
Name of Candidate: Timur Yagafarov
PhD Program: Physics
Title of Thesis: Polariton lasing in a dye-filled organic microcavities
Supervisor: Prof. Pavlos Lagoudakis

Date of Thesis Defense: 8 November 2019
Name of the Reviewer: Luis Viña

I confirm the absence of any conflict of interest
(Alternatively, Reviewer can formulate a possible conflict)

Signature:
Date: 29-09-2019

The purpose of this report is to obtain an independent review from the members of PhD defense Jury before the thesis defense. The members of PhD defense Jury are asked to submit signed copy of the report at least 30 days prior the thesis defense. The Reviewers are asked to bring a copy of the completed report to the thesis defense and to discuss the contents of each report with each other before the thesis defense.

If the reviewers have any queries about the thesis which they wish to raise in advance, please contact the Chair of the Jury.

Reviewer’s Report

Reviewers report should contain the following items:

- Brief evaluation of the thesis quality and overall structure of the dissertation.
- The relevance of the topic of dissertation work to its actual content
- The relevance of the methods used in the dissertation
- The scientific significance of the results obtained and their compliance with the international level and current state of the art
- The relevance of the obtained results to applications (if applicable)
- The quality of publications

The summary of issues to be addressed before/during the thesis defense
The thesis is well written, with an appropriate introduction and review of the state of the art. It is also well organized in five Chapters that include: an introduction, a general discussion on light-matter interaction in organic microcavities, the new results on rt broadband polariton laser, a study of the origin of the blue-shift in organic polariton condensates and a summary together with an outlook. The topic is interesting and timely since the community is looking for alternatives to obtain low-cost, high-efficiency alternatives to present lasers. The student employs the adequate experimental techniques and methods to investigate the achievement of a broadband emission giving rise to lasing and to evaluate and explain the origin of the blue-shift of condensates in organic microcavities. The results are competitive and relevant at international level, as can be inferred also from the publications derived from this thesis work. The way of possible applications of organics lasers based on microcavities is also somehow further facilitated thanks to the results of this work. So far the results have been published in high quality international physics journals, such as “Advanced Optical Materials” and “Nanotechnology”.

<table>
<thead>
<tr>
<th>Provisional Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ I recommend that the candidate should defend the thesis by means of a formal thesis defense</td>
</tr>
<tr>
<td>☐ I recommend that the candidate should defend the thesis by means of a formal thesis defense only after appropriate changes would be introduced in candidate’s thesis according to the recommendations of the present report</td>
</tr>
<tr>
<td>☐ The thesis is not acceptable and I recommend that the candidate be exempt from the formal thesis defense</td>
</tr>
</tbody>
</table>