
Skolkovo Institute of Science and Technology

Combinatorial and Neural Graph Vector

Representations

Doctoral Thesis

by

SERGEY IVANOV

DOCTORAL PROGRAM IN

COMPUTATIONAL AND DATA SCIENCE

AND ENGINEERING

Supervisor

Associate Professor Evgeny Burnaev

Moscow - 2019

Abstract

For centuries network science has been relentlessly providing humankind with the hard

challenges and a new leap forward towards improving our abilities in working with graphs

has recently been made in the intersection of machine learning, computer science and

graph theory. In this domain of computational graph theory new models based on neural

networks showed the dominance in a number of graph-related tasks in the presence

of large amounts of data. However in the rush for better metrics in experiments our

understanding why some architectures or approaches work is often lost, which comes at

the cost of uncertainty in the generalization and robustness on the new tasks or the new

data.

In this light, representation learning underlies model construction phase and allows

us to leverage the knowledge of the topological properties of the network in order to

predict the behavior of representations in downstream tasks. Combinatorial methods to

obtain vector representations of networks have been a common element in graph kernel

literature, while neural representations have appeared recently as a building block of

neural networks on graphs. In this thesis, we argue that these two paradigms complement

each other; while combinatorial embeddings have richer interpretability of the models,

neural embeddings come with enhanced expressivity and trainability; and that in often

cases it is possible to benefit from both.

Broadly this dissertation has two main parts that contribute to the computational graph

theory. In the first we propose a new type of combinatorial and neural embeddings

based on introduced graph substructure, anonymous walks. In the combinatorial case

the embeddings are guaranteed to possess invariance property, which is novel to the

domain of representation learning on graphs. For the neural embeddings we utilize

machine learning models to discover relationships between different anonymous walks,

which becomes practical in several applications. In the second part, we discuss new

hard problems on graphs. In particular, we deal with the problems of recommendation

of products or users in networks and show the complexity and approximability of these

problems. We propose two complementary algorithms for these problems, based on

i

ii

the greedy estimation of the value for recommendation that has limitation with the

running time, and one based on the learned embeddings to augment the set of good

recommendations found by the greedy algorithm.

Publications

1. Ivanov S, Karras P. Harvester: Influence optimization in symmetric interaction

networks. In2016 IEEE International Conference on Data Science and Advanced

Analytics (DSAA) pp. 61-70. IEEE, 2016.

2. Ivanov S, Theocharidis K, Terrovitis M, and Karras P. ”Content recommendation

for viral social influence.” In Proceedings of the 40th International ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 565-574.

ACM, 2017.

3. Ivanov S, and Burnaev E. ”Anonymous Walk Embeddings.” In International Con-

ference on Machine Learning, pp. 2191-2200, 2018.

4. Sharaev M, Artemov A, Kondrateva E, Ivanov S, Sushchinskaya S, Bernstein A,

Cichocki A, Burnaev E. Learning connectivity patterns via graph kernels for fmri-

based depression diagnostics. In 2018 IEEE International Conference on Data

Mining Workshops (ICDMW) pp. 308-314. IEEE, 2018 .

5. Ivanov S, Durasov N, Burnaev E. Learning node embeddings for influence set

completion. In2018 IEEE International Conference on Data Mining Workshops

(ICDMW) pp. 1034-1037, IEEE, 2018.

iii

Acknowledgements

Firstly, I am thankful to my supervisor, Evgeny Burnaev, who gave me mentorship along

this long journey. The freedom he gave me to pursue my research interests taught me

to understand many decisions that one has to undertake to do good research. I’m also

thankful to my committee and reviewers, Alexander Bernstein, Ivan Oseledets, Michael

Bronstein, Matthew Blaschko, Maxim Panov, Alexander Panchenko, and Andrzej Ci-

chocki, who gave valuable feedback to improve my thesis and guided my roadmap.

I also want to thank education office of Skoltech and all the people who helped students

to succeed in their studies. Their will to solve the issues of students, to help them to

grow professionally and always to back up in challenging situations is incredible and it

led Skoltech to become one of the best schools in the world.

Being among the first students graduated at Skoltech is a big privilege and during this

time I met amazing people who became my friends. I’m grateful that they found time

to discuss my research and help me in need. It made my scientific voyage much more

exciting.

Finally, my family who supported me all these years, staying around me and listening

to my research ideas, I owe to say a big thank you!

iv

Contents

Abstract i

Publications iii

Acknowledgements iv

1 Introduction 1

1.1 Motivation . 1

1.1.1 Goals and main results . 5

1.1.2 Thesis organization . 7

1.2 Graph theory . 8

1.2.1 Definitions and examples . 8

1.2.2 Walks, paths, and cycles . 9

1.2.3 Basic representations . 10

1.3 Graph isomorphism . 11

1.3.1 Complexity of graph isomorphism 14

1.3.2 Practical graph isomorphism . 17

2 Anonymous Walk Embeddings 23

2.1 Motivation . 23

2.2 Our approach . 26

2.3 Review of combinatorial and neural embeddings 30

2.3.1 Combinatorial graph embeddings 32

2.3.2 Neural graph embeddings . 37

2.4 Anonymous walks . 43

2.4.1 Graph isomorphism test . 45

2.5 Algorithms . 52

2.5.1 Combinatorial model . 52

2.5.2 Neural model . 54

2.6 Application to graph classification . 57

2.6.1 Experimental evaluation . 58

2.7 Application to medical diagnostics . 63

2.7.1 fMRI data and pipeline . 64

2.7.2 Experimental evaluation . 70

2.7.3 Final remarks . 72

2.8 Summary . 72

v

vi

3 Graph embeddings for combinatorial problems 74

3.1 Motivation . 74

3.2 Product recommendation in graphs . 76

3.2.1 Problem formulation . 76

3.2.2 Hardness and Inapproximability 78

3.2.3 The Explore-Update Algorithm . 83

3.2.4 Experimental evaluation . 88

3.2.5 Summary . 94

3.3 Influencer recommendation in social networks 95

3.3.1 Introduction . 95

3.3.2 Finding initial influential set . 97

3.3.3 Influence spread and Running time 100

3.3.4 Influence Completion . 104

3.3.5 Experimental evaluation . 105

3.3.6 Summary . 110

4 Conclusion 111

4.1 Synopsis . 111

4.2 Future directions . 112

A History of Weisfeiler-Lehman Algorithm 114

Bibliography 116

Chapter 1

Introduction

1.1 Motivation

History of graph theory accounts for almost 300 years of research highlighting some

of the most beautiful and profound results in mathematics. Numerous applications in

chemistry and physics, social sciences, navigation studies, biology, linguistics, knowledge

capturing and other domains made graphs, not just a testbed of new machinery in

engineering but a useful tool that could be applied to solve new problems. Besides the

results obtained in mathematics using graphs such as the development of group theory

and algebraic graph theory, graphs have been useful novel problems in engineering and

other sciences. As such, first results in graph theory showed that no solution covers all of

the seven bridges of Konigsberg [1], a result attributed to Euler who stands at the roots

of algebraic topology, a field that is closely related to the graph theory. Applications of

graph theory can be also found in the works of Gustav Kirchhoff [2], whose use of modern

algebra originated from extensive development of topology by Whitney and others.

With the arrival of computers, many problems were formulated in terms of graphs and

were possible to solve with the scale never possible before. To start one may want to

decide the shortest path between two points in a graph that represents the different

buildings in a map of a city. Canonical Dijkstra’s algorithm is one way to solve the

problem through the mean of a computer program and it is hard to underestimate the

impact of this algorithm on our daily life. To name a few, from the GPS systems

that navigate our cars during regular commutes to the communication of files on the

Internet that reduces the transportation costs are all based on our understanding of

how to find shortest or minimal paths in such abstract tool as a graph. Problems like

Traveling Salesman Problem and Chinese Postman Problem [3] can be cast as finding a

Hamiltonian cycle or an Euler tour on a graph, while a problem of creating a curriculum

1

2

for a school with n subjects and m classes is known as a timetabling problem and can

be rephrased in terms of edge colorings. Undoubtedly, this highlights some of the pearls

of computer science problems that are easy to formulate and explain through the means

of a graph and at the same time have high practical value.

Recently a diverse, vast, and ever-growing set of problems on graphs has appeared that

applies machine learning techniques to graph structures. Unsupervised, supervised, and

reinforcement learning have been applied for the problems that could not be defined

as traditional combinatorial problems. One example is a link prediction problem, i.e.

prediction of new edges not present in the topology based on the edge relationships

and, maybe, attributes on nodes or edges. While this problem can be posed with some

optimization objective that could be solved via a combinatorial algorithm, it stems

from the recommendation tasks in social networks or product catalogs, where the goal

is to facilitate the search of novelties for an end-user based on historical observations

and therefore an objective is typically posed as a differentiable function that could be

solved with numerical methods. Link prediction is often viewed as a binary classification

problem between a pair of entities, where the goal is to give a probability that there is an

edge in-between. This problem is hard because most real-world networks are sparse and

thus the prior probability of a link is quite small. This, in turn, leads to the problem

of the evaluation of a model and its ability to make low-variance predictions. One

proposed way to resolve these issues is to model network structure as a whole, taking

jointly different links and labels over the entire graph, such as Markov Logic Networks

[4]. More lately novel approaches based on neural network optimization demonstrate

consistently high performance on this task by encompassing a wide range of existing

heuristics [5]. This an example of a problem that illustrates that machine learning

methods could be successfully applied in impactful scenarios where heuristic approaches

perform sub-optimally.

Another example is the graph classification problem that requires a model to determine

the class of a graph as a whole rather than its subparts. Traditionally graph kernels

have been employed to solve the graph classification problem with a high success rate.

In analogy to kernel functions in machine learning, i.e. a symmetric positive semidefi-

nite function of two arguments, graph kernel takes two graphs as input and outputs a

real number that indicates similarity between the graphs. One framework that designs

graph kernels is a decomposition of each input graph into its subparts, from which it is

easier to measure the similarity. For example, one may want to compute the histogram

of degrees of each graph and then measure the similarity between the two distributions;

however such approach is too simplistic and does not work well in practice as different

graph topologies can have the same degree distribution. Instead, a good bulk of ker-

nels were proposed based on manual engineering the features that may lead to better

3

performance in experiments. Examples include kernels based on shortest paths, motifs,

subtree patterns, random walks, subgraph, directed acyclic subgraphs, neighborhood,

and other substructures.

Driven mainly by the performance gains this approach requires a consensus of a kernel

designer on the type of substructure in advance, which has strong and weak points. On

the positive side, such kernels exhibit invariant similarity measure, i.e. graphs with the

same topology would yield the same similarity measure, which is not the case for the

neural and sampling approaches. Furthermore, a large body of work related to graph

comparison and isomorphism problems was well adapted for graph kernel, demonstrat-

ing competitive results in this task. For example, graphlet kernel [6] is based on the

assumption of correctness of reconstruction conjecture [7] that states that a graph can

be fully reconstructed by a set of its smaller subgraphs. Analogously, Weisfeiler-Lehman

kernel [8] uses canonical coloring procedure used in modern graph isomorphism algo-

rithms to produce different colors of each node. On the other hand, to explore which

type of kernel will be suitable for the task at hand one has to try a good pile of methods

that would be optimal for available data and no graph kernel is a magic bullet.

Another part of graph classification is the choice of the algorithm that uses similarity

scores or features of the graphs. Indeed in the case of graph kernels, many have experi-

mented with SVM model that was applied on the kernel matrix of pairwise similarities

between graphs, which exploits a kernel trick bypassing computation of graph features

explicitly. However, this is a rather historical approach has been dawned lately by neural

network models that optimize objective function defined over graphs topology have been

proposed in the literature. For example, Deep Graph Kernels attempt to resolve diagonal

dominance problem appearing in traditional kernels when the number of parameters is

high. Diagonal dominance indicates very high similarity scores between identical graphs

and very low values for all other pairs of graphs, which is not useful for the classification

model. This happens because during the kernel computation a substructure of interest

(random walk, graphlet, subtree, etc.) is appearing frequently in one graph and rarely in

other graphs. So the way Deep Kernels resolve this issue is by learning additionally the

matrix of weights for each dot product of identical substructures that would multiply

histogram of substructures in each graph representations. To compute the weights one

can generate a sentence corpus, where a sentence represents a sequence of substructures

appeared together in the given graph, and then train a neural model with the Skipgram

loss function.

To this end, these two parts of graph classification with machine learning, designing

feature representations, also known as embeddings of graphs, and then applying a clas-

sification algorithm have not used labels of the graphs themselves. Contrary, graph

4

neural models for the graph classification problem are trained in supervised fashion us-

ing given labels of the graphs, a missing part in the graph kernel approach. One early

example of is applying a convolution over the neighborhood of each node to compute

each node representations that can later be pooled over the entire graph. Unlike images

or sounds, graphs do not possess a clear grid structure requiring to adopt convolution

and pooling operations over the nodes, but developments from the literature of graph

kernels and graph isomorphisms are helpful to facilitate this problem. In particular,

Weisfeiler-Lehman algorithm can be applied to determine efficiently the order of the

nodes in the neighborhood for convolution mask. This is an illustrative use case when

a theoretically backed development in one domain (here, graph kernels) can be used in

another domain, for example as a graph representation or ranking mechanism in neural

models.

Taking this into account one of the results that we present in this thesis is a new

way of graph representation that has special properties that are not available in other

graph representations and we show that such representations can achieve state-of-the-

art results in graph classification. Particularly, our representations are based on a new

form of random walks in a graph that we call anonymous walks. Anonymous walks

are exactly random walks for which the node labels were replaced to reflect their first

appearance in a random walk. Informally anonymous walk is a camouflaged cousin of

a random walk, which has a property that one can compare statistics of anonymous

walks for any different graphs, while random walks would require the same subset of

labels. In this regard, anonymous walks stand along with such notions as degrees,

motifs, or subtrees, allowing a researcher to analyze its combinatorial properties in

different graphs. One crucial property with which anonymous walks shine is the graph

invariance over its distribution, i.e. the pure histogram of all anonymous walks of a

certain length that start from any node can reconstruct the topology of a graph exactly.

As we show this implies that anonymous walks can be used as complete graph invariants

and therefore capture the topology exactly for two graphs with unknown labels. To

give a perspective, another candidate for the exact reconstruction of a graph, graphlet,

still waits for the proof for more than 50 years [9], but showed impressive results in

graph classification task [6]. While exact recovery is theoretically possible we show

that the number of anonymous walks required in the general case can be factorial in

the number of nodes and therefore not practical; yet, we piggyback on the analysis of

graphlets to determine concentration inequality to trade off the computation complexity

and approximation of the exact distribution. Our experiments show state-of-the-art

results on the commonly used datasets in graph classification. The core property of the

anonymous walk embeddings is their ability to capture the topology of a graph exactly,

and hence the applications where such property is useful can benefit from usage of our

5

results. We verify this finding in other disciplines such as medical diagnostics, where a

graph of different spots in a brain can be constructed by analyzing fMRI images.

Yet, more recently a new type of machine learning task has appeared, namely solving

combinatorial problems on graphs with machine learning. Combinatorial problems have

long in history in computer science in general and were one of the main drivers of many

algorithmic gems and theoretical breakthroughs. For example, the development of the

complexity theory has started with the realization that the satisfiability problem can be

rephrased as an independent set problem formulated on graphs. One of such problems

is influence maximization that concerns with the search of a set of nodes in a graph that

would maximize its influence over other nodes. Influence function is dependent on the

stochastic process and models the product adoption from one node to another and the

goal is to maximize expected adoption. Unfortunately, the problem is NP-hard with

a greedy approximation algorithm, which achieves at least (1 − 1/e) proportion of the

optimum [10], which is also NP-hard to approximate. In ablation studies, the greedy

algorithm shows the top performance among all other algorithms but with the expense

of the running time. Therefore much of the efforts have allocated to the design of fast

algorithms that could creep up on the greedy solution. One of the presented results here

is the design of an algorithm that we call Harvester for the case of undirected graphs

with the advantage that it can likewise solve the reverse problem, seed minimization,

that searches the minimal set of nodes that would reach a certain influence barrier. Our

algorithm is based on the sampling of connected components that allows us to compute

the influence score of each node more efficiently than greedy algorithm. We next use

this understanding to reformulate influence maximization problem as a semi-supervised

node ranking problem for which we use node representations obtained by neural network

models including anonymous walk embeddings. We additionally formulate and propose

a solution to another hard combinatorial problem of product recommendation in social

networks that is arguably more plausible in real life than influence maximization, which

we experiment using real social networks. While product recommendation is similar

in its formulation to influence maximization, we show that it is provably harder than

influence maximization as not only its NP-hard problem but also no approximation

within a constant factor is achievable unless P = NP.

1.1.1 Goals and main results

Broadly our main goal was design and analysis of machine learning approaches that are

applied to the problems where graph-structured data is given as input and various loss

functions are required to be optimized. To achieve this goal the following tasks were

considered:

6

• Development and analysis of graph embeddings that preserve isomorphism in an

embedding space for graph classification problem;

• Evaluation of embeddings in several important applications such as a problem of

medical diagnostics and protein function prediction;

• Development and analysis of node embeddings for the combinatorial problem of

influence maximization;

• Theoretical analysis and design of algorithms for the problem of product recom-

mendation in networks.

In this work, we build upon previous results in graph theory, neural network design,

and optimization methods. Our code accompanies this thesis and is open-sourced to be

used as an independent block of node or graph embeddings for other projects. Scientific

novelty obtained in this thesis include:

• To the best of our knowledge, we are the first to propose graph embeddings that

provably have complete invariance property, which as we show play an important

role in many applications.

• Formulated a new problem of product recommendation in graphs, closely related

to influence maximization problem. We prove the hardness results for the problem

and propose a more efficient algorithm that is a strong baseline for this problem.

• We build several models suitable for several applications and achieve state-of-the-

art performance. In particular, we have designed algorithms for graph classifica-

tion, medical diagnostics and user recommendation on graphs.

The theoretical novelty of this thesis includes several proves on the analysis of new graph

embeddings, their invariance, the running time analysis, and approximation bounds.

Given their theoretical guarantees, proposed graph embeddings show state-of-the-art

performance in many tasks beyond those requiring the invariance, which is verified in

the experimental setting. Furthermore, we provide a proof of NP-hardness and inap-

proximability results of product recommendation problems in networks.

The motivation of the approach and correctness of the proposed methods have been

supported by the double-blind reviews of the obtained results in top international con-

ferences; by presentations and seminars at various academic and research venues; by

the experimental studies on the computational tasks such as graph classification and

graph isomorphisms. Results of this thesis have been published in the proceedings of

the international conferences in machine learning and computer science and include:

7

1. Ivanov S, Karras P. Harvester: Influence optimization in symmetric interaction

networks. In2016 IEEE International Conference on Data Science and Advanced

Analytics (DSAA) pp. 61-70. IEEE, 2016.

2. Ivanov S, Theocharidis K, Terrovitis M, and Karras P. ”Content recommendation

for viral social influence.” In Proceedings of the 40th International ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 565-574.

ACM, 2017.

3. Ivanov S, and Burnaev E. ”Anonymous Walk Embeddings.” In International Con-

ference on Machine Learning, pp. 2191-2200, 2018.

4. Sharaev M, Artemov A, Kondrateva E, Ivanov S, Sushchinskaya S, Bernstein A,

Cichocki A, Burnaev E. Learning connectivity patterns via graph kernels for fmri-

based depression diagnostics. In 2018 IEEE International Conference on Data

Mining Workshops (ICDMW) pp. 308-314. IEEE, 2018 .

5. Ivanov S, Durasov N, Burnaev E. Learning node embeddings for influence set

completion. In2018 IEEE International Conference on Data Mining Workshops

(ICDMW) pp. 1034-1037, IEEE, 2018.

1.1.2 Thesis organization

In Chapter 1 we continue with the introduction of the common notation to the graph

theory and introducing important concepts that are later used in the thesis. We also

make a short overview of the graph isomorphism results that include the theoretical com-

plexity of the problem, approaches to solve the problem and particularly hard instances

for graph isomorphism. This overview aims to introduce the reader to the problem for

which many theoretical and practical results exist and can enhance our understanding

of graph representations.

Chapter 2 presents a new graph representation method and discusses several applica-

tions. We start by defining combinatorial and neural embeddings for graphs. Our graph

representation method is based on a graph-structured object, anonymous walks, that

has a theoretical guarantee on graph invariance. We utilize this and propose two types

of embeddings, combinatorial and neural. Our applications include graph classification

and medical diagnostics. In Chapter 3 we take a fresh look at modern combinatorial

problems on graphs. In particular, we formulate a problem of product recommendation

in social networks and prove its complexity. Our algorithm is based on the greedy al-

gorithm but has a few tweaks that make it run an order of magnitude faster. We then

discuss the well-studied problem of influencer recommendation, for which we show that

8

we can adapt graph embeddings to augment existing recommendations with new users

based on our proposed graph embeddings. We conclude the thesis and discuss future

directions in the Chapter 4.

1.2 Graph theory

1.2.1 Definitions and examples

Graphs are a way to represent a specific type of data, namely the data that defines

relationships between the elements of a set. For example, cities connected by trans-

portation routes or atoms linked by chemical bonds can be deemed as graphs. From

this perspective, graphs are just another way to look at data at hand, similar to images,

audio, or text. Then a principal interest in graphs comes from the problems that can be

formulated with and solved by the means of graphs and that indeed has a rich history

called graph theory.

Graph G is a pair (V,E), where V is a set of vertices or nodes and a set E ⊂ V × V
is a set of edges. Hence, each edge is associated with a pair of vertices (i, j) of set V ,

in which case we say that i is adjacent to j and is a neighbor of j. A graph is called

undirected if for any edge (i, j) ∈ E, an edge (j, i) also belongs to E; otherwise, it is

directed graph. Some problems in this thesis are defined specifically for undirected case,

while others are indifferent to the type of graphs, and we will specify the graph type

explicitly for each type of problem.

For undirected graph the set of all neighbors of node v is denoted Nv and the cardinality

of Nv is called degree of v. For directed graph there are two sets for each node v: one

for the nodes to which v is adjacent to (also called out-neighbors), which is denoted

Nout
v , and one for the nodes which are adjacent to v (also called in-neighbors), which is

denoted N in
v . The numbers of in-neighbors dinv and of out-neighbors doutv called in-degree

and out-degree of v. We say that a graph is simple if it does not contain loops, i.e. edges

of type (i, i), and does not contain parallel edges, i.e. each (i, j) ∈ E has a single copy

in a graph. Graphs that have edges between each pair of vertices are called complete.

Additionally, a graph can have human-defined labels on nodes, edges, or global topology.

We call a graph G = (V,E, l) element-labeled if a graph G = (V,E) has a function

l : X 7→ Σ, which assigns a label from an alphabet Σ to each element of set X, which

may include a set of nodes V , edges E, a global graph information. A particular case

of an element-labeled graph is a colored graph when each vertex is colored, i.e. has a

single label that is called a color of a node. Different nodes can have the same color.

9

For algorithms that work with colored graphs only, it is common to give some default

coloring, for example, based on the degree of the vertices. A graph is called weighted,

if there is a function fw : e 7→ R that maps each edge to the associated weight number.

Note that these labels refer to extra information about the graph, for example, the types

of bonds in a molecule or the domain expertise of authors in citation networks, which is

different to the labels that are used to represent one or the other graph (see next section

on graph isomorphism).

1.2.2 Walks, paths, and cycles

A walk is a sequence of vertices (v1, . . . , vl) such that any consecutive pair of vertices

(vi, vi+1) in this sequence is an edge of a graph, i.e. (vi, vi+1) ∈ E for all i = 1, l − 1.

A walk where nodes are not repeated is called a path, and a walk where edges are not

repeated is called a trail. A walk that starts and ends at the same vertex is called a

closed walk or circuit, or cycle.

In an undirected case, if between all pairs of vertices there exists a path that connects

them, then a graph is called connected, and disconnected, otherwise. A disconnected

graph can be viewed as a collection of connected graphs (possibly of one vertex) called

connected components. In the directed case, a graph is called strongly connected if

there is a directed path between each pair of vertices (equivalent to the connectedness

of undirected graph). A graph is called weakly connected if there is a path between each

pair of vertices if edges are assumed to be undirected. A graph G is complementary (or

complement) to G if (u, v) ∈ E(G) if and only if (u, v) /∈ E(G).

A graph is called acyclic there are no cycles for any walk in a graph. It follows that

undirected graphs are not acyclic, while directed graphs with no cycles are called directed

acyclic graphs (DAGs). A graph is called bipartite if every cycle has an even length or

equivalently to partition a vertex set V into two non-overlapping sets V1 and V2 such

that any edge has one endpoint in V1 and another endpoint in V2.

A path that contains each edge of a graph exactly once is called Euler path. If Euler

path starts and ends at the same vertex it is called Euler circuit. A path that visits each

vertex in a graph exactly once is called Hamiltonian path; and if a Hamiltonian path

can be closed to a starting vertex, then it is called a Hamiltonian circuit.

The problems associated with finding paths and circuits that satisfy some criteria are

of great importance both for practical and theoretical reasons, so it is worth discussing

the complexity of some of those that are relevant to this thesis.

10

The shortest/longest path problem asks to find a path of minimum/maximum length in

a graph that connects two nodes s and t. The shortest path problem has many efficient

solutions including classic algorithms of Dijkstra, Bellman-Ford, and Floyd-Warshall.

For an overview of these problems refer to [11]. On the other hand, the longest path

problem has no known polynomial solutions and is NP-complete. Hence, solutions come

in the form of approximation algorithms [12], heuristics, or are suitable only for special

classes of graphs such as directed acyclic graphs. An Euler circuit/path problem asks

to present an Euler circuit/path in a graph or prove that it is not possible to construct

such a path. It is arguably one of the first problems in graph theory solved famously by

Euler. The theorem states that: Euler circuit exists in a connected graph if and only if

each of its vertices has even degree. Euler path exists in a connected graph if and only

if it has exactly zero or two vertices that have odd degree.

Contrary, the Hamiltonian path problem that asks to present a Hamiltonian path or

prove its absence is known to be NP-complete. A few sufficient conditions exist that

guarantees the existence of a Hamiltonian path such as If for any pair of non-adjacent

vertices u and v the sum of their degrees is not less than the number of vertices in a

graph, i.e. deg(u) + deg(v) ≥ |V |, then the graph has Hamiltonian circuit. Note that

the longest path problem and Hamiltonian circuit problem are reducible to each other

given the solution to one of the problems. Another notable example of a combinatorial

problem, Travelling Salesman Problem (TSP), asks to find a circuit of the minimum

length in a complete graph. TSP is known to be NP-complete as it is a special case of

Hamiltonian path problem.

1.2.3 Basic representations

Basic representation of a graph include adjacency matrix and incidence matrix. Adja-

cency matrix A of graph G defines a bijection between vertices v1, v2, . . ., vn and the

corresponding integer set 1, 2, . . ., n. Then a cell Aij = 1 if (vi, vj) ∈ E and 0, otherwise.

Because bijection is arbitrary, there are n! possible adjacency matrices for a graph with

n vertices. Alternatively incidence matrix defines a matrix of order |E| × |V |, with an

element Qev for an edge e and a vertex v given by:

Qev =

1, if v = i.

−1, if v = j.

0, otherwise.

11

The area that studies algebraic properties of adjacency and incidence matrices of a

graph is called algebraic graph theory and has discovered numerous results in graph

theory [13, 14]. For example, χ(G) = det (λI −A) a characteristic polynomial of a

graph G and can be written as:

χ(G) = λn + c1λ
n−1 + . . .+ cn (1.1)

Then:

1. c1 = 0

2. −c2 is the number of edges

3. −c3 is twice the number of triangles

Similarly, the incidence matrix Q can be used to represent Laplacian of the graph, which

is popularly used for eigenvalue decomposition.

L = QQT = ∆−A, (1.2)

where ∆ is a diagonal matrix of degrees of nodes.

1.3 Graph isomorphism

Two popular complexity classes of problems are the class P of polynomial-time solvable

problems and the class NP of problems that can be verified in polynomial-time given

a proposed solution. Class P includes problems of computing all-pairs shortest path,

minimum spanning tree, or maximum flow; while, NP class subsumes P class and exposes

other hard interesting problems, such as computing longest path or Hamiltonian cycle

[15], for which no known polynomial-time solution exists to date. Somewhere in between

the classes class P and NP-hard problems lie the problems of unknown complexities with

the most notable instance of graph isomorphism (GI) problem, for which no theoretical

proof of being in class P has yet been established.

Isomorphism between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a bijective function

φ : V1 7→ V2 such that any edge (u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2. Obviously,

there are pairs of graphs that don’t possess such function φ (e.g. graphs on different

number of vertices) and pairs of graphs for which such function exists (e.g. pair of

12

identical graphs). The question of graphs isomorphism asks whether two graphs G1 and

G2 have isomorphism function φ. The problem has efficient algorithms in P for certain

classes of graphs such as planar or bounded-degree graphs [16, 17], but in the general

case admits only quasi-polynomial algorithm [18].

In practice many GI solvers are based on individualization-refinement paradigm [19],

which identifies a complete graph invariant for each graph, i.e. a function on a graph χG

such that G1
∼= G2 ⇐⇒ χG1 = χG2 . In particular, these solvers compute a canonical

labeling of a graph:

Definition 1.1 (Canonical labeling). A canonical labeling of a graph G is a graph

C(G) such that:

1. G ∼= C(G),

2. C(G′) = C(G) for any isomorphic graphs G and G′.

In other words, a canonical labeling represents the whole group of isomorphic graphs.

Thus, one can think that canonical graph C(G) is defined on vertices S|V | = {1, 2, . . . , |V |}
and that for any isomorphic graph G = (V,E) there exists a function φG : V 7→ S|V |,

which preserves edge connectivity. If an algorithm for canonical labeling is given, one

can easily report if two graphs are isomorphic. In particular, for two graphs G1 and G2

let ψ : φ−1
G1

(i) 7→ φ−1
G2

(i) be a bijection for any i ∈ S|V |. Therefore if edges are preserved

under bijection ψ then it’s an isomorphism, otherwise, graphs are not isomorphic. Im-

portantly, while finding canonical labeling of a graph is at least as hard as solving GI

problem, solvers tackle the majority of pairs of graphs efficiently, only taking exponential

time on the specific hard instances of graphs that possess highly symmetrical structures

[20].

Two graphs G and H are identical if V (G) = V (H) and E(G) = E(H), i.e. the sets

of V and E are equal. However, it is also possible that two graphs have essentially the

same structure (also called topology) but they are either depend on different universe of

elements V1 and V2 or the set of edges E1 and E2 defines relationships between nodes

in different ways. To understand this consider an example in Figure 1.1.

Obviously, two graphs have the same topology; however, nodes are defined using a

different set of elements. For the first graph V1 = {a, b, c, d, e, f} and for the second it

is V1 = {κ1, κ2, κ3, κ4, κ5, κ6}. This situation is prevalent in practice when there is no

explicit labels are given for the vertex set and one has to define the node elements.

13

Figure 1.1: Isomorphic graphs with different node labels.

In the case of simple graphs, isomorphism between two graphs G and H is a bijection

θ : V (G) 7→ V (H) such that adjacency is preserved, i.e. (u, v) ∈ E(G) if and only if

(θ(u), θ(v)) ∈ E(H).

Definition 1.2 (Graph Isomorphism problem ISO). Given two undirected graphs G

and H return an isomorphism function or report that it does not exist.

Graphs for which there exists an isomorphism are called isomorhic and are denoted

G ∼= H. Figure 1.2 presents three graphs, where left and top-right are topologically

isomorphic, while the bottom-right is not isomorphic, despite having the same number

of nodes or edges.

Figure 1.2: Examples of isomorphic and non-isomorphic graphs. Despite having the
same number of nodes and edges, graph on the bottom-right is non-isomorphic.

Automorphism is the second case when two graphs with the same topology are not

identical. In particular, automorphism α of a graph G is an isomorphism of the graph

14

to itself, i.e. (u, v) ∈ E(G) if and only if (α(u), α(v)) ∈ E(G′) and V (G′) = V (G). In

other words, automorphism is an isomorphism between a graph G and another graph G′

with the same vertex set. An automorphism of a graph determines similar vertices in a

graph, for which permutation among themselves does not change the graph. A problem

that is polynomially-equivalent to the problem ISO

Definition 1.3 (Automorphism Count problem ACOUNT). Given an undirected graph,

G find the cardinality of a set of all automorphisms for graph G.

Example in Figure 1.3 shows an original graph and its automorphic graph. Graph for

which all vertices are similar, such as the complete graph, are called vertex-transitive. If

a graph has only identical automorphism then it is called assymetric.

Figure 1.3: Example of automorphism. Graphs are defined on the same node labels
and are isomorphic. Automorphism is defined by permutation (a, e) and (b, d)

Normally, one is interested in the structural properties of a graph, rather than the

labelings that the graph incurs. Therefore, when referring to a graph we will imply an

unlabelled graph that serves as a representative of all isomorphic graphs to the structure

it represents and we say that all properties are the same up to isomorphism of this

graph.

1.3.1 Complexity of graph isomorphism

Graph isomorphism problem is one of the problems for which no known polynomial-

time algorithms exist in the general case but the performance of the best theoretical

algorithms is better than for NP-complete problems [21]. It is clear that if isomorphism

15

function θ is given, then one can test for isomorphism between two graphs in polynomial-

time, but simply checking each of
(
n
2

)
of pairs of vertices on the adjacency, so the problem

is in NP. On the other hand, to find such an isomorphism is a challenge.

A trivial way to find an isomorphism is to enumerate all possible permutations of vertices

as a bijection between two graphs. As there are n! ∼ exp(O(n log n))) permutations this

algorithm is exponential. Then, an algorithm by [22] achieves exp(O(n))) running time

by applying branch and bound method. At the same year, by considering classification

of finite simple groups (CFSG) [23] provided an algorithm of exp(O(
√
n log n))), which

is considered to be the best accepted running time for this problem. Result by [18]

runs in quasi-polynomial time exp(log nO(1))) by also considering CFSG and tackling

barrier configurations of the previous algorithm; yet, the review of the algorithm is still

in progress.

When the structure of the graph is restricted in some way, then it is possible to derive

a polynomial-time solution.

Special classes of graphs such as of bounded degree [17], bounded color size [24], bounded

genus [25], and planar graphs [16] are solved in polynomial time, while for random graphs

is tested in expected polynomial time [26].

A class of graphs κ is a collection of graphs that is closed under isomorphism, i.e. ifG ∈ κ
and G′ ∼= G, then G′ ∈ κ. It is known that some classes of graphs are equivalent for graph

isomorphism problem for undirected graphs ISO. We say that a problem P1 is reduced

to a problem P2, P1 ∝ P2, if from the polynomial-time algorithm for the problem P2,

P2 ∈ P, we can use the algorithm to show that P1 is also polynomial-solvable, P1 ∈ P.

Two problems are called equivalent, P1 ≈ P2, if P1 ∝ P2 and P2 ∝ P1. A class κ is

Graph Isomorphic complete (GI-complete), if the problem of solving graph isomorphism

for class κ is equivalent to solving graph isomorphism for class of all undirected graphs

ISO.

Many classes are known to be GI-complete [21] and we show one such reduction as an

example.

Theorem 1.4. Classes of connected graphs and bipartite graphs are GI-complete.

Proof. As reduction from a particular class of graphs ISOκ to a class of all graphs is

always valid, the only remaining part is to show that the problem ISO is reduced to

ISOκ.

To show that any undirected graph G can be solved by an algorithm for the class of

connected graphs ISOCon, consider a graph G′:

16

G’=

G, if G is connected.

G, otherwise.

The graph G′ belongs to the class of connected graphs and hence has a solution to

ISOCon. Note that knowing isomorphism for a complementary graph can be used to

check isomorphism of the original graph as isomorphism is determined on the same

vertex set V . Therefore ISOCon ∼= ISO.

To show that any undirected graph G can be solved by an algorithm for the class of

bipartite graphs ISOBip, consider a graph G′ for which the vertex and edge sets are

defined as follows:

V(G’) = V(G’) ∪W ∪ {w},

E(G’) = {(w, x): x ∈W} ∪ {(wuv, u), (wuv, v) : u, v ∈ V (G), (u, v) ∈ E(G)}.

That is for every edge (u, v) in graph G we create a new vertex wuv ∈ W and connect

it to u and v and remove the original edge (u, v). Also we add additional vertex w that

is connected to all vertices in W .

Now considering degree of a vertex u in a new graph G′:

dG′(u) =

|E(G)|, if u = w,

3, if u ∈W,

dG(u), otherwise.

(1.3)

17

We can consider the case when G′ is connected bipartite graph as previously it was

shown that isomorphism problem of disconnected graphs is equivalent to the isomor-

phism problem of connected graphs.

Let γ : ISOBip be an isomorphism for a bipartite graph G. Then it should preserve

degrees of that graph, i.e. dG′(u) = dG′(γ(u)). Note that all vertices are one of the three

types according to the equation (1.3.1). We can assume that |E(G)| > dG(u) (because

otherwise the graph G is a tree and hence a bipartite graph). Then the vertex w in

graph G′ is mapped to itself under isomorphism γ (because it is the only vertex of such

degree). Then all of its neighbors u ∈ W must be mapped to the vertices of the same

set, i.e. if u ∈ W , then γ(u) ∈ W . Hence all vertices in u ∈ V (G) are also mapped to

the same vertex set γ(u) ∈ V (G). As γ is an isomorphism then all edges between V (G)

and W should be preserved under γ. As a pair (u, v) ∈ E(G) if an only if there is a

vertex k ∈ W such that (u, k) ∈ E(G′) and (v, k) ∈ E(G′), then an isomorphism of all

undirected graphs can be solved by using an isomorphism for bipartite graphs on the

graph G′.

There are other graph families such as directed, regular, directed acyclic graphs and

many other types of graphs that can be solved efficiently for graph isomorphism problem.

[27] presents some of the proves for such families.

1.3.2 Practical graph isomorphism

While from a theoretical standpoint of view the GI problem is interesting, in practice

many algorithms exist that solve the problem efficiently for reasonable sizes of graphs

(up to 10000 nodes). However, there are still instances of highly-regular graphs for

which these solvers take exponential time and the question of scaling solvers to larger

graphs is open. In what follows we present a famous Weisfeiler-Lehman algorithm that

is commonly used in practice as part of the color refinement block in the solvers, but

that still fails for regular graphs, for example, 1.

Next, we describe the main ideas of Brendan McKay’s algorithm that was one of the first

successful attempts to solve GI in practice and that largely influenced its descendants.

1We provide a history behind the algorithm and its authors in the Appendix A

18

In the end, I briefly describe works that are related to finding hard instances for the

solvers used in practice.

Weisfeiler-Lehman (WL) algorithm is one of the first practical algorithms for graph

isomorphism problem and has been recently applied in machine learning community to

the problem of molecule classification with graph kernels [28] and neural networks[29].

The algorithm has been extensively studied theoretically, drawing a relationship with

logic [30] and showing there are always graphs for which the algorithm fails [20].

We first describe a 1-dimensional version of the WL algorithm. Given a colored graph

G = (V,E,C), the algorithm proceeds iteratively such that in every new iteration a new

coloring is established. In the case of unlabeled graphs, one can assume uniform coloring

for all nodes. At each iteration i, we first apply some arbitrary ordering for the node

colors C = (c1, c2, . . . ck). The coloring of a node v is a tuple at the iteration i:

ci(v) = (ci−1(v), |{w, |w ∈ Nv and ci−1(w) = c1}|,
|{w, |w ∈ Nv and ci−1(w) = c2}|,
. . . ,

|{w, |w ∈ Nv and ci−1(w) = ck}|)

That is each node gets a new color that consists of its color on the previous iteration,

and the sizes of colors of each type for the neighborhood Nv such that the ordering of

colors at each iteration is predetermined and the same for all nodes in the graph. This

procedure of getting new colors from the old ones is called a naive vertex refinement

or 1-dimensional Weisfeiler-Lehman refinement. Note that an initial color from any

vertex to any other vertex will propagate at most in |V | iterations, and in fact after

at most O(|V |) the colors of nodes will stabilize in the sense that colorings Ci and

Ci−1 are the same up to permutation of colors. The running time of this algorithm is

O((|V | + |E|) log(|V |)) [31, 32] and the results by [33] shows that graph isomorphism

can be tested in liner average time for most graphs, which makes WL algorithm to be

very good first candidate for the practical graph isomorphism.

Intuitively, 1-dim. WL algorithm updates each vertex based on the colors of its neighbors

and two vertices will have the same color after one color refinement if and only if they

have the same colors in the neighborhoods. A k-dimensional variant of WL is based on

19

the tuples of size k of vertices, instead of the neighborhoods. Let G be a graph and

k ≥ 2. In each iteration, the algorithm will compute a set of colors Cki : V k(G) 7→ C,

where C is a set of colors at this iteration. In the first iteration, we give two tuples

t1 and t2 of vertices (not necessarily the same) of size k the same color if the induced

subgraphs of the vertices in the tuples t1 and t2 are isomorphic. Note that the nodes in

the tuple are considered to be ordered. Let also r(t, w, i) be a tuple of the same size as

t with the i-th vertex in t replace by a node w ∈ V . Then a new color is obtained for

the tuple t as follows:

Ck
i (t) = (Cki−1(v), {Cki−1(r(t, w, 1)),

Cki−1(r(t, w, 2)),

. . . ,

Cki−1(r(t, w, k)), |w ∈ V })

In k-dim. WL algorithm in every iteration every tuple of vertices t = (v1, . . . vk) is given

a new color according to its previous color and the colors of tuples, when one vertex of t

is replaced with any other vertex in V . It is a generalization of 1-dim. WL, where a tuple

is a single vertex and similarly it stabilizes after O(nk) rounds. Note that isomorphic

graphs will get the same stable colorings and therefore the algorithm can be used for

ISO testing.

A brute force approach fora single iteration takes O(knk+1) time and the overall k-dim.

WL algorithm can be computed in O(k2nk+1 log n) [30]. It has been noticed that k-

dim. WL for sufficiently large k subsumes many other combinatorial algorithms in their

ability to recognize some statistics on graphs, for example, number of cycles [34].

Despite lacking a polynomial-time algorithm, there exists a few software tools that can

solve graph isomorphism for all graphs very efficiently. To name a few the solvers are

nauty/traces [35], bliss [36], conauto[37], saucy[38]. These state-of-the-art solutions

are fast and can solve an abundance of graph pair instances within seconds and even

hard graphs with thousands of vertices take hours to resolve. The underlying idea of

these methods is in the individualization-refinement paradigm that is described below,

while the difference is in how exactly the search tree traversal is performed and how

automorphism of different tree nodes is detected.

20

In the WL algorithm, we already used a refinement routine that updates the colors of

the nodes according to the colors of the neighbors (in the case of 1-dim. refinement).

This part remains the same for the solvers. What is added is the second part called

individualization. In individualization we have a graph G = (V,E, c) and a vertex v and

we get a new graph Gv = (V,E, c′), where c′ = c for all vertices but v, for which it gets

a new color cv /∈ c. Thus a single vertex gets a new color.

Then an algorithm repeats in iteration, by first applying refinement and then individu-

alization procedures, until each vertex has its own separate color. In the first iteration

a naively refined vertex set is given and one target cell, i.e. a class of the same color, is

selected and individualized for each vertex of the cell, creating children of the first refine-

ment. Then, refinement-individualization is applied again until all nodes have their own

classes for all individualized partitions. In the end, there will be many possible discrete

partitions and one is selected according to a predetermined rule (e.g. lexicographical

order of the paths to the leaves) to be a representative of the whole graph. Then two

graphs are isomorphic if and only if their representatives are the same. This can already

be used as a test for the isomorphism but it would take exponential running time for

graphs that have many vertices in the same partition such as a complete graph. So in

addition to refinement-individualization, the solvers also employ special techniques to

reduce the running time. In particular, some tree nodes in the search space are equiv-

alent and hence it is not necessary to individualize them all but rather do it only once.

Also if some paths are already not ”promising” compared to the predetermined order,

then these paths can be discarded as well. A more in-depth explanation can be found

for example in [3, 35, 39, 40].

Alongside development of advanced theory of solving graph isomorphism, there is an

attempt to counteract proposed algorithms by new constructions of the graphs for which

the running time becomes exponential in the number of vertices. [20] presented a family

of graphs such that for any k the k-dim. WL algorithm cannot distinguish the graphs,

even for the graphs of small degree. Their construction is based on Fürer gadgets

that replace each vertex with a new subgraph and each edge (v, u) ∈ E, gadgets are

connected by a pair of parallel edges. The main idea is to start with a 3-regular graph

for which two new non-isomorphic graphs G1 and G2 are made, not distinguishable by

Weisfeiler-Lehman algorithm. Fürer gadget is defined as follows:

• For each edge in the original graph G, (s, t) ∈ E, we create four distinct vertices

as,t, at,s, bs,t, bt,s;

21

• For each vertex v ∈ V , we create a vertex cv,S for each odd-cardinality subset

S ⊂ Nv. So in the example of 3-regular graph, each vertex v has three neighbors

x, y, z and we create four additional vertices cv,{x}, cv,{y}, cv,{z}, cv,{x,y,z};

• We also add two edges, one between as,t and at,s, and one between bs,t and bt,s;

• We add edges (as,t, cs,S) for each S such that t ∈ S;

• We add edges (bs,t, cs,S) for each S such that t /∈ S.

As G is undirected, we add Fürer construction twice for every edge. The resulted graph

G|| is a combination of Fürer gadgets by parallel edges.

Then, let Gs,t be the graph made from G|| by deleting the edges (as,t, at,s) and (bs,t,

bt,s) and adding two cross edges (as,t, bt,s) and (bs,t, at,s). A key observation is that

for any pair of edges (s1, t1) and (s2, t2) graphs obtained by adding the cross edges are

isomorphic.

Lemma 1.5. For any edges (s1, t1), (s2, t2) ∈ E, the graphs Gs1,t1 and Gs2,t2 are iso-

morphic.

Proof. You can move the cross edge around the graph in the following sense. For any

pair of edges (i, j), (j, k) ∈ E, there’s an isomorphism of G(i,j) that exchanges a(j,i) and

b(j,i) and exchanges a(j,k) and b(j,k). This isomorphism is a permutation of the vertices

c(j,S), and it fixes every other vertex in G(i,j). If you draw the fragment of the graph

corresponding to vertex j and its incident edges, the isomorphism should be pretty

obvious.

This means that G(i,j) ' G(j,k), because the isomorphism ”uncrosses” the edge (i, j)

and ”crosses” the edge (j, k). Since G is connected, it contains a path whose first edge

is (u, v) and whose last edge is (x, y), and we can use the isomorphisms corresponding

to each adjacent pair of edges in this path to move the cross in G(u,v) to (x, y).

From Lemma 1.5 it follows that we can take any edge (s, t) and denote G× = Gs,t. It is

easy to see that graphs G|| and G× are non-isomorphic as the first does not have cross

edges and the second has it. Intuitively these two graphs are very similar to each other

with a single twist introduced for a pair of edges, which in the case of graphs with big

separators make it is hard to distinguish by the algorithm. In their seminal work Cai,

Fürer , and Immerman [20] showed that d-dimensional Weisfeiler-Lehman algorithm can

be expressed in so-called fixed-point logic with counting and that any formula that uses

22

k distinct variables cannot distinguish G|| and G×, where G has no separator of size

less than 2k. As there is a direct relationship between WL algorithm and the formula

in the first-order logic, for any d-dimensional Weisfeiler-Lehman algorithm there is a

graph G with separator of size less than about 2k such that the algorithm cannot tell

the difference between G|| and G×.

Later Miyazaki [41] used the same construction to design a family of graphs to a by-then

state-of-the-art algorithm nauty [39]. To design the family of graphs, he takes 3-regular

graphs of the form of a path, with self-loops at the endpoints and double edges between

each even pair of points inside the path and applies Fürer gadgets to it. The resulted

graph is a simple graph and with certain coloring, he shows that nauty takes exponential

time on this family of graphs.

More recently a new upgrade to the nauty solver has been made and the resulted al-

gorithm is called Traces[35]. It is improved over nauty by the fact that it detects au-

tomorphisms while refining the vertices and it significantly reduces the search space.

This means that the running time is divided by the size of the automorphism group of

the graph and Miyazaki graphs are indeed not as difficult as for nauty. Again for this

new solver, a new family of graphs has been proposed that is challenging and requires

exponential running time. In particular, [42] present graphs that do not have non-trivial

automorphism and have linear Weisfeiler-Lehman dimension, which leads to exponential

lower bound on the search tree size under any target cell selection strategy.

As of the beginning of 2019, the current state-of-the-art in hard instances for ISO prob-

lem are the graphs due to [43]. Their construction also relies on the adaptation of Fürer

gadgets and graphs with no non-trivial automorphisms. To preserve the graphs as small

as possible some techniques preserve vertices without changing the local automorphism

structure of the gadgets. The resulted graphs are of bounded degree and therefore can

be solved in polynomial-time theoretically [17]; however, they pose the challenges to

current individualization-refinement algorithms. Additionally, similar construction can

be used to prove theoretically an exponential lower bound for such algorithms [44].

Chapter 2

Anonymous Walk Embeddings

2.1 Motivation

Combinatorial optimization problems are widely used in real-world applications spanning

many different industries, including but not limited to energy, medicine, finance, commu-

nication, and transportation. In this thesis, we will discuss some of such problems (e.g.

graph isomorphism) which are known to be problems for which no known-polynomial

time algorithm exists. Yet, these problems appear ubiquitous in different applications

and therefore are of paramount importance to researchers. Besides such problems have

been a driver for novel ideas in different areas of mathematics and natural sciences (e.g.

development of group theory [14]).

Machine Learning (ML), on the other hand, deals with the tasks with the presence of real

data, that often comes with noise and in a limited amount. One can say that ML is a new

epoch for statistical studies that has centuries of years of development, featuring already

classical results such as Bayes rule and Monte-Carlo methods [45]. ML has gained a lot

of traction recently due to the two factors, which reinforce each other: accumulated

data sources and increased computational capabilities. Indeed, nowadays the data come

from different places with ease for a computer to perform computational operations on

these data such as when processing our photos and videos, text that we write online,

music that we listen to. Such data don’t have a known true distribution and therefore

does not bear exact mathematical formulation for which combinatorial algorithms can

be applied. Rather data have patterns and it is our goal to discover such patterns in

the presence of noise and scarcity of data. A sub-field of ML called Deep Learning

(DL) recently has beaten other ML algorithms such as Random Forests and Logistic

Regression in many domains such as Computer Vision and Natural Language Processing,

while understanding of its success is still very limited and it is largely attributed to the

23

24

massive number of parameters (often in the scale of billions of parameters per model)

and clever prior (e.g. convolutional masks) and regularization (e.g batch normalization)

techniques [45] that experimentally have shown increased performance of the models.

It already can be noted that combinatorial optimization and machine learning are closely

related, overlapping and complementing in different settings. It has been a recent trend

to apply machine learning models to make decisions in highly structured, discrete set-

tings of combinatorial problems. For example, taking a known Branch-and-Bound op-

timization algorithm for Mixed-Integer Linear Programs [46], one selects a variable on

which to branch at any given step. The algorithm guarantees to converge to the optimal

solution, but the number of variables to branch on and hence the running time of the

algorithm highly depends on the choice at each step. ML can help in this setting to

make an efficient selection at each step that would minimize the number of branches.

This one example illustrates that many of the existing combinatorial problems can be

facilitated by an ML model trained on the many instances of the problem that could

be generated easily. In another example, ML can learn a solution to a combinatorial

problem from scratch without the use of any expert combinatorial algorithm. For in-

stance, if we are seeking the longest path in a graph (NP-hard problem), we may start

exploring the neighbors randomly, to the point when we do not satisfy the conditions of

the problem anymore (no available neighbors) at which point we get a reward for the

selections that we have made. If we parametrize our selection policy, we can update the

weights according to the reward function, an approach known as policy gradient in Rein-

forcement Learning (RL) [47]. And yet, in a reverse manner, combinatorial optimization

can be helpful for machine learning to decompose a problem into smaller subparts or by

detecting sub-patterns that are later used by an ML method. In this thesis, we highlight

this relationship between combinatorial optimization and machine learning in the case

of problems formulated on graphs.

In its turn graphs share many similarities with images and text (e.g. its discrete nature)

and one could hope to carry over successful techniques from these domains to graph

theory. Indeed, a standard definition of a graph requires specifying the relationship

between discrete objects, nodes, which is not too far from the image representation,

where one can see nodes as pixels positioned in a specific order in an image and connected

to the neighbors. Likewise, words that appear in a text can be seen as nodes having a

relationship between each other if they are located with a context window in a text. An

early attempt of applying deep learning to graphs derived from Convolutional Neural

Networks (CNN) in computer vision [45], which extracts multi-scale localized spatial

features to construct representations of the graph. Figure 2.1 shows challenges of using

CNN directly on graphs. An image of a cat shows that each pixel has the same number of

neighbors and therefore we can apply the same filter matrix to each of the pixels. On the

25

Figure 2.1: Comparison of application of CNN in Computer Vision and Graph Theory
domains. On the left, the image that can be represented by a grid which are amenable
to convolutional mask. Alternatively, CNN can operate on graphs if we define a unique

weight matrix for all possible neighborhoods of each node.

other hand, nodes in a graph have a different number of neighbors and applying CNN to

graph neighborhoods require some tricks. In particular, modern CNN learns the function

over aggregated neighbors, rather than applying a weight transformation for each pixel

directly. From this example, it is clear that there are two prerequisites to apply neural

networks successfully on graphs. First is to define an aggregation function over nodes so

that each node has exactly one local neighbor, i.e. aggregated form of its neighbors, to

which a filter mask can be applied. Second is a transformation from categorical discrete

objects, nodes, to continuous space on which deep learning models can operate. This

second prerequisite is a known area of research called Representation Learning which

concerns with the representation of objects in a vector space a.k.a. embedding space. In

this thesis, we aim to develop models of machine learning to combinatorial optimization

on graphs, a new, promising direction in graph theory research.

To summarize our motivation:

1. Combinatorial optimization problems on graphs have a long list of applications in

the real world and therefore important to be solved quickly and efficiently;

2. Machine Learning operates on the settings, where a task is defined over available

data and requires to find patterns in these data;

3. Combinatorial optimization and machine learning on graphs share many similari-

ties and each area can benefit from another;

4. Machine learning has been successful in many domains such as image and text

processing;

5. Machine learning has not been widely used in graph settings, where irregular data

present challenges of a straightforward application of known deep learning methods

to graphs;

26

6. Machine learning can be applied successfully to graphs if we determine a continuous

representation of a graph.

2.2 Our approach

As discussed before a successful application of deep learning on graphs requires two

steps, determining vector representation of the input data and designing machine learn-

ing models that operate on these vectors. In this chapter, we are concerned with the

representation of the graphs, while we discuss the second in the applications of these

embeddings and in the following sections.

An ease of representing data with graphs makes them very valuable asset in any data

mining toolbox; however, the complexity of working with graphs led researchers to seek

for new ways of representing and analyzing graphs, of which network embeddings have

become broadly popular due to their success in several machine learning areas such as

graph classification [48], visualization [49], and pattern recognition [50]. Essentially,

network embeddings are vector representations of graphs that capture local and global

traits and, as a consequence, are more suitable for standard machine learning techniques

such as SVM that works on numerical vectors rather than graph structures. In the

example of graph classification, one existing approach that has been applied successfully

is based on kernel methods. Informally, a kernel is a function of two objects that

quantifies their similarity and mathematically corresponds to the inner product of latent

representations of the two objects in a Reproducing Kernel Hilbert Space (RKHS) [51]:

f(G1, G2) : G×G 7→ R (2.1)

Therefore once embeddings are obtained, one can construct a kernel matrix, where

entries are kernel values applied to embeddings and then use it as a feature set for

classification algorithms such as SVM. An important reason why kernels have become

popular in machine learning community is that although latent representations could

be high- or even infinite-dimensional the inner product can be calculated efficiently

without performing any operations in RKHS. Ideally, a practitioner would like to have

a polynomial -time algorithm that can convert different graphs into different feature

vectors. However, such an algorithm would be capable of deciding whether two graphs

are isomorphic [52], for which currently only quasipolynomial-time algorithm exists [53].

Hence, there are fundamental challenges in the design of the polynomial-time algorithm

for network-to-vector conversion. Instead, a lot of research was devoted to the question

27

Network	Embeddings

Combinatorial

WL, Graphlet,
Random Walk, etc.

Neural

Deep GK, PSCN,
Graph2Vec, etc.

Figure 2.2: High-level overview of network embeddings. Combinatorial embeddings
are obtained by computation of the combinatorial object in a graph. Neural embeddings
are obtained by training a neural network that optimizes a function defined over the

graph.

of designing network embedding models that are computationally efficient and preserve

similarity between graphs.

Broadly speaking1, network embeddings come from one of the two buckets, either based

on the combinations of the statistics in a graph or that are optimized in a neural network.

We call the first one combinatorial embeddings and the second neural embeddings.

Combinatorial embeddings traditionally appeared in graph kernel setting [54], where

each graph is decomposed into discrete components, distribution of which is used as a

vector representation of a graph [55]. Importantly, the general concept of combinatorial

methods implies ad-hoc knowledge about the data at hand. For example, Random Walk

kernel [54] assumes that graph realization originates from the types of random walks

a graph has, whereas for Weisfeiler-Lehman (WL) kernel [8] the insight is in subtree

patterns of a graph. For high-dimensional graph embeddings, combinatorial methods

produce a sparse solution as only few substructures are common across graphs. This

is known as diagonal dominance [56], a situation when a graph representation is only

similar to itself, but not to any other graph.

On the other hand, a neural approach learns network embeddings by optimizing some

form of objective function defined on graph data. Deep Graph Kernels (DGK) [56],

for example, learns a positive semidefinite matrix that weights the relationship between

1Extensive overview of network embeddings is discussed in 2.3

28

graph substructures, while Patchy-San (PSCN) [57] constructs locally connected neigh-

borhoods for training a convolutional neural network on. Neural approach implies learn-

ing distributed graph representations that have demonstrated promising classification

results [57, 58].

Our approach. To this end, it must be clear that in graph classification settings no free

lunch theorem still holds and there is no reason to believe that any set of embeddings is

universally better than any other set of embeddings, i.e. performance averaged over all

possible data-generating distributions is the same of any embeddings. However, at least

we are interested in the case of data-generating processes that assign the same labels to

topologically same graphs, in which case our embeddings should be the same for isomor-

phic graphs. This leads to the idea that vectors that can recover isomorphism of two

graphs are powerful enough to work well in many practical applications, of which graph

classification is a prominent example. We propose to use a natural graph object named

anonymous walk as a base for learning combinatorial and neural network embeddings.

Recent discovery [59] has shown that anonymous walks provide characteristic graph

traits and are capable to reconstruct network proximity of a node exactly. In particular,

distribution of anonymous walks starting at node u is sufficient for reconstruction of a

subgraph induced by all vertices within a fixed distance from u; and such distribution

uniquely determines underlying Markov processes from u, i.e. no two different sub-

graphs exist having the same distribution of anonymous walks. This implies that two

graphs with similar distributions of anonymous walks should be topologically similar.

We, therefore, define combinatorial network embeddings on the distribution of anony-

mous walks and show an efficient sampling approach that approximates distributions for

large networks.

To overcome sparsity of combinatorial methods, we design a neural approach that learns

distributed representations on the generated corpus of anonymous walks via backprop-

agation, in the same vein as neural models in NLP [60, 61]. Considering anonymous

walks for the same source node as co-occurring words in the sentence and graph as a

collection of such sentences, the hope is that by predicting a target word in a given

context of words and a document, the proposed algorithm learns the semantic meaning

of words and a document.

The following applications when anonymous walk embeddings can be preferable to other

existing network embeddings:

1. Unsupervised learning. Unlike other solutions that require labels during train-

ing, anonymous walk embeddings are learned in an unsupervised manner and thus

network representations can be utilized in various ML tasks.

29

2. Substructure embeddings. While there are numerous approaches exist to learn

embeddings of graph structures such as nodes [62] or subgraphs [63], we note that

anonymous walks provide a unified corpus that serves to learn embeddings of

nodes, subgraphs, and entire graphs at the same time.

3. Complex graph structure. Unlike approaches that are based on simple sub-

structures such as random walks or shortest paths, our embeddings are based on

a topologically-preserving graph object, anonymous walk. It has been shown that

such substructures achieve higher classification results than linear kernels [8].

In the context of learning network representations we highlight the following contribu-

tions:

• Based on the notion of an anonymous walk that recovers graph structure exactly,

we propose combinatorial network embeddings, for which we describe a sampling

procedure to alleviate the time complexity of exact computation.

• By maximizing the likelihood of preserving network proximity of anonymous walks,

we propose a scalable algorithm to learn neural network embeddings.

• On widely-used real datasets, we demonstrate that our network embeddings achieve

state-of-the-art performance in comparison with other graph kernels and neural

networks in graph classification task.

To summarize our approach:

1. Combinatorial embeddings decompose a graph into a set of combinatorial objects,

which later are used to aggregate into a single vector,

2. Neural embeddings are obtained by training a neural network that optimizes a

function over a given graph,

3. Both approaches have been successful in graph classification settings, with neural

approaches taking an ever-increasing presence among embedding methods,

4. Combinatorial embeddings are efficient on its own right while becoming more and

more present as a part in neural embedding approaches,

5. We motivate the use of anonymous walks as the main brick for our embeddings,

motivated by a recent theorem that assures graph recovery property for anonymous

walks,

30

6. We study the properties of the anonymous walks, its strong and weak properties,

and propose approximations to overcome computational challenges,

7. Finally, we propose and compare experimentally combinatorial and neural embed-

dings based on anonymous walks.

2.3 Review of combinatorial and neural embeddings

Before we propose a new set of embeddings we discuss existing types of embeddings in

detail. We start by formalizing graph embeddings (a.k.a. network embeddings or graph

vector representations)2.

Definition 2.1 (Graph embedding). Let function φ be a function such that for any

graph G it maps to a vector in d-dimensional space

φ : G 7→ Rd. (2.2)

Then φ(G) is called graph embedding.

Graph embeddings are useful on their own, without any application to downstream

tasks. For example, if a function φ gives a bijection between graphs and vectors, then

embeddings of the graph can be used alternatively as a data storage format for graphs

instead of a traditional way of storing it as adjacency matrix. However, more often, em-

beddings are fed into more complex machine learning algorithms that solve a particular

problem. Hence, we define a more general definition of graph representation problem.

Definition 2.2 (Graph Representation Problem). Let {Gi}Ni=1 be a set of graphs

in a dataset, P be a downstream problem on {Gi}Ni=1, and m be a performance metric

for algorithm A in a problem P. Then problem of graph representation is to define a

function

φ : G 7→ Rd, (2.3)

such that an algorithm A that takes as input d-dimensional vector φ(G) and outputs a

solution to the problem P, maximizes performance metric m.

In particular we will be interested in a graph classification problem P with accuracy as

a performance metric.

2Historically, graph embeddings were popularized after node and edge embeddings and unfortunately,
graph embeddings are often used to denote the embeddings for nodes or edges. The proper way to denote
vectors for nodes would be node embeddings.

31

Definition 2.3 (Graph Classification Problem). Let Train = {(Gi, yi)}Ntrain
i=1 and

Test = {(Gi, yi)}Ntest
i=1 be train and test graph datasets, where Gi is a graph and yi ∈ Y

is a label of a graph. Graph classification problem asks to train a function

f : Gi 7→ Y〉, (2.4)

that takes as input a graph G and outputs a label of that graph such that the accuracy

on unseen graphs in a test set is maximized:

max
Test

1

Ntest
Jf(Gi) = yiK. (2.5)

One approach to solving the classification problem is based on graph matching, i.e. find-

ing an optimal correspondence between vertices of the two graphs that would preserve

the adjacency between nodes. Once such matching is found one can proceed with the

application of kernel-based methods that takes similarity between two graphs as an in-

put. While totally legit, this approach is computationally expensive and often requires

a solution to NP-complete problems as intermediate steps [64].

Somewhat similar to graph matching, graph kernels also deal with pairs of graphs but

instead, they measure the similarity between graphs based not on the node matchings

but on the topologies of the graphs and ensuing combinatorial statistics over the graphs.

Graph kernels stem out from the kernel function defined next:

Definition 2.4 (Graph Kernel). Let {Gi}Ni=1 be a set of graphs. We define a graph

kernel function K : Gi ×Gj 7→ R to be a function that has two properties:

1. Symmetric: K(Gi, Gj) = K(Gj , Gi),

2. Positive-Semidefinite:
N∑
i=1

N∑
j=1

cicjK(Gi, Gj) ≥ 0, for any ci ∈ R.

Kernel functions have been known in mathematics for very long time due to important

result by Mercer [65], which states that for any kernel function K defined over non-empty

space X there exists a Hilbert space known as Reproducing Kernel Hilbert Space (RKHS)

such that there exists an embedding function φ : X 7→ H for which kernel function is

equivalent to inner product of the embeddings in that space: K(Xi,Xj) = φ(Xi) · φ(Xj).
What is interesting is that the kernel function does not need to define an embedding

function φ to get an inner product value. Moreover, there are known kernel functions

for which a corresponding RKHS is infinitely-dimensional (for example Gaussian kernel)

and hence embeddings are infinitely-dimensionally too [66]. This property can become

handy in machine learning problems where the data are often non-linearly separable and

32

increasing dimensionality of the data may be a quick win for different classifiers such

as SVM [67]. Note however that except for very few approaches (for example, Random

Walk Graph Kernel [54, 68]) majority of graph kernels first compute graph embeddings

explicitly using combinatorial methods discussed next and then use these embeddings

with kernel SVM to train and classify graphs.

The developments in graph kernels led researchers to seek new ways to obtain embed-

dings that can show state-of-the-art results in graph classification. This, in turn, opened

a new era of graph embeddings that spotlights some of the beautiful results in the in-

tersection of machine learning and graph theory. We discuss these ideas next.

2.3.1 Combinatorial graph embeddings

Combinatorial embeddings are a rich family of methods, each of which is associated

with some combinatorial objects such as random walk or shortest path that decomposes

a graph into a collection of such objects. One of the constraints on the combinatorial

objects is that the resulted graph embedding will be graph invariant:

Definition 2.5 (Graph invariant). If for any isomorphic graphs G1 and G2 the em-

beddings are equivalent, i.e. φ(G1) and φ(G2), then embedding function φ is called graph

invariant.

This definition requires a definition of isomorphism between two graphs; however, we

postpone this definition until later, keeping in mind that isomorphic graphs are those

with exactly the same topology. We denote isomorphism between two graphs as G1
∼=

G2. In this case, for graph invariant it is valid:

G1
∼= G2 =⇒ φ(G1) = φ(G2), (2.6)

for any two graphs G1 and G2.

One example of graph invariant is the number of vertices of a graph. While its obviously

a graph invariant, its not a particularly useful graph invariant for graph classification,

because there are 2n graph with n vertices, and the number of vertices gives little

information about the class of the graph in most datasets.

A more useful example of graph invariant is a sorted degree sequence. In particular,

let {Gi}Ni=1 be a dataset with N and d be a maximum degree among all nodes in all

graphs in this dataset. Then for any graph G let vG ∈ Rd be an embedding of graph G

such that the position i is occupied by a count of the nodes with degree equals i. This

33

drastically reduces the number of possibilities for graphs with an embedding v. Figure

2.3 illustrates two different regular graphs that obviously have the same embedding v.

Figure 2.3: Example of two non-isomorphic graphs that have the same degree-based
embedding v = [0, 0, 6]. The graph on the left has two triangles, while the right one
does not have any triangles. Each cell in the embedding indicates the number of nodes
with the corresponding degree. Graphs are 3-regular, hence only one value is non-zero.

An example of a function φ that is not graph invariant is the following. Let AG be an

adjacency matrix of graph G. Let v be a vectors composed of rows in AG such that the

first entries are occupied by the first row of AG, the second by the second row, and so

on. It is easy to see that the resulted vector is not a graph invariant in the general case.

Indeed, let’s take a graph where there are two nodes with a different degree. For the

first case, AG1 will put a larger degree node to the first node, while for the second case

AG2 the smaller degree node will be the first node. Since there are different number of

ones in rows for these two nodes, it’s clear that the first entries of vG1 are different from

the first entries of vG2 and hence the embeddings are not the same.

Note that there are different graphs for which we have the same graph invariant in

general, in other words G1 � G2 and φ(G1) = φ(G2). The case for which equality of

embeddings implies isomorphism of the graph is defined by complete graph invariant.

Definition 2.6 (Complete graph invariant). If for any pair of graphs G1 and G2

holds equation:

φ(G1) = φ(G2) ⇐⇒ G1
∼= G2

then a function φ : G 7→ Rd is called complete graph invariant.

Note that finding a complete graph invariant solves a problem of graph isomorphism if

the dimension d is relatively small compared to the size of the graphs. There are very few

34

known complete graph isomorphism known. A prominent example is a canonical form

by graph isomorphism solvers such as Nauty [69–71]. In this thesis, we provide another

complete graph invariant based on the new combinatorial object called anonymous walk.

Now, after we defined graph invariant we describe some of the proposed combinatorial

embeddings based on them. Informally one can see the history of graph embeddings

evolving from topological descriptors to graph kernels to neural networks.

The first combinatorial embeddings appeared in the domain of bio- and chemoinformat-

ics, where the molecules are represented as a graph. A few of the so-called topological

descriptors, which often is just a number that represents the whole graph, have been

proposed to solve similarity tasks such as nearest neighbor search to the graph query.

Wiener index [72, 73] is one of such topological descriptors, which equals to the sum of

the shortest paths between all pairs in a graph:

W (G) =
∑

vi,vj∈V
Dij , (2.7)

where Dij is the shortest path between vertex vi and vj . Another example is Hosoya

index [74], which is defined as the number of ways to select edges such that none of the

selected is overlapping with other selected edges:

Z(G) =

M∑
k=0

a(G, k), (2.8)

where a(G, k) is the number of ways to select k non-adjacent edges in a graph and M is

the number of edges in the graph. There are hundreds of proposed topological descrip-

tors, which were shown to correlate with one property or another of the molecules. For

an extensive overview of such descriptors, refer to the book [75]. One can see topological

descriptors as first decomposing a graph into combinatorial objects and then aggregating

these objects into a single value. While topological descriptors have a rich history of

studies that show their relationship to some properties of chemoinformatics data, it is

unlikely to see a single number working efficiently in a broad range of applications.

A broader framework for computing a combinatorial embedding is related to R-convolution

framework [55]. The principal idea of R-convolution stems out of topological descriptors

but introduces two distinctions. First, in R-convolution there is a procedure to distin-

guish the objects in which the graph is decomposed. For example, in the case of Wiener

index (2.7), shortest paths of the same length are difficult to compare with each other:

different paths contain different nodes and there is no notion of order between nodes,

35

hence one has to introduce some means of comparison between two paths (say the length

or the number of specific node labels). The second distinction is the number of distinct

objects of the decompositions. In the majority of cases, objects are represented in a

great variety in the graph and therefore its combinatorial embedding is represented as

an array of multiple numbers, each corresponding to its own objects. Often the length

of the array is so big due to the exponential nature of the graph decomposition that

one has to sacrifice the precision of the R-convolution to obtain the reasonable size of

the array. This idea paved the way for the development of graph kernels, where a new

R-convolution results in a new kernel.

For example, in graphlet kernel [6] embeddings are based on the decomposition with

graphlets (a.k.a. motifs), i.e. all possible subgraphs of given size. Procedure to compute

graphlet kernel is the following:

1. Select size of graphlet k,

2. Enumerate all possible graphlets of size k,

3. Compute the count of each graphlet in a graph,

4. Output a vector of counts in some predetermined order.

Since there are
(
n
k

)
possible motifs, the total running time requires O(nk) steps, with

a constant running time to perform inner product between two graphs. This clearly

prohibitive for large graphs and the authors proposed a concentration inequality that

approximates the true distribution within ε factor. One of the strong sides of the graphlet

kernel is that it is based on the graph reconstruction conjecture [9, 76] that states that

all possible subgraphs of size n − 1 of the original graph with n nodes are enough to

reconstruct the original graph. Even though, a graphlet kernel is summarized version of

the collection of k-size subgraphs, this conjecture, has been confirmed for different types

of graphs [9] and for n ≤ 11 is a strong indication that graphlet distributions capture

well the topology of the graph. Our proposed solution based on anonymous walks is

also based on the theorem that states that the distribution of the anonymous walks is

enough to reconstruct the graph.

Another type of kernels is based on random walks in a cross product A× between two

graphs [77]. Cross product of two graphs is determined as following:

V× = {(v1
i , v

2
j) : v1

i ∈ G1 and v2
j ∈ G2},

E× = {((v1
i , v

2
j), (v

1
k, v

2
l)) : iff (v1

i , v
1
k) ∈ G1, (v

2
i , v

2
k) ∈ G2}.

36

This creates a single graph with O(n2) nodes and O(n4) edges. A graph kernel is defined

then as the number of paths of different lengths in a cross graph:

K(G1, G2) =
∞∑
k=0

µ(k)q×A
k
×p×, (2.9)

where µ(k) is a coefficient that guarantees convergence of the sum, q× and p× are the

initial and stopping probability distribution, and A× is the adjacency matrix of a cross

graph. Based on the coefficients µ(k) one can derive a closed-formula for the series

(2.9) [52, 78, 79]. There are two peculiarities about this graph kernel. First is that it

does not require the computation of explicit embeddings between two graphs. In fact,

graphs G1 and G2 are never used in the definition of the kernel and all of the work

is performed in the cross graph. The second trait of this kernel is that it implicitly

compares random walks between two graphs, even though walks may have different

node labels. This is possible because the random walks computed in the cross product,

bypassing computation of distinct random walks in two graphs. Random walk kernel

requires O(n6) time in a naive implementation and can be computed in O(n3) using

Kronecker products [54, 68, 77]; however, it’s still computationally expensive for large

graphs.

One of the most both fast and performing graph kernels is based on the Weisfeiler-

Lehman algorithm for isomorphism testing. Weisfeiler-Lehman (WL) kernel [8] com-

putes explicit graph embeddings based on relabeling the nodes of a graph iteratively,

based on the local neighborhoods. Initially, all labels of the nodes are the same. Then

each iteration involves three steps:

1. For each node v sort the labels of the neighbors and append its own label to obtain

a list of labels L(v),

2. Hash each list of labels L(v) into a new label l,

3. Relabel a previous label of v with a hashed label.

After initial labeling, in the first iteration, each node will get a new label that will

correspond to the degree of the node. In the second iteration, each node will get a new

label according to the distribution of degrees of its neighbors, and so on. Informally it

means that each node propagates its local topology to other nodes in the network; hence

after several iterations will know all the local topologies that exist in a graph. Then WL

embedding of the graph is the distribution of labels after some number of iterations. The

original algorithm by Weisfeiler-Lehman for graph isomorphism testing has the following

37

property [80]: if after n iterations of Weisfeiler-Lehman procedure WL embeddings are

the same for two graphs, then they are most likely to be isomorphic; while if at some

iteration i ≤ n the distributions of labels is different, then the graphs definitely are not

isomorphic. The total running of the Weisfeiler-Lehman procedure with k iterations for

graphs with m edges is O(km), which it makes it very fast. Weisfeiler-Lehman kernel

has shown competitive results in many graph classification datasets making it a strong

baseline.

As could be noted from the above the crux of the design of combinatorial embedding

lies at the selection of combinatorial graph object that sufficiently preserves information

about the topology of the graph when the graph is decomposed by this object. There

are kernels based on shortest paths [81, 82], cycles and trees [83–85], group theoretical

invariants [86, 87], and many others [88–91]. For an extensive overview of the graph

kernels and combinatorial embeddings one can refer to the surveys [77, 92, 93].

2.3.2 Neural graph embeddings

In the previous section, we saw that combinatorial embeddings are based on some type

of combinatorial object in the graph: distribution of the types of this object or some

transformation of it is what constitutes an embedding. In the neural embedding case, the

situation is different in a radical way. Instead of defining an object and then operating

on it, we randomly will initialize embeddings and then learn these embeddings according

to the topology of the network. This end-to-end procedure replaces the choice of the

combinatorial object with the choice of selecting the right training procedure (model

architecture, loss function, hyperparameters, etc.).

One of the examples of learning neural embeddings is of Deep Graph Kernels [56]. As the

name suggest it is still a graph kernel, but it adds an additional relationship factor that

solves a particular challenge of graph kernels, namely diagonal dominance. Diagonal

dominance is an empirical observation that when the size of the combinatorial object

is large enough, then the number of such objects tends to zero for all graphs, except

some single graph. For instance, in the case of graphlet kernels [6] if the size is big

(e.g. k ≥ 10) the number of graphlets can become very high (O(2k)) and computing

the distribution of the objects in a graph will reveal that some specific graphlet appears

more common than others. Moreover, other graphs will not have these graphlets often,

preferring some other graphlets. This will lead to a situation when the similarity between

the two graphs will be close to zero, even if the graphs are of the same class. To address

this, the authors proposed to multiply graph kernel but a positive semidefinite matrix

that encodes the relationship between the objects:

38

K(G1, G2) = φ(G1)Mφ(G2). (2.10)

To obtain the matrixM the authors consider co-occurrence between two types of objects

if they appear at the same time during the computation of these objects. This corpus

is considered similarly as the corpus of words to which we can apply a language model

that learns embeddings for these objects, for example, the Skip-gram word2vec model

[94]. Once the embeddings learned one can find similarity between different objects and

compute the matrixM. While the approach is useful for resolving diagonal dominance,

large k sizes are rarely used in practice because of the computation limits. Another

approach graph2vec [95] based on also language modeling has been recently proposed

that learns the graph embedding directly, without passing to graph kernel. In their case,

they sample a corpus of rooted subgraphs (also used in WL graph kernel) that belong

to a graph and then consider this corpus as a text on which one can learn embeddings.

Their learnable model is doc2vec [60], which considers additionally an embedding of a

document during the learning. In this case, not only embeddings of the rooted subgraphs

are obtained, but also of the graph. In this thesis, we propose to have a similar model

but which is applied to anonymous walks, which can be considered as sentences where

nodes are the words.

A different approach which is not based on corpus generation but rather on direct

learning of the node features is known as Graph Neural Networks (GNN). Informally,

GNN is the application of deep learning models on the nodes neighborhood level and

includes various forms of models such as RNN, CNN, Attention. In Figure 2.4 In the case

of the CNN graph convolutional algorithm aggregates the information of the neighbors

according to some weight functions, this mechanism known as message-passing neural

network [96]. Graph convolutional networks in turn fall into two paradigms, spectral-

based or spatial-based methods. In the first case, the embeddings are obtained from the

perspective of noise removal in the graph. Its ideas originate from signal processing and

attempt to update initial node embeddings by multiplying them by a learnable filter.

More formally, it is known that Laplacian matrix L = InD
− 1

2AD−
1
2 is real symmetric

positive semidefinite that can be factored using SVD as such: L = UΛUT , where matrix

of U is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. If we define

a filter as g ∈ Rn and vector embedding x, then we can apply this filter to the original

graph signal:

x ? g = U(UTx� UT g). (2.11)

39

Figure 2.4: Message-passing algorithm propagates embeddings from its neighbors
towards the node aggreating them to produce a new embeddings.

This corresponds to the Hadamard product between two Fourier transforms of the em-

beddings x and g and then applying reverse Fourier transform [97]. If we denote a filter

as gθ = diag(UT g) then a graph convolution is defined by:

x ? gθ = UgθU
Tx. (2.12)

Different definitions of the filter gθ defines different GNN. For instance, Spectral Convo-

lutional Neural Network [97] defines the filter gθ = Θ, where Θ is learnable parameter

matrix. In a ChebNet [98], the authors propose to approximate the filter gθ by a Cheby-

shev polynomial, i.e. gθ =
K−1∑
i=0

θiTk(Λ̂), where Λ̂ is the normalized matrix Λ ∈ [−1, 1],

the Chebyshev polynomials are defined as Tk(x) = 2xTk−1(x)Tk−2(x) with T0(x) = 1

and T1(x) = x. A further approximation of ChebNet, called GCN [99] assuming that

there is a single term in Chebyshev polynomial. In this case:

x ? gθ = θ(In +D−
1
2AD

1
2)x. (2.13)

In the case of GCN, the convolutional function is propagated only within a first-level

neighborhood and hence this type of spectral-based methods can also be seen as a

spatial-based methods, that uses information only to its neighbors. In particular, the

function for the update for the parameters of the node is:

40

hv = f((
∑

v∈N(v)∪v

Âv,uxu)Θ) (2.14)

There are many other models that propose new graph filters [100, 101]; however, spatial-

based methods that we discuss next offer more efficiency and flexibility. Indeed spectral

methods require to do SVD which is costly and requires re-computation if the graph

structure slightly changes due to the modification of the eigenbases. Also, spatial-based

methods are required to work on undirected graphs due to the properties of the Lapla-

cian, while spatial-based methods can work with any types of graphs (directed, dynamic,

knowledge, etc.).

The spatial-based method update iteratively the node embeddings based on the neigh-

bors embeddings at the current iteration. This draws inspiration from the convolutional

mask is a shared filter applied to all the neighboring pixels of the current one. The dis-

tinction from the images though is that nodes may have a different number of neighbors

and therefore one cannot have its own separate weight associated with each neighbor.

Instead, spatial-based methods aggregate neighbors into a single embedding such that

aggregation happen in order-invariant way. One of the first attempts NN4G [102] was

using a linear transformation of the neighbors’ embeddings to produce an updated em-

bedding:

h(k)
v = f(xvW

(k−1) +
k−1∑
i=1

∑
u∈N(v)

h(k−1)
u Θ(k−1)), (2.15)

where f is an activation function. In its form, the embeddings from the neighborhoods

are summed with the same weights and then summed with the current (weighted) em-

bedding of the node. Note also that in NN4G embeddings are dependent on the whole

history of user embeddings, which limits the number of layers one can use in practice

due to the volume of data.

In the Graph Isomorphism Network (GIN) [103], the authors propose a simple convo-

lution that theoretically guarantees to have embeddings that as powerful as Weisfeiler-

Lehman test of isomorphism. Their update function is the following:

h(k)
v = σ(((1 + εk)hk−1

v +
∑

u∈N(v)

h(k−1)
u W k−1), (2.16)

They showed that when activation and readout functions are injective (for example,

sigmoid and sum respectively) then the models are as discriminative as WL test.

41

In Graph Attention Network [104], the weights are computed for every edge dictating

the importance of each relationship of the neighbor to the update of the current node.

The mechanism is similar to the language model Transformer [105], where multi-layer

multi-head attention is applied to update the embeddings of the words. The update rule

is the following:

h(k)
v = σ(

∑
u∈N(v)∪v

αu,vW
(k−1)h(k−1)

u), (2.17)

where attention weights αu,v sum up to one for N(v) ∪ v.

For all Graph Neural Networks, the embeddings are defined on node-level, while the

graph embedding is obtained with an additional graph pooling layer. A simple strategy

for defining a pooling layer is to apply mean, max, or sum operation on the last layer

embeddings across all nodes, for example:

hG =
∑
v∈V

h(K)
v . (2.18)

In [103], the authors show that the pooling layer with the sum has the most expressive

power in comparison to mean and max aggregators. Moreover pooling methods such as

based on attention [104] or LSTM [106] have been also proposed.

A somewhat different approach is based on generative models that have encoder-decoder

structure [107–109]. For example, in [107] the authors propose to use Variational Auto-

Encoder that has a two-layer GCN encoder and a simple sigmoid function over the inner

product of two latent variables to decode latent distributions back to the graph (Figure

2.5). In particular, there are two GCNs that model µi and σi respectively, which are

used to draw a latent variable from the normal distribution:

q(zi|X,A) = N (zi|µi,diag(σ2
i)),where

µ = GCNµ(X,A)

logσ = GCNσ(A,X)

(2.19)

In the equation above, GCN is a two-layer convolutional network that takes adjacency

matrix A and a feature matrix X as an input and produces vectors µ and σ.

Generative model outputs a graph object given a latent variable z:

42

Original
Graph

Decoder PartEncoder Part
Recovered
Graph

Figure 2.5: Graph Variational Auto-Encoder. A graph is encoded by two GCNs
that produce two vectors µ and σ. Then a latent variable z is drawn from a normal
distribution N . A latent variable is later decoded to a new recovered graph, where
adjacency is determined by a dot product of two latent variables. The model is trained
by maximizing log-likelihood of the recovered graph and minimizing the KL-divergence

between a latent distribution q and a prior normal distribution.

p(Aij = 1|zi, zj) = σ(zi · zj) (2.20)

In this way, the adjacency matrix is determined by the inner product of two variables

that correspond to nodes i and j. This encoder-decoder process is trained over a graph

that optimizes variational lower bound:

L = Eq[log p(A|Z)]−KL[q(Z|X,A)‖p(Z)] (2.21)

This loss has two terms: the first is a reconstruction loss that indicates the error between

the decoded graph and the original one; the second term is regularization that minimizes

the error between two distributions, one encoded distribution of latent variables and

one prior distribution which is Gaussian distribution. After the model is trained one

can see q(z|X,A) as a probabilistic embedding of a graph. Other types of probabilistic

embeddings include probabilistic embeddings based on other generative models such as

Generative Adversarial Networks [110, 111] and Auto-regressive models [112].

Graph Neural Networks is an active area of research due to its effectiveness, flexibility,

and end-to-end nature. They are also quite well theoretically backed up, by the results

from graph isomorphism literature [103] and universal approximation capabilities within

43

certain criteria [113–115]. For an extensive overview of the recent methods please refer

to the surveys [116, 117].

2.4 Anonymous walks

Random walks are the sequences of nodes, where each new node is selected independently

from the set of neighbors of the last node in the sequence. Normally states in a random

walk correspond to a label or a global name of a node; however, for reasons described

below such states could be unavailable. Yet, recently it has been shown that anonymized

version of a random walk can provide a flexible way to reconstruct a network even when

global names are absent [59]. We next define the notion of anonymous walk.

Definition 2.7. Let s = (u1, u2, . . . , uk) be an ordered list of elements ui ∈ V . We define

the positional function pos: (s, ui) 7→ q such that for any ordered list s = (u1, u2, . . . , uk)

and an element ui ∈ V it returns a list q = (p1, p2, . . . , pl) of all positions pj ∈ N of ui

occurrences in a list s.

For example, if s = (a, b, c, b, c), then pos(s, a) = (1) as element a appears only on the

first position and pos(s, b) = (2, 4).

Definition 2.8 (Anonymous Walk). If w = (v1, v2, . . . , vk) is a random walk, then its

corresponding anonymous walk is the sequence of integers a = (f(v1), f(v2), . . . , f(vk)),

where integer f(vi) = min pos(w, vi).

We denote mapping of a random walk w to anonymous walk a by w 7→ a.

For instance, in the graph of Fig. 2.6 a random walk a → b → c → b → c matches

anonymous walk 1 → 2 → 3 → 2 → 3. Likewise, another random walk c → d →
b → d → b also corresponds to anonymous walk 1 → 2 → 3 → 2 → 3. Conversely,

another random walk a → b → a → b → d corresponds to a different anonymous walk

1→ 2→ 1→ 2→ 3.

Intuitively, states in anonymous walk correspond to the first position of the node in a

random walk and their total number equals the number of distinct nodes in a random

walk. Particular name of the state does not matter (so, for example, anonymous walk

1→ 2→ 3 would be the same as anonymous walk 3→ 1→ 2); however, by agreement,

anonymous walks start from 1 and continue to name new states by incrementing the

current maximum state in an anonymous walk.

Rationale. From the perspective of a single node, in the position of an observer, the

global topology of the network may be hidden deliberately (e.g. social networks often

44

Figure 2.6: An example demonstrating the concept of an anonymous walk. Two
different random walks 1 and 2 of the graph correspond to the same anonymous walk

1. A random walk 3 corresponds to another anonymous walk 2.

restrict outsiders to examine your friendships) or otherwise (e.g. newly created links in

the world wide web may be yet unknown to the search engine). Nevertheless, an observer

can, on his own, experiment with the network by starting a random walk from itself,

passing the process to its neighbors and recording the observed states in a random walk.

As global names of the nodes are not available to an observer, one way to record the

states anonymously is by describing them by the first occurrence of a node in a random

walk. Not only are such records succinct, but it is common to have privacy constraints

[118] that would not allow recording a full description of nodes.

Somewhat remarkably, [59] show that for a single node u in a graph G, a known distri-

bution Dl over anonymous walks of length l is sufficient to reconstruct topology of the

ball B(u, r) with the center at u and radius r, i.e. the subgraph of graph G induced by

all vertices distanced at most r hops from u. For the task of learning embeddings, the

topology of the network is available and thus the distribution of anonymous walks Dl

can be computed precisely. As no two different subgraphs can have the same distribution

Dl, it is useful to generalize the distribution of anonymous walks from a single node to

the whole network and use it as a feature representation of a graph. This idea paves the

way to our feature-based network embeddings.

45

2.4.1 Graph isomorphism test

We focus on undirected connected graphs. It is well known that directed and/or discon-

nected graphs are equivalent to the class of undirected connected graphs in GI problem.

Let G = (V,E) be a graph on the set of n vertices V and the set of m edges E. Let

w = (v0, v1, . . . , vl) be a random walk that has l + 1 vertices and a be anonymous walk

according to the definition 2.8.

In other words, anonymous walks can be seen as an anonymized version of random

walks, where each label is replaced with its first occurrence. [119] shows that given only

a set of all anonymous walks of long enough length for any source node is sufficient to

reconstruct the exact topology of a graph surrounding that node. As we show next their

algorithm returns an instance of anonymous covering walk, for which reconstruction

property always holds.

Let D≤l be a set of all anonymous walks of length up to l in graph G, which we call

support set and its elements as support anonymous walks (or just support if it’s clear

from the context). Given anonymous walk α that has k distinct values, we define its

supporting graph Gα = (V,E), where V = {1, 2, . . . , k} and (a, b) ∈ E if and only

if a consecutive pair (a, b) appears in anonymous walk α. Let w be a random walk

that traverses each edge at least once, then the corresponding anonymous walk β is

called covering anonymous walk or cover. Finally, a property p of graph such that

p(G) = p(G′)⇒ G = G′ is called a complementary graph invariant.

We observe the following result that represents new canonical labeling of the graph.

Theorem 2.9. Let S =
⋃
v∈V

β be a union of all covers β of length l in graph G for all

vertices v ∈ V . Then S is a complete graph invariant and for any β ∈ S graph Gβ is a

canonical labeling of G, i.e. Gβ ∼= G.

Proof. Consider a covering anonymous walk β, i.e. an anonymous walk that traverses

each edge at least once. As β exists in graph G, let w be any corresponding random walk

in G. Note that each vertex v in G is present in a random walk w and it corresponds

to some element i. Then a function φ(v) = i is a bijection between vertices and nodes

in β.

Note that (u, v) is an edge of graph G if and only if a pair (φ(u), φ(v)) is an edge in

graph Gβ. Hence, function φ is an isomorphism for G and Gβ.

If vertices v1 ∈ V1 and v2 ∈ V2 of graphs G1 and G2 have the same cover β, then the

graphs are isomorphic, i.e. G1
∼= G2

∼= Gβ. Therefore, all graphs that have a cover β

are isomorphic to Gβ and by definition, Gβ is a canonical labeling.

46

Algorithm 1 Test of Graph Isomorphism

1: Input: graphs G1, graphs G2

2: Output: True/False if graphs are isomorphic
3: Compute S1 =

⋃
β for graph G1

4: Compute S2 =
⋃
β for graph G2

5: if S1
⋂
S2 = ∅ then

6: return False
7: else
8: return True
9: end if

Let Sv =
⋃
βv be all covers of length l that start from the vertex v. If two vertices

v1 ∈ V1 and v2 ∈ V2 have the same Sv1 = Sv2 = Sv, then any β ∈ Sv is sufficient to

obtain canonical labeling Gβ. On the other hand, if two graphs are not isomorphic,

there is no β that is the same for two vertices (otherwise, it will become a canonical

labeling). Finally, obtaining the union of all covers β across all nodes guarantees that

the sets S are the same for isomorphic graphs and non-overlapping for non-isomorphic

graphs.

Essentially if one obtains two sets of all covering anonymous walks, S(G) and S(G′), of

length l for two graphs G and G′, then an intersection between the two sets reveals if

graphs are isomorphic. Moreover, the intersection is either the full set S = S(G) = S(G′)

in the case of isomorphism or it is empty set in the case that two graphs are non-

isomorphic. If two graphs are isomorphic then taking any cover β gives canonical labeling

of a graph.

Algorithm 1 tests two graphs for isomorphism. It first computes two complete graph

invariants S(G1) and S(G2) and then compares their intersection. By Theorem 2.9 S1

and S2 are complete graph invariants and therefore the Algorithm 1 always produces

correct answer. Note that the number of covers β in the set S can be extremely large.

The following theorem establishes an upper bound of elements in Dl.

Theorem 2.10. Let Dl be a set of all anonymous walks with l nodes in a complete graph

Kl with l vertices. Then |Dl| = Bl−1, where Bl−1 is the (l − 1)-th Bell number.

Proof. Note that a complete graph Kl with l vertices contains all possible anonymous

walk sequences with l nodes, because any vertex u is connected with v and hence any

node in anonymous walk i is connected with any node j. An anonymous walk can be

seen equally as coloring of a map consisting of a row of l elements, where adjacent regions

cannot have the same color. The number of such non-isomorphic colorings is known to

be Bl−1 [120, 121].

47

Algorithm 2 Maximal Covering Anonymous Walk

1: Input: graph G, vertex v
2: Output: cover β
3: Initialize stack S = [1], β = [1], m = # edges
4: while S 6= ∅ do
5: last = S[−1]
6: x = max(β) + 1
7: # phase 1: explore not visited nodes
8: βtry = replace(β, last, x)
9: if βtry exists in G then

10: β = βtry
11: S.append(x)
12: else
13: S.pop()
14: end if
15: # phase 2: interconnect existing elements in β
16: U = [x− 1, x− 2, . . . , last+ 1]
17: for all u ∈ U do
18: βtry = replace(β, last, u)
19: if βtry exists in G then
20: β = βtry
21: end if
22: end for
23: end while
24: return β

The Bell number Bn counts possible non-empty partitions of the set of n numbers and

has been linked to many areas in combinatorics [122]. Due to [123] the Bell number has

upper bound:

Bn < (
0.792n

lnn+ 1
)n, (2.22)

which, while smaller than n!, grows extremely fast.

The length of covering anonymous walk β is at least m and therefore a cardinality of a

set S =
⋃
β of length l = O(m) for a single vertex in a graph with m edges is O(Bm−1).

Instead of learning the whole set S for the graph across all vertices, one may compute

a certain ”predetermined” β ∈ S, which would be also enough to use as a canonical

labeling due to Theorem 2.9. For example, one can compute the lexicographically max-

imal cover β ∈ S without requiring access to the full set S. Algorithm 2 searches the

lexicographically maximal cover β in a graph G that traverses each edge exactly once in

each direction.

48

In a nutshell, the Algorithm 2 builds a cover β by iteratively exploring the neighborhood

of each node, adding a new edge in a depth-first search manner. If a new unvisited edge

exists, the algorithm adds a corresponding edge (in both direction), until no unvisited

edges exist.

Prior to the explanation of the algorithm, let replace(β, v, w) be a function that replaces

last occurrence of v in β with (v, w, v) triplet. So for example, replace((1, 2, 3, 2, 1), 2, 4) =

(1, 2, 3, 2, 4, 2, 1). Given these definitions we present an algorithm that returns a canon-

ical labeling for a given graph G and source vertex v.

The Algorithm 2 takes a graph G and a source vertex v as input and outputs a covering

anonymous walk β with 2m+ 1 elements such that each edge in G is traversed once in

each direction. The algorithm first initializes a stack S of nodes to check for connectivity

and current cover β. In lines 7-14, the algorithm adds a triplet between last element

in the stack and a new yet-unvisited element x, which is higher by one for the current

maximum of β. In lines 16-22, the algorithm attempts to connect already added elements

in β with each other. The algorithm terminates when there is no element in the stack

S, which attained when all possible edges have been verified.

As the algorithm checks connectivity between each pair of vertices exactly once, in

total there are O(n2) requests to verify if β exists in G (lines 9 and 19). One way to

compute a request β ∈ G is to add the next node in a random walk while in parallel

verifying that it does adhere to the next node in β. Each edge in the original graph G

appears two times (one for each direction) in the final support β and therefore final β

has l = 2m+ 1 elements. The following proposition establishes the connection between

the original graph G and the supporting graph Gα and therefore sufficient to test graph

isomorphism by replacing computation of the whole set S with the maximal β from the

Algorithm 2.

Proposition 2.11. Algorithm 2 returns lexicographically maximal covering anonymous

walk starting from vertex v in graph G such that each edge in G is traversed once in

each direction and it makes O(n2) requests to graph G.

Proof. We split our proof into two parts. In the first part, we prove that the final β

traverses each edge and in the second part we prove that its maximal.

Suppose that there exists an edge that is missing from the β, it means that both of the

vertices are missing from the corresponding walk w. Let (u1, u2) ∈ E be an edge that

is missing from β. Let’s focus on a vertex u1. Since graph G is undirected connected it

means there exists a path from u1 to some vertex v in a walk w that has a corresponding

element j in β. If (u1, v) ∈ E, then in the Algorithm 2 there will be a step when v will

49

check for connectivity with u1 (either in line 9 or line 19), therefore u1 will be added. In

case if (u1, v) /∈ E, the argument can be repeated for the vertex v and due to connectivity

of all vertices in graph G, all nodes in G will be added to the final cover β. A similar

argument can be used to show that all edges also belong to β. Therefore, β is a covering

anonymous walk.

To prove that β is maximal lexicographically among all covers that traverse each edge

once in each direction, note that the Algorithm first attempts to connect a current node

with a new maximum element in β (line 6). If such an element exists then it adds

this node and continues from it, until no new node can be added to the last element

in β, in which case it backtracks to the preceding element. For the preceding element

it first attempts to connect a node that is not present yet in β and after this stage it

connects itself with all elements that are already present in the reversed order (line 16),

which guarantees that the new edges are added from the highest elements to the lowest

elements in β. Since β is built deterministically (each request in lines 9 and 19 happens

among all possible random walks), the final β will be maximal among all covers that

traverse each edge at least once.

The running time of the Algorithm 2 is O(n2t), where O(t) is the time to answer request

if anonymous walk βtry exists in G, which depends on the number of anonymous walks in

a graph. Note that the final cover β is lexicographically maximal cover and therefore its

first elements subsume the sequence that corresponds to the longest path in the graph

G. Indeed, if (1, 2, . . . , k, k + 1) are the first k + 1 elements in β, then the longest path

that exists in the graph G has k nodes; otherwise, the Algorithm 2 would attempt to

add a new element in the sequence. Since the k + 1 element in β is smaller than k,

then there is no path of length k + 1 in graph G. On the other hand, there is a path

of length k in graph G that corresponds to the first k elements in β. Therefore, on the

k+ 1 request of the Algorithm 2 one may answer a decision problem of the longest path

problem, which is known to be NP-complete. Hence, computationally the Algorithm 2

is at least as hard as solving the longest path problem. Hence the following theorem

holds:

Theorem 2.12. Finding maximal cover β is NP-hard.

By Theorem 2.12 there is no known polynomial-time algorithm to find exactly the max-

imal anonymous cover in graph G. Instead one may hope to approximate the solution

by having a policy of selecting the next nodes in a random walk. The general proce-

dure of building an arbitrary cover of length 2m+ 1 is akin to the Algorithm 2, with a

50

Algorithm 3 Building Covering Anonymous Walk

1: Input: graph G, vertex v, policy π
2: Output: cover β
3: Initialize stack S = [1], β = [1], m = # edges
4: Initialize set Q = (v) of visited nodes
5: Initialize map M(1) = v between elements in β and nodes
6: while S 6= ∅ do
7: last = S[−1]
8: x = max(β) + 1
9: # phase 1: explore not visited nodes

10: node = M [last]
11: η = π(G,node,Q)
12: if η 6= Null then
13: β = replace(β, last, x)
14: S.append(x)
15: M [x] = η
16: add η to Q
17: else
18: S.pop()
19: end if
20: # phase 2: interconnect existing elements in β
21: U = [x− 1, x− 2, . . . , last+ 1]
22: for all u ∈ U do
23: t1 = M [u], t2 = M [last]
24: if (t1, t2) edge exists in G then
25: β = replace(β, last, u)
26: end if
27: end for
28: end while
29: return β

change of building explicit random walk instead of making requests if β exists in graph

G. Specifically, the Algorithm 3 has two phases.

In phase 1, the algorithm selects a neighbor node according to the input policy for the

current node. The policy π must return some neighbor η in graph G that has not been

added to the visited set Q yet; or otherwise, return Null. If such neighbor exists then

it replaces a corresponding last element in β with a triplet (last, x, last), where x is a

new element in β, and adds x to the stack S and the map M and mark a corresponding

node η as visited. If all of the neighbors have been explored in β, then we delete the

last element in the stack S.

In phase 2, the algorithm selects a set of elements U , which indicates all possible elements

to which last element in β can be connected. It contains elements [x−1, x−2, . . . , last+

1], all of which are already present in β, and therefore by checking if the corresponding

nodes have an edge in the graph G, the algorithm interconnects existing elements in β.

51

Algorithm 4 Random policy πrand

1: Input: graph G, vertex v, visited set Q
2: Output: neighbor u or Null
3: Initialize set of neighbors Nv

4: if Nv \Q = ∅ then
5: return Null
6: else
7: return random node from Nv \Q
8: end if

Given a policy π, one can generate a sample of τ covering anonymous walks β, S =
⋃

1...τ
β

and then use it along with the Algorithm 1 to test for isomorphism of two graphs.

Note that if S(G1) and S(G2) are two generated samples for graphs G1 and G2 and

S(G1)
⋂
S(G2) 6= ∅, then there exists at least one β such that G1

∼= Gβ ∼= G2 by

Theorem 2.9. Hence, a set S is a complementary graph invariant. Whether, a set S is a

complete graph invariant depends on the selected policy π and the choice of the policy

is critical for the efficiency of the graph isomorphism test.

For example, a random policy πrand in the Algorithm 4 selects a random not-visited

neighbor or returns Null. As the returned neighbors appear in random order with the

policy πrand, the complementary graph invariant S =
⋃

1...τ
β can be different for two

isomorphic graphs if the number of samples τ is much smaller than the total number of

possible covers in these graphs. As the space of all possible covers in a graph is extremely

large, the random policy is not efficient for graphs with many vertices.

There are open questions that have not been yet answered and that we believe may

significantly improve the presented algorithm in their ability on finding a solution to the

longest path and graph isomorphism problems.

1. In Theorem 2.10 we showed that an upper bound for the number of all anonymous

walks with n nodes in a complete graph Kn equals to Bn−1. The set of all covering

anonymous walks is contained in this set and represents the search space for the

agent’s policy, therefore finding stricter bounds on the set of all covers will shed

the light on the efficiency of the Algorithm 2 and the complexity of the problem

of finding the maximal cover in a graph.

2. One way to reduce the cardinality of the search space for the agent is to reduce the

length of the anonymous walk. In this work the length of the cover is l = 2m+ 1

as the Algorithm 3 guarantees to find a cover of length l. The walk of a minimal

length that traverses each edge at least once (i.e. a cover) is a variant of a Chinese

Postman Problem [124], where starting and end points are not necessarily the

same. Finding an efficient algorithm (e.g. linear time in the number of edges) that

52

returns a cover of a length less than 2m+ 1 has significant practical improvements

due to the vast reduction of the search space.

2.5 Algorithms

2.5.1 Combinatorial model

By definition, a weighted directed graph is a tupleG = (V,E,Ω), where V = {v1, v2, . . . , vn}
is a set of n vertices, E ⊆ V × V is a set of edges, and Ω ⊂ R is a set of edge weights.

Given graph G we construct a random walk graph R = (V,E, P) such that every edge

e = (u, v) has a weight pe equals to ωe/
∑

v∈Nout(u)

ω(u,v), where Nout(u) is the set of out-

neighbors of u and ωe ∈ Ω. A random walk w with length l on graph R is a sequence of

nodes u1, u2, . . . , ul+1, where ui ∈ V , such that a pair (ui, ui+1) is selected with a proba-

bility p(ui,ui+1) in a random walk graph R. A probability p(w) of having a random walk

w is the total probability of choosing the edges in a random walk, i.e. p(w) =
∏
e∈w

pe.

According to the Definition 2.8, anonymous walk is a random walk, where each state is

recorded by its first occurrence index in the random walk. The number of all possible

anonymous walks of length l in an arbitrary graph grows exponentially with l (Figure

2.7). Consider an initial node u and a set of all different random walksW u
l that start from

u and have length l. These random walks correspond to a set of η different anonymous

walks Aul = (au1 , a
u
2 , . . . , a

u
η). A probability of seeing anonymous walk aui of length l

for a node u is p(aui) =
∑

w∈Wu
l

w 7→ai

p(w). Aggregating probabilities across all vertices in a

graph and normalizing them by the total number of nodes N , we get the probability of

choosing anonymous walk ai in graph G:

p(ai) =
1

N

∑
u∈G

p(aui) =
1

N

∑
u∈G

∑
w∈Wu

l
w 7→ai

p(w).

We are now ready to define network embeddings that we name combinatorial anonymous

walk embeddings (AWE).

Definition 2.13 (Combinatorial AWE). Let Al = (a1, a2, . . . , aη) be the set of all

possible anonymous walks of length l. Anonymous walk embedding of a graph G is the

vector fG of size η, whose i-th component corresponds to a probability p(ai), of having

anonymous walk ai in a graph G:

fG = (p(a1), p(a2), . . . , p(aη)). (2.23)

53

2

5

15

52

203

877

4K

21K

116K

679K

4M

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

e
r
 o

f
A

n
o

n
y
m

o
u

s
 W

a
lk

s

Length of Anonymous Walks

Growth of Anonymous Walks with Length

Figure 2.7: The number of different anonymous walks increases exponentially with
length of walks l. Y -axis is in log scale.

Direct computation of AWE relies on the enumeration of all different random walks in

graph G, which is shown below to grow exponentially with the number of steps l.

Theorem 2.14. The running time of Anonymous Walk Embeddings (eq. 2.23) is

O(nl(dmaxin (v) · dmaxout (v))l/2), where dmaxin/out is the maximum in/out degree in graph G

with n vertices.

Proof. Let kl be the number of random walks of length l in a directed graph. According

to [125] kl can be bounded by the powers of in- and out-degrees of nodes in G:

k2
l ≤ (

∑
v∈G

dlin(v))(
∑
v∈G

dlout(v)).

Hence, the number of random walks in a graph is at most n(dmaxin (v) ·dmaxout (v))l/2, where

dmaxin/out is the maximum in/out degree. As it requires O(l) operations to map one random

walk of length l to anonymous walk, the theorem follows.

Sampling. As complete counting of all anonymous walks in a large graph may be

infeasible, we describe a sampling approach to approximate the true distribution. In this

fashion, we draw independently a set of m random walks and calculate its corresponding

empirical distribution of anonymous walks. To guarantee that empirical and actual

54

distributions are close with a given confidence, we set the number m of random walks

sufficiently large.

More formally, let Al = (a1, a2, . . . , aη) be the set of all possible anonymous walks of

length l. For two discrete probability distributions P and Q on set Al, define L1 distance

as:

‖P −Q‖1 =
∑
ai∈A

|P (ai)−Q(ai)|

For a graph G let Dl be the actual distribution of anonymous walks Al of length l and

let Xm = (X1, X2, . . . , Xm) be i.i.d. random variables drawn from Dl. The empirical

distribution Dm of the original distribution Dl is defined as:

Dm(i) =
1

m

∑
Xj∈Xm

[[Xj = ai]],

where [[x]] = 1 if x is true and 0 otherwise.

Then, for all ε > 0 and δ ∈ [0, 1] the number of samples m to satisfy P{‖Dm −D‖1 ≥
ε} ≤ δ equals to (from [6]):

m =

⌈
2

ε2
(log(2η − 2)− log(δ))

⌉
. (2.24)

For example, there are η = 877 possible anonymous walks with length l = 7 (Figure

2.7). If we set ε = 0.5 and δ = 0.05, then m = 4888. If we decrease ε = 0.1 and δ = 0.01,

then the number of samples will increase to 122500.

As transition probabilities for random walks can be preprocessed, sampling of a node in a

random walk of length l can be done in O(1) via alias method. Hence, the overall running

time of the sampling approach to compute combinatorial anonymous walk embeddings

is O(ml).

Our experimental study shows state-of-the-art classification accuracy of combinatorial

AWE on real datasets. We continue to design a neural approach that eliminates the

sparsity of combinatorial embeddings.

2.5.2 Neural model

Our approach for learning network embeddings is analogous to methods for learning

paragraph vectors in a text corpus [60]. In our case, an anonymous walk is a word,

55

a randomly sampled set of anonymous walks starting from the same node is a set of

co-occurring words, and a graph is a document.

Neighborhoods of anonymous walks. To leverage the analogy from NLP, we first

need to generate a corpus of co-occurring anonymous walks in a graph G. We define a

neighborhood between two anonymous walks of length l if they share the same source

node. We note that unlike NLP, such neighborhood does not define any order, but it

still gives the context of which anonymous walks are present in a graph, and hence will

try to maximize the similarity between graph embedding and embeddings of occuring

anonymous walks. This is similar to other methods such as shortest-paths co-occurrence

in DGK [56] and rooted subgraphs neighborhood in graph2vec [95], which proved to be

successful in empirical studies. Therefore, we iterate over each vertex u in a graph G,

sampling T random walks (wu1 , w
u
2 , . . . , w

u
T) that start at node u and map to a sequence

of co-occurred anonymous walks su = (au1 , a
u
2 , . . . , a

u
T), i.e. wui 7→ aui . A collection of all

su for all vertices u ∈ G is a corpus of co-occurred anonymous walks in a graph and is

analogous to a collection of sentences in a document.

Training. In this framework, we learn representation vector d of a graph and anonymous

walks matrix W (see Figure 2.8). Vector d has 1×dg size, where dg is embedding size of

a graph. The matrix W has η×da size, where η is the number of all possible anonymous

walks of length l and da is embedding size of anonymous walk. For convenience, we call

d as a document vector and W as a word matrix. Each graph corresponds to its vector d

and an anonymous walk corresponds to a row in a matrix W. The model tries to predict

a target anonymous walk given co-occurring context anonymous walks and a graph.

Formally, a sequence of co-occurred anonymous walks s = (a1, a2, . . . , aT) corresponds

to vectors w1,w2, . . . ,wT of matrix W, and a graph G corresponds to vector d. We aim

to maximize the average log probability:

1

T

T−∆∑
t=∆

log p(wt|wt−∆, . . . ,wt+∆,d), (2.25)

where ∆ is a window size, i.e. number of context words for each target word. Probability

in objective (2.25) is defined via softmax function:

p(wt|wt−∆, . . . ,wt+∆,d) =
ey(wt)

η∑
i=1

ey(wi)

(2.26)

56

Each y(wt) is unnormalized log probability for output word i:

y(wt) = b+ Uh(wt−∆, . . . ,wt+∆, d)

where b ∈ R and U ∈ Rda+dg are softmax parameters. Vector h is constructed by first

averaging walk vectors wt−∆, . . . ,wt+∆ and then concatenating with a graph vector d.

The reason is that since anonymous walks are randomly sampled, we average vectors

wt−∆, . . . ,wt+∆ to compensate for the lack of knowledge on the order of walks; and at

the same time, the graph vector d is shared among multiple (context, target) pairs.

To avoid computation of the sum in softmax equation (2.26), which becomes impractical

for large sets of anonymous walks, one can use Hierarchical softmax [126] or NCE loss

functions [127] to speed up training. In our work, we use sampled softmax [128] that for

each training example picks only a fraction of vocabulary according to a chosen sampling

function. One can measure the distribution of anonymous walks in a graph via means

of definition 2.23 and decide on a corresponding sampling function.

At every step of the model, we sample context and target anonymous walks from a graph

and compute the gradient error from a prediction of target walk and update vectors of

context walks and a graph via gradient backpropagation. When given several networks to

embed, one can reuse word matrix W across graphs, thereby sharing previously learned

embeddings of walks.

Summarizing, after initialization of matrix W for all anonymous walks of length l and

a graph vector d, the model repeats the following two steps for all nodes in a graph:

1) for sampled co-occurred anonymous walks the model calculates a loss (Eq. 2.25)

of predicting a target walk (one of the sampled anonymous walks) by considering all

context walks and a graph; 2) the model updates the vectors of context walks in matrix

W and graph vector d via gradient backpropagation. One step of the model is depicted

in Figure 2.8. After using up all sampled corpus, a learned graph vector d is called

anonymous walk embedding.

Definition 2.15 (Neural AWE). Anonymous walk embedding of a graph G is a vector

representation d learned on a corpus of sampled anonymous walks from a graph G.

So even though graph and walk vectors are initialized randomly, as an indirect result

of predicting a walk in the context of other walks and a graph the model also learns

feature representations of networks. Intuitively, a graph vector can be thought of as a

word with a special meaning: it serves as an overall summary for all anonymous walks

in the graph.

57

Figure 2.8: A framework for learning neural anonymous walk embeddings. The graph
is represented by a vector d and anonymous walks are represented by rows of matrix
W. All co-occurring anonymous walks start from the same node in a graph. The goal is
to predict a target walk w4 by its surrounding context walks (w1,w2,w3) and a graph
vector d. We average embeddings of context walks and then concatenate with a graph
vector to predict a target vector. Vectors are updated using stochastic gradient descent

on a corpus of sampled anonymous walks.

In our experiments, we show how anonymous walk network embeddings can be used in

the graph classification problem, demonstrating state-of-the-art performance in classifi-

cation accuracy.

2.6 Application to graph classification

Graph classification is a task to predict a class label of a whole graph and it has found

applications in bioinformatics [129] and malware detection [95]. In this task, given a

58

series of N graphs {Gi}Ni=1 and their corresponding labels {Li}Ni=1, we are asked to train

a model m: G 7→ L that would efficiently classify new graphs. The formal formulation

of the problem can be found in 2.3.

Two typical approaches to graph classification problem are (1) supervised learning clas-

sification algorithms such as PSCN algorithm [57] and (2) graph kernel methods such

as WL kernel [8]. As we are interested in designing task-agnostic network embeddings

that do not require labeled data during training, we show how to use anonymous walk

embeddings in conjunction with kernel methods to perform classification of new graphs.

For this, we define a kernel function on two graphs.

When X ⊆ Rn, several popular choices of kernel exist [51]:

• Inner product k(x, y) = 〈x, y〉, ∀x, y ∈ Rn,

• Polynomial k(x, y) = (〈x, y〉+ c)d, ∀x, y ∈ Rn,

• RBF k(x, y) = exp(−‖x− y‖
2
2

2σ2
), ∀x, y ∈ Rn.

With network embeddings, it is then easy to define a kernel function on two graphs:

K(G1, G2) = k(f(G1), f(G2)), (2.27)

where f(Gi) is an embedding of a graph Gi and k: (x, y) 7→ Rn is a kernel function.

To train a graph classifier m one can then construct a square kernel matrix K for

training data G1, G2, . . . , GN and feed this matrix to a kernelized algorithm such as

SVM. Every element of kernel matrix equals to: Kij = K(Gi, Gj). For classifying

new test instance Gτ , one would first compute graph kernels with training instances

(K(G1, Gτ),K(G2, Gτ), . . . ,K(GN , Gτ)) and provide it to a trained classifier m.

In our experiments, we use anonymous walk embeddings to compute kernel matrices

and show that kernelized SVM classifier achieves top performance comparing to more

complex state-of-the-art models.

2.6.1 Experimental evaluation

We evaluate our embeddings on the task of graph classification for a variety of widely-

used datasets.

Datasets. We evaluate performance on two sets of graphs. One set contains unlabeled

graph data and is related to social networks [56]. Another set contains graphs with

59

labels on nodes and/or edges and originates from bioinformatics [8]. Statistics of these

ten graph datasets presented in Table 2.1.

Evaluation. We train a multiclass SVM classifier with a one-vs-one scheme. We per-

form a 10-fold cross-validation and for each fold we estimate SVM parameter C from the

range [0.001, 0.01, 0.1, 1, 10] using validation set. This process is repeated 10 times and

average accuracy is reported, i.e. the average number of correctly classified test graphs.

Table 2.1: Graph datasets used in classification experiments. The columns are: Name
of dataset, Number of graphs, Number of classes (maximum number of graphs in a

class), Average number of nodes/edges.

Dataset Source Graphs Classes
(Max)

Nodes
Avg.

Edges
Avg.

COLLAB Social 5000 3 (2600) 74.49 4914.99
IMDB-B Social 1000 2 (500) 19.77 193.06
IMDB-M Social 1500 3 (500) 13 131.87
RE-B Social 2000 2 (1000) 429.61 995.50
RE-M5K Social 4999 5 (1000) 508.5 1189.74
RE-M12K Social 12000 11 (2592) 391.4 913.78
Enzymes Bio 600 6 (100) 32.6 124.3
DD Bio 1178 2 (691) 284.31 715.65
Mutag Bio 188 2 (125) 17.93 19.79

Competitors. GK is a graphlet kernel [6] and DGK is a deep graphlet kernel [56] with

graphlet size equals to 7. We note that DGK is a neural network model that learns

a matrix of similarity between substructures, similarly to our NN approach. WL is

Weisfeiler-Lehman graph kernel algorithm [8] with a height of subtree pattern equals

to 7. WL proved consistently strong results comparing to other graph kernels and

supervised algorithms, presenting state-of-the-art model for graph classification problem.

ER is exponential random walk kernel [52] with exponent equals to 0.5 and kR is k-step

random walk kernel with k = 3 [130].

Setup. For combinatorial anonymous walk embeddings (Def. 2.23), we choose length l

of walks from the range [2, 3, . . . , 10] and approximate actual distribution of anonymous

walks using sampling equation (2.24) with ε = 0.1 and δ = 0.05.

For neural anonymous walk embeddings (Def. 2.15), we set length of walks l = 10 to

generate a corpus of co-occurred anonymous walks. We run gradient descent with 100

iterations for 100 epochs with batch size that we vary from the range [100, 500, 1000,

5000, 10000]. Context walks are drawn from a window, which size varies in the range [2,

60

4, 8, 16]. The embedding size of walks and graphs da and dg equals to 128. Finally, the

candidate sampling function for softmax equation (2.26) chooses uniform or loguniform

distribution of sampled classes.

To perform classification, we compute a kernel matrix, where Inner product, Polynomial,

and RBF kernels are tested. For RBF kernel function we choose parameter σ from the

range [10−5, 10−4, . . . , 1, 10]; for Polynomial function we set c = 0 and d = 2. We run

the experiments on a machine with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and

32GB RAM3. We refer to our algorithms as AWE (NN) and AWE (GK) for neural and

combinatorial approaches correspondingly.

Classification results. Table 2.3 presents results on classification accuracy for Social

unlabeled datasets. AWE approaches are consistently at the top, sharing top-2 results

for all six social datasets, despite being an unsupervised approach, unlike PSCN. At the

same time, Table 2.5 shows accuracy results for labeled bio datasets. Note that AWE

are learned using only the topology of the network and not node/edge labels. In this

setting, embeddings obtained by AWE (GK) approach achieve competitive performance

for the labeled datasets.

Table 2.2: Comparison of classification accuracy (mean ± std., %) in Social datasets.
Top-2 results are in bold. OOM is out-of-memory.

Algorithm IMDB-M IMDB-B COLLAB

Neural DGK 44.55 ± 0.52 66.96 ± 0.56 73.09 ± 0.25

Kernel

WL 49.33 ± 4.75 73.4 ± 4.63 79.02 ± 1.77
GK 43.89 ± 0.38 65.87 ± 0.98 72.84 ± 0.28
ER OOM 64.00 ± 4.93 OOM
kR 34.47 ± 2.42 45.8 ± 3.45 OOM

Ours
AWE (NN) 51.54 ± 3.61 74.45 ± 5.83 73.93 ± 1.94
AWE (GK) 51.58 ± 4.66 73.13 ± 3.28 70.99 ± 1.49

Table 2.3: Comparison of classification accuracy (mean ± std., %) in Social datasets
(continued). Top-2 results are in bold. OOM is out-of-memory.

Algorithm RE-B RE-M5K RE-M12K

Neural DGK 78.04 ± 0.39 41.27 ± 0.18 32.22 ± 0.10

Kernel

WL 81.1 ± 1.9 49.44 ± 2.36 38.18 ± 1.3
GK 65.87 ± 0.98 41.01 ± 0.17 31.82 ± 0.08
ER OOM OOM OOM
kR OOM OOM OOM

Ours
AWE (NN) 87.89 ± 2.53 50.46 ± 1.91 39.20 ± 2.09
AWE (GK) 82.97 ± 2.86 54.74 ± 2.93 41.51 ± 1.98

3Code can be found at https://github.com/nd7141/AWE

https://github.com/nd7141/AWE

61

Overall observations.

• Tables 2.3 and 2.5 demonstrate that AWE is competitive to supervised state-

of-the-art solutions in graph classification task. Importantly, even with simple

classifiers such as SVM, AWE increases classification accuracy compared to other

more complex neural network models. Likewise, just comparing graph kernels, we

can see that anonymous walks are at the top with traditional graph objects such

as graphlets (GK kernel) or subtree patterns (WL kernel).

• While combinatorial and neural approaches are different in nature, the resulted

classification accuracy is close across many datasets. As such, only on RE-B

dataset neural approach has more than 5% increase in the accuracy. In prac-

tice, we found that using a combinatorial approach for small length l (e.g. ≤ 10)

produces competitive results, while neural approach works best for a large number

of iterations and length l.

• Polynomial and RBF kernel functions bring non-linearity to the classification al-

gorithm and are able to learn more complex classification boundaries. Table 2.4

shows that RBF and Polynomial kernels are well suited for combinatorial and

neural models respectively.

Table 2.4: Kernel function comparison in classification task (%).

Algorithm IMDB-M COLLAB RE-B

AWE (NN) RBF 50.73 73.93 87.89
AWE (NN) Inner 51.54 73.77 84.82
AWE (NN) Poly 45.32 70.45 79.35

AWE (GK) RBF 51.58 70.99 82.97
AWE (GK) Inner 46.45 69.60 76.83
AWE (GK) Poly 46.57 64.3 67.22

Table 2.5: Classification accuracy (%) in labeled Bio datasets. Top-2 results are in
bold. OOM is out-of-memory.

Algorithm Enzymes DD Mutag

Neural DGK 27.08 ± 0.79 − 82.66 ± 1.45

Kernel

WL 53.15 ± 1.14 77.95 ± 0.70 80.72 ± 3.00
GK 32.70 ± 1.20 78.45 ± 0.26 81.58 ± 2.11
ER 14.97 ± 0.28 OOM 71.89 ± 0.66
kR 30.01 ± 1.01 OOM 80.05 ± 1.64

Ours AWE (GK) 35.77 ± 5.93 71.51 ± 4.02 87.87 ± 9.76

62

Scalability. To test for scalability, we learn network representations using AWE (NN)

algorithm for Erdos-Renyi graphs with increasing sizes from [10, 101, 102, 103, 104,

3 · 104]. For each size, we construct 10 Erdos-Renyi graphs with µ = np ∈ [2, 3, 4, 5],

where n is the number of nodes and p is the probability of having an edge between two

arbitrary nodes. In that case, a graph has m ∝ µn edges. We average time to train

AWE (NN) embeddings across 10 graphs for every n and µ. Our setup: the size of

embeddings equals to 128, batch size equals to 100, window size equals to 100. We run

AWE (NN) model for 100 iterations in one epoch. In Figure 2.9, we empirically observe

that the model to learn AWE (NN) network representations scales to networks with

tens of thousands of nodes and edges and requires no more than a few seconds to map

a graph to a vector. We note that this experiments measures pure efficiency without

consideration of classification accuracy.

0

2

4

6

8

10

12

10 100 1,000 10,000 30,000

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Nodes

μ=2

μ=3

μ=4

μ=5

Figure 2.9: Average running time to generate anonymous walk embedding for Erdos-
Renyi graphs, with µ = np ∈ [2, 3, 4, 5] where n is the number of nodes and p is

probability parameter of Erdos-Renyi model. X-axis is in log scale.

Intuition behind the performance. There is a couple of factors that leads anony-

mous walk embeddings to state-of-the-art performance in the graph classification task.

First, the use of anonymous walks is backed up by a recent discovery that, under cer-

tain conditions, the distribution of anonymous walks of a single node is sufficient to

reconstruct a topology of the ball around a node. Hence, at least on a level of a single

node, the distribution of anonymous walk serves as a unique representation of subgraphs

in a network. Second, the neural approach reuses hitherto learned embeddings matrix

W in previous iterations for learning embeddings of new graph instances. Therefore

63

one can think of anonymous walks as words that have semantic meaning unified across

all graphs. While learning graph embeddings, we simultaneously learn the meaning of

different anonymous walks, which provides extra information for our model.

2.7 Application to medical diagnostics

In the above, we have seen that AWE embeddings can work well with standard graph

datasets in classification tasks. In what follows we describe the framework to analyze

real data associated with medical diagnostics of the patients. To do so, we first obtain

the magnetic resonance imaging data (MRI), process it to derive the graph structures,

and then apply graph embeddings as a solution to the graph classification problem 2.3.

Our motivation comes from the fact that identifying correct diagnostics is a huge problem

in medical science, which costs billions of dollars4 and more human importantly lives.

Graph embeddings are a relatively new approach to this problem but as we show can

bring incremental values to already known solutions. In particular, among the known

psychiatric disorders, depression is believed to be among the most prevalent psychiatric

illnesses, with an estimated 300 million people affected in all age groups. Depression

studies have identified that in 75% [131] of cases patients experience more than one

depression act, which has a profound negative impact on the well-being and professional

life [132, 133]. Moreover, some of the forms for depression such as major depressive

disorder or bipolar depression amount to a large portion of disabilities around the world.

Hence, a better understanding of the treatment methods and diagnostics of depression

has far-reaching consequences.

It has been found [134–136] that epilepsy and depression have a strong association, with

the one often causing another. Epileptic patients often have an additional risk of being

affected by depression and moreover makes treatment more difficult: there is less effect

of medication on the patients, more challenging prescription of the correct treatment

due to the presence of two conditions, which leads to the development of by-products of

the antiepileptic medication.

There are many factors that affect the development of depression and many studies have

confirmed that corruptions in the topological and functional properties of the neural

brain networks are the underlying majority of mental and social symptoms of mood

diseases [137]. Analysis of MRI scans of the brain identified a hopeful set of features

[138, 139] that have a strong correlation with diagnosing depression. As such imagery

4http://www.who.int/news-room/fact-sheets/detail/depression

http://www.who.int/news-room/fact-sheets/detail/depression

64

may be useful to provide additional insights on pathophysiological instruments of mood

diseases [140, 141].

In the following, we propose to compose the graphs based on dynamic MRI images and

then apply graph embeddings to facilitate the diagnostics task. We experiment with

two sets of embeddings based on anonymous walks by neural model AWE and based on

subtree patterns of WL graph kernel. Designing graphs from the MRI images is known to

be difficult due to the noise coming from human scanning, hence we extensively describe

our preprocessing, cleaning, and graph construction pipeline. We formulate the problem

in terms of classification of the diagnosis of the patients and use graph embeddings

along with other features to assess the discriminative power of all features. The patient

data contain four different classes, each associated with the diagnosis of the patients:

(1) patients with epilepsy, (2) patients with depression, (3) patients with epilepsy and

depression, and (4) healthy volunteers. All classes are non-overlapping, so for example

class (1) and (3) contain different patients.

1. Depression and Health patients (DvsH): we design graph-based embeddings to

classify depression from healthy patients and evaluate several baselines available

in the literature [142].

2. Epilepsy and Depression-Epilepsy patients (EvsDE): we propose several markers

that discriminate depression versus patients with both conditions, epilepsy, and

depression.

2.7.1 fMRI data and pipeline

Magnetic resonance imaging (MRI) is a popular scan of the human body, when strong

magnetic fields created within a body part of the interest, produce images of the human

tissues. Function MRI (fMRI) is a dynamical variant of MRI, where the physiological

changes of the tissues are measured. The quality of the images depends on several

factors such as the noise of the environment and the resolution of the camera. The

latter presents a big computational challenge as it significantly increases the amount of

data a practitioner needs to operate on. For example, a standard voxel size of one cubic

millimeter in the case of fMRI imaging may result in 105 for a typical brain volume, which

also depends on the scanning parameters, duration of the scanning session and scanners

detection coil. Having hundreds of sequential scans, one fMRI procedure may take at

least 107 dimensions. Hence dimensionality reduction techniques may be necessary to

proceed with ML models.

65

One way to cope with such high dimensions of the data is to represent functional images

as the correlation images, i.e. a matrix of correlation values where pairwise similari-

ties between the regions of the brain are measured. After, a graph representation of

that matrix can be composed by picking the right threshold or maximizing the likeli-

hood between the predicted values and observed data. As such patterns of anomalous

functional behavior can be used as an indicator of dysfunction. Previous methods of

functional connectivity include probabilistic graphical models [143] and matrix decom-

position of functional brain networks (FBN) [144]. We construct a graph that represents

interconnectivity between known brain atlas of different regions [144] and extract graph

based-features to provide as an input to the ML models. Graph-based features can

include combinatorial statistics over graphs such as size and order of graphs, degree se-

quence, betweenness and centrality measures, or alternatively it can be embeddings that

capture global and local properties of a graph. After a set of features is constructed,

a classification model such as SVM or neural network can be trained to predict the

disorder label of the subject. This approach circumvents extreme amounts of data that

traditional approaches use and it leads to high accuracy compared to several baselines.

A recent approach of fMRI scans has demonstrated the effectiveness of using ML models

with connectivity patterns to classify patients into four groups [139]. In particular, the

authors established four different subtypes of connectivity among patients with depres-

sion. For that, they derived 33,154 connectivity features from 258 functional network

nodes that include all brain regions via estimating correlation among all pairs of the re-

gions. After they identified two types of features that correlate with different symptoms

of the patients. SVM classifier was used to predict the diagnosis of different subtypes

purely based on these sets of features, leading to the accuracy of 89.2%. In cross-

validation, a control group was accurately predicted the diagnosis with a sensitivity of

84.1% to 90.9% and specificity of 84.1% to 92.5%. This demonstrates that ML models

based on fMRI images can be an efficient tool in medical diagnostics. We take this

approach to analyze if recent advancements of graph representation can be integrated

into this pipeline and bring additional value.

We experiments with two types of features: simple graph features and graph embeddings.

We compute common graph metrics that we describe as a baseline for the problem as

well as test WL graph kernel and combinatorial AWE embeddings. We describe these

features in more detail next.

Given the functional connectivity matrices or graphs for patients and healthy controls,

the diagnostic task could be formulated as follows. In k indirect connectivity graphs

(G1, G2, ..., Gk) with labels l1, l2, ..., lk, li ∈ {1, 0}, indicating diagnosis, we need to pre-

dict labels for new graphs – to diagnose new patients (Gk+1, Gk+2, ..., Gk+n).

66

For this purpose, graph features describing each node – brain region separately and

the whole graph – brain connectome could be constructed. Entire brain connectivity

shows how efficiently distinct brain regions exchange the information and is described

by average efficiency, global efficiency and local efficiency.

Average efficiency of a connectivity graph G is defined as

E(G) =
1

n(n− 1)

∑
i<j∈G

1

d(i, j)
,

where n is number of nodes – regions in a graph, and d(i, j) is the length of the shortest

path between nodes i and j.

Global efficiency of a network is

Eglob(G) =
E(G)

E(Gideal)
,

where Gideal is the fully connected graph.

Local efficiency of a node i shows how well its neighbors communicate when node i is

formally removed, i.e.

Eloc(G) =
1

n

∑
i∈G

E(Gi),

where Gi is the subgraph containing just neighbors of node i, without the node i itself.

To describe each brain region its degree, betweenness centrality, average neighbor degree,

clustering coefficient, degree centrality, closeness centrality, path length, eigenvector

centrality could be calculated.

Degree is the number of edges incident to the vertex. It shows the importance of a brain

region. Average neighbor degree is the average degree of the neighborhood of each node.

Betweenness centrality makes it possible to rank vertices in terms of their importance

depending on the number of shortest paths passing through them. Betweenness central-

ity of a node v is the sum of the fraction of all-pairs shortest paths that pass through

v:

cB(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
,

where V is the set of nodes, σ(s, t) is the number of shortest paths between s and t, and

σ(s, t|v) is the number of those paths passing through some node v.

Clustering coefficient is defined as

cu =
2T (u)

deg(u)(deg(u)− 1)
,

67

where T (u) is the number of triangles through node u and deg(u) is the degree of u.

Degree centrality of a node v is the fraction of nodes it is connected to. Closeness

centrality of a node u is defined as

C(u) =
n− 1∑n−1

v=1 d(v, u)
,

where d(v, u) is the shortest-path distance between v and u, and n is the number of

nodes in the graph.

Gains in performance for graph classification tasks when using AWE-based kernels stem

from the fact that the distribution of subtree patterns in the case of WL kernel or of

anonymous walks in the case of AW kernel uniquely determines the topology of a graph

and therefore is suitable for graph isomorphism problem. While WL test of isomorphism

fails in some unique cases [145], it works efficiently in polynomial time. Contrary, it has

been shown [146, 147] that for random walks long enough, the distribution of anonymous

walks uniquely determines a graph G; however, the computational resources grow expo-

nentially with the length of a walk and the size of a graph. In addition, the performance

of the algorithms will also depend on the dataset and the diversity of computed statis-

tics. For example, if the variance of the distribution of anonymous walks is quite high,

the classification accuracy of the anonymous walk kernel will be high as well. Finally, in

practice, it may be important to check the individual contribution of each node to the

overall classification score (for instance, the areas in the brain that impacts the most

the disease). As anonymous walk distribution can be computed for each vertex, it can

express the importance of each node on the overall classification.

Moreover, simple graph features listed above have one strict assumption, which could

limit their ability to detect distributed disruption patterns specific to psychiatric diseases

in different subjects. The assumption is that similar functional disruptions take place

within the same nodes — anatomical regions: local established features are calculated for

each particular node as well as the concept of random walks used in WL kernels implies

that node labels are known. On the other hand, depression has a complex structure of

disruptions in brain function [137] which may affect different areas and brain subnetworks

in different subjects. Hence, when comparing different correlation matrices one is not

sure that problematic regions are the same across subjects – the problem could be in

similar connectivity disruption pattern and not in a particular brain area. The concept

of anonymous walks could be useful here because it is constructed in an assumption that

nodes’ labels are not known [146].

In what follows we describe our highly-automated fMRI processing pipeline. We assume

that the input to our pipeline is the raw MRI images and the output is our predictions

68

that vary upon the task. For example, when we classify depression against health group,

the output of the pipeline is the set of probabilities for each patient in the control

group. Our pipeline is fully modular, allowing one to implement their own modules of

preprocessing and analysis as long as it respects the input and output for each module.

One of the crucial factors in the design of the modules is its effectiveness as depending

on the processing procedures the runtime can vary from minutes to several hours. In

what follows we describe our pipeline.

Our pipeline contains several modules and takes as input a series of MRI scans. In

the first step, we apply a standard preprocessing also called low-level MRI handling

stage. This involves time correction of each sequence, the correctness of motion, different

filtering procedures and anatomical alignment for each patient [148]. The next two

modules perform a correlation matrix construction from which a graph for each patient

is constructed and representation of the graphs as numerical embedding. At the final

module, we train a ML classifier that can be from the linear approaches such as SVM

[149, 150], non-linear neural networks [149, 150], or gradient boosted trees that process

particularly well heterogeneous data [151]. We note that for our pipeline we selected

each step such that the most informative features of the models can be highlighted and

to be able to pinpoint classification outliers and evaluate precision and recall metrics,

often used in the medical applications.

After the first module of standard preprocessing, the volume of a brain is separated

into 117 anatomic regions according to the AAL atlas. In the next module, we assign

a correlation between time-series scans of one region with another region, i.e. the sim-

ilarity between corresponding dynamics of each region is measured. These correlation

coefficients comprise 117× 117 binary adjacency matrix, where one is obtained if a cor-

responding correlation value is greater than a predetermined threshold h and otherwise

it is zero. We usedpython library networkX to perform basic graph operations. In

the evaluation, we tried several values of the threshold h and select the one that has

substantial correlation values (p=0.05, FDR-corrected [152]).

We selected 11 graph-based features from the constructed correlation graph that were

appended to the final embedding of a graph. In particular, for each patient data, we have

116*8 measures and additional three global features, which amounts to 931-dimensional

feature vector.

For the extraction of the WL kernels, we used Graph Kernels5, Eigen6, and igraph7

libraries. The input for the Weisfeiler-Lehman subtree kernel algorithm is a list of

5https://github.com/BorgwardtLab/graph-kernels
6http://eigen.tuxfamily.org/index.php?title=Main_Page
7http://igraph.org/c/

https://github.com/BorgwardtLab/graph-kernels
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://igraph.org/c/

69

0.05 0.10 0.15 0.20 0.25 0.30 0.35
False Negative Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os
iti
ve

 R
at
e

Naive WL AWE

0.05 0.10 0.15 0.20 0.25 0.30 0.35
False Negative Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os
iti
ve

 R
at
e

Naive WL AWE

Figure 2.10: Classification results on DvsH and DvsED tasks in terms of False Neg-
ative Rate vs. False Positive Rate performance curves. Left image: DvsH task. Right
image: DvsED task. Note how the gap between AWE and näıve graph-based features
is larger for the relatively simpler DvsH task, indicating a clear advantage of learned

features.

graphs of length 50 and parameter ρ (subtrees height) and the output is 50× 50 kernel

matrix.

To compute AWE features, we used AWE8 library [146]. In our experiments, we set the

length of the random walk equal to 5. The output corresponds to the sample histogram

of random walks.

After feature extraction, the following part of the pipeline was organized as follows:

• We tried two geometrical dimensionality reduction techniques. (1) Local Linear

Embedding (LLE) and (2) Principal Component Analysis (PCA) with the obtained

correlation weights [153].

• We tried two feature selection algorithms. (1) SelectKBest function is a selection

technique based on Pearsons chi-squared test and ANOVA test. (2) Select top-k

features based on importance weights from the machine learning model such as

Logistic Regression, k-Nearest Neighbor or a Random Forest Classifier.

• In cross-validation we selected the best parameters for a number of selected param-

eters among 10, 20, 50, 100 and for a number of components in the dimensionality

reduction techniques 5, 10, 15, 20.

We separated training and testing datasets before feature selection and dimensionality

reduction [154]. Grid search was performed using k-fold cross-validation with k = 10

folds and stratification. The best model was verified using leave-one-out cross-validation,

8https://github.com/nd7141/AWE

https://github.com/nd7141/AWE

70

hence the results are comparable to those found in the literature. Also, the decision rule

is selected with the grid search to prevent overfitting on the small data [155].

2.7.2 Experimental evaluation

In the experiments, our goal is to find discriminative features of the patients cohort

with depression and also in combination with epilepsy. We collected a set of fMRI data

at 1.5T EXCEL ART VantageAtlas-X Toshiba scanner at Z.P. Solovyev Research and

Clinical Center for Neuropsychiatry. As was described before, the data were split into

four nonoverlapping groups, for those with depression, with epilepsy, healthy, and both

epilepsy and depression condition, such that each group is composed of 25 members. We

consider two classification problems, one for distinguishing depression from the healthy

control group and one from distinguishing depression from patients with double condi-

tions of depression and epilepsy.

Functional MRI data were preprocessed according to the proposed pipeline. Features

were extracted from the connectivity graph (correlation matrix) in three different ways:

1) simple graph features (denoted Näıve approach in Table 2.6) 2) WL kernel-based

features (WL) 3) Anonymous Walks Embedding based features (AWE). Extracted fea-

tures were passed to four classifiers as described in the pipeline. Classification results

are in Table 2.6.

As all data preprocessing and classification steps were the same, so the difference in

classification performance could be only due to the different quality of extracted features.

First of all, it can be seen that in EDvsE classification task all feature extraction methods

demonstrate worse performance than in DvsH task. This result is obvious because,

as discussed earlier, epilepsy could affect the same structures (and their function) as

depression thus making it harder to distinguish between these two groups than between

Depression group and Healthy controls.

Next, Näıve features performance is substantially worse for both tasks in terms of Accu-

racy, FPR and FNR in comparison to kernel methods, especially in EDvsE task with high

allowed FPR. This could be due to subtle differences in connectivity graph structures,

which cannot be captured with Näıve features.

WL features performance though in most cases better than Näıve performance, is worse

than AWE performance (for any fixed FPR), although the variance is quite high to

have statistical significant results. The average FNR difference between WL and AWE

features performance in DvsH task is 0.13 and in EDvsE task is 0.09. It is hard to judge

how significant are these results due to the small sample size, but they are stable for all

71

Table 2.6: Summary of classification results in terms of prediction accuracy for the
three competing graph-based features.

Task Näıve WL AWE

DvsH 73±15% 78±15% 80± 12%
EvsDE 67±15% 75±14% 76± 16%

Length = 2Length = 2 Length = 3Length = 3 Length = 4Length = 4 Length = 5Length = 5 Length = 6Length = 6

Patients with depression Healthy controls

Figure 2.11: Visualization of two-dimensional projections of graph embeddings
learned by AWE for different lengths of the random walk (η = 2, . . . , 6). Note how
embeddings for healthy controls (green circles) tend to cluster together in all cases,
indicating a normal connectivity pattern. All figures were obtained with t-SNE algo-

rithm.

selected FPR values. As previously discussed, the reason for better performance could lie

in the nature of depression disease: depression has a complex structure of disruptions in

brain function [137] which may affect different areas and brain subnetworks in different

subjects. Whereas the disruption pattern could be similar, the damaged areas could

be different, making it impossible to compare connectivity region by region or in other

words to put labels on graph nodes. This finding supports the idea of the usefulness of

Anonymous Walks concept and AWE framework in case of complex and subtle graph

differences, which could arise in considered diagnostic tasks.

To visually inspect the reasons of the increased performance enjoyed by AWE, we have

computed two-dimensional projections of our high-dimensional AWE embeddings using

a popular t-SNE technique [156]. We investigate the effect of the length of anonymous

random walk η and the binarization threshold h used for the correlation matrix on

the learned representations. Figure 2.11 shows that longer random walks provide a

larger variability of the distribution of anonymous walks, fostering the approximation

of the original graph and boosting the classification accuracy. The corresponding low-

dimensional embeddings tend to cluster together more tightly. On the other hand, as

depicted in Figure 2.12, stronger thresholding diminishes the benefits of using AWE

by generating sparser graphs that are initially easier to approximate but carry less

important information. We hypothesize that AWE experiences larger performance gains

for more complex networks.

72

Threshold = 0.1Threshold = 0.1 Threshold = 0.2Threshold = 0.2 Threshold = 0.3Threshold = 0.3 Threshold = 0.4Threshold = 0.4 Threshold = 0.5Threshold = 0.5

Patients with depression Healthy controls

Figure 2.12: Visualization of the effect of threshold value used for binarization of
the correlation matrix. Plotted are two-dimensional projections of graph embeddings
learned by AWE for different values of the threshold (h ∈ {0.1, 0.2, 0.3, 0.4, 0.5}). The
more sparse the original connectivity graph (larger h), the less do the embeddings tend
to cluster, as there is less variability among the generated random walks. All figures

were obtained with t-SNE algorithm.

2.7.3 Final remarks

In this application we analyzed how graph kernel methods are useful for fMRI data

classification in neuroimaging-based psychiatric research, namely detecting depression

patterns in subjects. For the sake of reproducibility we introduced a data preprocess-

ing, cleaning, and graph extraction pipeline as well as described three approaches for

graph features extraction: simple graph features, a conventional WL-based kernel, and

learnable AWE features. For both Depression versus Healthy controls and Epilepsy

with Depression versus Epilepsy classification tasks kernel-based methods outperformed

conventional graph features; AWE approach performed slightly better than WL-based

approach in terms of sensitivity and specificity. AWE visualization reveals that network

embeddings derived from Healthy controls tend to group together, for a large variety of

algorithm parameters, which might indicate the ability of AWE to capture subtle differ-

ences between fMRI connectivity graphs. This is the first time we evaluated WL-based

features and AWE graph embeddings in an application to depression pattern classifica-

tion and for neuroimaging-based diagnostics problems. Our findings could contribute to

the development of new graph features as well as to its application to real-world clinical

diagnostic tasks.

2.8 Summary

In this chapter, we described two unsupervised algorithms to compute network vector

representations using anonymous walks. In the first approach, we use the distribution

of anonymous walks as a network embedding. As the exact calculation of network

embeddings can be expensive we demonstrate how one can sample walks in a graph

to approximate actual distribution with a given confidence. Next, we show how one

73

can learn distributed graph representations in a data-driven manner, similar to learning

paragraph vectors in NLP.

In our experiments, we show that our network embeddings even with a simple SVM

classifier achieve an increase in classification accuracy comparing to state-of-the-art su-

pervised neural network methods and graph kernels. This demonstrates that representa-

tion of your data can be more promising subject to study than the type and architecture

of your predictive model. Separately we verify our models on the medical diagnostics

dataset where we want to label the patients’ data based on the fMRI-data. Again we

see the improvements over the baselines for this setup.

Chapter 3

Graph embeddings for

combinatorial problems

3.1 Motivation

Online networking offers opportunities for new types of marketing. A prime example of

such a new marketing technique is viral marketing, whereby organizations run promotion

campaigns through word-of-mouth effects within online social networks. The influence

maximization (IM) problem [157], studied intensively during the last decade, aims to find

well-chosen seed nodes from which to launch such campaigns to achieve good results.

Recent works [158, 159] have focused on the parameters that define the popularity of

a post, campaign, idea, or meme within a network. Such works were the first to study

the question of how commercial brand posts engage online social network users, drawing

from the theory of Uses & Gratifications [160]; they examine post parameters such as

content type (e.g., entertaining, informational), media type (e.g., vivid, interactive), post-

ing time (e.g., workday, peak hours) and valence of comments (e.g., positive, negative).

Interestingly, such studies have reached some ambivalent conclusions; for instance, [158]

ascertains that entertaining content decreases the number of “likes”, while [159] claims

the exact opposite.

Concurrent research has studied the problem of viral product design [161, 162], which

calls for engineering products by incorporating viral attributes to generate peer-to-peer

influence that encourages adoption within a network. Aral and Walker [161] study the

question of viral attribute selection under randomized trials only; Barbieri and Bonchi

[162] allude to the same problem as a complement to the standard IM problem of select-

ing a set of seed nodes that maximizes influence, but do not investigate it as a stand-alone

74

75

problem in its own right. Conceptually, both these works pertain to attributes attached

to products; they do not investigate the more general problem of choosing content, out

of a set of eligible options, for any kind of meme spreading in a network, to make it

viral.

In this section, we introduce and study the problem of selecting content that character-

izes any type of meme, to maximize its expected spread through a network, starting from

a fixed set of initial adopters. For instance, an advertisement post may feature aspects

such as topics, people, locations and abstract themes. We are particularly interested

in those content aspects that are associated with specific online social network pages;

we denote such aspects as content attributes. Fittingly, online social network users

themselves are associated with such non-personal network pages: they express their

preferences for specific brands, topics of interest, public persons, hobbies, or locations

by subscribing to or liking such pages. Thereby, an attribute’s popularity can be gauged

via its number of subscribers or page likes. For our purposes, we denote the pages that

a user subscribes to or likes as user attributes. We contend that the more content

and user attributes overlap, the more likely that user is to propagate that post. We

envisage an organization that aims to achieve a high viral effect of a campaign initiated

from its fixed set of subscribers. For example, assume FlyFast airways wants to launch

a promotion campaign in social media. FlyFast already has a social network presence,

and its page has a subscribers’ set S fixed at a given moment, while it faces constraints

related to its budget and people’s attention span. In their design, FlyFast consultants

are interested to identify a set of k content attributes, out of a universe of eligible, mu-

tually compatible options, that will maximize the expected network spread of a post

starting from its subscribers’ set S. Assume that, for k = 4, the optimal attribute set is

Best travel Accessories, Airline food guide, Hipster Europe, Backpacker tips. Guided by

this knowledge, FlyFast can infuse its post with complementary content that appeals to

users interested in those topics, e.g., promotions to backpackers, references to its hipster

audience, and highlights on its food quality. Thereby, it can maximize its promotion’s

reach.

To our knowledge, we are the first to study the influence maximization problem in which

the seed is given and post content is sought. Our related contributions are as follows:

Problem Setting We motivate the influence maximization problem in settings where

the set of initial adopters is fixed or even a single point of origin, and the content of

a propagated meme can be tuned. We formulate the concept of digital influence as a

special case of social influence.

Propagation Model We devise a content-aware propagation model, whereby the prob-

ability of influence across edges depends on content. We show that with this model: (i)

76

the problem of choosing content attributes that maximize influence is NP-hard; (ii) the

spread function is not submodular, hence no submodularity-based approximation algo-

rithm applies; and (iii) it is NP-hard to approximate the optimal solution within a factor

of n1−ε for ε > 0.

Algorithm We design a fast algorithm, Explore-Update, which achieves higher influ-

ence spread than baselines; its effectiveness is based on the iterative estimation of the

marginal spread achieved by each attribute, while its efficiency is gained by limiting

such computations only to nodes within a probability-based distance threshold θ and

attributes potentially affecting such nodes.

Experiments We compare Explore-Update to two baselines and show that it always

achieves better propagation results, while it is significantly faster than a nave Greedy

approach; we calculate the optimal solution on a reduced dataset with a small universe

of attributes, showing Explore-Update can achieve optimality; last, we demonstrate the

scalability of Explore-Update on seed set size.

3.2 Product recommendation in graphs

From the preceding discussion, we conclude that any brand would gain by maximizing

the expected effectiveness of its product promotion campaigns within an online social

network. We assume that there exists a certain set of subscribers to the brand’s social

network page, and a promotion campaign aims to influence the maximum number of

non-subscribers; as we discussed, such users, are associated with topics expressing their

interests.

3.2.1 Problem formulation

We model an online social network as a directed graphG = (V,E), where V = {v1, v2, ..., vn}
is a set of nodes, each of which corresponds to an individual user, and E ⊂ V × V is a

set of directed edges representing social relations among users. Each node v has a set of

associated attributes Fv = {f1
v , f

2
v , . . .}, from a universe Φ, that define user preferences;

we identify these attributes as the non-personal network pages a user expresses inter-

est in. A meme propagated through the network is associated with a set of attributes

F = {fp1 , fp2 , . . . , fpK} ⊆ Φ; these content attributes, along with the user attributes Fv

associated with the targeted node v, affect the probability of its propagation across a

network edge euv.

77

Accordingly, we define the Content-Aware Cascade model (CAC) as a variant of the

Independent Cascade model (IC), in which edge propagation probabilities depend on

content and user attributes. A CAC diffusion process unfolds in steps, starting from an

initial seed set of activated nodes. A node u activated at time step t has a single chance

to activate its out-neighbors. The process is incremental, as nodes can alternate only

from inactive to active states; the diffusion ends when there is no newly activated node

at a given step. At any step, a newly activated node u activates its out-neighbor v with

probability p(u, v) equal to:

puv = buv + quv · huv(Fv, F), buv, quv ∈ [0, 1]

huv(Fv, F) = min
{

1−buv
quv

, |Fv ∩ F |
} (3.1)

where buv is a base probability on an edge and quv a marginal probability that indicates

how much the probability of an edge increases for each selected attribute in F match-

ing a preference of node v, as indicated by the transition function huv(Fv, F), with a

sanity bound of 1−buv
quv

. We emphasize that the marginal probability quv distinguishes

among different user links, albeit not among different attributes for a given link; a more

complex model could distinguish among different attributes, or even define a probability

distribution function over the set of all attributes [163], to be learned by historical logs.

We choose to relegate the problem of defining and learning such probability distribution

functions to future work and now study the problem under the modeling assumption

that each attribute has the same independent effect on the probability function. Never-

theless, our simplified model forms a special case of any more complex model in which

each attribute would have a different effect on the probability function; i.e., in this

special case, such effects are rendered equal. Therefore, our subsequent hardness and

inapproximability results hold for any such a more complex model as well. Furthermore,

parameters quv and buv can be obtained from past data, as in [163]; in our setting, we

assume that such parameters have been obtained in advance.

Given a seed set S of subscribers, for every set of attributes F , we can obtain the total

number of activated nodes after running several trials of the diffusion process from S

[157]. The expected number of activated nodes for a given seed set S and a selected set

of attributes F is called influence spread, denoted as σ(F |S), or, as S is fixed in our

problem, just σ(F). Thus, σ(F) is the expected spread of the diffusion, which we can

calculate using live-edge instances of the graph (i.e., instances of activated-only edges

[157]) as:

78

σ(F) =
∑
X

Prob[X] · σX(F) (3.2)

where σX(F) is the influence spread in live-edge instance X.

We define the Content-Aware Influence Maximization (CAIM) problem as follows:

Given a directed graph G = (V,E), where each node v is associated with user attributes

Fv = {f1
v , f

2
v , . . .} from a universe of eligible attributes Φ, a seed set of adopter nodes

S, quantities quv, buv for each edge euv ∈ E, and a transition function huv(Fv, F) =

min
{

1−buv
quv

, |Fv ∩ F |
}

for edge probabilities, select a set of k attributes F ⊂ Φ that

maximizes the spread σ(F |S) of a diffusion process with content attributes F starting

from S.

CAIM is a novel problem that aims to find out how one can maximize the benefits of

a network promotion campaign with given points of departure. The motivation derives

from the fact that, in the real world, brands want to exploit their own social network

pages for marketing purposes. Instead of targeting the most influential initiators for a

promotion, as in classical IM, one can judiciously invest in the creation of a post with

lucrative content, under fixed initiators, guided by the content attributes provided by the

CAIM solution. As promotions can be formed with a wide variety of content attributes,

each possible attribute set F corresponds to a different probabilistic graph, on which we

can compute the influence spread of the seed set S; the attribute set F that achieves

maximum spread constitutes the CAIM solution. We emphasize that due to the drastic

difference between classical IM and CAIM in the way influence spread is achieved, the

solutions to these two problems cannot be qualitatively compared against each other.

3.2.2 Hardness and Inapproximability

We now show the hardness of the CAIM problem and study the properties of influence

spread function σ(F). To calculate σ(F), we first calculate edge probabilities with

respect to the selected content attributes F and then estimate the expected spread on

the graph starting from the given set of subscribed nodes S.

Theorem 3.1. The CAIM problem with the Content-Aware Cascade model is NP-hard.

Proof. Consider an instance of the NP-complete Set Cover problem, defined by a

collection of subsets S1, S2, . . . , Sm, a universe of elements U = {u1, u2, . . . , un} and an

integer k. We are asked whether there are k sets that will cover all elements in U . We

show that Set Cover can be reduced to a trivial instance of CAIM as follows: We

79

Figure 3.1: A graph instance demonstrating that the CAIM problem is NP-hard.

construct a bipartite graph with one activated node on the left side that connects to n

nodes on the right side, as shown in Figure 3.1. We map each member ui of universe U to

a node on the right side and add an attribute fj to set Fui if ui belongs to subset Sj . We

set buv = 0 and quv = 1 for all edges (u, v) ∈ E, i.e., a node v is influenced if at least one

of its user attributes is selected. In this trivialized version of CAIM, the spread can be

computed deterministically; there is no need for expected spread computations. Then,

an algorithm that could optimally solve this trivial instance of CAIM, among others,

would decide any instance of Set Cover: if we can target all nodes in the CAIM

instance using k attributes, we can in effect cover all elements in U using k subsets in

Set Cover. Otherwise, if the optimal spread in CAIM does not reach all nodes, it

follows that there is no set of k subsets that covers all elements in Set Cover. Thus,

by reduction from Set Cover, CAIM is at least as hard as any problem in NP.

By Theorem 3.1, there is no polynomial-time algorithm to find an optimal set of at-

tributes F , unless P=NP. We now proceed to study the properties of the influence

spread function σ(F).

A function σ(F) is submodular if it follows a diminishing returns rule: the marginal gain

from adding an element to a set F is at most as high as the marginal gain from adding

the same element to a subset of F . That is, σ(F1 ∪{f})−σ(F1) ≥ σ(F2 ∪{f})−σ(F2),

where F1 ⊂ F2 ⊂ Φ, for any f ∈ Φ.

We call a transition function huv(Fv, F) monotonic on F if, for subsets of attributes

F1 ⊂ F2 ⊂ Φ, it holds that huv(Fv, F1) ≤ huv(Fv, F2), for any node v. If the transition

function is not monotonic, then the influence spread function is neither monotonic,

80

nor submodular, because selecting more attributes may reduce probabilities p(u, v) and

thereby reduce the total influence spread. We assume that attributes have nonnegative

effects on users, rendering the transition function huv(·) monotonic: edge probabilities

can only increase if we add attributes to F , i.e. huv(Fv, F) ≤ huv(Fv, F + {f}) for any

f ∈ Φ and v ∈ G; hence σ(F) is monotonic. We now examine whether σ(F) is also

submodular. This turns out to not be the case, even for a monotonic and submodular

transition function, as the following counterexample demonstrates.

Figure 3.2: Increasing & decreasing marginal returns

Example 3.1. Consider the graph on the left-hand side in Figure 3.2, with a universe

of attributes Φ = {A,B,C}, sets of preferred attributes for each node be Fv1 = {A} and

Fv2 = Fv3 = {A,B,C}, buv = 0.5, quv = 1
2|Fv | on all edges, and one active node s. Then,

consider two subsets of attributes F1 = ∅, F2 = {B,C}, where F1 ⊂ F2, and a attribute

f = A ∈ Φ \ F2. The achieved spreads for each attributes subset, and the respective

marginal gains obtained after adding attribute f to subsets F1 and F2, are calculated as

follows. For subset attribute F1 selected, we have:

psv1 = 1
2 , pv1v2 = pv1v3 = 1

2

σ(F1) = 1
2 + 21

4 = 1

whereas when f = A is added to F1, we get:

psv1 = 1, pv1v2 = pv1v3 = 2
3

σ(F1 + {A}) = 1 + 2 · 2
3 = 7

3

Hence ∆1 = σ(F1 + {A})− σ(F1) = 7
3 − 1 = 4

3 . Similarly, for F2 selected, we have:

81

psv1 = 1
2 , pv1v2 = pv1v3 = 5

6

σ(F2) = 1
2 + 2 · 5

12 = 4
3

while when f = A is added to F2, we get:

psv1 = 1, pv1v2 = pv1v3 = 1

σ(F2 + {A}) = 3

Hence ∆2 = σ(F2 + {A})− σ(F2) = 3− 4
3 = 5

3 .

∆1 = σ(F1 + {A})− σ(F1) = (
1

9
+

8

9
+

12

9
)− (

1

8
+

4

8
+

3

8
) =

4

3

∆2 = σ(F2 + {A})− σ(F2) = 3− (
1

72
+

10

36
+

75

72
) =

5

3

Since ∆2 > ∆1, the submodularity of σ(F) does not hold.

Given this negative result, the influence function σ(F) might have an increasing returns

property (supermodularity), whereby it would hold that σ(F1 ∪ {f})− σ(F1) ≤ σ(F2 ∪
{f})− σ(F2), for F1 ⊂ F2 ⊂ Φ and any attribute f ∈ Φ. The following counterexample

shows that this property does not hold either.

Example 3.2. Consider the graph on the right-hand side in Figure 3.2, with a universe

of attributes Φ = {A,B}, sets of preferred attributes per node Fv1 = {A,B} and Fv2 =

{A}, buv = 0.5 and quv = 1
2|Fv | on all edges, and one active node s. Consider two subsets

of attributes F1 = ∅ and F2 = {B}. Then, for subset attribute F1 selected, we have:

psv1 = 1
2 , psv2 = pv1v2 = 1

2

σ(F1) = 1
2 +

(
1−

(
1− 1

4

)
1
2

)
= 9

8

whereas when f = A is added to F1 we get:

82

psv1 = 3
4 , psv2 = pv1v2 = 1

σ(F1 + {A}) = 3
4 + 1 = 7

4

Hence ∆1 = σ(F1 + {A})− σ(F1) = 7
4 −

9
8 = 5

8 . Similarly, for F2 selected, we have:

psv1 = 3
4 , psv2 = pv1v2 = 1

2

σ(F2) = 3
4 +

(
1−

(
1− 3

8

)
1
2

)
= 23

16

while when f = A is added to F2 we get:

ps,v1 = 1, pv1v2 = pv1v2 = 1

σ(F2 + {A}) = 2

Hence ∆2 = σ(F2 + {A})− σ(F2) = 2− 23
16 = 9

16 .

∆1 = σ(F1 + {A})− σ(F1) =

(
3

16
+

6

16
+

6

16
+

6

16
+

1

16
+

1

16
)− (

1

8
+

2

8
+

2

8
+

2

8
+

1

8
+

1

8
) =

5

16

∆2 = σ(F2 + {A})− σ(F2) = 2− (
6

4
+

1

4
) =

4

16

Since ∆1 > ∆2, the influence function σ(F) is not supermodular either.

Eventually, we have established the following:

Theorem 3.2. The spread function σ(F) with a probability transition function huv(Fv, F) =

min
{

1−buv
quv

, |Fv ∩ F |
}

is neither submodular nor supermodular.

By Theorem 3.2, it follows that we cannot use a greedy algorithm with an approximation

guarantee based on submodularity, as in [157]. Moreover, in the following, we show that

it is NP-hard to approximate the optimal solution to CAIM.

83

Theorem 3.3. It is NP-hard to approximate the optimal solution to the CAIM problem

with the Content-Aware Cascade model within a factor n1−ε for any ε > 0.

Proof. Consider an instance of the Set Cover problem, in which we need to decide

whether we can cover all elements of a universe U = {u1, u2, . . . , un} by selecting at

most k subsets out of a collection of S1, S2, . . . , Sm ⊂ U .

We then construct a graph G for the CAIM problem with a single subscriber node s

and nodes u1, u2, . . . , un corresponding to elements in U , connected so that ui−1 points

towards ui for all i = 2 . . . n, and s is connected to u1, and, for every subset Sj an

element ui belongs to, we add a attribute fj to the preferred attributes of ui. Next, for

some integer c we add η = nc−n−1 more nodes x1, x2, . . . , xη such that un has outgoing

edges to them and each xi has the same preferred attributes as un. Graph G, shown in

Figure 3.3, has N = nc nodes. We set buv = 0 and quv = 1 for all edges, so that an edge

becomes active if at least one of the attributes associated with its target node is selected.

Then, if it is possible to select k subsets that cover all elements of universe U , we can

also have N = nc activated nodes. Conversely, if there is no selection of k subsets that

covers all U , then there is at least one node ui that does not get activated, precluding

influence spread to nodes x1, x2, . . . , xη. We can then only target at most n out of nc

nodes, a fraction of n1−c = N
1
c
−1. Thus, if we had a polynomial-time algorithm that

approximated the optimal solution to CAIM within a factor of N1−ε for any ε > 0,

then it would suffice to set c =
⌈

1
ε

⌉
and use that algorithm so as to decisively distinguish

between a case that accepts a solution activating all N nodes and one that does not, and

thereby also decide Set Cover. Thus, by reduction from Set Cover, we have shown

that it is NP-hard to approximate the optimal solution to CAIM within a reasonable

factor.

3.2.3 The Explore-Update Algorithm

As it is NP-hard to approximate the CAIM solution within a factor of n1−ε with the

Content-Aware Cascade model, we proceed to design heuristic solutions therefor. We

structure our exposition as follows: we first present a simple, yet time-consuming greedy

heuristic; then, through a sequence of simplifying assumptions, we will generate a much

more efficient algorithm called Explore-Update.

Our first proposal is a baseline greedy algorithm that selects the attribute of the highest

marginal gain to add at each iteration, shown in Algorithm 5. This is an adaptation

of the Local Update algorithm in [162] to our problem. Intuitively, it is reasonable to

greedily select the locally best attribute in each iteration, especially for small values of k.

84

Figure 3.3: A graph instance demonstrating that it is NP-hard to approximate the
optimal solution to the CAIM problem.

Algorithm 5 Greedy(G, S, k)

F = ∅
while |F | < k do

for every f ∈ Φ \ F do
calculate σ(F + {f}) using Monte Carlo simulations

end for
F = F ∪ f{σ (F + {f})}

end while
return F

This kind of algorithm has been shown to achieve better quality than others in classical

Influence Maximization [164–166].

Though simple and effective, Algorithm 5 is inefficient due to its calculation of influence

spread by MC simulations. In a manner reminiscent of [164], we can improve efficiency

by considering maximum influence paths between nodes and the seed set. We call a

path Pmax = 〈u = u0, u1, u2, . . . , v = um〉 between vertices u ∈ S and v ∈ G maximum

influence path (MIP) if this path is the most probable among all paths between u and

v: Pmax =P
∏m−1
i=0 prob(ui, ui+1). Under the simplifying assumption that influence is

propagated only through MIPs, we can estimate influence spread in polynomial time as

follows: For a threshold θ and a node v, we build a tree structure called in-arborescence

Ain(v), which includes all MIPs of probability higher than θ from any node to v: Ain(v) =

{MIP(u, v) | prob(MIP(u, v)) > θ, u ∈ G}. Then, given a node u, the seed set S, and an

arborescence Ain(v), Algorithm 6 recursively estimates the probability that u is activated

in Ain(v), i.e., its activation probability ap(u,Ain(v)).

85

Algorithm 6 calculateAP(u, Ain(v), S)

if u ∈ S then
ap(u,Ain(v)) = 1

else if u has no in-neighbors in Ain(v) then
ap(u,Ain(v)) = 0

else
ap(u,Ain(v)) = 1−

∏
ω∈Nin(u)

(1− ap(ω,Ain(v))prob(ω, u))

end if
return ap(u,Ain(v))

Based on these calculations, for all nodes u ∈ G, we can calculate the influence spread

σ(F) as follows:

σ(F) =
∑
u∈G

ap(u,Ain(u)) (3.3)

We can then employ Equation (3.3) so as to estimate influence spread in Algorithm 5,

in lieu of MC simulations, deriving Algorithm 7; at each iteration, we compute the in-

arborescence of node u for a given threshold θ by converting each probability pe on an

edge e to − log pe and employing an efficient implementation of Dijkstra’s algorithm. If

computing an arborescence takes time t, then Lines 4-6 take nt and the total time is

O(k|Φ|nt).

Algorithm 7 Arb(G, S, θ, k)

F = ∅
while |F | < k do

for every f ∈ Φ \ F do
for every u ∈ G do

compute Ain(u) with threshold θ
ap(u,Ain(u)) = calculateAP(u,Ain(u), S)

end for
calculate σ(F + f) =

∑
u∈G

ap(u,Ain(u))

end for
F = F ∪ f{σ(F + {f})}

end while
return F

We further reduce the runtime of Algorithm 7 by eschewing redundant iterations of the

loops over nodes u and attributes f . First, we limit the calculation of in-arborescences

and activation probabilities only to nodes whose in-arborescence under threshold θ

reaches at least one node in S; only such nodes can yield non-zero estimated activa-

tion probability. To find out these nodes, we compute the out-arborescence of all nodes

in S, Aout(S), consisting of all MIPs of probability higher than θ from a node v ∈ S

86

to other nodes in G. Nodes in Aout(S) yield non-zero activation probability estimates.

Yet the set of paths in Aout(S) may contain directed loops, hence we cannot apply a

recursive algorithm like Algorithm 6 directly on Aout(S); we still need to obtain the

in-arborescence Ain(u) of each u ∈ Aout(S); we do so while building Aout(S), by adding

MIP(v, u) to Ain(u) for each u ∈ Aout(v). Algorithm 8 illustrates this Explore process.

Algorithm 8 Explore(G, F , S, θ)

Aout(S) = ∅
Ain(u) = ∅ for every u in G
for every v ∈ S do

compute Aout(v) for given θ and F
update Ain(u) for each u ∈ Aout(v)

end for
return {Ain(u) 6= ∅| for u ∈ G}

Then we can calculate influence spread σ(F) using the union of such in-arborescences,

Ain, by Algorithm 9.

Algorithm 9 Update(Ain, S)

1: for every u ∈ Ain do
2: ap(u) = CalculateAP(u, Ain(u), S)
3: end for
4: σ(F) =

∑
u∈Ain

ap(u)

5: return σ(F)

Second, we limit the calculation of marginal gain in Algorithm 7 only to those attributes

that can affect the influence spread. We call an edge in G participating, if at least one of

its endpoints are in Aout(S). Figure 3.4 presents a graph for a seed set S (and selected

attributes set F) in the green area; the yellow area includes nodes in Aout(S); the set

of participating edges Π is shown in solid and dotted lines; dotted edges have only one

endpoint in Aout(S); non-participating edges are shown in dashed lines, in the gray area.

Non-participating edges cannot increase influence spread, regardless of whether their

probability is increased; only participating edges have such potential. We limit the

attributes Algorithm 7 considers based on this observation. Let E(f) be the set of

edges that include attribute f among their preferred attributes, hence their probability

is affected when adding f to F . Then, at any iteration, if none of the edges in E(f)

is a participating edge, i.e., E(f) ∩ Π = ∅, then attribute f need not be examined as a

candidate to be added to F ; it bears no effect to influence function σ(F + {f}).

Putting together our enhancements to Algorithm 7, we design the polynomial-time

Explore-Update algorithm (Algorithm 10). In a nutshell, at each iteration, this Explore-

Update algorithm selects the hitherto unselected attribute f affecting participating edges

87

Figure 3.4: Participating and non-participating edges

Algorithm 10 Explore-Update(G, S, k, θ)

1: F = ∅
2: Ain = Explore(G, F , S, θ)
3: Π = {(u, v) ∈ G|u ∈ Ain or v ∈ Ain}
4: while |F | < k do
5: for f ∈ Φ \ F do
6: if E(f) ∩Π 6= ∅ then
7: Ain = Explore(G, F + {f}, S, θ)
8: Πf = {(u, v) ∈ G|u ∈ Ain or v ∈ Ain}
9: σ(F + {f}) = Update(Ain, S)

10: end if
11: end for
12: fmax =f {σ(F + {f})}
13: F = F ∪ fmax
14: Π = Πfmax

15: end while
16: return F

that bring about the largest increase of influence spread, using the Explore procedure for

calculating in-arborescences and the Update procedure for calculating influence spread,

while updating the set of participating edges Π at each iteration and using it to determine

which attributes need to be examined at the next iteration.

Let the time complexity to calculate an out-arborescence for node in S be toutθ, then

the Explore procedure takes |S|toutθ and the Update procedure takes O(ninθnoutθ) time,

where ninθ is the number of nodes in in-arborescences, and noutθ is the number of nodes

in out-arborescence of S. Therefore, if we perform κ calculations of Ain per iteration,

the total runtime is O(kκ(|S|toutθ +ninθnoutθ)). In effect, the Explore-Update algorithm

is expected to perform well when the size of arborescences is small, and the number of

88

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

54

56

58

60

62

64

66

68

70

72

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

80

100

120

140

160

180

200

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

(a) Multivalency on Gnutella (b) Weighted Cascade on Gnutella

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

1200

1400

1600

1800

2000

2200

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

2800

3000

3200

3400

3600

3800

4000

4200

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

(c) Multivalency on VK (d) Weighted Cascade on VK

Multivalency Weighted Cascade103

104

105

Ru
nn

in
g

tim
e

(s
ec

)

Greedy
Explore-Update

1855 3710 7420
Network size (# nodes)

10-3
10-2
10-1
100
101
102
103
104
105
106

Ru
nn

in
g

tim
e

(s
ec

)

Top-Nodes
Top-Edges
Greedy
Explore-Update

Runtime on Gnutella, k = 50 Runtime on VK with Multivalency, k = 20.

Figure 3.5: Influence spread and runtime results.

updates κ per iteration is smaller than |Φ|. As propagation probabilities on edges are

usually small in real networks, the size of arborescences is indeed expected to be small.

The number of updates depends on the structure of the network. In a large-diameter

network where multiple hops are required to reach most nodes from S via a MIP, there

is a good chance to reduce the number of computations significantly. We investigate this

matter experimentally in the following.

3.2.4 Experimental evaluation

In this section, we present a comprehensive experimental study on the Greedy and

Explore-Update algorithms we have introduced. All experiments were run on a 32GB

89

Intel Core i5-2450M CPU machine @ 2.50GHz, while algorithms were implemented1 in

C++.

As there is no previous work on the CAIM problem, we compare to basic baselines. Still,

as we discussed, the previous work that comes closest to our problem is that by Barbieri

and Bonchi [162]; yet that work solves primarily the problem of selecting a set of seed

nodes, and secondarily a set of product attributes, to maximize product influence in a

network. The best-performing algorithm for updating an attribute set in [162], Local

Update, performs one addition or removal of an attribute to/from the current attribute

set at each iteration; in effect, our Greedy algorithm can be considered as an adaptation

of Local Update to our problem, where only additions of attributes are needed. Therefore,

to the extent that comparison to [162] is possible, we conduct it via the comparison to the

Greedy algorithm itself. Another method for updating an attribute set proposed in [162],

Generic Update, is a hard-to-tune genetic algorithm, which may lead to an unpredictable

number of output attributes. Besides, as the experimental study in [162] shows, Genetic

Update offers no qualitative advantage while it is much slower than Local Update, which

is already by far the most time-consuming algorithm in our study. Therefore, we do not

consider a genetic algorithm in our experimental study.

Diffusion models. In the Content-Aware Cascade model, the probability on edge

(u, v) is a linear function of product and base probabilities quv and buv. To assign these

probabilities we use two techniques prevalent in previous work [164].

• Weighted Cascade model: probability 1
dv

is assigned to edge (u, v), where dv is the

in-degree of node v. We use this model for the sake of compatibility with previous

works, even while it may fit less to our problem setting.

• Multivalency model: the probability for edge (u, v) is drawn uniformly at random

from a set of probabilities. We choose that set to be [0.02, 0.04, 0.08].

We calculate buv for every edge (u, v), and set quv = buv
|Fv | .

Algorithms. We compare the Explore-Update algorithm under the different threshold

of θ values to three other algorithms:

• Greedy This is Algorithm 5 in this section, which is effectively an adaptation

of Local Update, the best algorithm in [162]. A similar algorithm has been used

extensively in the context of the Influence Maximization problem, and always

demonstrated top performance in terms of spread while being slower than other

1Documentation and code is available at https://github.com/nd7141/Explore-Update

90

Dataset Gnutella VK
Nodes 10,876 7,420
Edges 39,994 57,638

Average Clustering Coefficient 0.0062 0.28
Number of Triangles 934 168,284

Diameter 9 16
Attributes/Seed sets 151 3,882

Default Seed Size 34 15

Table 3.1: Data characteristics

20 30 40 50 60 70 80 90 100 11020

40

60

80

100

120

140

In
flu

en
ce

 s
pr

ea
d

Inf. Spread for K = 50.

103

104

Ru
nn

in
g

tim
e

(s
ec

)

Explore-Update
Top-Edges
Runtime of Explore-Update

20 30 40 50 60 70 80 90 100 11050

100

150

200

250

300

In
flu

en
ce

 s
pr

ea
d

Inf. Spread for K = 50.

103

104

Ru
nn

in
g

tim
e

(s
ec

)

Explore-Update
Top-Edges
Runtime of Explore-Update

(a) vs. seed set size, MV (b) vs. seed set size, WC

0 50 100 150 200 250 300 350
Threshold (1/θ)

240
245
250
255
260
265
270

In
flu

en
ce

 s
pr

ea
d

Influence spread and Runtime
vs. arborescence threshold

0

5000

10000

15000

20000

Ru
nn

in
g

tim
e

(s
ec

)Spread
Running time

(c) vs. θ

Figure 3.6: Influence and runtime vs. seed set size and θ on Gnutella.

heuristics [165]; it requires specifying the number of Monte-Carlo simulations to

calculate influence spread, as we do in the following.

• Top-Nodes This algorithm measures each attribute’s frequency among node pref-

erences and selects the k most frequent ones.

• Top-Edges This algorithm assigns to each edge e = (u, v) the attribute prefer-

ences of node v, Fv, and select the k most frequent attributes across all edges.

• Brute-Force This algorithm finds all possible sets of attributes of size k, computes

each one’s influence spread using Monte-Carlo simulations, and opts for the best.

Because the solution space is exponential, we use this method on reduced datasets.

91

Datasets. We run experiments in two real-world networks. The first network is a peer-

to-peer file sharing directed network Gnutella2, where nodes represent hosts and edges

represent connections between the Gnutella hosts. Our second network is extracted by

crawling the social network VK3; nodes are users and edges are friendships among them.

Statistics are presented in Table 3.1.

Attribute assignment and seed selection. We utilize one general and one ad-hoc

method for attribute preference assignment. In Gnutella, to assign attribute preferences

set Fv to node v, we find the block partitioning that minimizes the description length of

the network by stochastic block model ensemble; this technique is used to discover the

block structure of empirical networks and results to block memberships for each node

[167, 168]. We allow nodes to have overlapping memberships to different blocks. Each

block βi is associated with a distinct attribute fi. The attribute preference set of a node

vj , Fvj is the set of attributes of the blocks vj belongs to. The returned partitioning

consists of 151 blocks; the default seed set S is one of the blocks, of size 34. For VK,

the data comes along with annotations of groups and pages, which allow us to derive

both node attributes and seed sets. A group or page is a community of users that share

content with each other and communicate about a topic of interest (e.g., football clubs

or TV series). We use these group memberships to derive both node attributes and seed

sets, consistently to our motivation. There are 3882 such groups; the default seed size

is 15. Unless otherwise indicated, in our experiments we use the default seeds.

Influence spread.

Figures 3.5(a-b) present our results on competing algorithms’ influence spread4 on the

Gnutella network, varying number of selected attributes k from 1 to 51. We used

10000 MC simulations for Greedy, and θ = 1/320 for Explore-Update. We observe

that Explore-Update arrives just 1% and 5% below the performance of Greedy with

the Multivalency and Weighted Cascade model, respectively. On the other hand, the

Top-Edges and Top-Nodes algorithms reach only 88% and 85% of the spread of Explore-

Update. Figures 3.5(d-e) present influence spread in VK network. Now Greedy used

with just 500 Monte-Carlo simulations comfortably achieves 15%, 37%, and 48% higher

spread than Explore-Update with θ = 1/40, Top-Nodes, and Top-Edges, respectively, in

MV model. The picture is similar to the WC model, where Greedy achieves spread 9%,

38%, 40% higher than Explore-Update, Top-Nodes, and Top-Edges. Overall, our results

confirm that Explore-Update achieves high influence spread for networks where the local

neighborhood of the seed set has structure amenable to long-distance arborescences.

2https://snap.stanford.edu/data/p2p-Gnutella04.html
3https://vk.com/
4We use 10000 Monte-Carlo simulations to compute the final spread of all solutions.

92

Runtime.

We now compare algorithms in terms of runtime. Figure 3.5(c) presents the results with

Gnutella for k = 50; Explore-Update (θ = 1/320) runs an order of magnitude faster than

Greedy (10000 simulations); Top-Edges and Top-Nodes output a selected set in less than

a second, hence we do not include them. Next, we investigate how the algorithms scale

with increasing network size. We extract subnetworks of VK consisting of 1855, 3710,

and 7420 nodes of the original network (i.e., 1/4, 1/2, and full network) and proportional

edge density to the full network. In all cases, we compute the runtime on seed set S

of size 15, with the Multivalency model for k = 20, for Greedy (10000 simulations),

Explore-Update (θ = 1/40), and the Top-Edges and Top-Nodes heuristics. Figure 3.5(f)

shows that runtime scales linearly in network size in all cases. Moreover, we ascertain

that while Explore-Update fares no better than Greedy in terms of influence spread, it

is much faster.

Effect of Seed Size.

We now test the performance of Explore-Update for different sizes of the seed set S. We

select different seed sets from size 21 (minimal size for the current block partition) to

101 with step 10 on Gnutella. Figure 3.6(a-b) presents the influence spread for Explore-

Update and Top-Edges for k = 50, as well as the runtime of Explore-Update, whereas

Greedy is orders of magnitude slower for this setup, and Top-Nodes performs worse than

Top-Edges. We note that Explore-Update always achieves better influence spread than

Top-Edges. Interestingly, influence spread and runtime do not always grow with |S|.
This is explicable by the fact that different seed sets induce different local structures.

Effect of θ.

Next, we study the effect of the θ threshold, which controls the size of arborescences and

thereby the influence spread achievable from a seed set S. Figure 3.6(c) presents the

influence spread and runtime with the Gnutella network for θ in { 1
10 ,

1
20 ,. . . , 1

320}, with

the WC model for k = 50. The runtime of Explore-Update grows linearly in the inverse

threshold θ, while influence spread grows logarithmically in it. A good tradeoff between

quality and runtime is found at the knee point in the influence spread curve for θ = 1
40 .

Comparison to the Optimal Solution.

By Theorem 3.3, we proved it is NP-hard to approximate the optimal solution to CAIM.

Now, we compare the results of heuristics to the optimal solution obtained by brute force;

we reduce the total number of attributes to 16 and use a reduced Gnutella network by

selecting 2K nodes, yielding similar degree distribution properties to the original. Figure

3.7 shows the influence spread results, with the Multivalency model, for a random seed

93

set of size 10. Remarkably, Explore-Update finds the optimal set of attributes with

varying k.

0 2 4 6 8 10 12 14 16
Number of selected features, |K|

465

470

475

480

485

490

495

500

In
flu

en
ce

 s
pr

ea
d

Top-Nodes
Top-Edges
Brute-Force
Explore-Update

Figure 3.7: Influence spread on reduced network.

Next, we select k = 10, yielding
(

16
10

)
= 8008 possible attribute sets, and calculate,

with a new random seed set of size 428, the rank of each algorithm’s solution among

all possible attribute sets: for each attribute set, we compute its influence spread using

10000 MC simulations; we sort sets by their spread values and identify the rank of the

solution returned by each heuristic. Table 3.2 presents those ranks. Explore-Update

selects the optimal solution, while Greedy with 500 parsimonious MC simulations yields

the fifth-best attribute set. The selected attribute sets differ from each other in 2 out

of 10 attributes. We obtained similar results for other values of k, with Explore-Update

always returning the optimal attribute set.

Algorithm Rank Spread

Explore-Update 1 34.592

Greedy 5 34.114

Top-Edges 113 33.592

Top-Nodes 113 33.592

. . .

— 8008 27.82

Table 3.2: Algorithm ranking w.r.t. optimal solution.

Real-World examples.

Last, we looked into the actual results - seed sets and selected attribute sets of our

experiments, with special attention to the VK data set with the multivalency model,

and inspected our results. One interesting observation was that those attributes that

are liked by seed set users were rarely among the ones selected in the final solution;

this fact indicates that our problem makes good practical sense, while a straightforward

naive solution of sticking to what is liked by seed nodes does not yield good results.

94

Nevertheless, selected attributes exhibited a remote, yet unpredictable, resemblance to

the attributes liked by seed set nodes. For example, with a group titled “La vie et

l’amour” as seed, the selected attributes in our VK network sample included “Home

Comfort — Design — Interior Design — Style”. With “Psychology of Relations” as

seed, the selected attribute set included “Philosophy of Life”. Such analogies between

seed set and selected attributes, while retrospectively intuitive, would not be derived

otherwise; they depend on the way nodes of diverse interests interact within the overall

network structure. Such results vindicate our problem motivation.

We also checked how result sets change when we vary k. For example, we select 100

out of 431,374 subscribers of “Esoterica YOGA MEDITATION” as a seed set. With

k = 3, the selected attributes are {“MODA”, “La vie et l’amour”, “Blog for Men”}. As

“Esoterica YOGA MEDITATION” targets primarily women, results such as “MODA”

and “La vie et l’amour” are unsurprising. Nevertheless, interestingly, both E-U and

Greedy also return “Blog for Men” as a selected attribute, whereas the simple Top-

Nodes and Top-Edges heuristics do not. This result shows that our algorithm can select

nontrivial attributes.

3.2.5 Summary

This section proposed the problem of content-aware influence maximization (CAIM).

The goal is to select k attributes that characterize a propagated meme’s content, such

that its spread across a network from fixed points of departure is maximized, whereby

different attribute sets yield different propagation probabilities across network edges. To

our knowledge, there is no previous work on this problem. We formulated a content-

aware cascade model and showed that the problem is NP-hard and inapproximable,

while the influence function is neither submodular nor supermodular. We developed

an efficient algorithm for CAIM using bounded local arborescences to calculate influ-

ence spread. Our experimental study demonstrates that this Explore-Update algorithm

selects topics sets that achieve high spread and is orders of magnitude faster than a

conventional Greedy solution resembling algorithms developed for related problems. We

also provide evidence that our E-U algorithm can achieve the optimal solution when the

number of selected topics is small. In the future, we plan to study other propagation

models and investigate the parallelization of Explore-Update.

95

3.3 Influencer recommendation in social networks

3.3.1 Introduction

Influence Maximization is the problem of finding influential nodes in the network accord-

ing to the influence propagation model. It has found use cases in numerous domains such

as control of contamination in water networks [169], viral marketing in social networks

[170], and content recommendation for users [171]. For example, a marketing company

that wants to acquire a small initial set of initial adopters to promote a product to its

followers is a typical application of influence maximization. From the outset, this prob-

lem has gained a lot of attention and many challenges associated with the selection of

the initial set, with the design of realistic propagation model, and with the computation

of influence function have been addressed. These works have made a major leap towards

understanding the influence in the networks from a purely topological perspective of the

network and the influence model therein.

Somewhat parallel track of research has been concerned with vector representations of

networks, also known as embeddings. There has been a substantial effort to design the

node, edge, or (sub)graph vector representations as a native data format for classical

machine learning algorithms such as SVM and neural networks. Link prediction [62],

network visualization [172], taxonomy recovery [173], and protein classification [174]

problems are some examples of applications, where graph embeddings have been used

successfully. In these problems, the nodes, or other graph substructures, are embedded in

a latent vector space so that machine learning algorithms could be applied to the vectors

directly. The net effect of this approach is that after the representation embeddings have

been obtained one can focus on the appropriate selection and design of machine learning

algorithms that have been studied over the last decades.

In this work, we attempt to apply representation learning algorithms to facilitate the seed

set completion of influence maximization. In particular, we assume that we identified a

small set of nodes that we can consider as influential. We then seek to extend this seed

set by using pairs (embedding, label) from the seed set to train a binary classification

algorithm. This problem, which we frame as influence completion, is motivated by the

high cost of finding a large set of influential users due to substantial running time or

significant use of memory resources of the traditional algorithms [175]. Instead, we use

node embeddings to find the extension of the seed set by using only a fraction of all the

nodes in the graph.

In Influence Maximization problem one seeks a small set of nodes that would maximize

the influence function σµ(S) for a given probabilistic graph G = (V,E, P), where P

96

defines the probabilities for every edge, given a set of nodes S ⊂ V and a diffusion

model µ. Diffusion models define the way the information propagates from the initial

set S to other nodes in the graphs. An example of a diffusion model is Independent

Cascade model, where each node in S has a single and independent attempt to append

its neighbor to a set of activated nodes. Due to the space limit, we refer an interested

reader to exact definition of Independent Cascade model and influence function in [170].

The classic Influence Maximization (IM) problem, formulated by Kempe et al. [157],

has been intensively studied over the last decade. Recently, the focus has shifted to

providing realistic definitions of the concept of influence spread. Barbieri et al. [163]

proposed the Topic-Aware Influence Cascade (TIC) and Topic-Aware Linear Threshold

(TLT) models, which are extensions of the IC and LT models [157]. We briefly discuss

the related work about this topic below.

Classic Influence Maximization. The first solutions to the IM problem were pro-

posed by Domingos and Richardson [176, 177], yet had no guarantees on influence spread.

Then, Kempe et al. [157] formulated the problem based on the Independent Cascade and

Linear Threshold propagation models, proved its NP-hardness, and proposed a greedy

algorithm with a (1− 1/e− ε) approximation guarantee. Subsequent works investigated

the efficiency and scalability questions, either with heuristics [164, 178, 179] or preserving

an approximation guarantee [166, 180–183].

Topic-Aware Influence Maximization. Barbieri et al. [163] were the first to look

at social influence taking content characteristics into consideration. They proposed

methods that learn propagation model parameters such as topic-aware influence strength

from a query log of past propagation traces and verified experimentally that a larger

influence spread can be engendered when taking item characteristics into consideration

via their Topic-Aware Influence Maximization (TIM) models.

Aslay et al. [184] studied online TIM queries; the incentive for this online scenario

is that many independent advertisers wish to instantly detect the k most influential

users for advertising purposes; each advertisement contains a different set of keywords

and hence induces a new probabilistic graph creating a separate TIM instance; the

authors proposed an offline-online solution, INFLEX, based on an index used to identify

similarities among a new and log TIM queries; pre-computed solutions for log queries

are aggregated online so as to provide an approximate solution for a TIM query.

The online TIM problem is also studied in [185, 186]. Chen et al. [185] studied topic-

aware influence results on two real networks and utilized the derived properties to form

three preprocessingbased algorithms, of which MIS is the best; its main difference from

INFLEX is that, in MIS, pre-computed seed sets are based on each separate topic rather

97

than on a mixture of topics from different log queries. Chen et al. [186] utilized the

maximum influence arborescence (MIA) model [164] to achieve high influence spread

with a theoretical guarantee. The core idea is to utilize upper- and lower-bounding

techniques so that an exact marginal influence is computed only for the most promising

nodes. This work provides a state-of-the-art solution for the online TIM problem [184].

Recently, Li et al. [187] proposed a variation on the online TIM problem, namely the

alternative problem of Keyword-Based Targeted Influence Maximization (KB-TIM). By

KB-TIM, each user is associated with a weighted vector of preferences for distinct key-

words, which stand for topics. This vector can be generated by applying topic modeling

techniques [188] on aggregated user social activities, such as posts, likes, etc. An adver-

tisement then achieves an impact determined by its own topic-oriented keywords. The

KB-TIM problem aims to maximize an advertisement’s impact, expressed in terms of

its spread to target users relevant to its keywords. The solution in [187] draws from

previous work in [183], with the main difference being that, while in [183] θ users in

a sampled Reverse Reachable (RR) set [182] are counted without prejudice, in [187]

these sampled users are accounted in terms of exerted advertisement impact; [187] also

employs two indexing methods to precompute RR sets for different keywords, so as to

obtain RR sets associated with the query keywords on the fly. Nevertheless, results in

[187] are not compared to those in [186].

Influence Maximization with VPD. Aral and Walker [161] investigated the prob-

lem of viral product design under randomized trials focusing on product features like

personalized referrals and broadcast notifications. Thereafter, Barbieri and Bonchi [162]

studied the problem of influence maximization in conjunction with that of viral prod-

uct design, aiming to detect a combination of seed nodes and product attributes that

maximize influence in a network. The proposed solutions are generic methods named

Local Update and Genetic Update; the former is a greedy algorithm allowing for both

addition and removal of attributes at each greedy iteration; the latter is a brute-force

method that randomly selects a subset of all attributes. By contrast, we investigate the

problem of content selection for a post (not a product) as a stand-alone problem in its

own right and study its distinctive characteristics.

3.3.2 Finding initial influential set

In the Independent Cascade (IC) model [10], each node gets only a single chance to

activate its neighbors after it is itself activated. However, it has been shown that the

final set of active nodes can be equivalently found by means of a live-edge graph [10].

98

Consider a time step t of the IC diffusion process. A node u that has just become active,

is then given a chance to activate a neighbor v along edge euv with probability peuv .

Such an activation of v by u is independent of other nodes in the network. Thus, edge

euv is present in the network, or live, with probability peuv , or, otherwise, it is blocked.

Then the following proposition holds [10]:

Proposition 3.4. A node v is active iff there is a path from the set of initially activated

nodes S0 to v made entirely of live edges.

By Proposition 3.4, we can view the IC diffusion process as follows: we first decide

whether an edge is live or blocked, and then, starting from seed set S0, we activate all

nodes reachable by other active nodes via live-edge paths. Let RG(S) be the set of nodes

that is reachable from S in graph G and let G′= (V ′, E′), where V ′ ≡ V and E′ is the

set of live edges in E, i.e. G′ is the graph that results by keeping only live edges in

G. Then, the final active set is the set of nodes reachable from S0 in G′, RG′(S0). We

suggest that this alternative view of the diffusion process can be leveraged to measure

the potential each node has to activate other nodes, thereby suggesting good choices for

seed set S0.

Our algorithm design starts out from the following observation: when we remove blocked

edges from a connected undirected graph G, we end up with a live-edge graph instance

G′ having, in general, many disjoint connected components (CCs). Then, with a seed

budget of k nodes, we can straightforwardly maximize the influence spread on instance

G′ itself by selecting one node from each of the top-k CCs by size into the seed set S

(breaking ties arbitrarily). That is so because, if we arbitrarily pick up a node v from

a connected component CC and include it into the seed set S, then all other nodes in

CC will be activated by the diffusion process, according to Proposition 3.4. Thus, by

choosing any node from each of the k largest CCs, we ensure activating all nodes in

those CCs, and hence maximizing influence spread in graph instance G′.

Nevertheless, our above observation is valid only for a particular graph instance G′ at

hand. The solution maximizing influence spread on a particular G′ does not necessarily

maximize influence spread in expectation, for any randomly generated graph G′. Yet, it

provides a sample of how a diffusion process may look. We propose that, by generating

many such graph instances G′ and aggregating a score per node from all of them, we

can end up with a good approximation of each node’s importance in the overall diffusion

process. Then, our solution will consist of the k nodes of highest score. This process of

assigning scores to nodes is called score accumulation phase.

The question that arises from our approach is how exactly we should collect nodes’

scores. A score should reasonably depend on the number of appearances of a node

99

v in the top-k CCs of a graph instance G′. At the same time, we should take into

consideration the fact that, in each graph instance G′, one and only node v per top-

k connected component CC is sufficient to lead to a maximum-influence solution on

G′. Thus, the scores we assign should be shared among nodes within the same CC.

Putting these two considerations together, we conclude that a reasonable score function

for node v is 1
|CCv | , where |CCv| is the size of the CC to which v belongs. We claim that,

eventually, after R iterations, those nodes that have accumulated the highest scores will

be good candidates for inclusion into the seed set S of size k.

While the accumulation phase collects scores that indicate good candidates for inclusion,

it suffers from a drawback: neighboring nodes may find themselves in the same CC too

often, and collect similar scores as each other, even though only one of them would

be in most cases sufficient to bring about the same influence effect that both of them

exert. Therefore, we reason that, once a node u is selected into the seed set S, then,

for each edge euv incident on u, the score of node v, adjacent node to u, who is likely

to be in the same CC as u, should be penalized in a manner proportional to the score v

has accumulated and the probability that euv is active, peuv . This process of penalizing

the scores of selected nodes’ neighbors is called penalization phase. In detail, in the

penalization phase we include nodes to the seed set S by descending score, while, at the

same time, for each edge euv incident on a selected node u, we update the score of node

v, adjacent to u, by the formula sv = (1− peuv) · sv.

Algorithm 11 presents our Harvester heuristic. Settingm = |E| and n = |V |, we compute

connected components in an O(m) BFS, and maintain a Fibonacci heap of the top-k

components by size. As there are O(n) CCs in any graph instance, each iteration of the

accumulation phase needs O(m + n + k log(n)) time, hence O(R(m + n + k log(n)) for

R iterations. In the penalization phase, we store the score values in a Fibonacci heap,

hence need O(k log(n)+m), where O(m) stands for penalization operations across edges.

Thus, the time complexity of Algorithm 1 is O(R(m+ n+ k log(n)), dominated by the

accumulation phase.

100

Algorithm 11 Harvester(G, k)

initialize S = ∅
/* accumulation phase */

sv = 0 for all v ∈ V
for i = 1 to R do

generate G′ keeping each edge e∈G with prob. pe

find top-k connected components CCG′ in G′

W = ∅
for j = 1 to k do

CCG′(j) = argmax{|CCG′(i)|, CCG′(i) ∈ CCG′ \W}
W = W ∪ CCG′(j)

for node v ∈ CCG′(j) do

sv+ = 1/|CCG′(j)|
end for

end for

end for

/* penalization phase */

for i = 1 to k do

select u = argmax(sv|v ∈ V \ S)

S = S ∪ u
for each edge euv, v ∈ V \ S do

sv = (1− peuv) · sv
end for

end for

return S

3.3.3 Influence spread and Running time

Data sets. For evaluation purposes we run our algorithms against two real-world

networks. The first network, NetHEPT, is an academic collaboration network in ”High

Energy Physics - Theory” section of the e-print arXiv5. The same data set is used in

[157], where nodes represent authors and edges are papers’ co-authorship relationships.

Our second data set, taken from the archive of Jure Leskovec, is the Gnutella peer-to-peer

file sharing network from August 20026. In this network nodes are hosts in the Gnutella

network and edges are connections between the hosts. We refer to these networks as

NetHEPT and Gnutella networks. Statistics on them are provided in Table 3.3.

5
http://www.arXiv.org

6
http://snap.stanford.edu/data/p2p-Gnutella09.html

http://www.arXiv.org
http://snap.stanford.edu/data/p2p-Gnutella09.html

101

Table 3.3: Statistics for two real data sets.

Data set HepNEPT Gnutella

Number of nodes 15K 8K
Number of edges 31K 26K
Average degree 4.12 6.41
Maximum degree 64 102
Number of CC 1782 6
Maximum CC size 6794 8104
Median CC size 2 2
Clustering coefficient 0.49 0.009
Diameter (longest shortest path) 22 10

Cascade models. We compare all algorithms under the general IC model with non-

uniform propagation probabilities, using the following to assign propagation probabilities

to edges of a graph:

• Categories model : Based on the assumption that nodes with high degrees are likely

to have larger influence on their neighbors, the Categories model is built in the

following manner: let {0.01, 0.02, 0.04, 0.08} be a set of possible probability values.

We sort nodes by their degrees in ascending order and divide them into four equal-

sized chunks (except, maybe, the last chunk). We map the set of values to the

chunks so that nodes with low degrees have value 0.01, while nodes with high

degree have highest possible value 0.08. For an edge (u, v) we pick a propagation

probability at random between value of u and value of v.

Algorithms. We compare our Harvester heuristic against state-of-the-art scalable

heuristics for the influence maximization, as well as some baseline heuristics.

• Harvester : Our Algorithm 11 based on the aggregation of live-edge graphs. We

use R = 500 iteration; we found out that our results showed little difference in

influence spread for values beyond that.

• GDD : This is a generalized version of DegreeDiscountIC heuristic of [189], fine-

tuned for non-uniform propagation probabilities as follows. Let dv be the de-

gree of node v and tv is the number of edges incident to active neighbors of v.

We denote p1, p2, . . . , ptv as the set of propagation probabilities on edges incident

102

to active neighbors of v and ptv+1, . . . , pdv as the set of propagation probabil-

ities on edges incident to inactive neighbors. Then a score for node v is cal-

culated as (1− p1)(1− p2) . . . (1− ptv)(1 + ptv+1 + . . .+ pdv), expressing7 the ex-

pected marginal gain of activated nodes we can get by activating v. Then, at

each iteration, we select the hitherto inactive node of highest score and update

the scores of its neighbors according to the above formula. This heuristic gen-

eralizes the case of uniform probabilities presented in [189], where the score of a

node v is (1− p)tu(1 + (du − tu)p). We confirmed that our accurate generalization

outperforms the original DegreeDiscountIC for the whole range of k.

• PMIA(θ): The algorithm defined for the prefix-excluding maximum influence ar-

borescence model in Chen et al. [190] with parameter θ = 1/20.

• Degree: A heuristic that selects the k nodes of largest degree.

• Random: A heuristic that selects k random nodes in the graph.

51 76 126 151seed set size
450
550
650
750
850
950

in
flu

en
ce

 s
pr

ea
d

Gnutella
Random
Degree
PMIA
GDD
Harvester

51 76 126 151seed set size
1550

1750

1950

2150

in
flu

en
ce

 s
pr

ea
d

NetHEPT
Random
Degree
PMIA
GDD
Harvester

Figure 3.8: Influence spread on Gnutella and NetHEPT networks for Categories
model.

Figure 3.8 shows our influence spread results for the Gnutella and NetHEPT networks.

For the Gnutella network, the Random heuristic performs poorly as a baseline compared

to Harvester (it is 33.% lower for Categories model). Results for Degree heuristic are

worse by 25.4% than those obtained by Harvester. PMIA and GDD achieve similar

results (the discrepancy of percentage differences among all three models is no more

than 1%), which are, however, lower than those of Harvester: for the Categories model,

the Harvester has 20% and 19.8% higher results than PMIA and GDD, respectively.

For the NetHEPT network, Random algorithm shows poor results again (16.3% lower

than Harvester), while the average difference of Degree heuristic compared to Harvester

is 25.1%. Interestingly, Random performs even better than Degree for Random and

7This formula is valid under the assumption of non-parallel edges among nodes; in the case of parallel
edges among a pair of nodes (u, v), the probability pi in the second factor has to be substituted by
1 −

∏w
j=1(1 − pj), where w the number of parallel edges between a pair of nodes (u, v).

103

Categories models; this means that selecting nodes uniformly at random can result in

larger influence coverage than selecting high-degree nodes for those models, as selecting

the nodes of top degrees may be an overkill solution. PMIA and GDD achieve, again,

similar spreads for the three models. However, Harvester obtains 12.9% and 14.5% in

the Categories model.

Harvester GDD PMIA Degree Random NGIC10-4

10-3

10-2

10-1

100

101

102

103

104

105

ru
nn

in
g

tim
e

(in
 s

ec
)

105.7784

0.1392

33.7317

0.0532

0.0005

14334.8215

Gnutella

Harvester GDD PMIA Degree Random NGIC10-4

10-3

10-2

10-1

100

101

102

103

104

105

ru
nn

in
g

tim
e

(in
 s

ec
)

175.3634

0.1932

269.3145

0.0872

0.0004

44900.9151
NetHEPT

Figure 3.9: Running time on Gnutella and NetHEPT networks for Categories model.

Figure 3.9 reports the runtime of different algorithms when finding seed set S for k = 51.

Note that the y-axis is in log scale. The experiments are run on an Intel Core i5-2450M

CPU @ 2.50GHz with 6G memory. All results are measured on reasonably efficient

implementations of the different algorithms. For the sake of comparison, we also add

a representative improvement of the original greedy approach of Kempe et al. [157],

namely the NewGreedyIC algorithm (NGIC) by Chen et al. [189] with R = 1000.

In the Gnutella network, Degree, Random, and GDD algorithms present the best results,

finding a seed set in less than a second. PMIA completes in 34 seconds for Categories

models, respectively, while Harvester takes slightly more time to finish, 106 seconds, yet

more robust to variations in the underlying probability model. Notably, NewGreedyIC

takes about 4 hours to find a seed set S on a comparatively small network.

The picture is similar for the NetHEPT network, where the GDD, Degree, and Random

heuristics run faster. PMIA finishes is seed node selection in 269 seconds, while Har-

vester finishes in 175 seconds, again more robustly on the underlying model; notably, on

this larger network Harvester is faster than the fastest state-of-the-art PMIA heuristic

on the more demanding underlying Categories model, corroborating the robustness of

Harvester. As previously, NewGreedyIC takes several hours to finish, terminating in

more than 12 hours for MultiValency, Random, and Categories models, respectively.

In a nutshell, GDD, Degree, and Random have runtimes within a second, because these

are very simple models that do not require much computation. Harvester and PMIA

require 3 orders of magnitude more but they achieve better quality in influence spread.

104

In what follows we explain how we can decrease the running time if the initial seed set

is already found.

3.3.4 Influence Completion

We are interested in extending a small seed set of influential nodes by an additional set

of marginally influential nodes. We define the problem as follows:

Definition 3.5 (Influence Completion problem). Let G be a probabilistic graph and S

is the set of the most influential nodes of size k. We are asked to find a set T of size

k + l and S ⊂ T so that the influence function σµ(T) is maximized.

The problem is motivated when we are already given a seed set of initial adopters

and we seek to find an additional extension of this set to maximize the value. At the

same time, graph embeddings are useful data representation, which can be used for

multiple applications such as graph classification [174] and clustering [191]. Therefore

we aim to use node embeddings for the learning influence of each node by observing

the relationship between the node representations and the set of first influential users.

The intuition behind it is that if node embeddings define local and global properties

of a graph then given a small set of influential nodes we can capture the ”influential”

topology of the network by learning a model on influential node embeddings.

Influence Completion problem is NP-hard problem as we can remove the set S and

the corresponding edges from G, in which case the problem is reduced to Influence

Maximization, which is known to be NP-hard. However, one can first obtain some

ground-truth seed set, either as an output of Influence Maximization algorithm or by

domain-specific knowledge, and then use the embeddings of the nodes to acquire new

”similarly influential” nodes, which we show next.

Our approach relies on the already identified initial set of nodes, which we use to build

the dataset for our supervised classification model. The algorithm InfEmb takes as

input a graph G, a seed set S, and an integer l and outputs an extended set T ⊃ S that

attempts to maximize the influence function σ(T).

105

Table 3.4: Networks used in experiments. The columns are: name of the network,
number of nodes and edges, average clustering coefficient, diameter.

Dataset Directed Nodes Edges ClusteringCoefficient Diameter

GRQC No 5242 14496 0.52 17
Wiki Yes 7115 103689 0.14 7
FB No 4039 88234 0.60 8

Algorithm 12 InfEmb algorithm

Input: graph G, seed set S, and integer l.

Output: set T , s.t. |T | = |S|+ l

1: Compute a feature map φ : v 7→ Rd for all nodes in G.

2: Train a classification model f : Rd 7→ [0, 1] of influence score for each node.

3: T = S

4: Append top-l nodes to T based on influence score that are not yet in S.

5: return T

The algorithm InfEmb has essentially three steps. In the first step (Line 1), the algo-

rithm computes embeddings for each node in the graph, including those in S. In the

experimental section, we deal with several representation algorithms that encode graph

structure, as well as, direct computation of the statistics related to the node neighbor-

hoods and seed set. In the second step (Line 2), the algorithm trains a classification

algorithm f that outputs influence score for each node in the graph. For this, we use

the nodes in S as the positive labels. We sample the negative labels from the remaining

nodes reversely proportional to their degrees. That is the nodes that have a small degree

will most likely appear as negatives, which is motivated by the fact that the degree of

a node serves as a good proxy for the influence score [170]. The influence score is then

the likelihood that the algorithm f assigns to each node to be a positive label. In ex-

periments, we compare different options for a feature map φ and a classification model

f . In the third step (Line 4), the algorithm includes top-l nodes that are not yet in the

given set S. We evaluate the quality of the node embeddings in the following section.

3.3.5 Experimental evaluation

For evaluation of our approach, we obtain solutions to Influence Completion problem

on several datasets and compare it against several baselines using several evaluation

metrics.

Datasets. We use three publicly available datasets, GRQC8, Wiki9, and Facebook10.

106

Figure 3.10: Accuracy and Relative Change in influence spread for GRQC dataset.

0.5

10 20 30 40 50
Completion set size: l

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

, %
Accuracy for Influence Completion

AWE_LR
AWE_SVM
DW_LR
DW_SVM
N2V_LR
N2V_SVM
Degree

0.5

10 20 30 40 50
Completion set size: l

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

Ch
an

ge
, %

Relative Change for Influence Completion

AWE_LR
AWE_SVM
DW_LR
DW_SVM
N2V_LR
N2V_SVM
Degree

GRQC dataset is a collaboration network in General Relativity and Quantum Cosmol-

ogy area authors are nodes and edges correspond to their co-authorship of the paper.

Wiki network is a graph where nodes are the users in Wikipedia and edges are among the

users who give the votes to become administrators. Facebook is a social network with

users as nodes and edges denote their friendships in the network. Each edge in undi-

rected network is replaced by two directed edges. The datasets vary in their structural

properties as shown in the Table 3.4.

Propagation models. Similar to previous research we use Independent Cascade model

to determine influence propagation in the network. In this model, the influence prop-

agates from one node to another node with a probability of the edge. We assigned

8http://snap.stanford.edu/data/ca-GrQc.html
9http://snap.stanford.edu/data/wiki-Vote.html

10https://snap.stanford.edu/data/ego-Facebook.html

107

Figure 3.11: Accuracy and Relative Change in influence spread for Wiki dataset.

0.5

10 20 30 40 50
Completion set size: l

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

, %
Accuracy for Influence Completion

AWE_LR
AWE_SVM
DW_LR
DW_SVM
N2V_LR
N2V_SVM
Degree

0.5

10 20 30 40 50
Completion set size: l

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Re
la

tiv
e

Ch
an

ge
, %

Relative Change for Influence Completion

AWE_LR
AWE_SVM
DW_LR
DW_SVM
N2V_LR
N2V_SVM
Degree

probabilities according to a weighted cascade model [170], i.e. an edge (u, v) has a

probability 1/dv, where dv is degree of a node v.

Algorithms. We test our algorithm InfEmb with different choices of functions φ and

f . We select the feature map φ from the embedding methods node2vec [62], DeepWalk

[192], and AWE [174]. We denote the embeddings as N2V, DW, and AWE respectively.

The first two are popular algorithms for node embeddings that create vector represen-

tations from the random walks in the graph. AWE is a version of anonymous walk

embeddings [174] adapted for node embeddings. It has been shown [119] that the distri-

bution of anonymous walks for a single node is sufficient to reconstruct a neighborhood

around this node, i.e. AWE node embeddings encode the local graph structure around

the node. Hence, if the propagation of influence happens within a neighborhood of in-

fluential nodes, this method could distinguish the influence of nodes by looking at the

108

Figure 3.12: Accuracy and Relative Change in influence spread for FB dataset.

0.5

10 20 30 40 50
Completion set size: l

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

, %
Accuracy for Influence Completion

AWE_LR
AWE_SVM
DW_LR
DW_SVM
N2V_LR
N2V_SVM
Degree

0.5

10 20 30 40 50
Completion set size: l

0.88

0.90

0.92

0.94

0.96

0.98

Re
la

tiv
e

Ch
an

ge
, %

Relative Change for Influence Completion

AWE_LR
AWE_SVM
DW_LR
DW_SVM
N2V_LR
N2V_SVM
Degree

vector representations of the neighborhoods. For the AWE we compute a distribution

of anonymous walks for each node starting at that node with a fixed length L = 4. In

addition to the vectors obtained by the feature maps φ, we append information about

the number of influential nodes in the neighborhood and its degree to the node embed-

dings, which should eliminate the addition of two influential nodes to the seed set that

are located in one-hop distance.

We also experiment with the classification function f and select it as SVM or Logistic

Regression (LR). We use the prediction values from classification model f to rank all

the nodes in the graph and we select top-l nodes from this list that are not yet in the

set S. We compare our model with a baseline algorithm, Degree, where the top-nodes

are selected from the ranked list according to their degrees.

109

Evaluation metrics. We measure the performance of the proposed algorithms by

two metrics related to influence maximization. To measure accuracy of the approach,

we train the model on k first positive and k negative nodes and compute the overlap

between the top [k + 1, k + 2, . . . , k + l] nodes returned by the model and the one

that we consider as ground-truth. We set k = 10 and vary the completion set size

l in the range [10, . . . , 50]. To get ground-truth nodes one can either use a standard

traditional influence maximization algorithm or rely upon domain knowledge. We use D-

SSA algorithm [193] that proved to be among state-of-the-art approaches for influence

maximization. Intuitively, the accuracy of the model shows the discrepancy between

the predictions of the classifier and the ground-truth values that are hard to obtain.

Additionally, in some scenarios we want to measure the relative change (RC) of influence

spread by the model’s seed set compared to the given oracle seed set. While the model

may miss some of the top-influential nodes, the returned by model nodes can still be

highly influential and therefore RC measures the discrepancy of influence spread. More

formally, we use first k ground-truth nodes and top-l nodes returned by the model to

compute influence spread scl. We then compute influence spread sgr of ground-truth

k + l nodes and define relative change of the model as
sgr
scl

.

Results. Results for GRQC dataset are presented in Figure 3.10. On the left, the

accuracy, i.e. the overlap between the ground-truth seed set and the set returned by

the classifier, is presented. AWE is consistently on the top with 10% and 2% uplift in

accuracy compared to degree approach for l=10 and l=50 respectively. The value of ac-

curacy decreases from 80% to 0.68% for AWE-SVM model. DW and N2V embeddings,

in general, perform comparably with the degree approach. We also see that the classi-

fication models perform similarly for all algorithms in terms of accuracy, while SVM is

generally more robust across the whole range of values l.

The Relative Change (RC), i.e. the influence spread of the ground-truth set divided by

the influence spread of the influence set of the algorithm, is presented on the right. RC

for AWE and DW is at the top, with 0.97 and 0.99 change in influence spread respectively

for l=10. RC for DW and N2V models is above 80% and in general comparable with

the baseline degree algorithm.

Results for Wiki and FB datasets are presented in Figures 3.11 and 3.12 and share the

main insights as for the GRQC dataset. In particular, for Wiki dataset the accuracy and

relative decrease for AWE is consistently at the top, being always higher 80% and 0.9

for two metrics respectively. N2V and D2W performs similarly to the degree baseline

with 78%-80% accuracy and 0.95 ± 0.16 relative change. For FB dataset, the accuracy

for degree baseline is quite high, which implies there is a strong correlation between the

degree and the influence of the node. Yet, in terms of relative change, the list of nodes

110

of InfEmb algorithm is still highly influential, especially when it comes to predicting the

first nodes with l = 10. We also obtained the results for the random baseline, when

the nodes for completion set are taken uniformly at random across all nodes in the

graph. We didn’t include it in the figures for visibility reasons, however, the accuracy

and relative decrease are significantly smaller compared to other algorithms, being lower

than 1% and 50% for two metrics respectively.

3.3.6 Summary

This section reexamined the classical influence maximization problem in a network, as

well as its dual variant, the seed minimization problem. We proposed Harvester, an

efficient heuristic, based on score aggregation by multiple live-edge graphs, that can be

gracefully customized for both problem variants. Our algorithm achieves good solu-

tions for both problems, while its strength shines in the case of the seed minimization

problem. On that problem, a seed set size is not given in advance as a constraint but

has to be discovered as a minimization objective. The minimal size a given algorithm

can achieve has to be conventionally discovered by an iterative, trial-and-error search

process, each iteration of which runs a costly cascade process to estimate the expected

influence spread. Harvester tackles this problem in a very elegant manner; while aggre-

gating scores by live-edge instances, it also inherently provides a good prediction of the

minimal seed size in advance. Our experimental study on real-world data demonstrates

the effectiveness and robustness of this technique in reducing the required number of

search iterations by a factor of two, while it also shows that both Harvester algorithms

provide efficient, scalable, and competitive solutions in comparison to the state-of-the-

art scalable approaches, especially on large values of seed set size and target influence

spread with complex graph models. In the future, we plan to investigate how our general

approach can be adapted for other influence diffusion models.

Chapter 4

Conclusion

4.1 Synopsis

In this dissertation we have made contributions to the computational graph theory in

several ways: proposing new graph and node embeddings (Chapter 2); formulating and

proposing an algorithm to a hard optimization problem on graphs and proposing an algo-

rithm based on embeddings for combinatorial problems (Chapter 3. Besides its scientific

novelty, in the last section, the work provides an example of merging two principles of

solving problems on graphs, traditional greedy approach, and modern machine learning

algorithms.

In Chapter 2 we introduce a concept of anonymous walks in undirected graphs. The

distribution of anonymous walk becomes a complete graph invariant allowing us to have

an invariant topological measure to compare different graphs. We study some of the

properties of anonymous walks and show an algorithm to obtain canonical labeling that

can be used for graph isomorphism problem. Our contributions include the analysis of

the complexity of computing such distribution and exact upper bounds on the number of

samples to approximate exact distribution. We also propose a neural network algorithm

to compute embeddings based on the sampled positive and negative pairs of anonymous

walks to compute which anonymous walks occur together and therefore compute a graph

embedding. Our methods are unsupervised, do not require any additional data, and show

competitive performance in the graph classification task, compared to state-of-the-art

supervised methods and graph kernels. We conclude the section with an application to

medical diagnostics of predicting depression and epilepsy based on the fMRI images of a

brain, where we input adopted anonymous walk embeddings for nodes to the classifiers.

In the next Chapter 3 we formulate another combinatorial problem on graphs of product

recommendation. We show that this highly relevant problem is NP-hard and moreover

111

112

finding any meaningful approximation to this problem is also NP-hard. Having such

strong inapproximability, we show that the greedy approach for this problem achieves

better performance than several baselines. We propose two modifications to the greedy

approach that do not sacrifice the quality of the solutions but reduces the running time by

an order of magnitude. We continue by considering a well-known problem of influence

maximization, which has a direct relation to the aforementioned problem of product

recommendation. We propose a solution that is efficient for undirected graphs and

which naturally adapts to the problem of seed minimization. Next, we show that we can

effectively reuse the node embeddings we developed in the previous sections to facilitate

the hard problem of finding an influential set. For this, we search for similarities of the

already discovered influential set of nodes and the remaining not yet activated nodes

using vector representations of the nodes and learning supervised classifier to predict a

probability of a node being influential.

4.2 Future directions

In this section, we discuss several of the topics that we think have a major impact on

coupling traditional combinatorial methods with the efficiency of machine learning tools.

Pretrained graph models Similar to the trends of machine vision and natural lan-

guage processing there is room for research on pretraining embeddings for graphs on

large corpus of data and then using these models as a part of the learning pipeline

for the task. Embeddings based on shallow models have been a key to understanding

that vector representations of graphs are useful for many graph applications and have

brought many novel ideas for graph research scientists. Pretrained graph models can be

the next step of improving quality of solutions for many tasks. An additional benefit

of having pre-trained models is a standardized benchmark of datasets and models for

different problems on graphs.

Solving NP-hard problems This area presents a particularly interesting topic as it

combines years of computer science research on resolving hard problems with machine

learning approaches. One of our results related to solving graph isomorphism problems

falls into this domain; however, there are many open questions and unsolved tasks.

Broadly speaking the solutions can be divided into two classes, based on the expert

demonstration and the agents experience. The first class of solutions depends on the

solved instances of the problems (e.g. SAT) provided by the solver. As the problems are

NP-hard its very prohibitive to obtain the solutions for many instances, so either the

algorithms utilize already collected instances of the problems or the solvers are used for

some small enough sizes to obtain results fast enough. The benefit of such methods that

113

they can learn to imitate the expert decisions for unseen examples and even generalize

to bigger sizes of the problems for which solvers do not cope. Another class is based

on reinforcement learning ideas that guided by the reward the agent will be able to

update its policy correctly, essentially improving over random search strategies. A large

drawback for such problems is that it requires a lot of experience rollout to happen before

the agent can effectively select the decisions; however such approaches are at the moment

the only way to solve problems where the optimal sets are hard to obtain. For the latter

class, its even harder to solve decision problems, where a binary answer is expected

instead of the continuous value that allows us to compare it to the optimal solution. For

example, discussed in this thesis a problem of finding maximal cover in a graph requires

us to find one cover among a huge number of alternatives and getting an approximation

to the longest path problem does not approach us to the right decision. This extreme

difficult problems where the search space is big and the required solution occupies an

infinitesimal fraction of it urges new tools and ideas to appear for the generation to

come.

Appendix A

History of Weisfeiler-Lehman

Algorithm

Weisfeiler-Leman algorithm was developed by two Soviet mathematicians, Boris Weis-

feiler and Andrew Leman, who were working in the same scientific group supervised

by A.S. Kronrod. The algorithm has high expressive power and rarely fails in prac-

tice, which led to believe that it works in general for the short period of time. Later

it was realized that there are special types of graphs, where the algorithm may miss

non-isomorphic graphs, but its existence still has a large impact on the field of graph

isomorphism and representation. The biography of Boris Weisfeiler can be found online1;

however, for Andrew Leman the information is very scarce, so we decided to include it

in this thesis, collecting it from the friends and colleagues of Andrew.

Andrew Leman (3 September 1940 - 2012) obtained specialist degree (equivalent to

M.Sc.) in mathematics from Moscow State University in 1962, where he studied in the

same group with Boris Weisfeiler. In the USSR he worked in the Institute of Theoretical

and Experimental Physics (ITEF) during 1962-1968, then in Institute of Control Sciences

(IPU) from 1968 to 1976, and after in the Soviet Institute of System Analysis (ISA) from

1976 to 1990. His first Ph.D. thesis was about enumeration of all cellular algebras and

associative schemes of small order. It’s during this time that he was working on graph

isomorphism problem and co-authored WL algorithm. Unfortunately due to the conflict

between the head of the Ph.D. defense committee and Andrew’s supervisor, his thesis

was never officially defended. He wrote a second thesis on the interface adaptation,

which led to the development of heterogeneous programs into a big complex software.

After the collapse of the iron curtain, he immigrated to the USA, living there for the rest

of his life and working in several Silicon Valley startups. Together with his friends he

1For example here or here

114

https://en.wikipedia.org/wiki/Boris_Weisfeiler
http://www.boris.weisfeiler.com/

115

founded a company Cognitive Technology Inc. that was developing optical recognition

systems. His last company was Invitae, a bioinformatics startup that makes analysis

genes.

Andrew Leman was a very versatile programmer, helping on the range of problems from

simulating quantum effects to developing the first world champion in chess games. He

is one of the co-authors of the first Soviet database system. During his studies he also

regularly participated in the mathematical Olympiad and he wrote a handbook of the

challenging mathematical problems for students that is widely used in preparation. His

friends remember him as a reliable and loyal person with a strong sense of humor and a

big talent in math.

Bibliography

[1] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commen-

tarii academiae scientiarum Petropolitanae, pages 128–140, 1741.

[2] John Michael Harris, Jeffry L Hirst, and Michael J Mossinghoff. Combinatorics

and graph theory, volume 2. Springer, 2008.

[3] Donald L. Kreher and Douglas R. Stinson. Combinatorial algorithms: Generation,

enumeration, and search. SIGACT News, 30(1):33–35, March 1999. ISSN 0163-

5700. doi: 10.1145/309739.309744. URL http://doi.acm.org/10.1145/309739.

309744.

[4] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine

learning, 62(1-2):107–136, 2006.

[5] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.

In Advances in Neural Information Processing Systems, pages 5165–5175, 2018.

[6] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and

Karsten M. Borgwardt. Efficient graphlet kernels for large graph comparison. In

Proceedings of the Twelfth International Conference on Artificial Intelligence and

Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April 16-18, 2009,

pages 488–495, 2009.

[7] Paul J Kelly et al. A congruence theorem for trees. Pacific Journal of Mathematics,

7(1):961–968, 1957.

[8] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine

Learning Research, 12:2539–2561, 2011.

[9] J. A. Bondy. A Graph Reconstructor’s Manual, page 221252. London Mathematical

Society Lecture Note Series. Cambridge University Press, 1991. doi: 10.1017/

CBO9780511666216.009.

116

http://doi.acm.org/10.1145/309739.309744
http://doi.acm.org/10.1145/309739.309744

Bibliography 117

[10] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 137–146.

ACM, 2003. ISBN 1-58113-737-0.

[11] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs.

In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM

2005), 27-30 November 2005, Houston, Texas, USA, pages 74–81, 2005.

[12] Harold N. Gabow and Shuxin Nie. Finding long paths, cycles and circuits. In

Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors, Algorithms

and Computation, pages 752–763. Springer Berlin Heidelberg, 2008.

[13] N. Biggs. Algebraic Graph Theory. Cambridge University Press, 2nd edition, 1993.

[14] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts

in Mathematics. volume 207 of Graduate Texts in Mathematics. Springer, 2001.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. 2009.

[16] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar

graphs (preliminary report). In Proceedings of the Sixth Annual ACM Symposium

on Theory of Computing, STOC ’74, 1974.

[17] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in

polynomial time. In Proceedings of the 21st Annual Symposium on Foundations

of Computer Science, SFCS ’80, 1980.

[18] László Babai. Graph isomorphism in quasipolynomial time. CoRR,

abs/1512.03547, 2015. URL http://arxiv.org/abs/1512.03547.

[19] Brendan D. Mckay and Adolfo Piperno. Practical graph isomorphism, ii. J. Symb.

Comput., 2014.

[20] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the

number of variables for graph identifications. Combinatorica, 1992.

[21] Pascal Schweitzer. Problems of unknown complexity.

[22] Mark K Goldberg. A nonfactorial algorithm for testing isomorphism of two graphs.

Discrete Applied Mathematics, 6(3):229–236, 1983.

[23] László Babai, William M Kantor, and Eugene M Luks. Computational complex-

ity and the classification of finite simple groups. In 24th Annual Symposium on

Foundations of Computer Science (sfcs 1983), pages 162–171. IEEE, 1983.

http://arxiv.org/abs/1512.03547

Bibliography 118

[24] Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algorithms for

permutation groups. In Proceedings of the 21st Annual Symposium on Foundations

of Computer Science, SFCS ’80, 1980.

[25] I. S. Filotti and Jack N. Mayer. A polynomial-time algorithm for determining the

isomorphism of graphs of fixed genus. In Proceedings of the Twelfth Annual ACM

Symposium on Theory of Computing, STOC ’80, 1980.

[26] László Babai, Paul Erdős, and Stanley M. Selkow. Random graph isomorphism.

In SIAM Journal on Computing, 1980.

[27] Yaohui Lei. A survey of graph and subgraph isomorphism problems. 2004.

[28] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine

Learning Research, 12(Sep):2539–2561, 2011.

[29] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:

Higher-order graph neural networks. arXiv preprint arXiv:1810.02244, 2018.

[30] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to

graph canonization. In Complexity theory retrospective, pages 59–81. Springer,

1990.

[31] Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On

the power of color refinement. In International Symposium on Fundamentals of

Computation Theory, pages 339–350. Springer, 2015.

[32] Christoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper

bounds for the complexity of canonical colour refinement. Theory of Computing

Systems, 60(4):581–614, 2017.

[33] László Babai and Ludik Kucera. Canonical labelling of graphs in linear average

time. In 20th Annual Symposium on Foundations of Computer Science (sfcs 1979),

pages 39–46. IEEE, 1979.

[34] Martin Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In

International Conference on Algorithms and Complexity, pages 260–271. Springer,

2017.

[35] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal

of Symbolic Computation, 60:94–112, 2014.

Bibliography 119

[36] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling

tool for large and sparse graphs. In 2007 Proceedings of the Ninth Workshop on

Algorithm Engineering and Experiments (ALENEX), pages 135–149. SIAM, 2007.

[37] José Luis López-Presa, Antonio Fernández Anta, and Luis Núñez Chiroque.

Conauto-2.0: Fast isomorphism testing and automorphism group computation.

arXiv preprint arXiv:1108.1060, 2011.

[38] Paolo Codenotti, Hadi Katebi, Karem A Sakallah, and Igor L Markov. Conflict

analysis and branching heuristics in the search for graph automorphisms. In 2013

IEEE 25th International Conference on Tools with Artificial Intelligence, pages

907–914. IEEE, 2013.

[39] Brendan D McKay et al. Practical graph isomorphism. Department of Computer

Science, Vanderbilt University Tennessee, USA, 1981.

[40] Stephen G Hartke and AJ Radcliffe. Mckays canonical graph labeling algorithm.

Communicating mathematics, 479:99–111, 2009.

[41] Takunari Miyazaki. The complexity of mckay’s canonical labeling algorithm. In

Groups and Computation, Proceedings of a DIMACS Workshop, New Brunswick,

New Jersey, USA, June 7-10, 1995, 1995.

[42] Anuj Dawar and Kashif Khan. Constructing hard examples for graph isomorphism.

arXiv preprint arXiv:1809.08154, 2018.

[43] Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph iso-

morphism. arXiv preprint arXiv:1705.03686, 2017.

[44] Daniel Neuen and Pascal Schweitzer. An exponential lower bound for

individualization-refinement algorithms for graph isomorphism. In Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages

138–150. ACM, 2018.

[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[46] Alexander Schrijver. Theory of linear and integer programming. John Wiley &

Sons, 1998.

[47] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

2011.

[48] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A comprehen-

sive survey of graph embedding: Problems, techniques and applications. CoRR,

abs/1709.07604, 2017. URL http://arxiv.org/abs/1709.07604.

http://arxiv.org/abs/1709.07604

Bibliography 120

[49] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph

representations. In Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 1145–1152,

2016.

[50] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svo-

boda, and Michael M. Bronstein. Geometric deep learning on graphs and mani-

folds using mixture model cnns. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages

5425–5434, 2017.

[51] Bernhard Schölkopf and Alexander Johannes Smola. Learning with Kernels: sup-

port vector machines, regularization, optimization, and beyond. Adaptive compu-

tation and machine learning series. MIT Press, 2002.

[52] Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness

results and efficient alternatives. In Computational Learning Theory and Kernel

Machines, 16th Annual Conference on Computational Learning Theory and 7th

Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27,

2003, Proceedings, pages 129–143, 2003.

[53] László Babai. Graph isomorphism in quasipolynomial time [extended abstract].

In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-

puting, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697,

2016.

[54] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-

wardt. Graph kernels. J. Mach. Learn. Res., 11:1201–1242, August 2010. ISSN

1532-4435.

[55] David Haussler. Convolution kernels on discrete structures. Technical report, 1999.

[56] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1365–1374,

2015.

[57] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convo-

lutional neural networks for graphs. In Proceedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, pages 2014–2023, 2016.

Bibliography 121

[58] Antoine Jean-Pierre Tixier, Giannis Nikolentzos, Polykarpos Meladianos, and

Michalis Vazirgiannis. Classifying graphs as images with convolutional neural net-

works. CoRR, abs/1708.02218, 2017. URL http://arxiv.org/abs/1708.02218.

[59] Silvio Micali and Zeyuan Allen Zhu. Reconstructing markov processes from inde-

pendent and anonymous experiments. Discrete Applied Mathematics, 200:108–122,

2016.

[60] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and doc-

uments. In Proceedings of the 31th International Conference on Machine Learning,

ICML 2014, Beijing, China, 21-26 June 2014, pages 1188–1196, 2014.

[61] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural

probabilistic language model. Journal of Machine Learning Research, 3:1137–1155,

2003.

[62] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for net-

works. In Proceedings of the 22Nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16, pages 855–864, New York, NY,

USA, 2016. ACM. doi: 10.1145/2939672.2939754.

[63] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and

Santhoshkumar Saminathan. subgraph2vec: Learning distributed representations

of rooted sub-graphs from large graphs. CoRR, abs/1606.08928, 2016.

[64] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xi-

aokang Yang. A short survey of recent advances in graph matching. In Proceed-

ings of the 2016 ACM on International Conference on Multimedia Retrieval, pages

167–174. ACM, 2016.

[65] James Mercer. Xvi. functions of positive and negative type, and their connection

the theory of integral equations. Philosophical transactions of the royal society of

London. Series A, containing papers of a mathematical or physical character, 209

(441-458):415–446, 1909.

[66] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels:

support vector machines, regularization, optimization, and beyond. MIT press,

2002.

[67] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[68] S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph. Fast

computation of graph kernels. In Proceedings of the 19th International Conference

http://arxiv.org/abs/1708.02218

Bibliography 122

on Neural Information Processing Systems, NIPS’06, pages 1449–1456, Cambridge,

MA, USA, 2006. MIT Press.

[69] Brendan D McKay et al. Practical graph isomorphism. Department of Computer

Science, Vanderbilt University Tennessee, USA, 1981.

[70] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal

of Symbolic Computation, 60:94–112, 2014.

[71] Donald L Kreher and Douglas R Stinson. Combinatorial algorithms: generation,

enumeration, and search, volume 7. CRC press, 1998.

[72] Harry Wiener. Influence of interatomic forces on paraffin properties. The Journal

of Chemical Physics, 15(10):766–766, 1947.

[73] Harry Wiener. Correlation of heats of isomerization, and differences in heats of

vaporization of isomers, among the paraffin hydrocarbons. Journal of the American

Chemical Society, 69(11):2636–2638, 1947.

[74] Haruo Hosoya. Topological index. a newly proposed quantity characterizing the

topological nature of structural isomers of saturated hydrocarbons. Bulletin of the

Chemical Society of Japan, 44(9):2332–2339, 1971.

[75] Roberto Todeschini and Viviana Consonni. Handbook of molecular descriptors,

volume 11. John Wiley & Sons, 2008.

[76] Paul J. Kelly. A congruence theorem for trees. Pacific J. Math., 7(1):961–968,

1957. URL https://projecteuclid.org:443/euclid.pjm/1103043674.

[77] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-

wardt. Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[78] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Kernels for Graphs. MIT

Press, 2004.

[79] SVN Vishwanathan. Kernel Methods Fast Algorithms and real life applications.

PhD thesis, Indian Institute of Science Bangalore, 2003.

[80] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the

number of variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[81] Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast

feature learning on graphs. In Advances in Neural Information Processing Systems,

pages 88–98, 2017.

https://projecteuclid.org:443/euclid.pjm/1103043674

Bibliography 123

[82] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs.

In Fifth IEEE international conference on data mining (ICDM’05), pages 8–pp.

IEEE, 2005.

[83] Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for

predictive graph mining. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 158–167. ACM, 2004.

[84] Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels.

In Proceedings of the first international workshop on mining graphs, trees and

sequences, pages 65–74, 2003.

[85] Pierre Mahé and Jean-Philippe Vert. Graph kernels based on tree patterns for

molecules. Machine learning, 75(1):3–35, 2009.

[86] Risi Kondor and Karsten M Borgwardt. The skew spectrum of graphs. In Pro-

ceedings of the 25th international conference on Machine learning, pages 496–503.

ACM, 2008.

[87] Risi Kondor, Nino Shervashidze, and Karsten M Borgwardt. The graphlet spec-

trum. In Proceedings of the 26th Annual International Conference on Machine

Learning, pages 529–536. ACM, 2009.

[88] Holger Fröhlich, Jörg K Wegner, Florian Sieker, and Andreas Zell. Optimal as-

signment kernels for attributed molecular graphs. In Proceedings of the 22nd in-

ternational conference on Machine learning, pages 225–232. ACM, 2005.

[89] Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal as-

signment kernels and applications to graph classification. In Advances in Neural

Information Processing Systems, pages 1623–1631, 2016.

[90] Lu Bai, Peng Ren, Xiao Bai, and Edwin R Hancock. A graph kernel from the

depth-based representation. In Joint IAPR International Workshops on Statistical

Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern

Recognition (SSPR), pages 1–11. Springer, 2014.

[91] Lu Bai, Luca Rossi, Zhihong Zhang, and Edwin Hancock. An aligned subtree

kernel for weighted graphs. In International Conference on Machine Learning,

pages 30–39, 2015.

[92] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph

kernels. arXiv preprint arXiv:1903.11835, 2019.

[93] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels:

A survey. arXiv preprint arXiv:1904.12218, 2019.

Bibliography 124

[94] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. CoRR, 2013. URL http://arxiv.org/

abs/1301.3781.

[95] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed represen-

tations of graphs. In Proceedings of the 13th International Workshop on Mining

and Learning with Graphs (MLG), 2017.

[96] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR.

org, 2017.

[97] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-

works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203,

2013.

[98] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

neural information processing systems, pages 3844–3852, 2016.

[99] Thomas N Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. arXiv preprint arXiv:1609.02907, 2016.

[100] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convo-

lutional neural networks. In Thirty-Second AAAI Conference on Artificial Intelli-

gence, 2018.

[101] Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-

based semi-supervised classification. In Proceedings of the 2018 World Wide Web

Conference, pages 499–508. International World Wide Web Conferences Steering

Committee, 2018.

[102] Alessio Micheli. Neural network for graphs: A contextual constructive approach.

IEEE Transactions on Neural Networks, 20(3):498–511, 2009.

[103] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[104] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint

arXiv:1710.10903, 2017.

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Bibliography 125

[105] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

[106] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to

sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

[107] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint

arXiv:1611.07308, 2016.

[108] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel

Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-

Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Auto-

matic chemical design using a data-driven continuous representation of molecules.

ACS central science, 4(2):268–276, 2018.

[109] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small

graphs using variational autoencoders. In International Conference on Artificial

Neural Networks, pages 412–422. Springer, 2018.

[110] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan

Günnemann. Netgan: Generating graphs via random walks. arXiv preprint

arXiv:1803.00816, 2018.

[111] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng

Zhang, Xing Xie, and Minyi Guo. Graphgan: Graph representation learning with

generative adversarial nets. In Thirty-Second AAAI Conference on Artificial In-

telligence, 2018.

[112] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec.

Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv

preprint arXiv:1802.08773, 2018.

[113] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. Computational capabilities of graph neural networks. IEEE Transac-

tions on Neural Networks, 20(1):81–102, 2008.

[114] Barbara Hammer, Alessio Micheli, and Alessandro Sperduti. Universal approxi-

mation capability of cascade correlation for structures. Neural Computation, 17

(5):1109–1159, 2005.

[115] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and

equivariant graph networks. arXiv preprint arXiv:1812.09902, 2018.

Bibliography 126

[116] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S Yu. A comprehensive survey on graph neural networks. arXiv preprint

arXiv:1901.00596, 2019.

[117] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong

Sun. Graph neural networks: A review of methods and applications. arXiv preprint

arXiv:1812.08434, 2018.

[118] Ajith Abraham. Computational Social Networks: Security and Privacy. Springer

Publishing Company, Incorporated, 2012.

[119] Silvio Micali and Zeyuan Allen Zhu. Reconstructing markov processes from inde-

pendent and anonymous experiments. Discrete Applied Mathematics, 2016.

[120] Winston Yang. Bell numbers and k-trees. Discrete Math., 1996.

[121] Alain Hertz and Hadrien Mélot. Counting the number of non-equivalent vertex

colorings of a graph. Discrete Appl. Math., 2016.

[122] Richard P. Stanley. Enumerative Combinatorics: Volume 1. 2011.

[123] Daniel Berend and Tamir Tassa. Improved bounds on bell numbers and on mo-

ments of sums of random variables. Probability and Math. Statistics, 2010.

[124] Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the chinese post-

man. Math. Program., 1973.

[125] H. Tubig. The number of walks and degree powers in directed graphs. Tech-

nical report, Computer Science Department, Rutgers University, TUM-I123, TU

Munich, 2012.

[126] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

Distributed representations of words and phrases and their compositionality. In

Advances in Neural Information Processing Systems NIPS, pages 3111–3119, 2013.

[127] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new es-

timation principle for unnormalized statistical models. In Proceedings of the Thir-

teenth International Conference on Artificial Intelligence and Statistics, AISTATS

2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pages 297–304, 2010.

[128] Sébastien Jean, KyungHyun Cho, Roland Memisevic, and Yoshua Bengio. On

using very large target vocabulary for neural machine translation. In ACL 2015,

pages 1–10, 2015.

Bibliography 127

[129] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Matching

node embeddings for graph similarity. In Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, Califor-

nia, USA., pages 2429–2435, 2017.

[130] Mahito Sugiyama and Karsten M. Borgwardt. Halting in random walk kernels.

In Advances in Neural Information Processing Systems 28: Annual Conference

on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,

Quebec, Canada, pages 1639–1647, 2015.

[131] J Paul Hamilton, Michael C Chen, and Ian H Gotlib. Neural systems approaches

to understanding major depressive disorder: an intrinsic functional organization

perspective. Neurobiology of disease, 52:4–11, 2013.

[132] Michael J Robinson, Sara E Edwards, Smriti Iyengar, Frank Bymaster, Michael

Clark, and Wayne Katon. Depression and pain. Front Biosci, 14(503):l–5051,

2009.

[133] Gilles Ambresin, Patty Chondros, Christopher Dowrick, Helen Herrman, and

Jane M Gunn. Self-rated health and long-term prognosis of depression. The

Annals of Family Medicine, 12(1):57–65, 2014.

[134] Athanasios Gaitatzis, Kevin Carroll, Azeem Majeed, and Josemir W Sander. The

epidemiology of the comorbidity of epilepsy in the general population. Epilepsia,

45(12):1613–1622, 2004.

[135] JJ Barry, AB Ettinger, P Friel, FG Gilliam, CL Harden, B Hermann, AM Kanner,

R Caplan, S Plioplys, J Salpekar, et al. Advisory group of the epilepsy foundation

as part of its mood disorder. consensus statement: the evaluation and treatment of

people with epilepsy and affective disorders. Epilepsy Behav, 13(Suppl 1):S1–29,

2008.

[136] Dale C Hesdorffer, W Allen Hauser, John F Annegers, and Gregory Cascino.

Major depression is a risk factor for seizures in older adults. Annals of Neurology:

Official Journal of the American Neurological Association and the Child Neurology

Society, 47(2):246–249, 2000.

[137] Y.K. Kim and K.S. Na. Application of machine learning classification for structural

brain mri in mood disorders: Critical review from a clinical perspective. Prog.

Neuro-Psychopharmacology Biol. Psychiatry, 80:71–80, 2018.

[138] Cynthia HY Fu and Sergi G Costafreda. Neuroimaging-based biomarkers in psy-

chiatry: clinical opportunities of a paradigm shift. The Canadian Journal of

Psychiatry, 58(9):499–508, 2013.

Bibliography 128

[139] Andrew T Drysdale, Logan Grosenick, Jonathan Downar, Katharine Dunlop, Far-

rokh Mansouri, Yue Meng, Robert N Fetcho, Benjamin Zebley, Desmond J Oathes,

Amit Etkin, et al. Resting-state connectivity biomarkers define neurophysiological

subtypes of depression. Nature medicine, 23(1):28, 2017.

[140] M. Sharaev, A. Andreev, A. Artemov, E. Burnaev, E. Kondratyeva, S. Sushchin-

skaya, I. Samotaeva, V. Gaskin, and A. Bernstein. Pattern recognition pipeline

for neuroimaging data. In Luca Pancioni, Friedhelm Schwenker, and Edmondo

Trentin, editors, Artificial Neural Networks in Pattern Recognition (ANNPR-

2018). Lecture Notes in Computer Science, volume 11081, pages 306–319. Springer,

2018.

[141] M. Sharaev, A. Artemov, E. Kondratyeva, S. Sushchinskaya, E. Burnaev, A. Bern-

stein, R. Akzhigitov, and A. Andreev. Mri-based diagnostics of depression con-

comitant with epilepsy: in search of the potential biomarkers. In 2018 IEEE In-

ternational Conference on Data Science and Advanced Analytics (DSAA). IEEE,

2018.

[142] Meenal J Patel, Alexander Khalaf, and Howard J Aizenstein. Studying depression

using imaging and machine learning methods. NeuroImage: Clinical, 10:115–123,

2016.

[143] Gaël Varoquaux, Alexandre Gramfort, Jean-Baptiste Poline, and Bertrand

Thirion. Brain covariance selection: better individual functional connectivity mod-

els using population prior. In Advances in neural information processing systems,

pages 2334–2342, 2010.

[144] Xin Wang, Yanshuang Ren, and Wensheng Zhang. Depression disorder classifica-

tion of fmri data using sparse low-rank functional brain network and graph-based

features. Computational and mathematical methods in medicine, 2017, 2017.

[145] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine

Learning Research, 12:2539–2561, 2011.

[146] Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In Proceedings

of the 35th International Conference on Machine Learning, 2018.

[147] Silvio Micali and Zeyuan Allen Zhu. Reconstructing markov processes from inde-

pendent and anonymous experiments. Discrete Applied Mathematics, 200:108–122,

2016.

Bibliography 129

[148] Jonathan D Cohen, Nathaniel Daw, Barbara Engelhardt, Uri Hasson, Kai Li, Yael

Niv, Kenneth A Norman, Jonathan Pillow, Peter J Ramadge, Nicholas B Turk-

Browne, et al. Computational approaches to fmri analysis. Nature neuroscience,

20(3):304, 2017.

[149] D. Smolyakov and E. Burnaev. One-class SVM with privileged information and

its application to malware detection. In Carlotta Domeniconi, Francesco Gullo,

Francesco Bonchi, Josep Domingo-Ferrer, Ricardo A. Baeza-Yates, Zhi-Hua Zhou,

and Xindong Wu, editors, IEEE International Conference on Data Mining Work-

shops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain., pages

273–280. IEEE Computer Society, 2016. doi: 10.1109/ICDMW.2016.0046. URL

https://doi.org/10.1109/ICDMW.2016.0046.

[150] D. Smolyakov, P. Erofeev, and E. Burnaev. Model selection for anomaly detection.

In A. Verikas, P. Radeva, and D. Nikolaev, editors, Proc. SPIE 9875, Eighth In-

ternational Conference on Machine Vision, Barcelona, Spain (December 8, 2015),

volume 9875. SPIE, 2015.

[151] A. Papanov, P. Erofeev, and E. Burnaev. Influence of resampling on accuracy

of imbalanced classification. In A. Verikas, P. Radeva, and D. Nikolaev, editors,

Proc. SPIE 9875, Eighth International Conference on Machine Vision, Barcelona,

Spain (December 8, 2015), volume 9875. SPIE, 2015.

[152] Daniel Yekutieli and Yoav Benjamini. Resampling-based false discovery rate con-

trolling multiple test procedures for correlated test statistics. Journal of Statistical

Planning and Inference, 82(1-2):171–196, 1999.

[153] S.S. Chernova and E.V. Burnaev. On an iterative algorithm for calculating

weighted principal components. Journal of Communications Technology and Elec-

tronics, 60(6):619–624, Jun 2015.

[154] Benson Mwangi, Tian Siva Tian, and Jair C. Soares. A review of feature reduction

techniques in neuroimaging. Neuroinformatics, 12(2):229–244, 2014.

[155] Antti Airola, Tapio Pahikkala, Willem Waegeman, Bernard De Baets, and Tapio

Salakoski. A comparison of auc estimators in small-sample studies. In Machine

learning in systems biology, pages 3–13, 2009.

[156] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(Nov):2579–2605, 2008.

[157] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of

influence through a social network. In KDD, pages 137–146, 2003.

https://doi.org/10.1109/ICDMW.2016.0046

Bibliography 130

[158] L. de Vries, S. Gensler, and Peter S.H. Leeflang. Popularity of brand posts on brand

fan pages: An investigation of the effects of social media marketing. Journal of

Interactive Marketing, 26(2):83–91, 2012.

[159] I. P. Cvijikj and F. Michahelles. Online engagement factors on facebook brand

pages. Social Network Analysis and Mining, 3(4):843–861, 2013.

[160] E. Katz. Mass communications research and the study of popular culture: An ed-

itorial note on a possible future of this journal. Studies in Public Communication,

2:1–6, 1959.

[161] S. Aral and D. Walker. Creating social contagion through viral product design:

A randomized trial of peer influence in networks. Management Science, 57(9):

1623–1639, 2011.

[162] N. Barbieri and F. Bonchi. Influence maximization with viral product design. In

SDM, 2014.

[163] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence propagation

models. In ICDM, 2012.

[164] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent

viral marketing in large-scale social networks. In KDD, 2010.

[165] Wei Chen, Laks V. S. Lakshmanan, and Carlos Castillo. Information and Influence

Propagation in Social Networks. Morgan & Claypool Publishers, 2013. ISBN

1627051155, 9781627051156.

[166] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, and N. S.

Glance. Cost-effective outbreak detection in networks. In KDD, 2007.

[167] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community

structure in networks. Phys. Rev. E, 83:016107, Jan 2011.

[168] Tiago P. Peixoto. Model selection and hypothesis testing for large-scale network

models with overlapping groups. Phys. Rev. X, 5, 2015.

[169] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. Cost-effective outbreak detection in networks.

[170] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. SIGKDD 2003.

[171] Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In Proceedings

of the 35th International Conference on Machine Learning (ICML), 2018.

Bibliography 131

[172] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. ICLR ’17.

[173] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the

lorentz model of hyperbolic geometry. In ICML ’18.

[174] Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. ICML ’18.

[175] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. Debunking the myths of influ-

ence maximization: An in-depth benchmarking study. SIGMOD ’17.

[176] P. Domingos and M. Richardson. Mining the network value of customers. In KDD,

2001.

[177] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral mar-

keting. In KDD, 2002.

[178] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social net-

works under the linear threshold model. In ICDM, 2010.

[179] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng. IMRank: influence maxi-

mization via finding self-consistent ranking. In SIGIR, 2014.

[180] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social

influence maximization. PVLDB, 5(1):73–84, 2011.

[181] Y. -C. Chen, W. -C. Peng, and S. -Y. Lee. Efficient algorithms for influence

maximization in social networks. Knowl. Inf. Syst., 33(3):577–601, 2012.

[182] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier. Maximizing social influence

in nearly optimal time. In SODA, 2014.

[183] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: near-optimal time com-

plexity meets practical efficiency. In SIGMOD, 2014.

[184] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online topic-aware

influence maximization queries. In EDBT, 2014.

[185] W. Chen, T. Lin, and C. Yang. Efficient topic-aware influence maximization using

preprocessing. CoRR, abs/1403.0057, 2014.

[186] S. Chen, J. Fan, G. Li, J. Feng, K.-L. Tan, and J. Tang. Online topic-aware

influence maximization. Proc. VLDB Endow., 8(6):666–677, 2015.

[187] Y. Li, D. Zhang, and K.-L. Tan. Real-time targeted influence maximization for

online advertisements. Proc. VLDB Endow., 8(10):1070–1081, 2015.

Bibliography 132

[188] L. Hong and B. D. Davison. Empirical study of topic modeling in twitter. In

SOMA, 2010.

[189] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social

networks. In KDD, pages 199–208, 2009.

[190] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In KDD, pages 1029–

1038, 2010.

[191] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, and Yang Liu. graph2vec: Learning distributed representations of graphs.

[192] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. KDD ’14.

[193] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Optimal

sampling algorithms for viral marketing in billion-scale networks. SIGMOD ’16.

	Abstract
	Publications
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.1.1 Goals and main results
	1.1.2 Thesis organization

	1.2 Graph theory
	1.2.1 Definitions and examples
	1.2.2 Walks, paths, and cycles
	1.2.3 Basic representations

	1.3 Graph isomorphism
	1.3.1 Complexity of graph isomorphism
	1.3.2 Practical graph isomorphism

	2 Anonymous Walk Embeddings
	2.1 Motivation
	2.2 Our approach
	2.3 Review of combinatorial and neural embeddings
	2.3.1 Combinatorial graph embeddings
	2.3.2 Neural graph embeddings

	2.4 Anonymous walks
	2.4.1 Graph isomorphism test

	2.5 Algorithms
	2.5.1 Combinatorial model
	2.5.2 Neural model

	2.6 Application to graph classification
	2.6.1 Experimental evaluation

	2.7 Application to medical diagnostics
	2.7.1 fMRI data and pipeline
	2.7.2 Experimental evaluation
	2.7.3 Final remarks

	2.8 Summary

	3 Graph embeddings for combinatorial problems
	3.1 Motivation
	3.2 Product recommendation in graphs
	3.2.1 Problem formulation
	3.2.2 Hardness and Inapproximability
	3.2.3 The Explore-Update Algorithm
	3.2.4 Experimental evaluation
	3.2.5 Summary

	3.3 Influencer recommendation in social networks
	3.3.1 Introduction
	3.3.2 Finding initial influential set
	3.3.3 Influence spread and Running time
	3.3.4 Influence Completion
	3.3.5 Experimental evaluation
	3.3.6 Summary

	4 Conclusion
	4.1 Synopsis
	4.2 Future directions

	A History of Weisfeiler-Lehman Algorithm
	Bibliography

