Figure 19 it can be seen that the maximal error is much less when

we are allowed to add any possible molecule to the training set (the “Active”

scenario) as compared to the “Active 2” scenario, however, the error in the

“Active 2” scenario is still smaller than that in random sampling. This

indicates that the active learning have two mechanisms of decreasing the

error: the actively chosen molecules represent better the unusual molecules

in the validation set of the “Active 2” scenario, but if we are allowed to select

also those unusual molecules for training, the error further drops. We argue

that the latter (“Active” scenario) can be useful in those applications where

the region of interest in the chemical space is fixed a priori. As an example of

such application, in [[59]] the authors found six candidates of Co superalloys

from about 2k a priori identified potential chemical compositions.

To better understand the impact of active learning, on Figure 21 we

plotted the true and predicted enthalpies for the models trained on randomly

and actively chosen training sets of 10k molecules. The plot is focused on

a small region of enthalpies to show the scale of the error. As can be seen,

active learning makes the error small uniformly over all the samples, while

the random choice of the training set results in outliers for which the error

is large.

We investigated the sizes of the molecules entering the training set at each

iteration of selection (see Section 3.6.2) and compared them to the average

molecule size among the QM9 database. The results are shown on Figure 20.

From this graphs it can be seen that the algorithm tries to select molecules

with sizes lower than average. This could indicate that some small molecules

contain representative atomic neighborhoods which occur in a many bigger

molecules and the active learning algorithm detects and selects such small

molecules. This result is in correspondence with the observations of Huang

81

Active selection

Random selection

5 10 15 20 25

AL iteration

number

15

16

17

18

Mean number of

atoms in molecule

Figure 20: Mean numbers of atoms in a molecule for active and random

selections of configurations. The MTM24 was used for this experiment.

et al. [40], where the authors state that an accurate model can be obtained

by training on a small amount of the most relevant atomic environments

(neighborhoods).

4.2.4 Fitting the QM7 Database

Another common benchmark database we used consists of 7.2k small organic

molecules with up to seven heavy atoms (C,N,O,S) saturated by H, and is re-

ferred to as QM7 [56]. We have chosen the four properties to fit: atomization

energy, polarizability, and HOMO and LUMO levels. The atomization energy

and polarizability are extensive quantities, and the other two are intensive

quantities. The training set consisted of 5k randomly chosen molecules while

the remaining 2200 were used for validation. In Table 3 we compare the

accuracy of the MTMs to the other state-of-the-art methods. Our results

are averaged over three independent runs. We see that the local properties,

enthalpy and polarizability, are fitted with the same or higher accuracy as

by the existing methods, while predictions of the HOMO (highest occupied

molecular orbital) and LUMO (lowest unoccupied molecular orbital) levels

have a 50% larger error than the state of the art.

82

H
M
T
,
M
c
a
l
/
m
o
l

-300.06 -300.04 -300.02 -300.00 -299.98 -299.96

-300.06

-300.04

-300.02

-300.00

-299.98

-299.96

Href, Mcal/mol

(a) random choice of training samples

H
M
T
,
M
c
a
l
/
m
o
l

-300.06 -300.04 -300.02 -300.00 -299.98 -299.96

-300.06

-300.04

-300.02

-300.00

-299.98

-299.96

Href, Mcal/mol

(b) active choice of training samples

Figure 21: Scatter plot of the formation enthalpy predicted by machine learn-

ing, HMT, versus the reference enthalpy Href , with (a) random and (b) active

choice of training samples. For the illustration purposes we have plotted a

small area from the whole database, where the errors are significant.

To address this issue, we have applied the nonlocal modification of our

algorithm, nlMTM, as given by (32). From Table 3 we see that accounting

for nonlocality improves the error of HOMO and LUMO to the state-of-the-

art accuracy. As, the nonlocal scheme is, essentially, a three-layer model, it

was found to suffer from overfitting similarly to the deep neural networks;

therefore we used the early stopping technique for training the nlMTM. To

that end, we used 1100 samples for estimating the error during training and

measured the error on the remaining 1100 samples.

4.2.5 A Nonlocal Model

MTP, being a local model (22), can successfully describe interatomic inter-

actions when they are effectively screened. This holds true for a lot of cases,

however some molecular quantities may be essentially determined by multi-

atom interactions which can span distances far longer than cut-off radius.

Taking into account relatively poor performance of conventional MTMs

for HOMO and LUMO molecular quantities (see 3) we decided to include

nonlocal effects by introducing two different local models V1 and V2 (each

83

Model E α HOMO LUMO

(kcal/mol) (Å3) (eV) (eV)

BAML[39] 1.15 0.07 0.10 0.11

SOAP[19] 0.92 0.05 0.12 0.12

DTNN[73] 1.04 - - -

MBTR[41] 0.60 0.04 - -

MTM† 0.52 0.04 0.16 0.16

nlMTM† - - 0.11 0.11

Table 3: Mean average errors of predicting the atomization energy E, polar-

izability α, and HOMO and LUMO levels, committed by different models on

the QM7 dataset.
†this work

with its own set of parameters) and let

v1 =
∑
i

V1(ni), and

v2 =
∑
i

V2(ni).
(31)

We then define the nonlocal model nlMTM in the following form

Fnl(x) = p1v1 + p2v2 + p3v
2
1 + p4v

2
2 + p5v1v2

+ p6v
3
1 + p7v

3
2 + p8v

2
1v2 + p9v1v

2
2.

(32)

Figure 22 shows how the parameters pi form the additional computing

“layer”, if compared to the local model in Figure 1 and extend the set of

parameters, θ =
(
ξα, c

(k)
µ,zi,zj , pi

)
, that are found in the training process. Such

a model architecture is motivated by the fact that molecular orbitals depend

largely on local environments described by several Vi (although we only con-

sidered i = 1, 2). However, these orbitals get occupied by electrons not

independently of each other, hence we assume a nonlinear dependence of the

answer on the local features (32).

E.g., on Figure 23 the neighborhoods of atoms 1 and 4 do not intersect,

therefore neither pair interaction 1-4 nor triple interactions 1-2-4 or 1-3-4, etc.

84

𝑣1 𝑣1
2
𝑣2

𝑣2

𝑣1
2

𝑣1
3

𝑣1𝑣2

𝑣1𝑣2
2

𝑣2
2

𝑣2
3

𝑦

𝑣1

𝑣2

𝑝6

local model

local model

local model

𝑉1

𝑉2

𝑉𝑛 𝑝3
𝑝1

𝑝8

𝑝7
𝑝4

𝑝2

𝑝9

𝑝5
x

local model

local model

local model

𝑉1

𝑉2

𝑉𝑛

MTM 1

MTM 2

n1

n1

n2

n2

nn

nn

Figure 22: The nonlocal model, nlMTM, constructed from the two local

models. p1, . . . , p9 are the additional fitting parameters.

Figure 23: Neighborhoods of atoms 1 and 4 do not intersect. Therefore

mutual interaction of atoms 1 and 4 cannot be taken into account by a local

model with current cutoff radius.

85

cannot be approximated by the local MTM model. As opposite, following

the formulas (32) and (31), the approximated nonlocal quantity will include,

e.g., the following terms:

Fnl(x) = p5v1(r12, r34, ...)v2(r12, r34, ...) + ... (33)

= p5(V1(r12) + ...) ∗ (V2(r34) + ...) + ... = p5V1(r12) ∗ V2(r34)︸ ︷︷ ︸
f(r12, r34)

+...

The underbraced summand in (33) depends on both r12 and r34. Similarly,

after expanding all V1’s and V2’s in (32) the expression for Fnl(x) contains

polynomials of rij mutually multiplied independently of the distance between

the corresponding atoms and thus forms a basis for approximating nonlocal

properties similarly to local model, see Section 3.4.

4.2.6 Discussion

We have introduced the moment tensor model (MTM) for prediction of the

molecular properties based on the contributions of local atomic environments

represented by the moment tensor descriptors. The accuracy of the pro-

posed model is comparable or better than that of the state-of-the-art algo-

rithms. The proposed model outperforms the existing algorithms by how

fast it reaches the chemical accuracy on the database of 130k molecules. We

attribute this to the provable completeness of our moment tensor descriptors

of local environments. It should be emphasized that although our descrip-

tors (25) are, essentially, two-body descriptors, their completeness and, in

particular, angular dependence comes from their tensorial structure.

In addition, we have proposed an active learning algorithm that signifi-

cantly reduces the maximal error (in other words, the error for the outliers).

The algorithm effectively selects the molecules most different from those al-

ready in the training set and adds these molecules to the training set.

As MTM allows calculating forces due its differentiable analytical form

(Section 3.3) it is in principle capable of describing chemical reactions. How-

ever, this have not been explicitly tested for any particular reaction.

86

5 MLIP Software

The moment tensor potentials (see Section 3.4) and the active learning frame-

work (see Section 3.6), which are used in a present research, are imple-

mented in a MLIP software package. It contains tools related to working

with machine-learning interatomic potentials and atomistic simulations and

is primarily implemented in C++, with the Python version (the mlippy pack-

age) available as well. The repository is available via the following link:

https://gitlab.com/ashapeev/mlip-v2

As this software is in active development, its actual description may be

outdated, but mostly in terms of the commands syntax, while the working

principles remain the same. You can always find the actual examples in the

repository itself.

5.1 Installation

5.2 MLIP Commands

In this section the features related to the multicomponent MTPs are dis-

cussed. One of the ways of using MLIP is executing commands with a com-

piled MLIP binary file. Launching a command with two options can be done

in Linux shell by typing the text:

./mlp command --option1=value1 --option1=value2, where command

is the name of the command and expressions of type --option1=val1 are

options with the corresponding values. To execute a command in parallel

mode, type the

mpiexec -n N ./mlp ... or the

mpirun -n N ./mlp ... depending on your system, where N is the desired

number of cores. In Table 4 the most common commands are listed.

87

https://gitlab.com/ashapeev/mlip-v2

Command Description Parallel

train Fitting an MTP to a database yes

calc-errors Calculating the errors on a

database

yes

select-add Using active learning to add

new configurations to the

training set

yes

relax Performing structural relax-

ation of given configurations

using the MTP

yes

convert-cfg Converting configurations be-

tween different formats

no

self-test Launching MLIP self-testing

utility

yes

list Listing available MLIP com-

mands

no

help Showing info about a com-

mand

no

Table 4: List of the most common commands present in MLIP software.

88

5.2.1 The “train” Command

• Description

Fitting an MTP to the database. This launches the training procedure

(see Section 3.1), which results in finding the optimal parameters for a

given MTP, in a sense of minimizing a certain functional, most closely

related to the weighted sum of squared deviations of certain character-

istics. This requires configurations from database to have at least one

of the following quantities: energy, forces acting on atoms or stresses

acting on lattice. Depending on the weighting option, the loss func-

tional is composed in different ways, e.g., aimed at fitting energies or

energies per atom best, which is achieved by dividing correspondent

terms in equation (20) by the number of atoms in each configuration.

• Input

pot.mtp - the file with an MTP to be trained. This can be both clean

potential with uninitialized parameter values or a previously trained

potential.

train.cfg - the file with configurations in a cfg format to be used as

training set.

• Output

Trained.mtp - the file with a trained MTP.

state.mvs - the file containing MaxVol state (see Section 3.6) of the

trained MTP.

Console: the options which are used in the current training procedure

are printed. As well the values of the loss functional on each step of

optimization algorithm (see Section 3.1) are printed. When optimiza-

tion procedure ends, the training errors are printed in the same style,

as in calc-errors command, see below.

• Options

–energy-weight=double: weight of energies in the fitting. Default=1.

–force-weight=double: weight of forces in the fitting. Default=0.01.

89

–stress-weight=double: weight of stresses in the fitting. Default=0.001.

–scale-by-force=double: If >0 then configurations near

equilibrium (with force ≈ 0) get more weight. Default=0.

–valid-cfgs=string : filename with configuration to validate.

–max-iter=int : maximal number of iterations. Default=1000.

–trained-pot-name=string : filename for trained potential.

Default=Trained.mtp.

–bfgs-conv-tol=double: stopping criterion for optimization. Default=10−8.

–weighting=string : way of weighting the functional for better fitting

of properties. Default=vibrations. Others=molecules, structures.

–init-params=string : how to initialize parameters if the potential

was not pre-fitted. Default is “random”. Other is “same”—the param-

eters are set with a certain default values.

–skip-preinit: skip the 75 iterations done when params are not given.

–auto-mindist: automatically decrease the min-dist in the MTP

based on the training set. Default=false. Other=true or 1.

–mvs-filename: filename of the mvs file (containing the state of the

MaxVol) to be created. Default=state.mvs. It is required by com-

mands using active learning, e.g., the relax command.

5.2.2 The “calc-errors” Command

• Description

Calculating the approximation errors of a given MTP on a given database.

This requires configurations from database to have at least one of the

following quantities: energy, forces acting on atoms or stresses acting

on lattice. For each of such configurations MTP predicts these quan-

tities based on its parameters values and compares to their reference

values, listed in the database.

• Input

pot.mtp - the file with an MTP. This should be a previously trained

potential, otherwise the command makes no sense.

90

database.cfg - the file with configurations in a cfg format to be used

for the errors checking.

• Output

Console: the errors are listed for such quantities as energy, energy per

atom, forces, stresses and virial stresses (stresses divided by volume of

the unit cell). For each of these quantities the mean average errors,

root-mean square errors and maximal errors are printed.

• Options

–only-energy: calculate only energy (forces/stresses info should be ig-

nored). By default this option is disabled.

5.2.3 The “select-add” Command

• Description

Performing the selection of configurations, which should enter the train-

ing set, according to MaxVol criterion in active learning framework (see

Section 3.6). Note, that actually the selection is performed not over

configurations, but over equations, corresponding to certain configu-

rations. The equations can be composed in different ways (see the

description of train command), and thus the MaxVol grade of each

configuration can be defined in different ways. Usually the selection

just over the energies (as by default) is the best choice.

• Input

pot.mtp - the file with an MTP. This should be a previously trained

potential.

train.cfg - the file with configurations in a cfg format containing a

training set to which the MTP was fitted.

new.cfg - the file with configurations in a cfg format containing a list

of configurations, from which the selection is performed.

diff.cfg - the filename with configurations to be added to the training

set.

91

• Output

diff.cfg - the file containing selected configurations.

Console: The amount of selected configurations is printed. In case

of parallel run, the amounts of selected configurations are printed for

each process.

• Options

–select-threshold=double: set the select threshold to num, default=1.1.

–energy-weight=double: set the weight for energy equation, default=1.

–force-weight=double: set the weight for force equations, default=0.

–stress-weight=double: set the weight for stress equations, default=0.

–nbh-weight=double: set the weight for site energy equations, default=0.

–mvs-filename=string : save MaxVol state to this file.

–selected-filename=string : file with selected configurations from both

old and new training sets.

–selection-limit=int limit the number of configurations to be selected,

default=0 (no limit).

–weighting=string : way of weighting the functional for better fitting

of properties. Default=vibrations. Others=molecules, structures.

5.2.4 The “relax” Command

• Description

Performing a structural relaxation, i.e., energy minimization of config-

urations using the MTP as a force-field. The relaxation is performed

within the active learning framework (see Figure 9).

• Input

settings.ini - the file of a special format, containing various settings

of the relaxation.

• Output

Console: the outcome of relaxation for each configuration is printed.

92

It can converge successfully, diverge (e.g., due to weakly trained po-

tential), or can be terminated due to the high extrapolation grade (see

Figure 9).

• Options

–cfg-filename=string - the file with configurations, which should be re-

laxed.

–save-relaxed=string - the file containing successfully relaxed configu-

rations.

–save-unrelaxed=string - the file containing configurations, whose re-

laxation failed.

• Settings in ini-file

mlip:load-from - the file with an MTP. This should be a previously

trained potential.

select:load-state - the filename of the mvs file, containing the MaxVol

state of the MTP (see –mvs-filename option in “select-add” and “train”

commands). This is required by active learning.

select:threshold - the γtsh on Figure 9.

select:threshold-break - the Γtsh on Figure 9.

select:save-selected - the file containing configurations from the

pre-selected set (see Figure 9).

5.2.5 The “convert-cfg” Command

• Description

Converting the configurations from one format no another.

• Supported formats

txt (default): mlip textual format (cfg format)

bin: mlip binary format (more faster I/O than with cfg format, but

not human readable).

vasp-outcar: only as input; VASP versions 5.3.5 and 5.4.1 were tested

vasp-poscar: only as output; when writing multiple configurations,

93

POSCAR0, POSCAR1, etc. are created.

lammps-dump: only as input. Only lattice, atomic positions and types

are saved. Only cartesian coordinates are processed.

lammps-datafile: only as output. Can be read by read data from

lammps. Multiple configurations are saved to several files.

• Input

input-filename - the file containing configurations to be converted.

• Output

output-filename - the file containing converted configurations.

• Options

–input-format=string : format of the input file

–output-format=string : format of the output file

–append: opens output file in append mode

–last: ignores all configurations in the input file except the last one

(useful with relaxation)

–fix-lattice: creates an equivalent configuration by moving the atoms

into the supercell (if they are outside) and tries to make the lattice as

much orthogonal as possible and lower triangular

–save-nonconverged: writes configurations with nonconverged VASP

calculations, otherwise they are ignored. Used only while reading from

OUTCAR.

–absolute-elements: writes absolute atomic numbers into the cfg file

instead of 0,1,2,.... Disabled by default, used only while reading from

OUTCAR.

–elements-order=18,22,46,... atomic numbers separated with commas

in the order as they are in POTCAR. Used only while converting to

POSCAR.

94

5.2.6 The “self-test” Command

This command launches a self-testing utility with several dozens of tests.

You can see the result of each test. If everything works as it should, all

tests should pass. This command can be executed in parallel to test the

parallelization.

5.2.7 The “help” Command

This command requires one argument: the name of the command, and prints

info about this command.

5.2.8 The “list” Command

This command takes no arguments and prints the list of available commands.

5.3 Examples

In this section the demonstration of the most basic usage cases of the MLIP

package will be provided. Among them are bash scripts with train, relax,

select-add commands, and LAMMPS scripts using MTPs in various scenar-

ious of simulations with active learning.

5.3.1 Linux Bash Scripts with Binary MLIP

The example bash scripts are located in /doc/examples/MTP_with_AL folder.

1. Training and relaxation

This folder contains two subfolders: success and failure. They con-

tain similar files except the mtp and mvs files, which results in success-

ful relaxations in one case and breaking according to the extrapolation

grade in the other case.

In each of them the script run.sh launches training of MTP on the

training set and performs relaxation of few dozens of structures with

the trained potential. In both cases the active learning approach is

95

implemented. Inside run.sh two variables are declared, standing for

path to mlp binary and for the number of cores which are used to run

the MLIP commands. Before running examples, an mlp binary should

be compiled. After the compilation is created in /bin folder.

The script train.sh performs the train command with a few options:

mpirun -n $1 $2 train pot_clean.mtp train.cfg

--energy-weight=1 --force-weight=1e-3 --stress-weight=1e-4

--max-iter=100 --trained-pot-name=Trained.mtp

--mvs-filename=state.mvs

Here the mpirun -n $1 $2 stands for launching a mlp binary in par-

allel with such options as path to the file and the number of cores,

e.g., mpirun -n 4 ../../../bin/mlp. For a serial execution you can

remove the mpirun -n $1 part.

Words train pot_clean.mtp train.cfg are the name of the com-

mand and two arguments, meaning the file with MTP to train and the

file with the training set (see Section 5.2).

Words

--energy-weight=1 --force-weight=1e-3 --stress-weight=1e-4

are the weights for the energies, forces, and stresses in the loss function

(see Section 3.1).

Words

--mvs-filename=state.mvs specify the file with the MaxVol state to

be created.

Once the potential is trained and MaxVol state is initialized the relax-

ation of the configurations is started.

The script relax.sh launches the relax command with a few options:

mpirun -n $1 $2 relax relax.ini

--cfg-filename=to-relax.cfg

96

--save-unrelaxed=out/unrelaxed.cfg

--save-relaxed=out/relaxed.cfg

The relax.ini is the name of file with the settings. It contains various

settings, among which the line

mlip mtpr

is a required setting for working with multicomponent MTPs.

The mlip:load-from setting means the file with MTP to be used.

The thresholds γtrsh and Γtsh from Figure 9 and Section 3.6.3 are

contained in select:threshold and select:threshold-break fields.

The name of the mvs filename is in the select:load-state field.

The option --cfg-filename=to-relax.cfg contains name of the file

with the structures to be relaxed, while

--save-unrelaxed=out/unrelaxed.cfg

and

--save-relaxed=out/relaxed.cfg are the files with configurations,

which failed to relax and relaxed succesfully.

In the success folder almost every relaxation finishes successfully, and

in failure folder all reaxations are terminated. You can find the cor-

responding cfg and log files in the out subfolders in each folder.

2. Selection of configurations with active learning

This folder contains an example of performing selection of new configu-

rations to enter the training set, based on the MaxVol criterion (see Sec-

tion 3.6). The script run.sh contains only one “select-add” command

with corresponding arguments (see Section 5.2). As a result of execut-

ing this command, a files with the names like train_selected.cfg_0

will be created. Such files contain outputs of all processes and should

be concatenated in case of parallel execution. These files contain con-

figurations, which should be added to the training set train_init.cfg,

according to the MaxVol criterion.

97

5.3.2 Integration with LAMMPS

LAMMPS can use MTP as an interatomic potential. For installation de-

tails please refer to the MLIP manual. In this section a few examples of joint

usage of LAMMPS with MTPs for MD with active learning framework are de-

scribed. The folder with examples is located in /doc/examples/LAMMPS_thresholds.

As written in MLIP manual, the part of the LAMMPS input script corre-

sponding to MLIP is:

pair_style mlip mlip.ini

pair_coeff * *

where mlip.ini is the file with settings. The main settings are similar to

the ones described in “relax” command (see Section 5.2). There are four fold-

ers in /doc/examples/LAMMPS_thresholds: break, select, and no_select

contain different scenarios of MD with active learning while out folder con-

tains output files and logs. Each example can be launched by running a

run.sh script from the corresponding folder. LAMMPS binary file compiled

with MLIP user package should be present in the /bin/ folder to run these

examples. Next we describe each example.

• no select

This example demonstrates the usage of MTP without selection, i.e.,

without considering extrapolation grades of configurations, occurring

in MD. The corresponding line in mlip.ini file which disables the

selection is

select FALSE

MTP provides energies, forces and stresses for all configurations. After

running a run.sh script the only file in the out folder will be the

record.cfgs—the file with recorded configurations. The recording is

done according to the following lines

write-cfgs ../out/record.cfgs

write-cfgs:skip 99

98

in the mlip.ini file. The upper settings contains name of the file

with recorded configurations while the lower one specifies how often

the configurations from MD are recorded. You may notice two fields

with features in each configuration:

Feature EFS_by MultiMTP17

Feature ind 201

The feature EFS_by tells that energies, forces and stresses were calcu-

lated with the MTP having 17 coefficients ξα (see (24) in Section 3).

The feature ind 201 tells that a particular configuration is recorded

on the 201th time step.

• select

This example demonstrates usage of MTP with active learning result-

ing in selection of extrapolative configurations without breaking the

MD (similar to the non-significant extrapolation case in “training and

relaxation” C++ example). After running the run.sh script the out

folder will contain a file with not only recorded configurations, but also

with the selected ones—ts.cfgs_0. Among the features of configura-

tions the feature

MV_grade

contains the extrapolation grade of a current configuration. Only con-

figurations with extrapolation grade higher than specified in the line

select:threshold 1.5

from the mlip.ini file are put into the selected set. Specifying a higher

threshold might result in selection of no configurations.

• breaking

This example demonstrates usage of MTP with active learning resulting

in breaking of an MD simulation due to significant extrapolation, simi-

lar to significant extrapolation case in “training and selection” C++ ex-

99

ample. After running the run.sh script the warning ”Breaking thresh-

old exceeded” will be printed, as extrapolation grade for configuration

exceeds the one specified in the line

select:threshold-break 1000

As a result the out folder will contain a ts.cfgs_0 file with only one

configuration. The file record.cfgs will be empty as the very first

configuration is extrapolative and no configurations are successfully

calculated by MTP.

5.3.3 Python Implementation (mlippy)

The MLIP Python package is called mlippy. The user manual with installa-

tion information and list of available functions can be found in

/doc/mlippy/mlippy.pdf file. This section describes the basic examples of

using the mlippy package. Folder with examples can be found in

/doc/examples_python/ folder. In each folder the file test.py contains the

Python code to be executed, while the rest of the files are required for the

execution or are generated.

Each folder contains one example. At the start of each test.py file there

are import statements as well as common header lines:

comm = mpi4py.MPI.COMM_WORLD

rank = comm.Get_rank()

mlippy.initialize(comm)

which works both for parallel, e.g.,

mpirun -n 4 python3 test.py

and serial execution:

python3 test.py

If you have any troubles with MPI or if you want to remove it from the

script, then only following line should left:

100

mlippy.initialize()

Next we describe each example in details.

• train

This scripts performs training of the MTP on a dataset. The line

mlip = mlippy.mtp()

declares an instance of the mtp class from mlippy namespace, which is

the representation of a machine-learning potential can be loaded/saved

from/to file and used inside Python.

The line

mlip.load_potential(‘pot.mtp’)

initializes the potential with the file. Declaration and initialization can

be done within one line:

mlip = mlippy.mtp(‘pot.mtp’)

The line

ts = mlippy.ase_loadcfgs(‘train.cfg’)

reads a file train.cfg with configurations in a train.cfg format and

returns a vector of ase.Atoms objects (the configurations format for

ase library).

The Python dictionary opts = {"max-iter":"20",... contains op-

tions to be passed to the command executing next. The names of

the options are self-explanatory and mostly coincide with a set of op-

tions for binary mlip commands. By the way, 20 iterations is way to

little and this number is put for the sake of speed. At least 200 it-

erations are recommended, while the default number is 1000. In any

case, the output of the optimization procedure is available, and the op-

timal number of iterations can be derived from this output. When the

loss function (which is minimized by the mlippy.ase_train function)

starts to decreasing slowly, the training becomes less effective. Also,

101

the "conv_tol":"1e-8" parameter can be eased for a less tight con-

vergence criterion. If no options are specified they are initialized with

the default values.

The line

mlippy.ase_train(mlip,ts,opts)

stands for the training procedure itself. It requires passing of the mtp

object to be trained and a vector of ase.Atoms configurations as a

training set. The other arguments are self-explanatory and optional.

The line

mlippy.ase_errors(mlip,ts,on_screen=True)

calculates the errors of the trained MTP on the provided training set.

The optional argument on_screen defines whether to print this infor-

mation on the screen or not. Using of the mlippy.ase_errors(...)

without printing on the screen is provided further, in the “filter stress”

example.

The line

mlip.save_potential(’Trained_py.mtp’)

writes the trained mlip object to the file.

• select

This script performs selection of configurations with active learning ap-

proach. The line

mlip.load_potential(’Trained.mtp’) loads a trained MTP (the se-

lection is useful for trained MTPs only) from the file.

The lines

train_init = mlippy.ase_loadcfgs(’train_init.cfg’)

train_vasp = mlippy.ase_loadcfgs(’train_vasp.cfg’)

load the initial training set and a set with the new configurations from

the files as required by the “select-add” command (see Section 5.2).

102

The options are

opts = {"threshold":"2",

"mvs-filename":"state.mvs",

"selection-limit":"20"}

which carry exactly the same meaning as in “select-add” command for

binary mlip.

The line

diff_py = mlippy.ase_select(mlip, train_init, train_vasp, opts)

returns new configurations from the train_vasp.cfg file to be added

to the training set. After the execution of this line a file new_state.mvs

is created. It contains information about the MaxVol state (see Sec-

tion 3.6) and is used by active learning while relaxation (both via C++

and Python versions of MLIP) and while MD in LAMMPS. It contains

information about the training set and is used to determine the extrap-

olation grades of configurations.

The line

mlippy.ase_savecfgs(’diff_py.cfg’,diff_py)

saves the vector of ase.Atoms to the file in cfg format.

• relax

This script performs a structural relaxation (see Figure 11) of configu-

rations with MTP. The relaxation is done with the following command:

relaxed_py = mlippy.ase_relax(mlip,to_relax)

The relaxation can be perfomed with the MTP and MaxVol state spec-

ified either in the lines (by default):

mlip.load_potential(’failing.mtp’)

opts["load-state"]="failing.mvs"

103

which will result in exceeding the extrapolation threshold for each of

the relaxations, or in the lines:

mlip.load_potential(’relaxing.mtp’)

opts["load-state"]="relaxing.mvs"

which will result in successfull relaxation of almost every configuration.

Here mlip is an MTP used for the relaxation, and to_relax contains

configurations to be relaxed. Note, that active learning is enabled

by the option "select":"TRUE". In case of "select":"FALSE" the

relaxation will be done without considering MaxVol grades and without

the need of specifying the "load-state" option. If the MTP is poorly

trained, or significant extrapolation occurrs (regardless of its tracking)

the relaxation can also fail to converge.

The function

mlippy.ase_relax(...)

returns the configurations, which are successfully relaxed. For setting

a correspondence between initial configurations and the relaxed ones

the automatic numbering of configurations is added. The number of

a certain relaxed configuration in the initial vector can be accessed as

relaxed_py[i].features[’ID’] field.

• convert

This script performs conversions from VASP OUTCAR to ase.Atoms

and from ase.Atoms to VASP POSCARs. The line

cfgs = mlp.ase_loadcfgs(’train_abs.cfg’)

reads the configurations in cfg format as ase.Atoms vector. The energy

of the second configuration read is:

print (cfgs[1].energy)

The line

order = [13,29,47]

contains the list with the order of elements in the implied POTCAR

104

file, which is then used in the function

mlp.convert_ase2vasp(cfgs,’myposcar’,order)

to make a correct ordering in the POSCAR files. The number of created

POSCARs equals to the number of configurations in cfgs vector, and

their names are ’myposcar0’, ’myposcar1’, etc.

The OUTCAR can be read with the function

vasp_cfg = mlp.convert_vasp2ase(’OUTCAR_’)

returning an ase.Atoms vector containing all found configurations. The

line

mlp.ase_savecfgs(’from_vasp.cfg’,vasp_cfg) then saves them in

a cfg format.

• filter stress

This scripts demonstrates the example of an utility which can be cre-

ated with mlippy. It goes through a database and separates the con-

figurations: it selects configurations on which the MTP has MAE lower

then the provided threshold.

In lines

mlippy.initialize()

fname = sys.argv[1] #filename to load cfgs from

stress_trsh = (float)(sys.argv[2])

cfgs = mlippy.ase_loadcfgs(fname)

max_str = 0

for i in range(len(cfgs)):

for j in range(6):

if (abs(cfgs[i].stresses[j])>max_str):

max_str = abs(cfgs[i].stresses[j])

print ("max. stress component is " + str(max_str))

the initialization of mlippy is performed, as well as reading of the ar-

guments. Then loop goes through the database and selects the biggest

105

stress component (among 6 of them in the Voigt notation) and prints

it.

The lines

mlp = mlippy.mtp()

mlp.load_potential(’pot.mtp’)

load the MTP which will be used for calculating the errors. Alterna-

tively, these lines can be replaced by one:

mlp = mlippy.mtp(’pot.mtp’)

The lines

accepted = []

rejected = []

for i in range(len(cfgs)):

report = mlippy.ase_errors(mlp,[cfgs[i]])

if ((float)(report[’Stresses:

Average absolute difference’]) < stress_trsh):

accepted.append(cfgs[i])

else:

rejected.append(cfgs[i])

print (report[’Stresses: Average absolute difference’])

mlippy.ase_savecfgs(fname + "_accepted",accepted)

mlippy.ase_savecfgs(fname + "_rejected",rejected)

do the actual separation of configurations according to the stress MAE.

The line

report = mlippy.ase_errors(mlp,[cfgs[i]]) checks approximation

errors of the mlp on the configuration cfgs[i]. The returning value is

a dictionary of strings with the following structure:

106

{’Energy: Maximal absolute difference’: ’0.051103’,

’Energy: Average absolute difference’: ’0.051103’,

’Energy: RMS absolute difference’: ’0.051103’,

’Energy per atom: Maximal absolute difference’: ’0.003194’,

’Energy per atom: Average absolute difference’: ’0.003194’,

’Energy per atom: RMS absolute difference’: ’0.003194’,

’Forces: Maximal absolute difference’: ’0.209541’,

’Forces: Average absolute difference’: ’0.160072’,

’Forces: RMS absolute difference’: ’0.173226’,

’Forces: Max(ForceDiff) / Max(Force)’: ’0.390101’,

’Forces: RMS(ForceDiff) / RMS(Force)’: ’0.477335’,

’Stresses: Maximal absolute difference’: ’5.006112’,

’Stresses: Average absolute difference’: ’5.006112’,

’Stresses: RMS absolute difference’: ’5.006112’,

’Stresses: Max(StressDiff) / Max(Stress)’: ’0.907327’,

’Stresses: RMS(StressDiff) / RMS(Stress)’: ’0.907327’}

In the condition

(float)(report[’Stresses:

Average absolute difference’]) < stress_trsh)

the checking of the numerical value of a stress MAE is performed.

5.3.4 MLIP Calculator for ASE

mlippy can be used not only as standalone package possessing some function-

ality from the C++ version, but as a calculator for ase.Atoms configurations

[1]. The corresponding example is contained in

/doc/examples_Python/MLIP_Calculator folder and demonstrates the re-

laxation of a binary system using the

MLIP_Calculator. After the import statements, the initialization of the

MLIP_Calculator class is done using the mtp object:

107

mlp = mlippy.mtp(‘Trained.mtp’)

calc = mlippy.MLIP_Calculator(mlp, opts)

The options

opts = {"select":"FALSE",

"load-state":"state.mvs",

"save-selected":"selected.cfg",

"threshold":"2",

"threshold-break":"10",

"write-cfgs":"record.cfgs",

"write-cfgs:skip":"3"

}

are similar to the settings in mlip.ini file used in LAMMPS (see Sec-

tion 5.3.2). The option "select":"FALSE" means not considering extrapola-

tion grades, while "select":"TRUE" permits termination of the calculation

if severe extrapolation occurrs, writes extrapolative configurations to the

file with "save-selected" name, and requires an mvs file specified by the

"load-state" option.

This means that the calc object will calculate energies, forces and stresses

based on the MTP from the ‘Trained.mtp’ file. The lines

b = 5.01

a = ase.Atoms(’AgPd’,positions=[(0,0, 0), (b/2, b/2, b/2)],

cell=[(0, b, b), (b, 0, b), (b, b, 0)],pbc=True)

a = a.repeat(2)

a.rattle(stdev=0.5)

create the FCC lattice populated with Ag and Pd atoms and shuffle their

positions. The line

a.set_calculator(calc)

mlippy.ase_savecfgs(’initial_ase.cfg’,[a])

108

attach our calculator to the atomic system and save the initial geometry

of the system co compare it with the relaxed one. The lines

dyn = BFGS(a)

dyn.run(fmax=1e-1)

actually launch the relaxation procedure with the stopping criterion for

forces’ amplitudes set to 0.1. While relaxation you will see the typical output

and then the line

mlippy.ase_savecfgs(’relaxed_ase.cfg’,[a]) saves the relaxed config-

uration to the file. Note, that if you change the chemical symbols in AgPd

formula (e.g., to ZrPd) you will get an exception:

Atomic number 40 is not present in the MTP potential!,

which means that the mtp object used in MLIP_Calculator is not trained

for such species. As shown in the last line:

print (mlp.species_avail())

you can view the species present in an mtp object with mlp.species_avail()

function. To extend the species which mtp can calculate, provide a training

set with desired species and train the instance of the mtp class on it.

6 Perspectives of this work: big picture and

impact

Nowadays the atomistic simulation approach is applicable to a very small

fraction of the processes which are of scientific and/or industrial interest.

This is due to the fact that models providing sufficiently accurate calculations

of energies/forces in atomistic systems (QM models involving calculations of

the electronic structure) are very time-consuming, and these expenses scale

cubically with the number of atoms, making few hundreds of atoms an upper

bound for the size of the system being simulated. Though sometimes more

approximate linear-scaling implementations can be used, their computational

cost is still too high for many applications. At the same time, for an adequate

109

simulation of certain processes (e.g., nucleation evens, cracks propagation)

the required number of particles can reach millions. The workarounds like

using less accurate models (e.g., empirical potentials) or making predictions

based on simulations of smaller time- and length scales sometimes work well

and can provide useful results, but these are by far not universal solutions.

One of the problems for which atomistic simulation approach can poten-

tially provide radically innovative solution is the search for new materials.

Traditionally, it is performed in a blind trial-and-error manner. Designing a

new multicomponent alloy for a spacecraft or aircraft needs involves looking

over dozens of alloying elements, trying to find their optimal mixture among

practically infinite number of possible constitutions. Further burdened by

long and costly process of production and laboratory testing of each partic-

ular sample, the design of a new alloy can take years or even decades.

Few decades ago a similar situation was true for the engineering design

scale (see Figure 24): the amount of possible constructions (of a plane, a car,

or an engine) which should be tested for performance by far exceeded the ca-

pacity of testing facilities for physical samples. Emergence of the approaches

and software enabling computer simulations of engineering constructions per-

formance in different conditions opened a new page in production technology:

nowadays with a help of computer-aided design (CAD) the most unusual

and counter-intuitive forms are created, which provide the best performance

among almost infinite number of possible solutions. Moreover, due to much

greater speed and much lower cost of computer simulations compared to

physical experiments, the timespan from an idea to its implementation in

hardware has shortened at least by one order. By now, CAD is an integral

part of any manufacturing design process, used in production of the smallest

parts like microchips as well as planes or rockets. While in vivo testing is

still the ultimate stage, computer simulations provide useful insights greatly

reducing the amount of physical tests required.

Not a long time ago the introduction of DFT with accurate exchange-

correlation functionals (GGA and more accurate ones) has led to a remark-

110

Figure 24: Theories and approaches (bold font) and examples of software

(normal font) used for simulations at various length scales. At the scale of

engineering design the presently available tools have already enabled fast and

efficient simulations. At the materials design scale modern tools are often

too computationally expensive to substitute empirical hands-on approach.

111

able breakthrough in computational materials science: though the speed of

the DFT calculations is still by far prohibitive for many applications, DFT

has proven itself to be very versatile and reliable tool, and it is widely used

for studying broad classes of materials. On the other hand, the availability

of machine-learning techniques (and, consequently, MLIPs) makes possible

applying a surrogate modeling approach [25, 26] at the materials design scale

(see Figure 24), allowing to simulate the behavior of atomistic systems with-

out doing extensive number of DFT calculations. Instead, a small number

of DFT calculations in carefully chosen points provides an input data for

a MLIP, which is then used to study the behavior of the atomistic system.

The accuracy of the resulting MLIP can only be slightly worse than that of

the original DFT calculations, while the difference in computational speed

usually constitutes three or more orders of magnitude (see Section 4.1.3).

The calculations of high precision and high computational speed significantly

extend the capabilities of the atomistic simulation approach, making it ap-

plicable to larger time and length scales. The parametrization of materials

properties and the ability of machine-learning models to find the hidden rela-

tions between variables make it possible to construct a systematic approach

for finding the materials with desired properties, as an alternative to the

empirical trial-and-error approach. The simulations of both high accuracy

and high speed, supported by the predictive power of machine-learning algo-

rithms, give birth to a new paradigm called computer-aided materials design

(CAMD). Within this paradigm the search for new materials is performed in

a data-driven manner, analyzing the previous results and making predictions

narrowing the area of the search. While the ultimate criterion is still an ex-

periment, the predictions provided by computer simulation can significantly

reduce the amount of experiments to be carried out.

The trend of CAMD is already recognized as an upcoming solution to

the contemporary challenges of materials science, which is reflected in such

strategic initiatives like Materials Genome Initiative in USA and European

Materials Modeling Council in Europe. Such models of interatomic interac-

112

tion as MLIPs are integral part of CAMD. Despite numerous examples of

successful application of MLIPs for studying properties of different materials

(see Section 4) their wide usage in industry is still a matter of a nearest

future; effective, robust and universal enough software for materials design,

which does not require a lot of expertise (and thus can be used not only by

the scientists who developed it) is yet to be created.

As a natural development of the present research, the aim of creating

methods and software for calculating various finite-temperature properties

(phase stability, hardness, elastic moduli, etc.) of a broad range of materials

can be pursued. Being implemented in a high-throughput and substantially

automatized framework, the author believes it will make a great impact on

the computational materials design field.

7 Conclusion

This thesis describes an approach to the construction and usage of a special

type of interatomic interaction models—machine-learning interatomic poten-

tials (MLIPs, see Section 2.4). The MLIPs I use in my research are of specific

functional form based on local descriptors of atomic environment—the mo-

ment tensor descriptors (Section 3.4). These MLIPs are the extension of the

originally proposed moment tensor potentials (MTPs, [74]) to the multiple

component case. The MTPs proposed in this thesis incorporate non-linear

functions of the fitting parameters and therefore I use a quasi-Newton Broy-

den – Fletcher – Goldfarb – Shanno local optimization algorithm in the train-

ing procedure (Section 3.5). The functional form of MTPs is systematically

improvable, i.e., it can be extended with larger amount of fitting parameters

at the cost of increased computational time. The unique functional form

of MTPs allows for effective capturing of local interatomic interactions and

therefore highly accurate reproduction of ab-initio results even with small

amount of parameters and small training sets: see Section 4.2.

Another crucial component of the proposed methodology is the active

113

learning (AL) approach (Section 3.6). It provides the numerical measure of

extrapolation of the MTP for a certain configuration. This makes possible

the so-called learning-on-the-fly: during an MD simulation the MTP is used

to provide energies/forces/stresses only for configurations not far from the

training domain, e.g., interpolative configurations. If an extrapolative con-

figuration is detected, the MTP is retrained with additional relevant ab-initio

data, extending the training domain and making the particular configuration

interpolative, thus enabling reliable prediction of energies/forces/stresses.

Additionally, active learning can be used to form the optimal training set

out of fixed set of configuration: e.g., select 300 configurations out of 300

000, which carry the most relevant information for a machine-learning model.

The selection is performed using unlabeled data, i.e., only positions and types

of the atoms (Section 3.6.2, Section 4.2), thus allowing to compute ab-initio

properties of the shortlisted configurations only after the selection procedure.

The combination of MTPs capable of accurate fitting and of the AL ap-

proach preventing extrapolation allows for effective screening of the atomistic

structures in the crystal structure prediction problem (Section 4.1). Orders

of magnitude faster structural relaxations done with MTPs provide oppor-

tunity to use much broader set of sample structures and therefore provide

higher chances of detecting the stable structures: in Co-Nb-V (Section 4.1.2)

and Al-Ni-Ti (Section 4.1.3) alloy systems MTP+AL approach allowed dis-

covery of previously unreported ternary and binary structures. The overall

speed-up in the stable alloys procedure reaches a factor of 100 (Section 4.1.3)

while the formation energies and the geometries of the final structures are

calculated with the DFT accuracy. The speed-up is due to effective and fast

screening allowing to perform only the small fraction of calculations with the

costly DFT method, rejecting all the others based on the MTP predictions.

Summing up, in this thesis I have proposed a way of constructing MLIPs

for multicomponent alloys (and in addition successfully applied to the de-

scription of some organic molecules). The MLIPs (namely, MTPs) are ca-

pable of accurate fitting the energies/forces/stresses in atomistic systems,

114

and together with the AL approach they form a powerful tool allowing for

atomistic simulations with accuracy approaching the ab-initio one but or-

ders of magnitude faster. The accuracy of the MTPs has been shown to

be on the top level among other machine-learning models (Section 4.2), and

there have been provided examples of succesfull application of the proposed

methodology to solving problems previously done with DFT only (Section

4.1).

The limitations of the MTPs presently include atomistic systems where

contribution of long-range interactions is essential, e.g., due to charge local-

ization. Also, magnetic properties of the atoms are ignored in the current

implementation.

All functionality is implemented in C++ and Python software packages,

available via the following link:

https://gitlab.com/ashapeev/mlip-v2

References

[1] Atomic simulation environment: Calculators.

https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html.

[2] The novel materials discovery (NOMAD) laboratory, a European centre

of excellence. http://nomad-repository.eu.

[3] A. Agrawal and A. Choudhary. Perspective: Materials informatics and

big data: Realization of the “fourth paradigm” of science in materials

science. Apl Materials, 4(5):053208, 2016.

[4] N. Artrith and A. M. Kolpak. Grand canonical molecular dynamics

simulations of Cu–Au nanoalloys in thermal equilibrium using reactive

ANN potentials. Comput. Mater. Sci., 110:20–28, 2015.

[5] S. Bärthlein, G. L. W. Hart, A. Zunger, and S. Müller. Reinterpret-

ing the cu–pd phase diagram based on new ground-state predictions.

Journal of Physics: Condensed Matter, 19(3):032201, 2007.

115

https://gitlab.com/ashapeev/mlip-v2

[6] S. Bärthlein, E. Winning, G. L. W. Hart, and S. Müller. Stability and

instability of long-period superstructures in binary cu–pd alloys: A first

principles study. Acta Materialia, 57(5):1660–1665, 2009.

[7] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi. Gaussian ap-

proximation potentials: The accuracy of quantum mechanics, without

the electrons. Phys. Rev. Lett., 104(13):136403, 2010.

[8] J. Behler. Neural network potential-energy surfaces in chemistry: a tool

for large-scale simulations. Phys. Chem. Chem. Phys., 13(40):17930–

17955, 2011.

[9] J. Behler. Representing potential energy surfaces by high-dimensional

neural network potentials. J. Phys. Condens. Matter., 26(18):183001,

2014.

[10] J. Behler and M. Parrinello. Generalized neural-network representa-

tion of high-dimensional potential-energy surfaces. Phys. Rev. Lett.,

98(14):146401, 2007.

[11] J. R. Boes, M. C. Groenenboom, J. A. Keith, and J. R. Kitchin. Neural

network and ReaxFF comparison for Au properties. Int. J. Quantum

Chem., 116(13):979–987, 2016.

[12] V. Botu, R. Batra, J. Chapman, and R. Ramprasad. Machine learn-

ing force fields: Construction, validation, and outlook. arXiv preprint

arXiv:1610.02098, 2016.

[13] V. Botu and R. Ramprasad. Learning scheme to predict atomic forces

and accelerate materials simulations. Phys. Rev. B, 92(9):094306, 2015.

[14] N. J. Browning, R. Ramakrishnan, O. A. von Lilienfeld, and U. Roeth-

lisberger. Genetic optimization of training sets for improved machine

learning models of molecular properties. The Journal of Physical Chem-

istry Letters, 8(7):1351–1359, 2017.

116

[15] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko. Towards

exact molecular dynamics simulations with machine-learned force fields.

arXiv preprint arXiv:1802.09238, 2018.

[16] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepul-

skii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, et al. Aflow: an

automatic framework for high-throughput materials discovery. Compu-

tational Materials Science, 58:218–226, 2012.

[17] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor,

L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, et al.

Aflowlib.org: A distributed materials properties repository from high-

throughput ab initio calculations. Computational Materials Science,

58:227–235, 2012.

[18] M. S. Daw and M. I. Baskes. Embedded-atom method: Derivation and

application to impurities, surfaces, and other defects in metals. Physical

Review B, 29(12):6443, 1984.

[19] S. De, A. P. Bartók, G. Csányi, and M. Ceriotti. Comparing molecules

and solids across structural and alchemical space. Physical Chemistry

Chemical Physics, 18(20):13754–13769, 2016.

[20] J. Dennis and D. J. Woods. Optimization on microcomputers: The

nelder-mead simplex algorithm. New computing environments: micro-

computers in large-scale computing, 11:6–122, 1987.

[21] V. L. Deringer and G. Csányi. Machine learning based interatomic

potential for amorphous carbon. Phys. Rev. B, 95:094203, Mar 2017.

[22] V. L. Deringer, C. J. Pickard, and G. Csányi. Data-driven learn-

ing of total and local energies in elemental boron. Phys. Rev. Lett.,

120(15):156001, 2018.

117

[23] P. E. Dolgirev, I. A. Kruglov, and A. R. Oganov. Machine learning

scheme for fast extraction of chemically interpretable interatomic po-

tentials. AIP Advances, 6(8):085318, 2016.

[24] F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E.

Dahl, O. Vinyals, S. Kearnes, P. F. Riley, and O. A. von Lilienfeld. Pre-

diction errors of molecular machine learning models lower than hybrid

dft error. Journal of chemical theory and computation, 13(11):5255–

5264, 2017.

[25] A. Forrester, A. Sobester, and A. Keane. Engineering design via surro-

gate modelling: a practical guide. John Wiley & Sons, 2008.

[26] A. I. Forrester, A. Sóbester, and A. J. Keane. Multi-fidelity optimization

via surrogate modelling. In Proceedings of the royal society of london

a: mathematical, physical and engineering sciences, volume 463, pages

3251–3269. The Royal Society, 2007.

[27] M. Gastegger and P. Marquetand. High-dimensional neural network

potentials for organic reactions and an improved training algorithm. J.

Chem. Theory Comput., 11(5):2187–2198, 2015.

[28] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic opti-

mization algorithm: harmony search. simulation, 76(2):60–68, 2001.

[29] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.

Dahl. Neural message passing for quantum chemistry. arXiv preprint

arXiv:1704.01212, 2017.

[30] S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, and N. Za-

marashkin. How to find a good submatrix. In Matrix Methods: Theory,

Algorithms, Applications, pages 247–256. Word Scientific, 2010.

[31] A. Grisafi, D. M. Wilkins, G. Csányi, and M. Ceriotti. Symmetry-

adapted machine learning for tensorial properties of atomistic systems.

Phys. Rev. Lett., 120(3):036002, 2018.

118

[32] K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev. Machine learning

of molecular properties: Locality and active learning. The Journal of

Chemical Physics, 148(24):241727, 2018.

[33] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. Von Lilien-

feld, K.-R. Mu?ller, and A. Tkatchenko. Machine learning predictions

of molecular properties: Accurate many-body potentials and nonlocality

in chemical space. The journal of physical chemistry letters, 6(12):2326–

2331, 2015.

[34] G. L. W. Hart, S. Curtarolo, T. B. Massalski, and O. Levy. Compre-

hensive search for new phases and compounds in binary alloy systems

based on platinum-group metals, using a computational first-principles

approach. Physical Review X, 3(4):041035, 2013.

[35] G. L. W. Hart, L. J. Nelson, and R. W. Forcade. Generating derivative

structures at a fixed concentration. Computational Materials Science,

59:101–107, 2012.

[36] J. D. Head and M. C. Zerner. A broyden—fletcher—goldfarb—shanno

optimization procedure for molecular geometries. Chemical physics let-

ters, 122(3):264–270, 1985.

[37] Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato,

Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, et al.

Discovery of earth-abundant nitride semiconductors by computational

screening and high-pressure synthesis. Nature communications, 7:11962,

2016.

[38] M. Hirn, S. Mallat, and N. Poilvert. Wavelet scattering regression

of quantum chemical energies. Multiscale Modeling & Simulation,

15(2):827–863, 2017.

[39] B. Huang and O. A. Von Lilienfeld. Communication: Understanding

molecular representations in machine learning: The role of uniqueness

and target similarity. Journal of Chemical Physics, 145(16), 2016.

119

[40] B. Huang and O. A. von Lilienfeld. The ”dna” of chemistry:

Scalable quantum machine learning with ”amons”. arXiv preprint

arXiv:1707.04146, 2017.

[41] H. Huo and M. Rupp. Unified representation for machine learning of

molecules and crystals. arXiv preprint arXiv:1704.06439, 2017.

[42] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,

S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. a. Persson. The Ma-

terials Project: A materials genome approach to accelerating materials

innovation. APL Materials, 1(1):011002, 2013.

[43] C. Jiang and B. P. Uberuaga. Efficient ab initio modeling of random

multicomponent alloys. Physical review letters, 116(10):105501, 2016.

[44] S. R. Kalidindi and M. De Graef. Materials data science: current status

and future outlook. Annual Review of Materials Research, 45:171–193,

2015.

[45] B. Kolb, L. C. Lentz, and A. M. Kolpak. Discovering charge density

functionals and structure-property relationships with PROPhet: A gen-

eral framework for coupling machine learning and first-principles meth-

ods. Sci. Rep., 7(1), apr 2017.

[46] R. Kondor. N-body networks: a covariant hierarchical neural net-

work architecture for learning atomic potentials. arXiv preprint

arXiv:1803.01588, 2018.

[47] I. Kruglov, O. Sergeev, A. Yanilkin, and A. R. Oganov. Energy-free

machine learning force field for aluminum. Sci. Rep., 7(1):8512, 2017.

[48] D. D. Landis, J. S. Hummelshøj, S. Nestorov, J. Greeley, M. Du lak,

T. Bligaard, J. K. Nørskov, and K. W. Jacobsen. The computational

materials repository. Computing in Science & Engineering, 14(6):51–57,

2012.

120

[49] Z. Li, J. R. Kermode, and A. De Vita. Molecular dynamics with on-the-

fly machine learning of quantum-mechanical forces. Phys. Rev. Lett.,

114:096405, Mar 2015.

[50] N. Lubbers, J. S. Smith, and K. Barros. Hierarchical modeling of molec-

ular energies using a deep neural network. The Journal of Chemical

Physics, 148(24):241715, 2018.

[51] N. Lubbers, J. S. Smith, and K. Barros. Hierarchical modeling of

molecular energies using a deep neural network. J. Chem. Phys.,

148(24):241715, jun 2018.

[52] A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu. New develop-

ments in evolutionary structure prediction algorithm uspex. Computer

Physics Communications, 184(4):1172–1182, 2013.

[53] S. Manzhos, R. Dawes, and T. Carrington. Neural network-based ap-

proaches for building high dimensional and quantum dynamics-friendly

potential energy surfaces. Int. J. Quantum Chem., 115(16):1012–1020,

2015.

[54] M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart,

and S. Curtarolo. The aflow library of crystallographic prototypes: part

1. Computational Materials Science, 136:S1–S828, 2017.

[55] B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. Doak, A. Thompson,

K. Zhang, A. Choudhary, and C. Wolverton. Combinatorial screen-

ing for new materials in unconstrained composition space with machine

learning. Physical Review B, 89(9):094104, 2014.

[56] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen,

A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld. Machine learning

of molecular electronic properties in chemical compound space. New

Journal of Physics, 15(9):095003, 2013.

121

[57] S. K. Natarajan, T. Morawietz, and J. Behler. Representing

the potential-energy surface of protonated water clusters by high-

dimensional neural network potentials. Phys. Chem. Chem. Phys.,

17(13):8356–8371, 2015.

[58] A. H. Nguyen, C. W. Rosenbrock, C. S. Reese, and G. L. W. Hart.

Robustness of the cluster expansion: Assessing the roles of relaxation

and numerical error. Phys. Rev. B, 96:014107, Jul 2017.

[59] C. Nyshadham, C. Oses, J. E. Hansen, I. Takeuchi, S. Curtarolo, and

G. L. W. Hart. A computational high-throughput search for new ternary

superalloys. Acta Materialia, 122:438–447, 2017.

[60] E. V. Podryabinkin and A. V. Shapeev. Active learning of linearly

parametrized interatomic potentials. Computational Materials Science,

140:171–180, 2017.

[61] E. V. Podryabinkin, E. V. Tikhonov, A. V. Shapeev, and A. R. Oganov.

Accelerating crystal structure prediction by machine-learning inter-

atomic potentials with active learning. arXiv preprint arXiv:1802.07605,

2018.

[62] K. Rajan. Materials informatics: The materials “gene” and big data.

Annual Review of Materials Research, 45:153–169, 2015.

[63] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld. Quan-

tum chemistry structures and properties of 134 kilo molecules. Scientific

data, 1, 2014.

[64] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Big

data meets quantum chemistry approximations: the δ-machine learning

approach. Journal of chemical theory and computation, 11(5):2087–2096,

2015.

122

[65] R. Ramakrishnan and O. A. von Lilienfeld. Machine learning,

quantum mechanics, and chemical compound space. arXiv preprint

arXiv:1510.07512, 2015.

[66] L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J.-L. Reymond. Enu-

meration of 166 billion organic small molecules in the chemical uni-

verse database gdb-17. Journal of chemical information and modeling,

52(11):2864–2875, 2012.

[67] M. Rupp, R. Ramakrishnan, and O. A. von Lilienfeld. Machine learning

for quantum mechanical properties of atoms in molecules. The Journal

of Physical Chemistry Letters, 6(16):3309–3313, 2015.

[68] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld. Fast

and accurate modeling of molecular atomization energies with machine

learning. Physical review letters, 108(5):058301, 2012.

[69] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton. Materi-

als design and discovery with high-throughput density functional theory:

the open quantum materials database (oqmd). Jom, 65(11):1501–1509,

2013.

[70] S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P. Tozman,

M. Venkatesan, M. Coey, and S. Curtarolo. Accelerated discovery of new

magnets in the heusler alloy family. Science advances, 3(4):e1602241,

2017.

[71] K. Schütt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela, A. Tkatchenko,

and K.-R. Müller. Schnet: A continuous-filter convolutional neural net-

work for modeling quantum interactions. In Advances in Neural Infor-

mation Processing Systems, pages 992–1002, 2017.

[72] K. Schütt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela, A. Tkatchenko,

and K.-R. Müller. Schnet: A continuous-filter convolutional neural net-

work for modeling quantum interactions. In Advances in Neural Infor-

mation Processing Systems, pages 992–1002, 2017.

123

[73] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and

A. Tkatchenko. Quantum-chemical insights from deep tensor neural

networks. Nature communications, 8:13890, 2017.

[74] A. Shapeev. Moment tensor potentials: a class of systematically improv-

able interatomic potentials. Multiscale Model. Simul., 14(3):1153–1173,

2016.

[75] A. Shapeev. Accurate representation of formation energies of crys-

talline alloys with many components. Computational Materials Science,

139:26–30, 2017.

[76] A. V. Shapeev. Moment tensor potentials: a class of systematically

improvable interatomic potentials. Multiscale Modeling & Simulation,

14(3):1153–1173, 2016.

[77] J. S. Smith, O. Isayev, and A. E. Roitberg. ANI-1: an extensible neural

network potential with DFT accuracy at force field computational cost.

Chem. Sci., 8(4):3192–3203, 2017.

[78] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg. Less

is more: Sampling chemical space with active learning. The Journal of

Chemical Physics, 148(24):241733, 2018.

[79] T. Steihaug. The conjugate gradient method and trust regions in large

scale optimization. SIAM Journal on Numerical Analysis, 20(3):626–

637, 1983.

[80] A. Sutton and J. Chen. Long-range finnis–sinclair potentials. Philo-

sophical Magazine Letters, 61(3):139–146, 1990.

[81] W. J. Szlachta, A. P. Bartók, and G. Csányi. Accuracy and transfer-

ability of Gaussian approximation potential models for tungsten. Phys.

Rev. B, 90(10):104108, 2014.

124

[82] A. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker. Spec-

tral neighbor analysis method for automated generation of quantum-

accurate interatomic potentials. J. Comput. Phys., 285:316 – 330, 2015.

[83] M. C. Troparevsky, J. R. Morris, M. Daene, Y. Wang, A. R. Lupini,

and G. M. Stocks. Beyond atomic sizes and hume-rothery rules: un-

derstanding and predicting high-entropy alloys. Jom, 67(10):2350–2363,

2015.

[84] S. Ubaru, A. Miedlar, Y. Saad, and J. R. Chelikowsky. Formation en-

thalpies for transition metal alloys using machine learning. Physical

Review B, 95(21):214102, 2017.

[85] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated

annealing: Theory and applications, pages 7–15. Springer, 1987.

[86] D. J. Wales and H. A. Scheraga. Global optimization of clusters, crystals,

and biomolecules. Science, 285(5432):1368–1372, 1999.

[87] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton. A general-

purpose machine learning framework for predicting properties of inor-

ganic materials. npj Computational Materials, 2:16028, 2016.

[88] T. A. Wesolowski and J. Weber. Kohn-sham equations with constrained

electron density: an iterative evaluation of the ground-state electron

density of interacting molecules. Chemical physics letters, 248(1-2):71–

76, 1996.

[89] Q. Wu, B. He, T. Song, J. Gao, and S. Shi. Cluster expansion method

and its application in computational materials science. Computational

Materials Science, 125:243–254, 2016.

125

	Abstract
	Publications
	Acknowledgments
	List of abbreviations
	List of the machine-learning models of interatomic interaction
	List of figures
	List of tables
	Introduction
	Review of the Models of Interatomic Interaction
	Empirical Potentials
	Quantum-Mechanical Models
	Density Functional Theory
	Machine-Learning Potentials
	Discussion

	Methodology of Machine-Learning Potentials
	The Training Procedure
	Constructing a Machine-Learning Potential
	Energies, Forces, and Stresses
	Moment Tensor Potentials
	Training the Moment Tensor Potentials
	Active Learning
	Generalized D-optimality Criterion
	Active Learning with Validation Set
	Active Learning in Crystal Structure Prediction

	Discussion

	Results and Discussion
	Crystal Structure Prediction for Alloys
	Cu-Pd Alloys
	Co-Nb-V Alloys
	Al-Ni-Ti Alloys
	Discussion

	Predicting the Properties of Organic Molecules
	Fitting Enthalpy on QM9
	Random Choice of the Training Dataset
	Active Learning
	Fitting the QM7 Database
	A Nonlocal Model
	Discussion

	MLIP Software
	Installation
	MLIP Commands
	The ``train" Command
	The ``calc-errors" Command
	The ``select-add" Command
	The ``relax" Command
	The ``convert-cfg'' Command
	The ``self-test" Command
	The ``help" Command
	The ``list" Command

	Examples
	Linux Bash Scripts with Binary MLIP
	Integration with LAMMPS
	Python Implementation (mlippy)
	MLIP Calculator for ASE

	Perspectives of this work: big picture and impact
	Conclusion

